Transcript

IS-AHND 2011

G-COE PICE, International Symposium and IEEE EDS Minicolloquium on

Advanced Hybrid Nano Devices (IS-AHND) 2011

CMOS-Device Technology Benchmarks for Low-Power Logic LSIs

Oct./4th, 2011 (35 min.)

Hitoshi Wakabayashi, Sony Corporation

Benchmarks of CMOS scaling

Cost chip size

Power

Speed

IS-AHND 2011

ITRS Logic Roadmap

International Technology Roadmap for Semiconductors http://www.itrs.net/

Half-pitch scaling

Cost, Power, Speed

2

Gate

Contact

Si

active

Pitch Contacted

gate pitch

180 130 90 65 45(40)

32(28) 22(20) 16(14)

11-nm technology node

x 0.7 x 0.7

X 0.5 N N+1 N-1

Plane

view

2000 2005 2010 2015 2020 20257

910

20

40

60

80100

200

Years

Fe

atu

re s

ize

[n

m]

Half pitchproduction yearITRS 1999−2009x0.7/3−years

Tech. nodepublish years

Tech. node

Intel products

x0.7/2−years

− 2011 SSDM

IS-AHND 2011

cost reduction by scaling

Pitch scaling SRAM-cell-size scaling

Gate

Contact

Si

active

Pitch Contacted

gate pitch

3

8 10 20 40 60 8010040

50

60708090

100

200

300

400

Technology node [nm]

Co

nta

cte

d g

ate

pitch

[n

m]

Node

Node0.5

− 2011 SSDM

8 10 20 40 60 801000.01

0.02

0.06

0.10

0.20

0.60

1.00

2.00

Technology node [nm]

6T

−S

RA

M c

ell

siz

e [u

m2]

Node2 − 2011 SSDM

IS-AHND 2011

10 nm, 0.021 um2, IBM, 11VL T4-5

The world smallest 6T-SRAM

FinFET u/ Mixed EB and Optical litho. (MXL)

Contacted gate pitch (CGP) scaling down to 50 nm

4

IS-AHND 2011

Performance comparison

Delay time (Cg+Cpara) Vdd / Ids = Cpara x Vdd / Ion @ Cg << Cpara

= Ci x Lg x Vdd / Ion @ Cg >> Cpara

Ieff

Power density [W/um2] Active fCV2 = I/CV x CV2 = Vdd x Ion [A/um] / Lg [um]

Standby J_leak x Vdd

5

IS-AHND 2011

Voltage-scaling limited by random variability

Threshold voltage (Vth) variability SRAM variability

Systematic un-uniformity

Random Quantization

Stable Unstable

Systematic

T. Skotnicki, STMicroelectronics, IEEE T-ED, 2008.

Random

Vth, whole wafer

SRAM Static Noise Margin

Random

M. Kanno, Sony, 2007 VLSI Tech.

6

8 10 20 40 60 801000.3

0.4

0.5

0.6

0.7

0.80.91.0

Technology node [nm]

Su

pp

ly v

olta

ge

Vd

d [n

m]

Node0.5 Node

−2011 SSDM

MIT/TI SiON

IS-AHND 2011

28nm, 0.6 V SoC, MIT/TI, ISSCC11 7.5/14.4

Poly-Si/SiON, 6T-SRAM

3s, 0.6V

7

IS-AHND 2011

To reduce random variability

Sigma of threshold voltage sVth {Tinv Na1/4} / sqrt(Lg x W) = Avt / sqrt(Lg x W)

Metal/High-k gate stack Tinv Impurities

Metal

High-k

8

8 10 20 40 60 801000.6

0.7

0.8

0.91.0

2.0

3.0

Technology node [nm]

Inve

rsio

n o

xid

e th

ickn

ess, T

inv

[nm

]

Node0.5

Node − SSDM 2011

Poly−Si/SiON

Metal/High−k

0.6 0.8 1.0 2.01.0

2.0

3.0

Inversion oxide thickness, Tinv [nm]

Avt [m

V−

m

]Tinv

0.5

ET−SOITinv

− 2011 SSDM

IS-AHND 2011

Variability reduction, Intel gate-last

Thin Tinv by M/Hk gate

Gridded layout

Tinv ~ 2.3 2.0 1.9 1.4 1.3 nm

M/Hk

Gridded layout

Poly-Si/SiON

Random layout

K. Kuhn, Intel, iedm 2008, 28.4

M. Bohr, Intel, ISSCC, 2009

After gate pattering

9

IS-AHND 2011

Gate capacitance reduction by Lg scaling

CV/I [sec] = Ci [F/um2] x Lg [um] x Vdd / Idsat [A/um]

Lg scaling by thin Tinv u/ M/Hk gates

M. Khare, IBM, iedm 2010, Short Course

10

8 10 20 40 60 8010089

10

20

30

40

50

607080

Technology node [nm]

Ga

te le

ng

th [n

m]

Node

Node0.5

− SSDM 2011

IS-AHND 2011

Sony’s Gate-Last M/Hk, VL09 T2A-1

11

-4

-3

-2

-1

0

1

0.01 0.1 1 10

Raman

Cross (110)

Raman

Cross (100)

Raman

Plane (100)

NBD

(100)

NBD

(110)

Simulation (100)

Gate length [um]

Lo

ng

itu

din

al c

han

ne

l s

tres

s

Sx

x [

GP

a]

-2.4

30nm

Stress simulation

eSiGe eSiGe

pFET

Removal

SiN SW

30nm 60nm

Compressive SiN liner

eSiGe

(100) sub.

W/T

iN/H

fO2

pFET

S. Mayuzumi, Sony, iedm07

IS-AHND 2011

V/I vs. Node/Lg for HP/LOP/LSTP

M/Hk gate-last achieves small V/I.

FinFET has almost the same effects.

12

8 10 20 40 60 800.3

0.5

0.7

0.91.0

2.0

Gate length, L g [nm]

Ha

rmo

nic

me

an

of V

dd/I

on [k

m

]

Lg − SSDM 2011

Sony GL

Intel GL

8 10 20 40 60 801000.3

0.5

0.7

0.91.0

2.0

Technology node [nm]

Ha

rmo

nic

me

an

of V

dd/I

on [k

m

]

Node − SSDM 2011

Sony GL

Intel GL Node

0.5

IS-AHND 2011

Slow down on node Speed up on Lg

Slow Lg scaling

High-mobility pMOS

CV/I vs. Node/Lg

13

8 10 20 40 60 801000.3

0.5

0.7

0.91.0

2.0

Technology node [nm]

Ha

rmo

nic

me

an

of C

V/I [p

se

c]

Node

− SSDM 2011

Sony GL

Intel GL

Node0.5

8 10 20 40 60 800.3

0.5

0.7

0.91.0

2.0

Gate length, L g [nm]

Ha

rmo

nic

me

an

of C

V/I [p

se

c]

Lg

− SSDM 2011 Sony GL

Intel GL

Lg

2

IS-AHND 2011

CV/I & V/I vs. power-density

Need low voltage based on high mobility

14

104

105

0.3

0.5

0.7

0.91.0

2.0

4.0

Harmonic mean of power density [W/m2]

Ha

rmo

nic

me

an

of V

dd/I

on [k

m

] − SSDM 2011

Sony GLIntel GL

InGaAs HEMT0.5 V

FinFET?

FinFET?

104

105

0.3

0.5

0.7

0.91.0

2.0

4.0

Harmonic mean of power density [ W/m2]

Ha

rmo

nic

me

an

of C

V/I [p

se

c]

− SSDM 2011

Sony GL

Intel GL

InGaAsHEMT0.5 V

IS-AHND 2011

Voltage scaling by III-V, iedm09, 13.1

InGaAs HEMT on Si for nFET, Intel

10,000 cm2/Vs @ 300K

Lg = 75 nm

Vds = 0.5 V

iedm 09, 13.1, Intel

nF

ET

ele

ctr

on

ve

loc

ity [

cm

/s]

15

IS-AHND 2011

The highest Ge n/pFETs, iedm10 18.1

Electron mobility: 1920 cm2/Vs

Hole mobility: 725 cm2/Vs

16

IS-AHND 2011

SoC components, Intel 45 nm

17

Intel web site

C.-H. Jan, Intel, iedm 2010, 27.2

IS-AHND 2011

Sidewall image transfer (SIT)

Synchronized edges Small variability

H. Kawasaki, iedm09, 12.1

V. S. Basker, 2010 Symp.

on VLSI Tech., 2.2

Bong Tae Park, 2010 Symp. on

VLSI Tech., 12.1

H. Kawasaki, IWJT 2007, S1-1

18

IS-AHND 2011

3D architectures

Requirements: Idsat/Wfootprint > Idsat/Weff

Single Si nanowire FET

2D-twin Si nanowire FET

3D stacked nanowire FET

Functionalities/chip area

SiP technologies F.L. Yang et al., VLSI, 2004.

S

i

L.K. Bera, et al., IEDM, 2006.

8-nm f

K.H. Yeo et al., IEDM, 2006.

19

IS-AHND 2011

Huge systems

in a chip

having

0.1-Peta

Trs !!!

2040

Students need to consider.

w/w population

(6.7G)

Cerebrum

Neurons (14G)

1E5

#/chip

Cerebellum

Neurons (100G)

20

IS-AHND 2011

Summary

Benchmarks of CMOS scaling

Cost

Power

Speed

21


Top Related