Transcript
Page 1: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

Astro2020ScienceWhitePaperTheMagellanicStreamasaProbeofAstrophysicsThematicAreas:☐PlanetarySystems☐StarandPlanetFormation☐FormationandEvolutionofCompactObjects☐CosmologyandFundamentalPhysics☐StarsandStellarEvolution☐ResolvedStellarPopulationsandtheirEnvironments☒GalaxyEvolution☐Multi-MessengerAstronomyandAstrophysicsPrincipalAuthor:AndrewJFox,SpaceTelescopeScienceInstitute,[email protected],4103385083Co-authors:KathleenA.Barger,TexasChristianUniversity,[email protected],UniversityofSydney,[email protected],SouthernConnecticutStateUniversity,[email protected]’Onghia,UniversityofWisconsin-Madison,[email protected],GreenBankObservatory,[email protected],AustralianNationalUniversity,[email protected],UniversityofMontana,[email protected],ColumbiaUniversity,[email protected],UniversityofPotsdam,[email protected],UniversityofWisconsin-Madison,[email protected],UniversityofSydney,[email protected]:Extendingforover200degreesacrossthesky,theMagellanicStreamtogetherwithitsLeadingArmisthemostspectacularexampleofagaseousstreaminthelocalUniverse.TheStreamisaninterwoventailoffilamentstrailingtheMagellanicCloudsastheyorbittheMilkyWay.Thoughttobecreatedbytidalforces,rampressure,andhalointeractions,theStreamisabenchmarkfordynamicalmodelsof theMagellanic System, a case study for gas accretionanddwarf-galaxyaccretionontogalaxies,aprobeoftheouterhalo,andthebearerofmoregasmassthanallotherGalactichighvelocitycloudscombined.IfitsurvivestoreachtheGalacticdisk,itmaymaintainorevenelevatetheGalacticstar-formationrate.Inthiswhitepaper,weemphasizetheStream’simportanceformanyareasofGalacticastronomy,summarizekeyunansweredquestions,andidentifyfutureobservationsandsimulationsneededtoresolvethem.Westresstheimportanceof ultraviolet, optical, and radio spectroscopy, and the need for computational models thatcapturefullparticleandradiationtreatmentswithinanMHDenvironment.

Page 2: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

2

1) IntroductionSinceitsdiscoveryin21cmemissionover50yearsago(Dieter1965,Wannier&Wrixon1972,Mathewson+1974),theMagellanicStreamhasfascinatedmanycommunitiesofastronomers,fromradioandultravioletobservers todynamicistsandsimulators.At thesimplest level, theStreamisanextendedtailofmulti-phasegasstrippedoutoftheMagellanicCloudsandcovering140degreesinlength,or200degreeswhenincludingitsLeadingArm(seeFigure1;Nidever+2008,2010).Yetitissomuchmorethanthat:acasestudyoftheaccretionofgasandsatellitesontoastar-forminggalaxy,akeyconstraintonthedynamicalhistoryoftheMagellanicClouds,atestbedfortheevaporativeencountersbetweencoolgascloudsandthehotGalacticcorona,alaboratoryforunderstandinghowstarformationoccursintidaltails,andascreenagainstwhichionizingradiationfromtheGalacticCentershines(seereviewbyD’Onghia&Fox2016).Forthesediverse reasons, many sub-fields of Galactic astronomy are directly impacted by ourunderstandingoftheStream.ConsiderableprogressontheStreamhasbeenmadeoverthelasttwodecades,particularlyviatheuseofultraviolet(UV)spectrographsonHST,sensitive21cmradiosurveys,andnumericalsimulations(Figure2;D’Onghia&Fox2016).However,manyopenquestionsremain,includingfundamentalpropertieslikeitsdistance,originandfate.Inthiswhitepaper,weidentifyprogressmade in the last fewyears (Section2),andthenoutlineremainingquestions tobeanswered(Section3).We then focuson futureobservational capabilities andnecessary refinements tostate-of-the-artsimulations(Section4),andwefinishwithsomeconcludingremarks(Section5).ThroughoutthewhitepaperweemphasizetheStream’simportanceasaprobeofastrophysicalprocessesandthenecessityofspectroscopicobservationsasdiagnostictools.

Figure1:All-skyH Imapof theMagellanicSystem, fromNidever+ (2010),usingH Idata fromtheGBT,Arecibo,Parkes,Westerbork,andtheLABsurvey.ThisAitoffprojectionisinGalacticcoordinateswithHIemissioncoloredinpink.Werefertotheentirecomplex(LMC,SMC,Stream,Bridge,andLeadingArm)astheMagellanicSystem.

Page 3: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

3

Figure2: IllustrationofthechemicalabundancesalongtheMagellanicStream,fromD’Onghia&Fox(2016),andusingdatafromFox+(2013)andRichter+(2013).Thetwomainfilamentsofgas (Nidever+2008)havemarkedlydifferentkinematicandchemicalproperties,indicatingtheStream’sdualnature,withLMCandSMCcontributions.

2) RecentProgressontheMagellanicStreamandMagellanicSystem

a. Over ten ultra-faint dwarf (UFD) galaxies have been discovered in the vicinity of theMagellanicClouds(Koposov+2015a,b,2018,Bechtol+2015,Drlica-Wagner+2016),usingdatafromtheDarkEnergySurvey(DES).TheproximityofthesesatellitestotheMagellanicCloudssuggestsaMagellanicgroupofgalaxies (e.g.Kallivayalil+2018,Fritz+2019),whichmayhaveinfluencedtheformationoftheStream(Tepper-Garcia+2019).MoreworkisneededtoidentifywhichofthebrightdwarfspheroidalshaveaMagellanicassociation(Lynden-Bell1976,D’Onghia&Lake2008,Nichols+2011).TheLMChasafairlymassivecompanion,theSMC,whichis1.5magfainter,butitsnextmostluminoussatelliteappearstobeHydrus1(Koposov+2018),nearly13magfainter.This leavesanunexplained>10maggapintheLMCsatellite luminosityfunction.GaiaDR2propermotionssuggestthattwodwarfspheroidalshaveorbitscloselyalignedwiththeMagellanic-Cloudplane(Pardy+2019).TogetherwiththeSMCthisraisestothreethenumberofLMCsatellitesinthemassrangeofdwarfspheroidals,inagreementwithLCDMpredictions.b.ThemetallicityoftheLeadingArmhasbeenconstrainedviaUVspectroscopyfromHST/COS(Fox+2018,Richter+2018a).ThesestudieshavefoundtheLeadingArmhasanSMC-likechemicalabundance composition, but with considerable variation between the different regions. Theoxygenabundancesvaryfrom4%solarto30%solarbetweenregionsLAIIandLAIII(Fox+2018),suggestingmultiplegasremovalepisodes.WhilethereiskinematicandchemicalevidenceforafilamentinthetrailingStreamthatoriginatesintheLMC(Nidever+2008,Richter+2013),asyetnochemicalevidenceforanLMCfilamentintheLeadingArm,thoughHIstudies(Putman+1998)

Page 4: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

4

favoranLMCorigin.FurtherUVstudiesfromsensitivefuturespace-basedinstrumentationcouldmapoutthechemicalabundancesintheLeadingArmandsearchforaLMCfilament.c. Some short-length stellar components to the Stream have been found in the DES data(Belokurov&Koposov2016;Navarrete+2019),oneofwhichoverlapswiththegaseousstream,butwearemissingabreakthroughdiscoveryofanextendedstellarstream(aSagittariusdwarf).Theabsenceofastellarstreamhasbeenalong-standingproblem,sinceatidally-createdStreamshould contain both stars and gas. The Stream somehow survives yet does not form stars(Stanimirovic+2010).Other surveysareneeded, suchas theSurveyof theMagellanic StellarHistory(SMASH)usingtheDarkEnergyCamera,whichhasmapped480squaredegreesoftheoutskirtsoftheMagellanicClouds(Nidever+2017).LSSTwillbeinstrumentalinthiseffort.d.Proper-motionandparallaxmeasurementsforstarsintheLMCandSMCandfortheultra-faintdwarfsarenowpossiblewithGaiaDR2.OngoingHSTproper-motionmeasurementswillbetter constrain the LMC’s andSMC’s internal kinematics (e.g.Oey+2018), further constraindynamicalmodelsoftheentireMagellanicSystem,andexploreevidenceforadirectLMC-SMCcollisioninthepast(Besla+2012).FortheUFDs,systemicpropermotionswilldeterminewhethertheyareMagellanicmembers.ThesemeasurementsarestilluncertainforsomesystemsduetothesmallnumberofstarsthathaveGaiaDR2measurements(e.g.Kallivayalil+2018,Fritz+2019).AnaccuratecensusofMagellanicUFDsrequiresfurtherimprovedpropermotions.Specifically,precisepropermotionsoffaintstarsmustbeacquired,andforthispurposeJWSTiskey.e.Stream-analogsinothergalaxieshavebeenidentified.Forexample,theWhaleGalaxy(NGC4631),showsevidenceforamassivetidalgasstreamwithanoxygenabundanceof13%solarandanestimatedtotalgasmassof109solarmasses(Richter+2018b),whichcloselymatchesthemassandmetallicityoftheMagellanicStream(Fox+2014).Richter+(2018b)concludethatthetidalstreamintheWhalegalaxyrepresentsgasstrippedfromsatellitegalaxies.ThenearbyspiralsM31andM33areconnectedbyabridgeofHI(Braun&Thilker2004,Wolfe+2013),althoughitisunclearwhetheritrepresentsacondensingintergalacticfilamentratherthanatidalfeature.Finally,sometidaltailsareseenaroundinteractingdwarfs(Pearson+2016).f.Small-scalestructureintheStreamhasbeenstudiedviadetailedHIstudies(Kalberla&Haud2006,Stanimirovic+2008,Matthews+2009,Nigra+2012,For+2014).Curiously,coldHIcoresareseenyetheating/coolingequilibriumcalculationspredictthatnocoldneutralmediumshouldexistbeyond25kpc.Thisissueneedstoberesolvedwithfuturehigh-resolutionHIobservations.

3) RemainingQuestionsfortheFuture

f.Distance.ThiskeyparameterhasimplicationsfortheStream’stotalmassandfate,andtheorbitalhistoryoftheMagellanicClouds.YettheonlysoliddistanceconstraintontheStreamisthatoneendisanchoredtotheMagellanicClouds,at55kpc.ThedistancetotheLeadingArmisalsopoorlyknown, thoughsomeregionshaveconstraints ranging from~20-30kpc (McClure-Griffiths+ 2008, Price-Whelan+ 2018). In a first-passage scenario, the LeadingArm should beapproximately at the distance of the Clouds since they are currently near perigalacticon, sodistancemeasurementscandirectlytestthisscenario.UpcomingGaiadatareleasescanbeusedtoselectstellartargets(e.g.bluehorizontalbranchstars)foropticalabsorption-linestudiesoftheStreamusingCaIIandNaI,toprovidedirectdistanceconstraintsontheStream.

Page 5: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

5

g.Massinflowrate.WhatisthemassinflowrateintheStreamandhowdoesitcomparetotheGalacticstarformationrate?CurrentestimatesoftheStream’sinflowrateareintherange3-7solarmassesperyear (Fox+2014,Richter+2017), thoughtheyscalewith thedistanceto theStream,somayneedtoberevisedupward.ThiswillallowustoassesswhethertheStreamwilltriggerafuturestarburstintheMilkyWay,dependingonitsinteractionwiththehalo.h.Fate.ThefateoftheStreamisstillunknown.Whetherthecoolgaswilleventuallysettleontothe Galactic disk depends on the nature of the interaction with the hot Galactic corona.Simulationshaverevealedthatthisinteractioncanbebothevaporative(e.g.Hensler&Vieser2002,Heitsch&Putman2009)orcondensative(Fraternali+2015,Armillotta+2017),sothatcoolcloudscaneithershrinkorgrowwithtime,dependingonthemetallicityanddensitycontrastwiththesurroundinghotmedium.BetterconstraintsonthehotGalactichalowithfutureX-rayfacilities will improve our understanding of the externalmedium. Furthermore,maps of themagneticfieldacrosstheStreamareneeded,becausemagneticfieldsmaystabilizethecloudagainstram-pressurestrippingandconductiveevaporation,andthusimpacttheStream’sfate.McClure-Griffiths+(2010)reporteda6µGcoherentfieldinaLeadingArmcloudbasedonFaradayrotationmeasures,andKaczmarek+(2017)finda0.3µGcoherentfieldintheMagellanicBridge.i.IonizationbytheGalacticCenter.Bland-Hawthorn+(2013,2019)havereportedanimprintofaSeyfertflareattheGalacticCenterintheMagellanicStream.Inthisscenario,aflareseveralMyragoreleasedaburstofionizingradiationthationizedtheStream,whichisnowrecombiningandglowing inHaemission.TheStreammay thusprobe recentnuclearactivity fromSgrA*.FurtherUVabsorption-lineratios(e.g.CIV/CII,SiIV/SiII;Fox+2014)andopticalHaemission-lineobservations(Putman+2003,Barger+2017)cantestthisscenario,andexplorewhetheritssignaturecanbedistinguishedfromotherionizationprocessesinthehalo,suchasshocks(Bland-Hawthorn+2007,Tepper-Garcia+2015).Optical spectroscopic facilities (e.g. theWisconsinH-AlphaMapper)thatcanmapemissionfromHaandothernebularlines([SII],[NII],[OII])acrosstheentireStreamareneededtocompleteourmulti-phaseviewoftheStream.j.Totalspatialextent.FurtherUVandradiosurveysareneededtoaddresstheStream’stotalfootprintonthesky,bothinneutralandionizedgas.DoesitstipcrosstheGalacticplane?DotheStreamand LeadingArm together forma great circle?Current all-sky surveys (e.g. theHI4PIsurvey,HI4PIcollaboration,2018)reachcolumndensitiesofafewx1018cm-2;futurefacilitiesandsurveys (GASKAP, FAST) reaching a few x1017cm-2would reveal considerablymore structure,sincetheHIcolumndensitydistributionfunctionrisestolowN(HI).Indeed,GBTobservationsofsmallregionsoftheStreamalreadyrevealstructureatafewx1017cm-2(Howk+2017).ChartingthefullsizeoftheStreamwillfurtherconstrainthedynamicsoftheentireMagellanicSystem,informingwhethertheCloudsareattheirfirstpassagearoundtheMW(Besla+2007,2010).

4) FutureProgressTheUV,optical,andradioarethekeyregimesfordiagnosingtheStream’sphysicalandchemicalconditions. In terms of spectral lines per Angstrom, the UV is the richest portion of theelectromagnetic spectrum with a large number of ionization states available. The Stream’scompositionandphysicalpropertiescanbedeterminedfromfullanalysesoftheseUVabsorptionlinesinthespectraofbackgroundsources.High-resolutionUVspectrographswithmultiplexingcapabilities on large-aperture space telescopes (such as LUVOIR or HabEx) would provide

Page 6: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

6

significantlyhighersensitivitythanthecurrentUVspectrographsonHubble,yieldinganorderofmagnitudemorebackgroundtargets,allowingtheStream’schemicalabundancepatternstobemappedoutonfinerspatialscales.WealsoneedopticalspectroscopyofanystarsdiscoveredtowardtheStreamandLeadingArm(Casetti-Dinescu+2014,Price-Whelan+2018,Zhang+2017,2019) toverify theirmembershipviakinematicandabundanceanalyses.Spectroscopyof themainsequenceatthedistanceoftheStreamdemandslargetelescopeswithmultiplexingability.Ontheradiofront,continued21cmstudiesareneededtorevealthefullextentandkinematicstructureoftheStream(McClure-Griffiths+2018).TheGASKAPHIsurvey(Dickey+2013)usingtheAustralianSquareKilometerArrayPathfinder(ASKAP)telescopewillmaptheStreamat30”resolution,comparedto16.2’withtheHI4PIsurvey,thecurrentstate-of-the-art.ObservationsfromtheNortharealsoneeded.Progresswillbemadebythenewgenerationoffocal-planearrayreceiversontheGBTandArecibo,whichofferanorder-of-magnitudeincreaseinmappingspeedsandsensitivitiestoN(HI)ofafewx1017.The500mFASTtelescope(China)willcontributeinthenextdecadeat3.5’ resolution.Polarizationmeasurements (e.g. fromthePOSSUMprojectonASKAP)willmakeprogressonthemagneticpropertiesoftheStreamandLeadingArm.OnlybycombiningtheUVandradiodatawithhigh-resolutionhydrodynamicalsimulationsonscales of individual clouds canwe fully understand the fate of the Stream. Full particle andradiation treatments within anMHD environment are needed. Magnetic effects (Gronnøw+2017,2018)andheatingeffects (Hensler&Vieser2002)areboth important inHVCs.RecenthydrodynamicalmodelshaveimprovedourunderstandingoftheLMC-SMCsystem(Pardy+2018)and included the effect of ram-pressure stripping (Bustard+ 2018, Tepper-Garcia+ 2019).Nonetheless, furtherrefinementsareneeded, includingsub-gridphysicssuchasmetal-mixingandnon-equilibriumcooling.Betteralgorithms,codes,andsoftware/hardwarearchitecturesareneededtomakeprogress.TheStreamwillalwaysbethetestcaseforthesemodels.

5) ConcludingRemarks

UnderstandingtheGalactichaloisnolesscomplexthanstudyingtheEarth’satmosphere.Theprocessesofaccretion,outflows,andgasrecyclingcirculatematerialbetweenthediskandthehalo,justasgascirculationisakeyprocessintheterrestrialatmosphere.TheMagellanicStreamaffordsanearbybenchmarkforthestudyoftheseprocesses,allowingustostudygasphysicsandmetalmixinginclosedetail.TheexchangeofgasoccurringwhensatellitesliketheMagellanicClouds approach centrals like the Milky Way (a.k.a. intergalactic metal transfer) may be asignificant andpotentially dominantmodeof gas transfer between galaxies, as suggestedbymodernhydrodynamicsimulations(Angles-Alcazar+2017,Hafen+2018).BycharacterizingtheStream’sproperties,wedirectlyconstrainintergalacticmetaltransferandtherebyaddressthefundamentalquestionofhowgalaxiesgettheirgas.ExtragalacticstudiesoftheCGMandthebaryon cycle have the advantage of large statistical samples, but do not have the spatialresolutionormulti-wavelengthdatasetsavailableintheMilkyWayandLocalGroup.Forthesereasons,weendorsecontinuedmulti-prongedstudiesoftheMagellanicStreamandthegaseoushalooftheMilkyWayusingUV,radio,andopticalspectroscopy.

Page 7: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

7

6) References

Angles-Alcazar,D.+2017,MNRAS,470,4698Armillotta,L.+2017,MNRAS,470,114Barger,K.+2017,ApJ,851,110Bechtol,K.+2015,ApJ,807,50Belokurov&Koposov2016,MNRAS,456,602Besla,G.+2007,ApJ,668,949Besla,G.+2010,ApJ,721,L97Besla,G.+2012,MNRAS,421,2109Bland-Hawthorn,J.+2007,ApJL,670,L109Bland-Hawthorn,J.+2013,ApJ,778,58Bland-Hawthorn,J.+2019,ApJ,subm.Braun,R.&Thilker,D.2004,A&A,417,421Bruns,C.+2005,A&A,432,45Bustard,C.+2018,ApJ,863,49Casetti-Dinescu,D.+2014,ApJ,784,L37Dickey+2013,PASA,30,0003Dieter,N.1965,AJ,70,552D’Onghia,E.&Fox,A.2016,ARAA,D’Onghia,E.&Lake,G.2008,ApJL,686,L61Drlica-WagnerA.+2016,ApJ,833,L5For,B.-Q.+2014,ApJ,792,43Fox,A.+2013,ApJ,772,110Fox,A.+2014,ApJ,787,147Fox,A.+2018,ApJ,854,142Fraternali,F.+2015,MNRAS,447,L70Fritz,T.+2019,A&A,inpress(arXiv:1805.07350)Gronnøw,A.+2017,ApJ,845,69Gronnøw,A.+2018,ApJ,865,64Hafen,Z.+2018,MNRAS,subm.(arXiv:1811.11753)Hensler,G.&Vieser,W.2002,Ap&SS,265,397Heitsch,F.&Putman,M.2009,ApJ,698,1485HI4PICollaboration2016,A&A,594,A116Howk,J.+2017,ApJ,846,141Kaczmarek,J.+2017,MNRAS,467,1776Kalberla,P.&Haud,U.2006,A&A,455,481

Kallivayalil,N.2018,ApJ,867,19Koposov,S.+2015a,ApJ,805,130Koposov,S.+2015b,ApJ,811,62Koposov,S.+2018,MNRAS,479,5343Lynden-Bell,D.1976MNRAS174:695Mathewson+1974,ApJ,190,291Matthews,D.2009,ApJL,691,L115McClure-Griffiths,N.+2008,ApJL,673,L143McClure-Griffiths,N.+2010,ApJ,725,275McClure-Griffiths,N.+2018,Nat.Astronomy,2,901Nichols,M.+2011,ApJ,742,110Navarrete,C.+2019,MNRAS,483,4160Nidever,D.+2008,ApJ,679,432Nidever,D.+2010,ApJ,723,1618Nidever,D.+2017,AJ,154,199Nigra,L.+2012,ApJ,760,48Oey,M.+2018,ApJ,867,L8Pardy,S.+2018,ApJ,857,101Pardy,S.+2019,ApJ,underreviewPearson,S.+2016,MNRAS,459,1827Price-Whelan,A.+2018,ApJ,sub.(arXiv:1811.05911)Putman,M.+1998,Nature,394,752Putman,M.+2003,ApJ,597,948Richter,P.+2013,ApJ,772,111Richter,P.+2018a,ApJ,865,145Richter,P.+2018b,ApJ,868,112Stanimirovic,S.+2008,ApJ,680,276Stanimirovic,S.+2010,SerAJ,180,1Tepper-Garcia+2015,ApJ,813,94Tepper-Garcia+2019,MNRAS,sub.arXiv:1901.05636Wannier,P.&Wrixon,G.1972,ApJL,173,L119Wolfe,S.+2013,Nature,497,224Zhang,L.+2017,ApJ,835,285Zhang,L.+2019,ApJ,871,99


Top Related