astro2020 science white paper - amazon web...

7
Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Andrew J Fox, Space Telescope Science Institute, [email protected], 410 338 5083 Co-authors: Kathleen A. Barger, Texas Christian University, [email protected] Joss Bland-Hawthorn, University of Sydney, [email protected] Dana Casetti-Dinescu, Southern Connecticut State University, [email protected] Elena d’Onghia, University of Wisconsin-Madison, [email protected] Felix J. Lockman, Green Bank Observatory, [email protected] Naomi McClure-Griffiths, Australian National University, [email protected] David Nidever, University of Montana, [email protected] Mary Putman, Columbia University, [email protected] Philipp Richter, University of Potsdam, [email protected] Snezana Stanimirovic, University of Wisconsin-Madison, [email protected] Thorsten Tepper-Garcia, University of Sydney, [email protected] Abstract: Extending for over 200 degrees across the sky, the Magellanic Stream together with its Leading Arm is the most spectacular example of a gaseous stream in the local Universe. The Stream is an interwoven tail of filaments trailing the Magellanic Clouds as they orbit the Milky Way. Thought to be created by tidal forces, ram pressure, and halo interactions, the Stream is a benchmark for dynamical models of the Magellanic System, a case study for gas accretion and dwarf-galaxy accretion onto galaxies, a probe of the outer halo, and the bearer of more gas mass than all other Galactic high velocity clouds combined. If it survives to reach the Galactic disk, it may maintain or even elevate the Galactic star-formation rate. In this white paper, we emphasize the Stream’s importance for many areas of Galactic astronomy, summarize key unanswered questions, and identify future observations and simulations needed to resolve them. We stress the importance of ultraviolet, optical, and radio spectroscopy, and the need for computational models that capture full particle and radiation treatments within an MHD environment.

Upload: others

Post on 27-Dec-2019

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

Astro2020ScienceWhitePaperTheMagellanicStreamasaProbeofAstrophysicsThematicAreas:☐PlanetarySystems☐StarandPlanetFormation☐FormationandEvolutionofCompactObjects☐CosmologyandFundamentalPhysics☐StarsandStellarEvolution☐ResolvedStellarPopulationsandtheirEnvironments☒GalaxyEvolution☐Multi-MessengerAstronomyandAstrophysicsPrincipalAuthor:AndrewJFox,SpaceTelescopeScienceInstitute,[email protected],4103385083Co-authors:KathleenA.Barger,TexasChristianUniversity,[email protected],UniversityofSydney,[email protected],SouthernConnecticutStateUniversity,[email protected]’Onghia,UniversityofWisconsin-Madison,[email protected],GreenBankObservatory,[email protected],AustralianNationalUniversity,[email protected],UniversityofMontana,[email protected],ColumbiaUniversity,[email protected],UniversityofPotsdam,[email protected],UniversityofWisconsin-Madison,[email protected],UniversityofSydney,[email protected]:Extendingforover200degreesacrossthesky,theMagellanicStreamtogetherwithitsLeadingArmisthemostspectacularexampleofagaseousstreaminthelocalUniverse.TheStreamisaninterwoventailoffilamentstrailingtheMagellanicCloudsastheyorbittheMilkyWay.Thoughttobecreatedbytidalforces,rampressure,andhalointeractions,theStreamisabenchmarkfordynamicalmodelsof theMagellanic System, a case study for gas accretionanddwarf-galaxyaccretionontogalaxies,aprobeoftheouterhalo,andthebearerofmoregasmassthanallotherGalactichighvelocitycloudscombined.IfitsurvivestoreachtheGalacticdisk,itmaymaintainorevenelevatetheGalacticstar-formationrate.Inthiswhitepaper,weemphasizetheStream’simportanceformanyareasofGalacticastronomy,summarizekeyunansweredquestions,andidentifyfutureobservationsandsimulationsneededtoresolvethem.Westresstheimportanceof ultraviolet, optical, and radio spectroscopy, and the need for computational models thatcapturefullparticleandradiationtreatmentswithinanMHDenvironment.

Page 2: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

2

1) IntroductionSinceitsdiscoveryin21cmemissionover50yearsago(Dieter1965,Wannier&Wrixon1972,Mathewson+1974),theMagellanicStreamhasfascinatedmanycommunitiesofastronomers,fromradioandultravioletobservers todynamicistsandsimulators.At thesimplest level, theStreamisanextendedtailofmulti-phasegasstrippedoutoftheMagellanicCloudsandcovering140degreesinlength,or200degreeswhenincludingitsLeadingArm(seeFigure1;Nidever+2008,2010).Yetitissomuchmorethanthat:acasestudyoftheaccretionofgasandsatellitesontoastar-forminggalaxy,akeyconstraintonthedynamicalhistoryoftheMagellanicClouds,atestbedfortheevaporativeencountersbetweencoolgascloudsandthehotGalacticcorona,alaboratoryforunderstandinghowstarformationoccursintidaltails,andascreenagainstwhichionizingradiationfromtheGalacticCentershines(seereviewbyD’Onghia&Fox2016).Forthesediverse reasons, many sub-fields of Galactic astronomy are directly impacted by ourunderstandingoftheStream.ConsiderableprogressontheStreamhasbeenmadeoverthelasttwodecades,particularlyviatheuseofultraviolet(UV)spectrographsonHST,sensitive21cmradiosurveys,andnumericalsimulations(Figure2;D’Onghia&Fox2016).However,manyopenquestionsremain,includingfundamentalpropertieslikeitsdistance,originandfate.Inthiswhitepaper,weidentifyprogressmade in the last fewyears (Section2),andthenoutlineremainingquestions tobeanswered(Section3).We then focuson futureobservational capabilities andnecessary refinements tostate-of-the-artsimulations(Section4),andwefinishwithsomeconcludingremarks(Section5).ThroughoutthewhitepaperweemphasizetheStream’simportanceasaprobeofastrophysicalprocessesandthenecessityofspectroscopicobservationsasdiagnostictools.

Figure1:All-skyH Imapof theMagellanicSystem, fromNidever+ (2010),usingH Idata fromtheGBT,Arecibo,Parkes,Westerbork,andtheLABsurvey.ThisAitoffprojectionisinGalacticcoordinateswithHIemissioncoloredinpink.Werefertotheentirecomplex(LMC,SMC,Stream,Bridge,andLeadingArm)astheMagellanicSystem.

Page 3: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

3

Figure2: IllustrationofthechemicalabundancesalongtheMagellanicStream,fromD’Onghia&Fox(2016),andusingdatafromFox+(2013)andRichter+(2013).Thetwomainfilamentsofgas (Nidever+2008)havemarkedlydifferentkinematicandchemicalproperties,indicatingtheStream’sdualnature,withLMCandSMCcontributions.

2) RecentProgressontheMagellanicStreamandMagellanicSystem

a. Over ten ultra-faint dwarf (UFD) galaxies have been discovered in the vicinity of theMagellanicClouds(Koposov+2015a,b,2018,Bechtol+2015,Drlica-Wagner+2016),usingdatafromtheDarkEnergySurvey(DES).TheproximityofthesesatellitestotheMagellanicCloudssuggestsaMagellanicgroupofgalaxies (e.g.Kallivayalil+2018,Fritz+2019),whichmayhaveinfluencedtheformationoftheStream(Tepper-Garcia+2019).MoreworkisneededtoidentifywhichofthebrightdwarfspheroidalshaveaMagellanicassociation(Lynden-Bell1976,D’Onghia&Lake2008,Nichols+2011).TheLMChasafairlymassivecompanion,theSMC,whichis1.5magfainter,butitsnextmostluminoussatelliteappearstobeHydrus1(Koposov+2018),nearly13magfainter.This leavesanunexplained>10maggapintheLMCsatellite luminosityfunction.GaiaDR2propermotionssuggestthattwodwarfspheroidalshaveorbitscloselyalignedwiththeMagellanic-Cloudplane(Pardy+2019).TogetherwiththeSMCthisraisestothreethenumberofLMCsatellitesinthemassrangeofdwarfspheroidals,inagreementwithLCDMpredictions.b.ThemetallicityoftheLeadingArmhasbeenconstrainedviaUVspectroscopyfromHST/COS(Fox+2018,Richter+2018a).ThesestudieshavefoundtheLeadingArmhasanSMC-likechemicalabundance composition, but with considerable variation between the different regions. Theoxygenabundancesvaryfrom4%solarto30%solarbetweenregionsLAIIandLAIII(Fox+2018),suggestingmultiplegasremovalepisodes.WhilethereiskinematicandchemicalevidenceforafilamentinthetrailingStreamthatoriginatesintheLMC(Nidever+2008,Richter+2013),asyetnochemicalevidenceforanLMCfilamentintheLeadingArm,thoughHIstudies(Putman+1998)

Page 4: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

4

favoranLMCorigin.FurtherUVstudiesfromsensitivefuturespace-basedinstrumentationcouldmapoutthechemicalabundancesintheLeadingArmandsearchforaLMCfilament.c. Some short-length stellar components to the Stream have been found in the DES data(Belokurov&Koposov2016;Navarrete+2019),oneofwhichoverlapswiththegaseousstream,butwearemissingabreakthroughdiscoveryofanextendedstellarstream(aSagittariusdwarf).Theabsenceofastellarstreamhasbeenalong-standingproblem,sinceatidally-createdStreamshould contain both stars and gas. The Stream somehow survives yet does not form stars(Stanimirovic+2010).Other surveysareneeded, suchas theSurveyof theMagellanic StellarHistory(SMASH)usingtheDarkEnergyCamera,whichhasmapped480squaredegreesoftheoutskirtsoftheMagellanicClouds(Nidever+2017).LSSTwillbeinstrumentalinthiseffort.d.Proper-motionandparallaxmeasurementsforstarsintheLMCandSMCandfortheultra-faintdwarfsarenowpossiblewithGaiaDR2.OngoingHSTproper-motionmeasurementswillbetter constrain the LMC’s andSMC’s internal kinematics (e.g.Oey+2018), further constraindynamicalmodelsoftheentireMagellanicSystem,andexploreevidenceforadirectLMC-SMCcollisioninthepast(Besla+2012).FortheUFDs,systemicpropermotionswilldeterminewhethertheyareMagellanicmembers.ThesemeasurementsarestilluncertainforsomesystemsduetothesmallnumberofstarsthathaveGaiaDR2measurements(e.g.Kallivayalil+2018,Fritz+2019).AnaccuratecensusofMagellanicUFDsrequiresfurtherimprovedpropermotions.Specifically,precisepropermotionsoffaintstarsmustbeacquired,andforthispurposeJWSTiskey.e.Stream-analogsinothergalaxieshavebeenidentified.Forexample,theWhaleGalaxy(NGC4631),showsevidenceforamassivetidalgasstreamwithanoxygenabundanceof13%solarandanestimatedtotalgasmassof109solarmasses(Richter+2018b),whichcloselymatchesthemassandmetallicityoftheMagellanicStream(Fox+2014).Richter+(2018b)concludethatthetidalstreamintheWhalegalaxyrepresentsgasstrippedfromsatellitegalaxies.ThenearbyspiralsM31andM33areconnectedbyabridgeofHI(Braun&Thilker2004,Wolfe+2013),althoughitisunclearwhetheritrepresentsacondensingintergalacticfilamentratherthanatidalfeature.Finally,sometidaltailsareseenaroundinteractingdwarfs(Pearson+2016).f.Small-scalestructureintheStreamhasbeenstudiedviadetailedHIstudies(Kalberla&Haud2006,Stanimirovic+2008,Matthews+2009,Nigra+2012,For+2014).Curiously,coldHIcoresareseenyetheating/coolingequilibriumcalculationspredictthatnocoldneutralmediumshouldexistbeyond25kpc.Thisissueneedstoberesolvedwithfuturehigh-resolutionHIobservations.

3) RemainingQuestionsfortheFuture

f.Distance.ThiskeyparameterhasimplicationsfortheStream’stotalmassandfate,andtheorbitalhistoryoftheMagellanicClouds.YettheonlysoliddistanceconstraintontheStreamisthatoneendisanchoredtotheMagellanicClouds,at55kpc.ThedistancetotheLeadingArmisalsopoorlyknown, thoughsomeregionshaveconstraints ranging from~20-30kpc (McClure-Griffiths+ 2008, Price-Whelan+ 2018). In a first-passage scenario, the LeadingArm should beapproximately at the distance of the Clouds since they are currently near perigalacticon, sodistancemeasurementscandirectlytestthisscenario.UpcomingGaiadatareleasescanbeusedtoselectstellartargets(e.g.bluehorizontalbranchstars)foropticalabsorption-linestudiesoftheStreamusingCaIIandNaI,toprovidedirectdistanceconstraintsontheStream.

Page 5: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

5

g.Massinflowrate.WhatisthemassinflowrateintheStreamandhowdoesitcomparetotheGalacticstarformationrate?CurrentestimatesoftheStream’sinflowrateareintherange3-7solarmassesperyear (Fox+2014,Richter+2017), thoughtheyscalewith thedistanceto theStream,somayneedtoberevisedupward.ThiswillallowustoassesswhethertheStreamwilltriggerafuturestarburstintheMilkyWay,dependingonitsinteractionwiththehalo.h.Fate.ThefateoftheStreamisstillunknown.Whetherthecoolgaswilleventuallysettleontothe Galactic disk depends on the nature of the interaction with the hot Galactic corona.Simulationshaverevealedthatthisinteractioncanbebothevaporative(e.g.Hensler&Vieser2002,Heitsch&Putman2009)orcondensative(Fraternali+2015,Armillotta+2017),sothatcoolcloudscaneithershrinkorgrowwithtime,dependingonthemetallicityanddensitycontrastwiththesurroundinghotmedium.BetterconstraintsonthehotGalactichalowithfutureX-rayfacilities will improve our understanding of the externalmedium. Furthermore,maps of themagneticfieldacrosstheStreamareneeded,becausemagneticfieldsmaystabilizethecloudagainstram-pressurestrippingandconductiveevaporation,andthusimpacttheStream’sfate.McClure-Griffiths+(2010)reporteda6µGcoherentfieldinaLeadingArmcloudbasedonFaradayrotationmeasures,andKaczmarek+(2017)finda0.3µGcoherentfieldintheMagellanicBridge.i.IonizationbytheGalacticCenter.Bland-Hawthorn+(2013,2019)havereportedanimprintofaSeyfertflareattheGalacticCenterintheMagellanicStream.Inthisscenario,aflareseveralMyragoreleasedaburstofionizingradiationthationizedtheStream,whichisnowrecombiningandglowing inHaemission.TheStreammay thusprobe recentnuclearactivity fromSgrA*.FurtherUVabsorption-lineratios(e.g.CIV/CII,SiIV/SiII;Fox+2014)andopticalHaemission-lineobservations(Putman+2003,Barger+2017)cantestthisscenario,andexplorewhetheritssignaturecanbedistinguishedfromotherionizationprocessesinthehalo,suchasshocks(Bland-Hawthorn+2007,Tepper-Garcia+2015).Optical spectroscopic facilities (e.g. theWisconsinH-AlphaMapper)thatcanmapemissionfromHaandothernebularlines([SII],[NII],[OII])acrosstheentireStreamareneededtocompleteourmulti-phaseviewoftheStream.j.Totalspatialextent.FurtherUVandradiosurveysareneededtoaddresstheStream’stotalfootprintonthesky,bothinneutralandionizedgas.DoesitstipcrosstheGalacticplane?DotheStreamand LeadingArm together forma great circle?Current all-sky surveys (e.g. theHI4PIsurvey,HI4PIcollaboration,2018)reachcolumndensitiesofafewx1018cm-2;futurefacilitiesandsurveys (GASKAP, FAST) reaching a few x1017cm-2would reveal considerablymore structure,sincetheHIcolumndensitydistributionfunctionrisestolowN(HI).Indeed,GBTobservationsofsmallregionsoftheStreamalreadyrevealstructureatafewx1017cm-2(Howk+2017).ChartingthefullsizeoftheStreamwillfurtherconstrainthedynamicsoftheentireMagellanicSystem,informingwhethertheCloudsareattheirfirstpassagearoundtheMW(Besla+2007,2010).

4) FutureProgressTheUV,optical,andradioarethekeyregimesfordiagnosingtheStream’sphysicalandchemicalconditions. In terms of spectral lines per Angstrom, the UV is the richest portion of theelectromagnetic spectrum with a large number of ionization states available. The Stream’scompositionandphysicalpropertiescanbedeterminedfromfullanalysesoftheseUVabsorptionlinesinthespectraofbackgroundsources.High-resolutionUVspectrographswithmultiplexingcapabilities on large-aperture space telescopes (such as LUVOIR or HabEx) would provide

Page 6: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

6

significantlyhighersensitivitythanthecurrentUVspectrographsonHubble,yieldinganorderofmagnitudemorebackgroundtargets,allowingtheStream’schemicalabundancepatternstobemappedoutonfinerspatialscales.WealsoneedopticalspectroscopyofanystarsdiscoveredtowardtheStreamandLeadingArm(Casetti-Dinescu+2014,Price-Whelan+2018,Zhang+2017,2019) toverify theirmembershipviakinematicandabundanceanalyses.Spectroscopyof themainsequenceatthedistanceoftheStreamdemandslargetelescopeswithmultiplexingability.Ontheradiofront,continued21cmstudiesareneededtorevealthefullextentandkinematicstructureoftheStream(McClure-Griffiths+2018).TheGASKAPHIsurvey(Dickey+2013)usingtheAustralianSquareKilometerArrayPathfinder(ASKAP)telescopewillmaptheStreamat30”resolution,comparedto16.2’withtheHI4PIsurvey,thecurrentstate-of-the-art.ObservationsfromtheNortharealsoneeded.Progresswillbemadebythenewgenerationoffocal-planearrayreceiversontheGBTandArecibo,whichofferanorder-of-magnitudeincreaseinmappingspeedsandsensitivitiestoN(HI)ofafewx1017.The500mFASTtelescope(China)willcontributeinthenextdecadeat3.5’ resolution.Polarizationmeasurements (e.g. fromthePOSSUMprojectonASKAP)willmakeprogressonthemagneticpropertiesoftheStreamandLeadingArm.OnlybycombiningtheUVandradiodatawithhigh-resolutionhydrodynamicalsimulationsonscales of individual clouds canwe fully understand the fate of the Stream. Full particle andradiation treatments within anMHD environment are needed. Magnetic effects (Gronnøw+2017,2018)andheatingeffects (Hensler&Vieser2002)areboth important inHVCs.RecenthydrodynamicalmodelshaveimprovedourunderstandingoftheLMC-SMCsystem(Pardy+2018)and included the effect of ram-pressure stripping (Bustard+ 2018, Tepper-Garcia+ 2019).Nonetheless, furtherrefinementsareneeded, includingsub-gridphysicssuchasmetal-mixingandnon-equilibriumcooling.Betteralgorithms,codes,andsoftware/hardwarearchitecturesareneededtomakeprogress.TheStreamwillalwaysbethetestcaseforthesemodels.

5) ConcludingRemarks

UnderstandingtheGalactichaloisnolesscomplexthanstudyingtheEarth’satmosphere.Theprocessesofaccretion,outflows,andgasrecyclingcirculatematerialbetweenthediskandthehalo,justasgascirculationisakeyprocessintheterrestrialatmosphere.TheMagellanicStreamaffordsanearbybenchmarkforthestudyoftheseprocesses,allowingustostudygasphysicsandmetalmixinginclosedetail.TheexchangeofgasoccurringwhensatellitesliketheMagellanicClouds approach centrals like the Milky Way (a.k.a. intergalactic metal transfer) may be asignificant andpotentially dominantmodeof gas transfer between galaxies, as suggestedbymodernhydrodynamicsimulations(Angles-Alcazar+2017,Hafen+2018).BycharacterizingtheStream’sproperties,wedirectlyconstrainintergalacticmetaltransferandtherebyaddressthefundamentalquestionofhowgalaxiesgettheirgas.ExtragalacticstudiesoftheCGMandthebaryon cycle have the advantage of large statistical samples, but do not have the spatialresolutionormulti-wavelengthdatasetsavailableintheMilkyWayandLocalGroup.Forthesereasons,weendorsecontinuedmulti-prongedstudiesoftheMagellanicStreamandthegaseoushalooftheMilkyWayusingUV,radio,andopticalspectroscopy.

Page 7: Astro2020 Science White Paper - Amazon Web Servicessurveygizmoresponseuploads.s3.amazonaws.com/file... · Astro2020 Science White Paper The Magellanic Stream as a Probe of Astrophysics

7

6) References

Angles-Alcazar,D.+2017,MNRAS,470,4698Armillotta,L.+2017,MNRAS,470,114Barger,K.+2017,ApJ,851,110Bechtol,K.+2015,ApJ,807,50Belokurov&Koposov2016,MNRAS,456,602Besla,G.+2007,ApJ,668,949Besla,G.+2010,ApJ,721,L97Besla,G.+2012,MNRAS,421,2109Bland-Hawthorn,J.+2007,ApJL,670,L109Bland-Hawthorn,J.+2013,ApJ,778,58Bland-Hawthorn,J.+2019,ApJ,subm.Braun,R.&Thilker,D.2004,A&A,417,421Bruns,C.+2005,A&A,432,45Bustard,C.+2018,ApJ,863,49Casetti-Dinescu,D.+2014,ApJ,784,L37Dickey+2013,PASA,30,0003Dieter,N.1965,AJ,70,552D’Onghia,E.&Fox,A.2016,ARAA,D’Onghia,E.&Lake,G.2008,ApJL,686,L61Drlica-WagnerA.+2016,ApJ,833,L5For,B.-Q.+2014,ApJ,792,43Fox,A.+2013,ApJ,772,110Fox,A.+2014,ApJ,787,147Fox,A.+2018,ApJ,854,142Fraternali,F.+2015,MNRAS,447,L70Fritz,T.+2019,A&A,inpress(arXiv:1805.07350)Gronnøw,A.+2017,ApJ,845,69Gronnøw,A.+2018,ApJ,865,64Hafen,Z.+2018,MNRAS,subm.(arXiv:1811.11753)Hensler,G.&Vieser,W.2002,Ap&SS,265,397Heitsch,F.&Putman,M.2009,ApJ,698,1485HI4PICollaboration2016,A&A,594,A116Howk,J.+2017,ApJ,846,141Kaczmarek,J.+2017,MNRAS,467,1776Kalberla,P.&Haud,U.2006,A&A,455,481

Kallivayalil,N.2018,ApJ,867,19Koposov,S.+2015a,ApJ,805,130Koposov,S.+2015b,ApJ,811,62Koposov,S.+2018,MNRAS,479,5343Lynden-Bell,D.1976MNRAS174:695Mathewson+1974,ApJ,190,291Matthews,D.2009,ApJL,691,L115McClure-Griffiths,N.+2008,ApJL,673,L143McClure-Griffiths,N.+2010,ApJ,725,275McClure-Griffiths,N.+2018,Nat.Astronomy,2,901Nichols,M.+2011,ApJ,742,110Navarrete,C.+2019,MNRAS,483,4160Nidever,D.+2008,ApJ,679,432Nidever,D.+2010,ApJ,723,1618Nidever,D.+2017,AJ,154,199Nigra,L.+2012,ApJ,760,48Oey,M.+2018,ApJ,867,L8Pardy,S.+2018,ApJ,857,101Pardy,S.+2019,ApJ,underreviewPearson,S.+2016,MNRAS,459,1827Price-Whelan,A.+2018,ApJ,sub.(arXiv:1811.05911)Putman,M.+1998,Nature,394,752Putman,M.+2003,ApJ,597,948Richter,P.+2013,ApJ,772,111Richter,P.+2018a,ApJ,865,145Richter,P.+2018b,ApJ,868,112Stanimirovic,S.+2008,ApJ,680,276Stanimirovic,S.+2010,SerAJ,180,1Tepper-Garcia+2015,ApJ,813,94Tepper-Garcia+2019,MNRAS,sub.arXiv:1901.05636Wannier,P.&Wrixon,G.1972,ApJL,173,L119Wolfe,S.+2013,Nature,497,224Zhang,L.+2017,ApJ,835,285Zhang,L.+2019,ApJ,871,99