Transcript
Page 1: Algal community patterns in Slovenian bogs along environmental gradients

Biologia 65/3: 422—437, 2010Section BotanyDOI: 10.2478/s11756-010-0033-7

Algal community patterns in Slovenian bogsalong environmental gradients

Aleksandra Krivograd Klemenčič1, Nataša Smolar-Žvanut2, Darja Istenič3

& Tjaša Griessler-Bulc1

1University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Bogišičeva 8, 1000 Ljubljana, Slovenia; e-mail:[email protected] for Water of the Republic of Slovenia, Hajdrihova 28, 1000 Ljubljana, Slovenia3Limnos Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana, Slovenia

Abstract: In 2005 and 2006, epiphyton samples were collected from seven lowland and montane peat bogs in Slovenia.Water temperature, pH, conductivity, dissolved oxygen and saturation were measured at the same time. Diatoms, desmidsand Cyanobacteria were the most abundand groups in species number. Canonical Correspondence Analysis (CCA) wascarried out on Cyanobacteria, diatom and desmid flora composition. This analysis showed that shading was the mostimportant parameter in Cyanobacteria distribution and bedrock the most important one in that of diatoms and desmids.Cluster analyses were carried out based on the Cyanobacteria, diatom and desmid data. The Cyanobacteria and diatomdata separated sites, whereas the desmid data revealed a temporal aspect.

Key words: Cyanobacteria; diatoms; desmids; epiphyton; peat bogs; ecology; Slovenia

Introduction

Sphagnum bogs and related mire communities repre-sent one of the major vegetation types beside forestsand grasslands at higher latitudes of the Northern hemi-sphere and they are, even though not that characteris-tic, abundant in the cooler and wet temperate regions(Borics et al. 2003). In Slovenia, sphagnum bogs oc-cur sporadically due to edaphic reasons. Marshy ecosys-tems are endangered in Slovenia the same way as in allof Europe (Mulec et al. 2005). Raised bogs are situ-ated in the montane zone of Julian Alps and Pohorjeand well protected. Lowland raised bogs are almost alldestructed except several small areas in Central Slove-nia. Transitional bogs and fens are more endargened.They are surrounded by meadows, other agriculturalland or urbanized industrial zones. Sphagnum bogs arequite well investigated in Poland (Pietryka 2000), Aus-tria (Rauch et al. 2005), Italy (Dell’Uomo et al. 1992;Dell’Uomo & Pellegrini 1993), Czech Republic (Lederer1999; Neustupa et al. 2002; Poulíčková et al. 2005) andSpain (Cambra & Hindák 1998). Despite their high bio-diversity, the algae in peat bogs are poorly examined inSlovenia. Prior to this study, only Pevalek (1924), Lazar(1960, 1975) and Krivograd & Vrhovšek (2003) exam-ined the algae in Slovenian peat bogs and fens. Diatomswere not included in the first two studies. The presentstudy represents the first investigation of algae in the

bog-lake of Črno jezero at the Pohorje montane range(the only lake with acidic pH in Slovenia), the bog ofŽejna dolina and the bog at Holmec.

Bogs are important ecosystems for the conserva-tion of biodiversity in Europe (Succow & Joosten 2001).However, many bogs have been destroyed by humanactivities, such as peat extraction, land reclamationor drainage of ground water for development purposes(Rauch et al. 2006). An ecosystem approach based bothon biological and hydrological studies is necessary forthe conservation of these landscapes. In peat bogs, di-versity of some groups of algae (desmids) can be veryhigh and many taxa appear to be restricted to thesehabitats (Lenzenweger 1996, 1997, 1999).

In this study, the epiphyton species composition,relative abundance and environmental factors (pH,temperature, conductivity, oxygen saturation, dissolvedoxygen, bedrock, shading, altitude) in seven peat bogsin Slovenia have been studied. An initial standing as-sumption is that spatial and temporal differences in thepredominant extreme environmental conditions of se-lected environments can affect the occurence, relativeabundances of different epiphyton species and, in ad-dition, influence a specific epiphyton community com-position. Direct gradient analysis allowed us to studya part of the variation in community composition thatcan be explained by a particular set of environmentalvariables.

c©2010 Institute of Botany, Slovak Academy of Sciences

Page 2: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 423

Material and methods

Study areaBog I is a small montane fen at Pohorje with a free-watersurface. The bog is surrrounded by a pine forest (Picea abiesL. Karst). During the sampling period, there were a lotof wood residues and dead plant matter in the bog, whilethe peat moss was present only along the margins. Besidesthe precipitation, the bog is supplied by a source. Samplingand measuring environmental parameters was performed on27.4.2005, 6.8.2005, 4.11.2005 and 28.5.2006.

Bog II is a small montane fen at Pohorje with a free-watersurface, located close to the macadam road. The bog is sur-rounded by a pine forest (Picea abies). During the samplingperiod, the bog was filled with peat moss and rush (Jun-cus effusus L.). The bog is fed by precipitation. Samplingand measuring environmental parameters was performed on21.5.2005, 6.8.2005 and 28.5.2006.

The bog-lake Črno jezero at Pohorje is an artificialmontane retarding basin, used in the past for floating thetimber to the valley. The bog is surrounded by a belt of bot-tle sedge community (Caricetum rostratae Osvald), passinginto a belt of montane pine (Pinus mugo Turra) and furtherto a pine forest (Picea abies). The bog-lake is fed by precip-itation and four brooks. Sampling and measuring environ-mental parameters was performed on 21.5.2005, 6.8.2005,4.11.2005 and 28.5.2006.

The bog of Žejna dolina is a lowland fen. Small poolswith Sphagnum on the margins are located between trees(Salix sp., Pinus nigra Arnold). Besides the precipitation,the bog is supplied by a source. Submerged macrophytes arepresent in the small pools. Sampling and measuring environ-mental parameters was performed on 13.5.2005, 19.8.2005,9.11.2005 and 16.6.2006.

The bog at Holmec is a lowland peat bog surrounded bya pine forest (Picea abies). The majority of the bog areais overgrown by Typha latifolia L. and Menyanthes trifoli-ata L. The bog has no free-water surface and it is suppliedby precipitation and groundwater. Sampling and measur-ing environmental parameters was performed on 8.5.2005,24.7.2005, 31.10.2005 and 25.3.2006.

The bog of Mali plac in Ljubljana Marsh is a lowlandbog. A live bog with stagnant water where peat could formno longer exists. The peat moss is present only in the west-ern part of the bog. Typhetum latifoliae Lang is the dom-inating community. The bog has a free-water surface andit is supplied by a brook. Sampling and measuring environ-mental parameters was performed on 23.1.2005, 26.5.2005,19.8.2005, and 9.11.2005.

The bog of Ledina at Jelovica is a montane peat bog re-sulting from the owergrowing of a deeper lake. The remain-der of the lake is a small water body surrounded by peatmoss. Submerged macrophytes are also present. The bog issupplied by precipitation and three brooks; there is no con-tact with groundwater. Sampling and measuring environ-mental parameters was performed on 28.6.2005, 9.9.2005,16.11.2005 and 22.6.2006.

Sampling and sample processingQualitative samples of epiphyton were taken in different sea-sons once per season in 2005 and 2006 in seven peat bogs

Table 1. Scale for estimation of algal taxa abundance (Pantle &Buck 1955).

Relative abundance Taxa present in % of visual fields

1 – single 1–153 – customary >15–605 – dominant >60–100

in Slovenia. Four samples were taken in each peat bog, ex-cept at the sampling point 2 where only three samples weretaken due to the desiccation of the peat bog. The algal sam-ples were squeezed out of water mosses. At the same time,the water temperature, pH, conductivity, dissolved oxygenand saturation were measured by the WTW Multiline/Fmeters. For identification we followed: Starmach (1966–1983), Hortobágyi (1973), Ettl (1978, 1983), Hindák et al.(1978), Rieth (1980), Krammer & Lange-Bertalot (1997–2004), Popovsky & Pfiester (1990), Hindák (1996, 2006),Lenzenweger (1996–2003), Krammer (2000), Komárek &Anagnostidis (1998, 2005) and Wo�lowski & Hindák (2005).The algal taxa were identified directly from living material.The diatoms were examined after preparation according toSchaumburg et al. (2004). Light microscopes Nikon EclipseE400 and Nikon Eclipse TE300 were used to determine thetaxa. The relative abundances of algal taxa (Table 1) wereestimated by the numbers 1, 3 and 5 (1–single, 3–customary,5–dominant) (Pantle & Buck 1955). We assesed abundanceof diatom taxa from permanent slides (Schaumburg et al.2004) and abundance of taxa from other algal groups fromliving material.

Data analysisA cluster analysis comparing dates (Bray-Curtis coefficientof similarity) was performed on the matrixes of relativeabundance estimations using the programme CLUSTER(Šiško 2003). The relative abundance estimations and theenvironmental data (Table 2) were analysed by the canon-ical corresponding analysis (CCA), using the programmeCANOCO for Windows 4.5 (ter Braak & Šmilauer 2002).We did not use any transformation of the environmentaldata.

Results and discussion

General descriptionThe analysis of epiphyton data showed a high speciesnumber in most of the peat bogs included in the study(Table 3). Bacillariophyceae, Desmidiales (Zygnemato-phyceae) and Cyanobacteria were the groups whichcontributed most to the high species number. In to-tal, 337 taxa and 10 algal classes were identified in allseven peat bogs (Table 3). By the number of identifiedtaxa, diatoms prevailed with 157 (47%) taxa, followedby Zygnematophyceae with 75 (22%), Cyanobacteriawith 50 (15%), Chlorophyceae with 35 (10%), Xantho-phyceae with 8 (2%), Dinophyceae with 3 (1%), Chrys-ophyceae with 3 (1%), Euglenophyceae with 3 (1%),Charophyceae with 1 (0.5%) and Florideophyceae alsowith 1 taxa (0.5%). With respect to the identified taxa,diatoms dominated in all seven bogs (Table 3), fol-lowed by Zygnematophyceae (Desmidiales) in the bog-

Page 3: Algal community patterns in Slovenian bogs along environmental gradients

424 A. Krivograd Klemenčič et al.

Table 2. Characteristics of the sampling sites studied. Legend: 1 – the bog I, 2 – the bog II, 3 – the bog-lake Črno jezero, 4 – the bogof Žejna dolina, 5 – the bog at Holmec, 6 – the bog of Mali plac in Ljubljana Marsh, 7 – the bog of Ledina at Jelovica; bedrock: 1 –silicate, 2 – limestone; shading: 1 – no shade; 2 – partly shaded; 3 – intensive shade. With asterisk are marked environmental variablesused in CCA analysis.

Samp- Bog Coordinates Surface Depth of *pH *T *Conductivity *Dissolved *Saturation *Bed- *Shading *Altitudeling types (after Gauss- area water [◦C] χ [µS/cm] [mg/L] [%] rock [m]site Kruger) [m2] column [m]

1 fen X=5537800Y=5148400

70 0.4 7.0–7.1 7.3–13.9 53–60 2.71–8.07 32.1–75.8 1 3 1090

2 fen X=5535746Y=5143880

4 0.1 6.4–7.6 10.2–13.4 131–174 5.52–6.63 59.0–70.8 1 2 1225

3 bog X=5535290lake Y=5144800

560000 / 5.1–6.2 9.4–20.5 24–36 7.27–9.14 90.2–97.1 1 1 1200

4 fen X=5435660Y=5089110

5000 0,2 7.0–7.9 9.3–14.2 188–441 6.84–8.38 61.4–101.0 2 1 550

5 bog X=5491240Y=5156900

20000 0,3 5.1–5.6 3.0–10.6 58–110 0.19–9.53 5.7–80.2 1 2 488

6 bog X=5452400Y=5094400

15000 / 6.5–6.8 0.9–22.2 115–194 1.05–2.22 9.1–17.7 2 3 310

7 bog X=5431535Y=5124542

23000 1 5.5–6.7 4.6–25.0 65–211 0.45–2.69 6.5–24.3 2 1 1150

lake Črno jezero, the bog of Žejna dolina, the bog atHolmec and the bog of Ledina, Chlorophyceae in thebogs I and II and Cyanobacteria in the bog of Mali plac.Bogs I and II are located near a track paved by lime-stone gravel, which could be the reason for higher pHvalues and different algal composition with less desmidsand more green algae. Similar effect of limestone gravelon algal composition in a montane bog was observed bySoukupová et al. (2001). The bog of Mali plac in Ljubl-jana Marsh used to be a real peat bog until 1993 whenthe runoff was changed, which resulted in a considerablerise of water level. Subsequently the water drained, butsubstantial changes occured in vegetation, peat mosslargely disappeared, remaining to a lesser extent onlyin the western part of the bog, which was most likely thereason for a low number of desmid group members. Di-atoms and desmids are usually dominant in bog waters(Mataloni & Tell 1996; Watanabe et al. 2000; KrivogradKlemenčič & Vrhovšek 2003; Negro et al. 2003; Boricset al. 2003; Munoz et al. 2003). Cyanobacteria arenormally a good indicator of eutrophication; however,other authors report that Cyanobacteria are also an im-portant component of algal communities in oligotrophicenvironments (Krivograd Klemenčič & Vrhovšek 2003;Munoz et al. 2003, Borics et al. 2003; Rauch et al.2006). Cyanobacteria, which strongly colour the water,are the most important group of algae in waters withhigh concentration of organic matter. Due to low lightintensity in such waters and facultative heterotrophy,the Cyanobacteria have an advantage over the eucar-iontic algae (Munoz et al. 2003). The representativesof class Chlorophyceae were present in all seven bogs,with the largest number of species in the bog II, thebog-lake Črno jezero and the bog at Holmec. In thelake of Črno jezero, the dominant species in May 2005was Microspora pachyderma (Wille) Lagerheim, withfrequent occurrence of the species Stigeoclonium tenueKutzing (the bog I, the bog-lake Črno jezero, the bog of

Mali plac), the species of the genus Oedogonium Hirn(the bog I, the bog-lake Črno jezero, the bog of Ledina),Draparnaldia plumosa (Vaucher) Agardh (the bog-lakeČrno jezero) and Chlamydomonas Ehrenberg (the bogII). Presence of taxa Stigeoclonium Kutzing, Oedogo-nium and Chlamydomonas point to an increased quan-tity of nutrients in oligotrophic bogs at low pH val-ues. Pietryka (2000) reports on the occurrence of Mi-crospora pachyderma species in peat bogs in Poland.Three taxa of the Dinophyceae were identified in the in-vestigated peat bogs: Amphidinium sphagnicola Conradwas present in the bog of Žejna dolina. The species inthe genus Gymnodinium Stein were massively presentin May in the bog at Holmec and in January in thebog of Mali plac. The Peridinium Ehrenberg was iden-tified in the bog II. Graham et al. (2004) report on mas-sive occurrence of species of the genera Gymnodiniumand Peridinium in a peat bog (Wisconsin, USA), butthe mentioned genera are characteristic also of Euro-pean bogs (Nováková 2002; Munoz et al. 2003; Rauchet al. 2006). Only some algal taxa were identified ofthe Euglenophyceae, Xanthophyceae, Chrysophyceae,Florideophyceae and Charophyceae. The representa-tives of the Euglenophyceae were present in the bogII, the bog-lake Črno jezero and the bog at Holmec.Euglenophyceae are characteristic of eutrophic waters(Wo�lowski & Hindák 2005), but they are often presentalso in oligotrophic peat bogs (Mataloni & Tell 1996;Watanabe et al. 2000; Muoz et al. 2003; Borics et al.2003; Rauch et al. 2006). The presence of the Eugleno-phyta representatives in oligotrophic waters can be ex-plained by their ability of active movement which al-lows them to reach the optimum light conditions andconcentration of nutrients (Munoz et al. 2003).

CyanobacteriaAmong 50 identified Cyanobacteria taxa 33 taxa werefound in Slovenian bogs by Pevalek (1924), Lazar (1960,

Page 4: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 425

Table 3. Species list in all the studied peat bogs with acronyms of taxa used in the CCA analysis and with relative abundanceestimation (1 – single, 3 – customary, 5 – dominant). Legend: 1 – the bog I, 2 – the bog II, 3 – the bog-lake Črno jezero, 4 – the bogof Žejna dolina, 5 – the bog at Holmec, 6 – the bog of Mali plac in Ljubljana Marsh, 7 – the bog of Ledina at Jelovica.

Sampling siteTaxa Label

1 2 3 4 5 6 7

CYANOBACTERIAAnabaena augstumnalis Schmidle Ana aug 3Anabaena spp. Ana sp. 1 1 1 1Aphanocapsa grevillei (Berkeley) Rabenhorst Aph gre 1 1 1Aphanocapsa hyalina (Lyngbye) Hansgirg Aph hyl 1Aphanocapsa parasitica (Kutzing) Komárek & Anagnostidis Aph par 1 1 1Aphanothece microscopica Nageli Aph mic 3Aphanothece saxicola Nageli Aph sax 1Aphanothece stagnina (Sprengel) A. Braun Aph sta 1Calothrix spp. Cal spp. 1Calothrix minima Frémy Cal min 1Calothrix weberi Schmidle Cal web 1 1Chroococcus limneticus Lemmermann Chr lim 1Chroococcus membraninus (Meneghini) Nageli Chr mem 1Chroococcus obliteratus Richter Chr obl 1Chroococcus prescottii Drouet & Daily Chr pre 1Chroococcus quaternarius Zalessky Chr qua 1Chroococcus turgidus (Kutzing) Nageli Chr tur 1 1 1Coelomoron pusillum (Van Goor) Komárek Coe pus 1Cyanothece major (Schroter) Komárek Cya maj 1Cylindrospermum sp. Cyl sp. 1Geitlerinema splendidum (Greville ex Gomont) Anagnostidis Gei spl 3Gloeocapsa magma (Brébisson) Hollerbach Glo mag 1Gloeocapsopsis magma (Brébisson) Komárek & Anagnostidis Gloe magGomphosphaeria aponina Kutzing Gom apo 3Heterolebleinia spp. Het spp. 1Leptolyngbya spp. Lep spp. 1Limnothrix redekei (Van Goor) Meffert Lim red 1Merismopedia hyalina (Ehrenberg) Kutzing Mer hya 3Merismopedia punctata Meyen Mer pun 1Microcystis wesenbergii (Komárek) Komárek Mic wes 1Nostoc commune Vaucher Nos com 1 1 1Nostoc paludosum Kutzing Nos pal 1Nostoc verrucosum Vaucher Nos ver 1Oscillatoria anguina (Bory) Gomont Osc ang 1Oscillatoria princeps Vaucher Osc pri 1 1Oscillatoria subbrevis Schmidle Osc sub 1Oscillatoria tenuis Agardh ex Gomont Osc ten 1Phormidium amoenum Kutzing Pho amo 5Phormidium breve (Kutzing ex Gomont) Anagnostidis & Komárek Pho bre 1Phormidium formosum (Bory) Anagnostidis & Komárek Pho for 1 1Phormidium interruptum Kutzing Pho int 1Phormidium spp. Pho spp. 1 3 1 1Pseudanabaena biceps Bocher Pse bic 3Pseudanabaena catenata Lauterborn Pse cat 3Pseudanabaena sp. Pse sp. 1Tolypothrix sp. Tol sp. 1Tychonema bornetii (Zukal) Anagnostidis & Komárek Tyc bor 3 3Woronichinia elorantae Komárek & Komárková-Legnerová Wor elo 1Woronichinia robusta (Skuja) Komárek & Hindák Wor robWoronichinia sp. Wor sp. 1EUGLENOPHYTAEUGLENOPHYCEAEEuglena spp. 1Euglena anabaena Mainx 1Phacus alatus Klebs 1DINOPHYTADINOPHYCEAEAmphidinium sphagnicola Conrad 1Gymnodinium spp. 5 5 1Peridinium sp. 1HETEROKONTHOPHYTAXANTHOPHYCEAEBotryochloris minima Pascher 1 1Characiopsis anas Pascher 1Characiopsis tuba (Hermann) Lemmermann 1Gloeobotrys bichlorus Ettl 1

Page 5: Algal community patterns in Slovenian bogs along environmental gradients

426 A. Krivograd Klemenčič et al.

Table 3. (continued)

Sampling siteTaxa Label

1 2 3 4 5 6 7

Ophiocytium cochleare A. Braun 1 1 1 1 1 1Ophiocytium lagerheimii Lemmermann 1 1 1Tribonema affine West 3 3Vaucheria spp. 1 1CHRYSOPHYCEAEDinobryon sertularia Ehrenberg 1 1 1Stylopyxis sp. 1Synura uvella Ehrenberg 1BACILLARIOPHYCEAEAchnanthes coarctata (Brébisson) Grunow Ach coa 1Achnanthes flexella (Kutzing) Brun Ach fle 1 1Achnanthes hungarica (Grunow) Grunow Ach hun 1 3 1Achnanthes laevis Oestrup Ach laeAchnanthes lanceolata (Brébisson) Grunow Ach lan 1 1 1 5 1 1Achnanthes minutissima Kutzing Ach min 1 3 1 1 1 1 5Achnanthes petersenii Hustedt Ach pet 1 1 1Achnanthes spp. Ach spp. 1Achnanthes subatomoides (Hustedt) Lange-Bertalot Ach sub 1 1Adlafia bryophila (J.B.Petersen) Gerd Moser, Lange-Bert. & Metz. Adl bry 1 1Adlafia minuscula (Grunow) Lange-Bert. Adl min 1Amphipleura pellucida (Kutzing) Kutzing Amp pel 1 1Amphora ovalis var. libyca (Ehrenberg) Cleve Amp o li 1 1 1Amphora pediculus (Kutzing) Grunow Amp ped 1Anomoeoneis brachysira (Brébisson) Grunow Ano bra 3Anomoeoneis styriaca (Grunow) Hustedt Ano sty 5Anomoeoneis vitrea (Grunow) Ross Ano vit 1 1 1Aulacoseira distans (Ehrenberg) Simonsen Aul dis 1Caloneis alpestris (Grunow) Cleve Cal alp 1Caloneis silicula (Ehrenberg) Cleve Cal sil 1 1Caloneis spp. Cal spp. 1Caloneis tenuis (Gregory) Krammer Cal ten 1 1Cavinula jaernefeltii (Hustedt) D.G.Mann & A.J. Stickle Cav jae 1Cavinula lapidosa (Krasske) Lange-Bert. Cav lap 3Cocconeis neodiminuta Krammer Coc neo 1Cocconeis placentula Ehrenberg Coc pla 1 1 1 1Cyclotella distinguenda Hustedt Cyc dis 1Cyclotella glabriuscula (Grunow) Hakansson Cyc gla 1Cyclotella spp. Cyc spp. 1Cymatopleura solea var. apiculata (W. Smith) Ralfs Cym s ap 1Cymbella affinis Kutzing Cym aff 1 1Cymbella amphicephala var. hercynica (Schmidt) Cleve Cym a he 1Cymbella aspera (Ehrenberg) Cleve Cym asp 1 1 1 1 1Cymbella cesatii (Rabenhorst) Grunow Cym ces 1 3 1Cymbella cistula (Ehrenberg) Kirchner Cym cis 1Cymbella cymbiformis Agardh Cym cym 3 1Cymbella gracilis (Ehrenberg) Kutzing Cym gra 1 1 1Cymbella incerta (Grunow) Cleve Cym inc 1Cymbella naviculiformis Auerswald Cym nav 1 1 1 1Cymbella subaequalis Grunow Cym suba 1 1Cymbella subcuspidata Krammer Cym subc 1Cymbopleura amphicephala (Nageli) Krammer Cyb amp 1Delicata delicatula (Kutzing) Krammer Del del 3 1Denticula kuetzingi Grunow Den kue 1 1Denticula tenuis Kutzing Den ten 1 1 1 1Diadesmis contenta (Grunow) D.G.Mann Dia con 1Diatoma mesodon (Ehrenberg) Kutzing Dia mes 1 1 1Diatoma moniliformis Kutzing Dia mon 1Diatoma vulgaris Bory Dia vul 1 1Diploneis elliptica (Kutzing) Cleve Dip ell 1 1 1Diploneis oblongella (Nageli) Cleve-Euler Dip obl 1 1Diploneis petersenii Hustedt Dip pet 1 1 1Encyonema silesiacum (Bleisch) D.G.Mann Enc sil 1 3 1 1 1Encyonopsis microcephala (Grunow) Krammer Enc mic 1 1 1 1Epithemia adnata (Kutzing) Brébisson Epi adn 1 1Eunotia arcus Ehrenberg Eun arc 3 3 1Eunotia bilunaris (Ehrenberg) Mills Eun bil 3 1 1 1 5 3 3Eunotia exigua (Brébisson ex Kutzing) Rabenhorst Eun exi 3 1 1 1Eunotia implicata Norpel Eun imp 1 1 1 1Eunotia incisa Gregory Eun inc 5 3

Page 6: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 427

Table 3. (continued)

Sampling siteTaxa Label

1 2 3 4 5 6 7

Eunotia meisteri Hustedt Eun mei 1Eunotia paludosa var. paludosa Grunow Eun p pa 1Eunotia paludosa var. trinacria (Grunow) Norpel Eun p tr 1Eunotia praerupta Ehrenberg Eun pra 1 1 1Eunotia spp. Eun spp. 1Eunotia tenella (Grunow) Hustedt Eun ten 1 1Fragilaria biceps (Kutzing) Lange-Bert. Eun bic 1Fragilaria capucina Desmazifres Fra cap 1 1 1Fragilaria construens (Ehrenberg) Grunow Fra con 1Fragilaria construens f. subsalina (Hustedt) Hustedt Fra c su 1Fragilaria fasciculata (C. Agardh) Lange-Bert. Fra fas 1Fragilaria pinnata Ehrenberg Fra pin 3Fragilaria tenera (W. Smith) Lange-Bert. Fra ten 1 1 3Fragilaria ulna (Nitzsch) Lange-Bert. Fra uln 1 3Fragilaria virescens Ralfs Fra vir 1 1Frustulia rhomboides (Ehrenberg) De Toni Fru rho 1 1 1 1Frustulia vulgaris (Thwaites) De Toni Fru vul 1 1Gomphonema acuminatum Ehrenberg Gmp acu 1 1 1Gomphonema affine Kutzing Gmp acu 1Gomphonema angustatum (Kutzing) Rabenhorst Gmp ang 1 1Gomphonema angustum Agardh Gmp ans 1 3 1Gomphonema clavatum Ehrenberg Gmp cla 1 1 1 1Gomphonema gracile Ehrenberg Gmp gra 1 1 1 1Gomphonema parvulum (Kutzing) Kutzing Gmp par 1 1 1 1 3 3 1Gomphonema subtile Ehrenberg Gmp sub 3Gomphonema truncatum Ehrenberg Gmp tru 1 1 1Gyrosigma attenuatum (Kutzing) Rabenhorst Gyr att 1Hantzschia amphioxys (Ehrenberg) Grunow Han amp 1 1 1 1Kobayasia subtilissima (Cleve) Lange-Bert. Kob sub 1 1 1Luticola mutica (Kutzing) D.G.Mann Lut mut 1Mastogloia smithii Thwaites Mas smi 1Meridion circulare var. circulare (Greville) C. A. Agardh Mer c ci 1 1Meridion circulare var. constrictum (Ralfs) Van Heurck Mer c co 1Navicula amphibola Cleve Nav amp 1Navicula capitatoradiata Germain Nav cap 1 3Navicula cryptocephala Kutzing Nav cry 1 3 1 1 3Navicula cryptotenella Lange-Bert. Nav crt 1Navicula elginensis var. elginensis (Gregory) Ralfs Nav e el 1Navicula gregaria Donkin Nav gre 1Navicula heimansii Van Dam & Kooyman Nav hei 1 1Navicula ignota var. palustris (Hustedt) Lund Nav i pa 1Navicula lanceolata (Agardh) Ehrenberg Nav lan 1Navicula nivaloides Bock Nav niv 1Navicula pupula var. pseudopupula (Krasske) Hustedt Nav p ps 1Navicula pupula var. pupula Kutzing Nav p pu 1 1 1 1Navicula radiosa Kutzing Nav rad 5 1 5Navicula rhynchocephala Kutzing Nav rhy 1Navicula seminulum Grunow Nav sem 1Navicula spp. Nav spp. 1 1 1 1 1 1Navicula veneta Kutzing Nav ven 1Neidium affine (Ehrenberg) Pfitzer Nei aff 1Neidium ampliatum (Ehrenberg) Krammer Nei amp 1 1Neidium bisulcatum (Lagerstedt) Cleve Nei bis 1 1 1Neidium iridis (Ehrenberg) Cleve Nei iri 1 1Neidium septentrionale Cleve-Euler Nei sep 1Nitzschia alpina Hustedt Nit alp 1Nitzschia amphibia Grunow Nit amp 1 1Nitzschia dissipata (Kutzing) Grunow Nit dis 1 1Nitzschia frustulum (Kutzing) Grunow Nit fru 3Nitzschia gracilis Hantzsch Nit gra 1 1Nitzschia hantzschiana Rabenhorst Nit han 5 1Nitzschia linearis (Agardh) W. Smith Nit lin 1 1 1 1Nitzschia palea (Kutzing) W. Smith Nit pal 1 1 1 1Nitzschia perminuta (Grunow) M. Peragallo Nit per 3 1 1 1Nitzschia sinuata var. sinuata (Thwaites) Grunow Nit s sin 1Nitzschia spp. Nit spp. 1 3Pinnularia acrosphaeria Rabenhorst Pin acr 1Pinnularia appendiculata (Agardh) Cleve Pin app 1 1 1 1Pinnularia borealis var. rectangularis Carlson Pin b re 1

Page 7: Algal community patterns in Slovenian bogs along environmental gradients

428 A. Krivograd Klemenčič et al.

Table 3. (continued)

Sampling siteTaxa Label

1 2 3 4 5 6 7

Pinnularia braunii (Grunow) Cleve Pin bra 1Pinnularia divergentissima (Grunow) Cleve Pin div 1Pinnularia gibba Ehrenberg Pin gib 3 1 1 1 3 1 1Pinnularia gibba var. linearis Hustedt Pin g li 1Pinnularia intermedia (Lagerstedt) Cleve Pin int 1Pinnularia interrupta W. Smith Pin inr 3 1 1 1Pinnularia maior (Kutzing) Rabenhorst Pin mai 1 1 1 1 3 1 1Pinnularia microstauron (Ehrenberg) Cleve Pin mic 1 1 1 1 1Pinnularia nodosa (Ehrenberg) W.Smith Pin nod 1 1Pinnularia obcsura Krasske Pin obc 1 1Pinnularia rupestris Hantzsch Pin rup 1 3 1Pinnularia spp. Pin spp. 1Pinnularia stomatophora (Grunow) Cleve Pin sto 1Pinnularia subcapitata Gregory Pin sub 1 1 1 3 1Pinnularia viridis (Nitzsch) Ehrenberg Pin vir 1 1 1 3 1 1Psammothidium oblongellum (Oestrup) Van de Vijver Psa obl 1 1Puncticulata bodanica (Grunow) Hakansson Pun bod 1Reimeria sinuata (Gregory) Kociolek & Stoermer Rei sin 1 1Rhopalodia gibba (Ehrenberg) O. Muller Rho gib 1 1Sellaphora stroemii (Hustedt) H.Kobayasi Sel str 1Stauroneis acuta W. Smith Sta acu 1Stauroneis anceps Ehrenberg Sta anc 1 1 1Stauroneis kriegerii Patrick Sta kri 1Stauroneis phoenicenteron (Nitzsch) Ehrenberg Sta pho 1 1 1 1Stauroneis smithii Grunow Sta smi 1 1Surirella angusta Kutzing Sur ang 1Surirella biseriata Brébisson Sur bis 1Surirella linearis var. linearis W. Smith Sur l li 1Tabellaria flocculosa (Roth) Kutzing Tab flo 1 5 1 1 1 5CHLOROPHYTACHLOROPHYCEAEAnkistrodesmus falcatus (Corda) Ralfs 1Asterococcus superbus (Cienowski) Scherffel 1 1Carteria crucifera Korschikoff 1Chaetophora incrassata (Hudson) Hazen 1Characium ensiforme Hermann 1Chlamydomonas spp. 3 1 1 1 1Chlorella spp. 1Chlorella vulgaris Beijerinck 1Draparnaldia plumosa (Vaucher) Agardh 3Gloeocystis ampla (Kutzing) Rabenhorst 1 1Keratococcus bicaudatus (A. Braun) Boye-Petersen 1Klebsormidium flaccidum (Kutzing) Silva, Mattox & Blackwell 1 1Microspora abbreviata (Rabenhorst) Lagerheim 1 1Microspora floccosa (Vaucher) Thuret 1Microspora pachyderma (Wille) Lagerheim 5Microthamnion kuetzingianum Nageli 1 1 1 1Oedogonium spp. 3 1 3 1 1 1 1Oocystis parva West & West 1Oocystis solitaria Wittrock 1 1Oocystis sp. 1Palmodictyon varium (Nageli) Lemmermann 1Pandorina morum (O. F. Muller) Bory 1 1Scenedesmus brasiliensis Bohlin 1 1 1Scenedesmus ecornis (Ralfs) Chodat 1Scenedesmus maximus (W. & G.S.West) 1Scenedesmus ovalternus Chodat 1Scenedesmus serratus (Corda) Bohlin 1Scenedesmus sp. 1Scenedesmus velitaris Komárek 1Stigeoclonium farctum Berthold 1Stigeoclonium subuligerum Kutzing 1Stigeoclonium tenue Kutzing 3 3 3Trentepohlia aurea (L.) Martius 1 1 1Ulothrix aequalis Kutzing 1Ulothrix variabilis Kutzing 1 1

Page 8: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 429

Table 3. (continued)

Sampling siteTaxa Label

1 2 3 4 5 6 7

ZYGNEMATOPHYCEAEDesmidialesActinotaenium palangula (Brébisson) Teiling Act pal 1Actinotaenium sp. Act sp. 1Actinotaenium turgidum (Brébisson) Teiling Act tur 1Closterium abruptum W. West Clo abr 1Closterium attenuatum Ralfs Clo att 1 1Closterium costatum Corda ex Ralfs Clo cos 1Closterium dianae Ehrenberg ex Ralfs Clo dia 1 1Closterium ehrenbergii Meneghini ex Ralfs Clo ehr 1Closterium incurvum Brébisson Clo inc 1Closterium intermedium Ralfs Clo int 1 1Closterium kuetzingii Brébisson Clo kue 1 1Closterium leibleinii Kutzing ex Ralfs Clo lei 3 1Closterium lineatum Ehrenberg Clo lin 1 1Closterium moniliferum (Bory) Ehrenberg ex Ralfs Clo mon 1 1Closterium navicula (Brébisson) Lutkemuller Clo nav 1Closterium parvulum Nageli Clo par 1 1 1 1Closterium ralfsii Brébisson ex Brébisson Clo ral 1Closterium ralfsii var. hybridum Rabenhorst Clo r hy 1Closterium rostratum Ehrenberg ex Ralfs Clo ros 1 1Closterium spp. Clo spp. 1 1 1Closterium striolatum Ehrenberg ex Ralfs Clo str 1 1 1 1Cosmarium botrytis Meneghini Cos bot 1 1Cosmarium cucumis (Corda) Ralfs Cos cuc 1Cosmarium depressum f. minuta Heimerl Cos d mi 1Cosmarium furcatospermum W. & G.S. West Cos fur 1Cosmarium granatum Brébisson Cos gra 1Cosmarium holmiense var. integrum Lundell Cos h in 1Cosmarium impressulum Elfving Cos imp 1Cosmarium leave Rabenhorst Cos lae 1Cosmarium microsphinctum var. crispulum Nordstedt Cos m-cri 1Cosmarium obtusatum (Schmidle) Schmidle Cos obt 1Cosmarium ochthodes Nordstedt Cos och 1Cosmarium pachydermum Lundell Cos pac 1Cosmarium perforatum Lundell Cos per 1Cosmarium punctulatum Brébisson Cos pun 1Cosmarium pygmaeum var. heimerlii (W.&G.S.West) Krieger & Gerloff Cos p he 1Cosmarium quadrum Lundell Cos qua 1Cosmarium regnellii Wille Cos reg 1Cosmarium spp. Cos spp. 1 1 1Cosmarium subgranatum (Nordstedt) Lutkemuller Cos sub 1Cosmarium tetraophthalmum (Kutzing) Brébisson Cos tet 1Cosmarium vexatum var. lacustre Messikommer Cos v la 1 1Cylindrocystis brebissonii Meneghini Cyl bre 1 1Desmidium swartzii (Agardh) Agardh ex Ralfs Des swa 1Euastrum ansatum var. pyxidatum Delponte Eua a py 1Euastrum bidentatum Nageli Eua bid 1Euastrum binale (Turpin) Ehrenberg Eua bin 1 1Euastrum oblongum (Greville) Ralfs Eua obl 1Hyalotheca dissiliens (J. E. Smith) Brébisson ex Ralfs Hya dis 1Hyalotheca dissiliens f. bidentula (Nordst.) Boldt Hya d bi 1Micrasterias crux-melitensis (Ehrenberg) Hassall ex Ralfs Mic cme 1Micrasterias rotata (Greville) Ralfs ex Ralfs Mic rot 1Micrasterias thomasiana Archner Mic tho 1Netrium digitus (Ehrenberg) Itzigs. & Rothe Net dig 1 1 1Penium polymorphum (Perty) Perty Pen pol 1Pleurotaenium ehrenbergii (Brébisson) de Bary Ple ehr 1Pleurotaenium trabecula (Ehrenberg) Nageli Ple tra 1 1 1Pleurotaenium trabecula var. crassum Wittrock Ple t cr 1Spondylosium pulchellum Archner Spo pul 1Staurastrum alternans (Brébisson) Ralfs Sta alt 1Staurastrum brachiatum Ralfs Sta bra 1Staurastrum echinatum Brébisson ex Ralfs Sta ech 1Staurastrum muricatum (Brébisson) Ralfs Sta mur 1Staurastrum muticum (Brébisson) Ralfs Sta mut 1Staurastrum polymorphum Brébisson Sta pol 1Staurastrum punctulatum Brébisson Sta pun 1

Page 9: Algal community patterns in Slovenian bogs along environmental gradients

430 A. Krivograd Klemenčič et al.

Table 3. (continued)

Sampling siteTaxa Label

1 2 3 4 5 6 7

Staurastrum sp. Sta sp. 1Staurodesmus dejectus (Brébisson ex Ralfs) Teiling Sta dej 1 1Staurodesmus extensus var. isthmosus (Heimerl) Coes. Sta e is 1Staurodesmus triangularis (Lagerheim) Teiling Sta tri 1Teilingia granulata (Roy & Biss.) Bourrelly Tei gra 3 1Tetmemorus laevis (Kutzing) ex Ralfs Tet lae 1 1ZygnematalesMougeotia spp. 1 5 1 5 1 5 5Spirogyra spp. 1 5 5Zygnema spp. 3 3 5 1 3CHAROPHYCEAEChara sp. 1RHODOPHYTAFLORIDEOPHYCEAEAudouinella chalybea (Lyngbye) Fries 1

1975) and Krivograd & Vrhovšek (2003) and 17 taxawere identified for the first time in Slovenia. Cyanobac-teria were present in larger number in the bog II, thebog of Žejna dolina, the bog at Holmec and the bogof Mali plac. Species of the genus Anabaena Bory arecharacteristic of peat moss islands (Munoz et al. 2003),as the fixation of atmospheric nitrogen enables them tothrive in oligotrophic peat bogs (Basilier et al. 1978).The species Phormidium amoenum Kutzing occurredmassively in the bog II, while other common specieswere Aphanothece microscopica Nageli (the bog atHolmec), Merismopedia hyalina (Ehrenberg) Kutzing(the bog at Holmec), Geitlerinema splendidum (Gre-ville ex Gomont) Anagnostidis (the bog II), Gomphos-phaeria aponina Kutzing (the bog of Žejna dolina),Phormidium Kutzing ex Gomont (the bog of Žejnadolina), Pseudanabaena biceps Bocher (the bog of Že-jna dolina), P. catenata Lauterborn (the bog of Žejnadolina), Tychonema bornetii (Zukal) Anagnostidis &Komárek (the bog of Žejna dolina, the bog of Jelovica)and Anabaena augstumnalis Schmidle ( the bog-lakeČrno jezero). The species A. microscopica, G. splen-didum and P. catenata were common in peat bogs inthe Czech Republic (Nováková 2002). Pietryka (2000)reports on the presence of the species Anabaena augs-tumnalis in peat bogs in Poland and Krivograd Kle-menčič & Vrhovšek (2003) confirmed the presence ofthe species G. aponina in the bog of Lovrenška jezerain Slovenia.

DiatomsPatrick (1977) wrote that in low pH waters with ahigh content of humine acids, the following genera pre-vailed among the diatoms: Eunotia Ehrenberg, Frus-tulia Rabenhorst and Pinnularia Ehrenberg; the Tabel-laria flocculosa (Roth) Kutzing species is also common.T. flocculosa was present in six bogs; it appeared mas-sively in the bog-lake Črno jezero and the bog of Led-ina, and individually in other bogs. In total, the Eu-notia genus was represented by 11 taxa, the Frustu-lia genus by two and the Pinnularia genus by 18 taxa.

The largest number of species in the Eunotia and Pin-nularia genera was recorded in peat bogs with acidicpH and low conductivity: the bog I and the bog-lakeČrno jezero. A high number of species in the Pinnulariagenus (10) were recorded also in the bog of Mali plac.Among the identified diatom taxa, the Nitzschia gracilisHantzsch species, common in European bogs (Munoz etal. 2003), was present in the bog-lake Črno jezero andthe bog of Mali plac. The following taxa also occurredmassively: Achnanthes minutissima Kutzing (the bog ofŽejna dolina and the bog of Ledina), Anomoeoneis vit-rea (Grunow) Ross (the bog of Žejna dolina), Eunotiabilunaris (Ehrenberg) Mills (the bog at Holmec), Navic-ula radiosa Kutzing (the bog II and the bog of Ledina)and Nitzschia hantzschiana Rabenhorst (the bog II). A.vitrea is a species characteristic of acid bogs occurringwithin the pH range from 3.6 to 6.5 (Poulíčková et al.2001). The species Achnanthes minutissima, Eunotiabilunaris, Gomphonema parvulum Kutzing, Pinnulariagibba Ehrenberg and P. maior (Kutzing) Rabenhorstwere present in all seven bogs. The above-mentionedspecies are cosmopolitan, i.e. present in bogs through-out the world (Mataloni & Tell 1996; Mataloni 1999;Pietryka 2000; Watanabe et al. 2000; Nováková 2002;Negro et al. 2003; Munoz et al. 2003, Krivograd Kle-menčič & Vrhovšek 2003).

DesmidsDesmids are known as ecologically highly sensitive or-ganisms living in less productive (oligo- to mesotrophic)waters. The most abundant desmid communities arefound in places with a relatively low content of elec-trolytes – low electric conductivity and alkalinity (Glig-ora & Plenkovic-Moraj 2003). The proper habitat fordesmids is acid peat bog water, where they reachthe highest diversity (Dell’Uomo & Pellegrini 1993);desmids are common in peat bogs where peat mossconsumes the nutrients from water and thus maintainsthe oligotrophic conditions necessary for their thriv-ing (Munoz et al. 2003). Negro et al. (2003) reporteda higher number of desmid species in acid ecosystems

Page 10: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 431

-0.6 1.2

-1.0

1.0

Ana_aug

Ana_sp.

Aph_gre

Aph_hyl

Aph_par

Aph_mic

Aph_sax

Aph_staCal_spp.

Cal_min

Cal_web

Chr_lim

Chr_memChr_obl

Chr_pre

Chr_qua

Chr_tur

Coe_pus

Cya_maj

Cyl_sp.

Gei_spl

Glo_mag

Gom_apo

Het_spp.

Lep_spp.

Lim_red

Mer_hya

Mer_pun

Mic_wes

Nos_com

Nos_pal

Nos_ver

Osc_ang

Osc_pri

Osc_sub

Osc_ten

Pho_amo

Pho_bre

Pho_for

Pho_int

Pho_spp.

Pse_bicPse_catPse_sp.

Tol_sp.

Tyc_bor

Wor_elo

Wor_sp.

pH

geol

shad

altitude

Fig. 1. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand Cyanobacteria data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.

than in less acid ones. Within this study, the largestnumber of desmids was identified in the bog-lake Črnojezero and the bog of Ledina, with acid pH and in thebog of Žejna dolina with basic pH. Among 75 identi-fied desmid taxa in this study 60 taxa were found inSlovenian bogs by Pevalek (1924), Lazar (1960, 1975)and Krivograd & Vrhovšek (2003) and 15 taxa wereidentified for the first time in Slovenia. All represen-tatives of desmids were present only individually; theresearch of other authors confirms that the desmids oc-curr in bogs in a large number of species, but withlow specimen representation (Dell’Uomo & Pellegrini1993; Mataloni 1999; Krivograd Klemenčič & Vrhovšek2003; Munoz et al. 2003). The genera with the high-est number of taxa were Cosmarium Corda ex Ralfs(21) and Closterium Nitzsch ex Ralfs (18). In peatbogs, desmids occur especially in small pools; how-ever, they are less common at raised parts of bogs(Munoz et al. 2003). Desmid communities were re-ported to be reacher in bogs with open water andmoss carpets than in those with moss carpets only(Young et al. 1986). The bog at Holmec is com-pletely overgrown by peat moss and the number ofdesmids was lower than in other peat bogs with acidpH.

CCA ordinationThe preliminary Cyanobacteria CCA analysis was car-ried out on the basis of eight variables, shown in Ta-ble 2. The forward selection within CCA indicatedthat four environmental variables explained significant(P < 0.05) and independent amounts of variation in theCyanobacteria distributions. The strongest variable wasshading, followed by bedrock, altitude and pH. Kawecka(2003) and Novakova (2002) found out that differentlight conditions affect significantly the changes in thestructure of benthic algae communities.

The eigenvalues of the first two axes of theCyanobacteria CCA analysis performed on the fourvariables mentioned above, were 0.876 and 0.811, re-spectively. The first axis explained statistically signifi-cantly 10.4% and the second one 9.7% of the Cyanobac-teria community variance (P = 0.002). The species-environment correlation was 0.99 for axis 1 and 0.98 foraxis 2. The analysis showed that the main Cyanobac-teria variation gradient depended on shading (Fig. 1),which was strongly related to axis 1 (r = 0.97). Thefirst axis was in weak positive correlation with altitude(r = 0.11) and in negative correlation with the bedrock(r = −0.53) and pH (r = −0.06). The axis 2 was morecorrelated with bedrock (r = 0.76) and altitude (r =

Page 11: Algal community patterns in Slovenian bogs along environmental gradients

432 A. Krivograd Klemenčič et al.

−0.71) and less with shading (r = 0.18) and pH (r =0.06).

The CCA ordination (Fig. 1) positioned theCyanobacteria taxa typical of low altitude, shadedpeat bogs on limestone in the upper right quadrant(Phormidium breve (Kutzing ex Gomont) Anagnostidis& Komárek, Chroococcus limneticus Lemmermann,Chroococcus quaternarius Zalessky, Aphanocapsa saxi-cola Nageli, Calothrix minima Frémy, Gloeocapsa mag-ma (Brébisson) Komárek & Anagnostidis, Microcys-tis wesenbergii (Komárek) Komárek, Heterolebleinia(Geitler) Hoffmann), whereas the taxa more common inhigh altitude, shaded peat bogs on silicate are locatedin the lower right quadrant (e.g. Leptolyngbya Anag-nostidis & Komárek, Aphanocapsa hyalina (Lyngbye)Hansgirg, Phormidium interruptum Kutzing, Geitler-inema splendidum, Phormidium amoenum, TolypothrixKutzing, Oscillatoria subbrevis Schmidle). The taxa in-dicative of unshaded peat bogs on limestone are posi-tioned in in the upper left quadrant (e.g. Cylindrosper-mum Schmidle, Oscillatoria anguina (Bory) Gomont,O. princeps Vaucher, O. tenuis Agardh ex Gomont, Ty-chonema bornetii, Nostoc paludosum Kutzing,Woroni-chinia Elenkin, Gomphosphaeria aponina, Phormidiumformosum (Bory) Anagnostidis & Komárek, Chroococ-cus membraninus (Meneghini) Nageli, C. oblitera-tus Richter, C. prescottii Drouet & Daily, Cyanoth-ece major (Schroter) Komárek, Merismopedia punc-tata Meyen, Pseudanabaena catenata, P. biceps, Coelo-moron pusillum (Van Goor) Komárek, Aphanocapsagrevillei (Berkeley) Rabenhorst).

The preliminary diatom CCA analysis was car-ried out on the basis of eight variables showed in Ta-ble 2. The forward selection within CCA indicated thatfour environmental variables explained significant (P< 0.05) and independent amounts of variation in thediatom distributions. Many authors found out that thepH was the factor having a significant impact on the oc-currence and distribution of diatom communities (Can-tonati 1998; Bigler et al. 2000; Poulíčková et al. 2001).In our case, the strongest variable was the bedrock, fol-lowed by altitude, shading and pH. Altitude influencedsignificantly also the diatom composition in springs ofthe southern Alps (Cantonati 1998). Conductivity (Ne-gro et al. 2003; Soininen 2004) and water temperature(Rott et al. 1998) influenced the diatom composition insome studies, but in our case, these variables did notexplain significant additional variation in the diatomdata.

The eigenvalues of the first two axes of the diatomCCA performed on the four variables mentioned above,were 0.459 and 0.360, respectively. The first axis ex-plained statistically significantly 11.5% and the secondaxis explained 9.1% of the diatom community variance(P = 0.002). The species-environment correlation was0.96 for axis 1 and 0.98 for axis 2. The first axis wasin a strong positive correlation with the bedrock (r =0.83), a weak positive correlation with pH (r = 0.37),negative correlation with shading (r = −0.62) and alti-tude (r = −0.29). The axis 2 was more correlated with

altitude (r = −0.88) and less with shading (r = 0.56),pH (r = 0.28) and bedrock (r = 0.23).

The CCA ordination (Fig. 2) positioned the di-atom taxa typical of low altitude, high pH, unshadedpeat bogs on limestone in the upper right quadrant(e.g. Nitzschia sinuata var. sinuata (Thwaites) Gru-now, Navicula lanceolata (Agardh) Ehrenberg, Sel-laphora stroemii (Hustedt) H.Kobayasi, Mastogloiasmithii Thwaites, Fragilaria construens (Ehrenberg)Grunow, F. fasciculata (C. Agardh) Lange-Bertalot,Gomphonema subtile Ehrenberg, Puncticulata bodan-ica (Grunow) Hakansson, Cymbella glabriuscula (Gru-now) Hakansson, Caloneis alpestris (Grunow) Cleve,Anomoeoneis styriaca (Grunow) Hustedt, Cymbopleuraamphicephala (Nageli) Krammer, Delicata delicatula(Kutzing) Krammer, Achnanthes lanceolata (Brébis-son) Grunow, Gyrosigma attenuatum (Kutzing) Raben-horst), whereas the taxa more common in high alti-tude, more acid, not or partly shaded peat bogs arelocated in the lower right quadrant (e.g. Cyclotelladistinguenda Hustedt, Navicula ignota var. palustris(Hustedt) Lund, N. amphibola Cleve, N. elginensisvar. elginensis (Gregory) Ralfs, N. pupula var. pseu-dopupula (Krasske) Hustedt, Cymbella cistula (Ehren-berg) Kirchner, C. subcuspidata Krammer, Fragilariapinnata Ehrenberg, Pinnularia stomatophora (Grunow)Cleve). The taxa indicative of shaded peat bogs are lo-cated in the upper left quadrant (e.g. Pinnularia bore-alis var. rectangularis Carlson, P. obcsura Krasske, P.appendiculata (Agardh) Cleve, Achnanthes coarctata(Brébisson) Grunow, Nitzschia frustulum (Kutzing)Grunow, Navicula seminulum Grunow, N. gregariaDonkin, Stauroneis kriegerii Patrick, Nitzschia alpinaHustedt, Eunotia meisteri Hustedt), and the taxa typ-ical of high altitude peat bogs on silicate are posi-tioned in the lower right quadrant (e.g. Eunotia palu-dosa var. paludosa Grunow, E. paludosa var. trinacria(Grunow) Norpel, Anomoeoneis brachysira (Brébisson)Grunow, Navicula nivaloides Bock, Cavinula jaerne-feltii (Hustedt) D.G.Mann & A.J. Stickle, Aulacoseiradistans (Ehrenberg) Simonsen, Neidium ampliatum(Ehrenberg) Krammer, Frustulia rhomboides (Ehren-berg) De Toni).

The preliminary desmid CCA analysis was carriedout on the basis of eight variables shown in Table 2. Theforward selection within CCA indicated that five en-vironmental variables explained significant (P < 0.05)and independent amounts of variation in the desmiddistributions. The strongest variable was bedrock, fol-lowed by altitude, saturation, shading and pH. Conduc-tivity (Negro et al. 2003) influenced the desmid compo-sition in some studies, but in our case, this variabledid not explain significant additional variation in thedesmid data.

The eigenvalues of the first two axes of the desmidCCA performed on the five variables mentioned above,were 0.846 and 0.666, respectively. The first axis ex-plained statistically significantly 10.1% and the secondone explained 7.9% of the desmid community variance(P = 0.002). The species-environment correlation was

Page 12: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 433

-0.8 1.0

-1.0

1.0 Ach_coa

Ach_fle

Ach_hun

Ach_lae

Ach_lan

Ach_min

Psa_obl

Ach_pet

Ach_spp.

Ach_sub

Amp_pel

Amp_o_liAmp_ped

Ano_bra

Ano_sty

Ano_vit

Aul_dis

Cal_alp

Cal_sil

Cal_spp.

Cal_ten

Coc_neo

Coc_pla

Pun_bod

Cyc_dis

Cyc_glaCyc_spp.Cym_s_ap

Cym_aff

Cyb_amp

Cym_a_he

Cym_asp

Cym_ces

Cym_cis

Cym_cym

Del_del

Cym_gra

Cym_inc

Enc_mic

Cym_nav

Enc_sil

Rei_sin

Cym_suba

Cym_subc

Den_kue

Den_ten

Dia_mes

Dia_mon

Dia_vul

Dip_ell

Dip_obl

Dip_pet

Epi_adn

Eun_arc

Eun_bil

Eun_exi

Eun_imp

Eun_inc

Eun_mei

Eun_p_pa

Eun_p_tr

Eun_pra

Eun_spp.

Eun_ten

Eun_bic

Fra_cap

Fra_con

Fra_c_su

Fra_fas

Fra_pin

Fra_tenFra_uln

Fra_vir

Fru_rho

Fru_vul

Gmp_acu

Gmp_acu

Gmp_ang

Gmp_ans

Gmp_cla

Gmp_gra

Gmp_par

Gmp_sub

Gmp_tru

Gyr_att

Han_amp

Mas_smi

Mer_c_ci

Mer_c_co

Nav_amp

Adl_bry

Nav_cap

Dia_con

Nav_cry

Nav_crt

Nav_e_el

Nav_gre

Nav_hei

Nav_i_pa

Cav_jae

Nav_lan

Cav_lap

Adl_min

Lut_mut

Nav_niv

Nav_p_ps

Nav_p_pu

Nav_rad

Nav_rhy

Nav_sem

Nav_spp.

Sel_str

Kob_sub

Nav_venNei_aff

Nei_amp

Nei_bis

Nei_iri

Nei_sep

Nit_alp

Nit_amp

Nit_dis

Nit_fru

Nit_gra

Nit_han

Nit_lin

Nit_pal

Nit_per

Nit_s_si

Nit_spp.

Pin_acr

Pin_app

Pin_b_re

Pin_bra

Pin_div

Pin_gib

Pin_g_li

Pin_int

Pin_inr

Pin_mai

Pin_mic

Pin_nod

Pin_obc

Pin_rup

Pin_spp.

Pin_sto

Pin_subPin_vir

Rho_gib

Sta_acu

Sta_anc

Sta_kri

Sta_pho

Sta_smi

Sur_ang

Sur_bis

Sur_l_li

Tab_flo

pHgeol

shad

altitude

Fig. 2. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand diatom data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.

0.99 for axis 1 and 0.95 for axis 2. The axis 1 is stronglycorrelated with bedrock (r = −0.76) and saturation (r= 0.54) and less correlated with pH (r = −0.38), shad-ing (r = 0.04) and altitude (r = −0.05). The axis 2 wasmore correlated with saturation (r = −0.61), shading(r = 0.58) and altitude (r = −0.51) and less correlatedwith bedrock (r = 0.26) and pH (r = 0.01).

The CCA ordination (Fig. 3) positioned desmidtaxa typical of low altitude, shaded, more acid peatbogs on silicate in the upper right quadrant (Eu-astrum oblongum (Greville) Ralfs, Cosmarium ochth-odes Nordstedt, Pleurotaenium trabecula var. crassumWittrock, Actinotaenium palangula (Brébisson) Teil-ing, Micrasterias rotata (Greville) Ralfs ex Ralfs, Euas-trum ansatum var. pyxidatum Delponte), whereas thetaxa typical of unshaded peat bogs with high satu-ration are located in the lower right quadrant (e.g.Staurodesmus triangularis (Lagerheim) Teiling, Tet-

memorus laevis (Kutzing) ex Ralfs, Teilingia granu-lata (Roy & Biss.) Bourrelly, Staurastrum brachiatumRalfs, Penium polymorphum (Perty) Perty, Spondy-losium pulchellum Archner, Cosmarium depressum f.minuta Heimerl, Closterium costatum Corda ex Ralfs,C. incurvum Brébisson, Cosmarium furcatospermumW. & G.S. West, C. pygmaeum var. heimerlii (W. &G.S.West) Krieger & Gerloff). The taxa more commonin peat bogs with low saturation are located in the up-per left quadrant (e.g. Closterium ehrenbergii Menegh-ini ex Ralfs, C. lineatum Ehrenberg, C. moniliferum(Bory) Ehrenberg ex Ralfs, C. striolatum Ehrenberg exRalfs, Cosmarium holmiense var. integrum Lundell, C.cucumis (Corda) Ralfs).

We explained the distribution of algae in selectedpeat bogs in Slovenia on the basis of environmentalvariables. The unexplained percentage of variance couldhave been reduced by including additional environmen-

Page 13: Algal community patterns in Slovenian bogs along environmental gradients

434 A. Krivograd Klemenčič et al.

-1.0 1.0

-1.0

1.0

Act_pal

Act_sp.Act_tur

Clo_abr

Clo_att

Clo_cos

Clo_dia

Clo_ehr

Clo_inc

Clo_int

Clo_kue

Clo_lei

Clo_lin

Clo_mon

Clo_nav

Clo_par

Clo_ral

Clo_r_hy

Clo_ros

Clo_spp.Clo_str

Cos_bot

Cos_cuc

Cos_d_mi

Cos_fur

Cos_gra

Cos_h_in

Cos_imp

Cos_lae

Cos_m-crCos_obt

Cos_och

Cos_pac

Cos_per

Cos_pun

Cos_p_heCos_qua

Cos_reg

Cos_spp.

Cos_sub

Cos_tet

Cos_v_la

Cyl_breDes_swa

Eua_a_py

Eua_bidEua_bin

Eua_obl

Hya_dis

Hya_d_biMic_cme

Mic_rot

Mic_tho

Net_dig

Pen_polPle_ehr

Ple_tra

Ple_t_cr

Spo_pul

Sta_alt

Sta_bra

Sta_ech

Sta_mur

Sta_mut

Sta_pol

Sta_pun

Sta_sp. Sta_dej

Sta_e_is

Sta_triTei_gra

Tet_lae

pH

satu

geol

shad

altitude

Fig. 3. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand desmid data. Shad-shading, geol-bedrock, satu-saturation. Taxa acronyms are listed in Table 3.

tal variables (nitrates, phosphates. . .) and in that casesome other environmental variables could have been thestrongest one.

Cluster analysisWe tried to separate groups in all three dendograms(Figs. 4–6) in the most reasonable way with the help ofCCA analysis results. Four groups of samples could bedistinguished from the dendrogram based on the hier-archical cluster of the Cyanobacteria data (Fig. 4): I.– unshaded peat bogs, II. – partly shaded peat bogs,III. – shaded peat bogs (the bog I), IV. – sample takenon November 2005 at the bog of Mali plac in Ljubl-jana Marsh (no Cyanobacteria was found in this sam-ple). The dissimilarity between groups was higher than0.9. The results of Cyanobacteria CCA analysis re-vealed that the main factor influencing the Cyanobac-teria communities in the examined bogs was shading bythe surrounding vegetation.

Three groups of samples could be distinguished

from the dendrogram based on the hierarchical clusterof the diatom data (Fig. 5): I. – peat bogs on silicate,II. – the bog-lake Črno jezero and the bog of Mali plac(these two sampling sites differ from others in biggerdepth of water column), III. – peat bogs on limestone.The dissimilarity between groups was higher than 0.7.The results of diatom CCA analysis also indicated thatthe bedrock is the main factor influencing the diatomcommunities in the studied peat bogs.

Five groups of samples could be distinguished fromthe dendrogram based on the hierarchical cluster of thedesmid data (Fig. 6): I. – peat bogs on silicate and lime-stone, II. – peat bogs on silicate, III. – samples taken inApril and November at the bog I, IV. – samples taken inAugust and November at the bog of Mali plac in Ljubl-jana Marsh, V. – sample taken in January at the bog ofMali plac in Ljubljana Marsh (there were no desmidsfound in this sample). The dissimilarity between groupswas higher than 0.9. It is evident from the dendrogram(Fig. 6) that temporal changes in the desmids commu-

Page 14: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 435

00,10,20,30,40,50,60,70,80,91

4.maj.054.jun.064.avg.054.nov.057.sep.057.jun.067.nov.057.jun.053.maj.053.nov.053.avg.053.maj.065.maj.055.okt.055.jul.055.mar.062.maj.052.avg.052.maj.066.jan.056.maj.056.avg.051.apr.051.avg.051.nov.051.maj.066.nov.05

I.

II.

III.

IV.

V.

Fig. 4. Dendrogram of the investigated localities on the basis of the Cyanobacteria data.

0,20,30,40,50,60,70,80,91

1.nov.051.maj.061.apr.051.avg.052.maj.052.avg.052.maj.065.maj.055.okt.055.jul.055.mar.066.avg.056.nov.056.jan.056.maj.053.maj.053.avg.053.nov.053.maj.064.maj.054.jun.064.avg.054.nov.057.nov.057.jun.067.sep.057.jun.05

I.

II.

III.

Fig. 5. Dendrogram of the investigated localities on the basis of the diatom data.

I.

II.

III.

IV.

V.

0,20,30,40,50,60,70,80,91

7.jun.057.jun.067.sep.057.nov.056.maj.052.avg.052.maj.054.avg.054.nov.054.maj.055.jul.055.mar.061.avg.051.maj.064.jun.062.maj.063.avg.053.maj.063.nov.053.maj.055.maj.055.okt.051.apr.051.nov.056.avg.056.nov.056.jan.05

Fig. 6. Dendrogram of the investigated localities on the basis of the desmid data.

nity composition are larger than the spatial ones, whichmay indicate that the seasons are one of the key factorsinfluencing the presence and distribution of desmids in

peat bogs. The same could not be said of Cyanobacte-ria and diatoms, as the dendrograms (Figs 4, 5) clearlyshow that spatial changes in the Cyanobacteria commu-

Page 15: Algal community patterns in Slovenian bogs along environmental gradients

436 A. Krivograd Klemenčič et al.

nity composition are greater than the temporal ones.However, further investigation is recomended to studythe factors that shape the desmid community structure.

References

Basilier K., Granhall U. & Stenstrom T. 1978. Nitrogen fixationin wet minerotrophic moss communities of a subartic mire.Oikos 31: 236–246.

Bigler C., Hall R.I. & Renberg I. 2000. A diatom-training setfor palaeoclimatic inferences from lakes in northern Sweden.Verh., Internat. Verein. Limnol. 27: 1–9.

Borics G., Tóthmérész B., Grigorszky I., Padisák J., Várbíró G.& Szabo S. 2003. Algal assemblage types of bog-lakes in Hun-gary and their relation to water chemistry, hydrological con-ditions and habitat diversity. Hydrobiologia 502: 145–155.

Cambra J., Hindák F. 1998. Green algae from mountain peat-bogin the Eastern Pyrenees (Catalonia, Spain). Biologia 53/4:467–480.

Cantonati M. 1998. Diatom communities of springs in the south-ern alps. Diatom research 13, 2: 201–220.

Dell’Uomo A. & Pellegrini E. 1993. Desmids from a peat-bog inthe northern Apennines (Italy). Algological Studies 68: 27–38.

Dell’Uomo A., Pellegrini E. & Prader K. 1992. Le Desmidiaceaedel Palů di Sotto nella Piana di Marcesina (Altopiano di Asi-ago, Prealpi vicentine). Archivio Botanico Italiano 68, 3/4:181–194.

Ettl H. 1978. Xanthophyceae. In: Ettl H., Gerloff J. & HeynigH. (eds), Sußwasserflora von Mitteleuropa. Band 3. GustavFischer Verlag, Stuttgart, New York, 530 pp.

Ettl H. 1983. Chlorophyta I. Phytomonadina. In: Ettl H., GerloffJ., Heynig H. & Mollenhauer D. (eds), Sußwasserflora vonMitteleuropa. Band 9. Gustav Fischer Verlag, Jena, 806 pp.

Gligora M. & Plenkovic-Moraj A. 2003. Contribution of desmidsto phytoplankton assemblies in two Croatian karstic lakes.Biologia 58: 701–708.

Graham J.M., Kent A.D., Lauster G.H., Yannarell A.C., GrahamL.E. & Triplett E.W. 2004. Seasonal dynamics of phytoplank-ton and planktonic protozoan communities in a northern tem-perate humic lake: diversity in a dinoflagellate dominated sys-tem. Microbial ecology 48: 528–540.

Hindák F. 1996. Kľúč na určovanie nerozkonarených vlaknitýchzelených rias (Ulotrichineae,

Ulotrichales, Chlorophyceae). Slovenská botanická spoločnost priSAV, Bratislava, 73 pp.

Hindák F. 2006. Zelené kokálne riasy (Chlorococcales, Chloro-phyceae). Slovenská vodohospodárska spoločnosť ZSVTS priVÚVH, Bratislava.

Hindák F., Marvan P., Komárek J., Rosa K., Popovský J. &Lhotský O. 1978. Sladkovodné riasy. Slovenské pedagogickénakladatelstvo, Bratislava, 724 pp.

Hortobágyi T. 1973. The microflora in the settling and subsoil wa-ter enriching basins of the Budapest waterworks. A compara-tive study in ecology, limnology and systematics. AkadémiaiKiadó, Budapest, 610 pp.

Kawecka B. 2003. Effect of different light conditions on Cyanobac-teria and algal communities in Tatra Mts Stream (Poland).Oceanological and Hydrobiological Studies XXXII, 2: 3–13.

Komárek J. & Anagnostidis K. 1998. Cyanoprokaryota. Chroo-coccales. In: Ettl H., Gartner G., Heynig H. & MollenhauerD. (eds), Sußwasserflora von Mitteleuropa. Band 19/1. Spek-trum Akademischer Verlag, Heidelberg, Berlin, 548 pp.

Komárek J. & Anagnostidis K. 2005. Cyanoprokaryota. Oscilla-toriales. In: Budel B., Krienitz L., Gartner G. & Schagerl M.(eds), Sußwasserflora von Mitteleuropa. Band 19/1. ElsevierSpektrum Akademischer Verlag, Munchen, 759 pp.

Krammer K. & Lange-Bertalot H. 1997a. Bacillariophyceae. Nav-iculaceae. In: Ettl H., Gerloff J., Heynig H. & MollenhauerD. (eds), Sußwasserflora von Mitteleuropa. Band 2/1. GustavFischer Verlag, Stuttgart, 876 pp.

Krammer K. & Lange-Bertalot H. 1997b. Bacillariophyceae.Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H.,

Gerloff J., Heynig H. & Mollenhauer D. (eds), Sußwasserfloravon Mitteleuropa. Band 2/2. Gustav Fischer Verlag, Stuttgart,596 pp.

Krammer K. & Lange-Bertalot H. 2004a. Bacillariophyceae. Cen-trales, Fragilariaceae, Eunotiaceae. In: Ettl H., Gerloff J.,Heynig H., Mollenhauer D. (eds.) Sußwasserflora von Mit-teleuropa. Band 2/3. Gustav Fischer Verlag, Stuttgart, 576pp.

Krammer K. & Lange-Bertalot H. 2004b. Bacillariophyceae.Achnanthaceae, Kritische Erganzungen zu Navicula (Lineo-latae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H., Gartner G., Gerloff J., Heynig H. & Mollen-hauer D. (eds), Sußwasserflora von Mitteleuropa. Band 2/4.Gustav Fischer Verlag, Stuttgart, 437 pp.

Krammer K. 2000. The genus Pinnularia. In: Lange-Bertalot(ed.), Diatoms of Europe. Vol. 1. Ruggell, A.R.G. GantnerVerlag K.G., 703 pp.

Krivograd Klemenčič A. & Vrhovšek D. 2003. Algae in the peatbogs Lovrenška jezera and Šijec in Slovenia. Natura Croatica12, 3: 141–150.

Lazar J. 1960. Alge Slovenije. Seznam sladkovodnih vrst in ključza določanje. SAZU, Ljubljana, 279 pp.

Lazar J. 1975. Razširjenost sladkovodnih alg v Sloveniji. SAZU,Ljubljana, 83 pp.

Lederer F. 1999. Algal flora of peat bog Červené blato (TřeboňBasin, Czech Republic). Preslia 70: 303–311.

Lenzenweger R. 1996. Desmidiaceenflora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 101.J. Cramer, Berlin-Stuttgart, 162 pp.

Lenzenweger R. 1997. Desmidiaceenflora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 102.J. Cramer, Berlin-Stuttgart, 216 pp.

Lenzenweger R. 1999. Desmidiaceenflora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 104.J. Cramer, Berlin-Stuttgart, 218 pp.

Lenzenweger R. 2003. Desmidiaceenflora von Osterreich. In: KiesL. & Schnetter R. (eds). Bibliotheca phycologica. Band 111.J. Cramer, Berlin-Stuttgart, 87 pp.

Mataloni G. & Tell G. 1996. Comparative analysis of the phyto-plankton communities of a peat bog from Tierra del Fuego(Argentina). Hydrobiologia 325: 101–112.

Mataloni G. 1999. Ecological studies on algal communities fromTierra del Fuego peat bogs. Hydrobiologia 391: 157–171.

Munoz J., Aldasoro J.J., Negro A., de Hoyos C. & Vega J.C.2003. Flora and water chemistry in a relictic mire complex:the Sierra Segundera mire area (Zamora, NW Spain). Hydro-biologia 495: 1–16.

Mulec J., Mihevc A., Pipan T. 2005. Intermittent lakes in thePivka basin. Acta Carsologica 34/4, 1: 543–565.

Negro A.I., de Hoyos C. & Aldasoro J.J. 2003. Diatom and desmidrelationships with the environment in mountain lakes andmires of NW Spain. Hydrobiologia 505: 1–13.

Neustupa J. Nováková S., Sejnohová L., Skaloud P. & ŘezáčováM. 2002. Algae from aquatic, peat bog and aerial biotopesin the catchment area of the River Křemelná in Šumava Na-tional Park. Czech Phycology, Olomouc 2: 47–61.

Nováková S. 2002. Algal flora of subalpine peat bog pools in theKrkonoše Mts. Preslia 74: 45–56.

Pantle R. & Buck H. 1955. Die biologische der Uberwachung derGewasser und die Darstellung der Ergebnise. Gas-u. Wasser-fach 96: 604.

Poulíčková A., Hájek M. & Rybníček K. (eds.) 2005. Ecology andpalaeoecology of spring fens of the West Carpathians. PalackýUniversity, Olomouc, 209 pp.

Patrick R. 1977. Ecology of freshwater diatoms and diatom com-munities, pp. 284–322. In: Werner D. (ed.), The biology ofdiatoms. Blackwell, Oxford.

Pevalek I. 1924. Geobotanička i algološka istraživanja cretova uHrvatskoj i Sloveniji. Rad Jugoslavenske akademije znanostii umjetnosti. Knjiga 230: 29–117.

Pietryka M. 2000. Biodiversity of phycoflora of the peat bogs inthe Izerskie Mountains. Opera Corcontica 37: 351–358.

Popovsky J. & Pfiester L.A. 1990. Dinophyceae. In: Ettl H.,Gerloff J., Heynig H. & Mollenhauer D. (eds), Sußwasserflora

Page 16: Algal community patterns in Slovenian bogs along environmental gradients

Algal community patterns in Slovenian bogs 437

von Mitteleuropa. Band 6. Gustav Fischer Verlag, Stuttgart,272 pp.

Poulíčková A., Bogdanová K., Hekera P. & Hájková P. 2001. Di-atom flora of the springs on the borderline between Moraviaand Slovakia I. Northeastern part of the territory. Czech Phy-cology, Olomouc 1: 63–68.

Rauch A., Fesl C. & Schagerl M. 2006. Influence of environmen-tal variables on algal associations from a floating vegetationmat (Schwingmoor Lake Lunzer Obersee, Austria). AquaticBotany 84: 129–136.

Rieth A. 1980. Xanthophyceae. In: Ettl H., Gerloff J., HeynigH. (eds), Sußwasserflora von Mitteleuropa. Band 4. GustavFischer Verlag, Stuttgart, New York, 147 pp.

Rott E., Duthie H.C. & Pipp E. 1998. Monitoring organic pol-lution and eutrophication in the Grand River, Ontario, bymeans of diatoms. Can. J. Fisher. Aquatic Sci. 55: 1443–1453.

Schaumburg J., Schmedtje U., Schranz C., Kopf B., Schneider S.,Meilinger P., Hofmann G., Gutowski A. & Foerster J. 2004.Instruction Protocol for the Ecological Assessment of Run-ning Waters for Implementation of the EU Water FrameworkDirective: Macrophytes and Phytobenthos. Bavarian WaterManagement Agency, Munchen, 89 pp.

Soininen J. 2004. Benthic diatom community structure in borealstreams. Distribution patterns along environmental and spa-tial gradients. Academic dissertation in limnology. Universityof Helsinki, Department of Biological and Environmental Sci-ences, Helsinki, 46 pp.

Soukupová L., Husáková J., Lederer F. & Váňa J. 2001. Effectof limestone-paved track on the Rokytecká Mire, BohemianForest. Silva Gabreta 6: 124–125.

Starmach K. 1966. Cyanobacteria – Sinice, Glauciphyta –Glaukofity. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 808 pp.

Starmach K. 1968. Xanthophyceae – Roznowiciowe. In: StarmachK. (ed.), Flora slodkovodna polski. Panstwowe WydawnictwoNaukowe, Warszawa, 393 pp.

Starmach K. 1972. Chlorophyta III. Zielenice Nitkovate: Ulotri-chales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales,Chaetophorales, Trentepohliales, Siphonales, Dichotomosi-phonales. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 750 pp.

Starmach K. 1974. Cryptophyceae, Dinophyceae, Raphidophy-ceae. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 517 pp.

Starmach K. 1977. Phaeophyta-Brunatnice, Rhodophyta – Kras-norosty. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 443 pp.

Starmach K. 1980. Chrysophyceae – Zlotowiciowce (oraz zooflag-ellata wolnozyjace). In: Starmach K. (ed.), Flora slodkovodnapolski. Panstwowe Wydawnictwo Naukowe, Warszawa, 774pp.

Starmach K. 1983. Euglenophyta – Eugleniny. In: Starmach K.(ed.), Flora slodkovodna polski. Panstwowe WydawnictwoNaukowe, Warszawa, 593 pp.

Succow M. & Joosten H. (eds.) 2001. LandschaftsokologischeMoorkunde. E. Schweizerbartsche Verlagsbuchhandlung,Stuttgart, 622 pp.

ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference Man-ual and CanoDraw for Windows User’s Guide: Software forCanonical Community Ordination (version 4.5). Microcom-puter Power, Ithaca NY, USA, 500 pp.

Watanabe M.M., Mayama S., Hiroki M. & Nozaki H. 2000.Biomass, species composition and diversity of epipelic algaein mire pools. Hydrobiologia 421: 91–102.

Wolowski K. & Hindák F. 2005. Atlas of Euglenophytes.VEDA, Publishing house of the Slovak Academy of Sciences,Bratislava, 136 pp.

Young Y.K., Stokes P. & Gorham E. 1986. Algae of selected con-tinental and maritime bogs in North America. Can. J. Bot.64: 1825–1833.

Received August 18, 2008Accepted June 11, 2009


Top Related