Algal community patterns in Slovenian bogs along environmental gradients

Download Algal community patterns in Slovenian bogs along environmental gradients

Post on 03-Aug-2016

219 views

Category:

Documents

2 download

TRANSCRIPT

  • Biologia 65/3: 422437, 2010Section BotanyDOI: 10.2478/s11756-010-0033-7

    Algal community patterns in Slovenian bogsalong environmental gradients

    Aleksandra Krivograd Klemeni1, Nataa Smolar-vanut2, Darja Isteni3

    & Tjaa Griessler-Bulc1

    1University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Bogiieva 8, 1000 Ljubljana, Slovenia; e-mail:aleksandrakrivograd@gmail.com2Institut for Water of the Republic of Slovenia, Hajdrihova 28, 1000 Ljubljana, Slovenia3Limnos Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana, Slovenia

    Abstract: In 2005 and 2006, epiphyton samples were collected from seven lowland and montane peat bogs in Slovenia.Water temperature, pH, conductivity, dissolved oxygen and saturation were measured at the same time. Diatoms, desmidsand Cyanobacteria were the most abundand groups in species number. Canonical Correspondence Analysis (CCA) wascarried out on Cyanobacteria, diatom and desmid ora composition. This analysis showed that shading was the mostimportant parameter in Cyanobacteria distribution and bedrock the most important one in that of diatoms and desmids.Cluster analyses were carried out based on the Cyanobacteria, diatom and desmid data. The Cyanobacteria and diatomdata separated sites, whereas the desmid data revealed a temporal aspect.

    Key words: Cyanobacteria; diatoms; desmids; epiphyton; peat bogs; ecology; Slovenia

    Introduction

    Sphagnum bogs and related mire communities repre-sent one of the major vegetation types beside forestsand grasslands at higher latitudes of the Northern hemi-sphere and they are, even though not that characteris-tic, abundant in the cooler and wet temperate regions(Borics et al. 2003). In Slovenia, sphagnum bogs oc-cur sporadically due to edaphic reasons. Marshy ecosys-tems are endangered in Slovenia the same way as in allof Europe (Mulec et al. 2005). Raised bogs are situ-ated in the montane zone of Julian Alps and Pohorjeand well protected. Lowland raised bogs are almost alldestructed except several small areas in Central Slove-nia. Transitional bogs and fens are more endargened.They are surrounded by meadows, other agriculturalland or urbanized industrial zones. Sphagnum bogs arequite well investigated in Poland (Pietryka 2000), Aus-tria (Rauch et al. 2005), Italy (DellUomo et al. 1992;DellUomo & Pellegrini 1993), Czech Republic (Lederer1999; Neustupa et al. 2002; Poulkov et al. 2005) andSpain (Cambra & Hindk 1998). Despite their high bio-diversity, the algae in peat bogs are poorly examined inSlovenia. Prior to this study, only Pevalek (1924), Lazar(1960, 1975) and Krivograd & Vrhovek (2003) exam-ined the algae in Slovenian peat bogs and fens. Diatomswere not included in the rst two studies. The presentstudy represents the rst investigation of algae in the

    bog-lake of rno jezero at the Pohorje montane range(the only lake with acidic pH in Slovenia), the bog ofejna dolina and the bog at Holmec.

    Bogs are important ecosystems for the conserva-tion of biodiversity in Europe (Succow & Joosten 2001).However, many bogs have been destroyed by humanactivities, such as peat extraction, land reclamationor drainage of ground water for development purposes(Rauch et al. 2006). An ecosystem approach based bothon biological and hydrological studies is necessary forthe conservation of these landscapes. In peat bogs, di-versity of some groups of algae (desmids) can be veryhigh and many taxa appear to be restricted to thesehabitats (Lenzenweger 1996, 1997, 1999).

    In this study, the epiphyton species composition,relative abundance and environmental factors (pH,temperature, conductivity, oxygen saturation, dissolvedoxygen, bedrock, shading, altitude) in seven peat bogsin Slovenia have been studied. An initial standing as-sumption is that spatial and temporal dierences in thepredominant extreme environmental conditions of se-lected environments can aect the occurence, relativeabundances of dierent epiphyton species and, in ad-dition, inuence a specic epiphyton community com-position. Direct gradient analysis allowed us to studya part of the variation in community composition thatcan be explained by a particular set of environmentalvariables.

    c2010 Institute of Botany, Slovak Academy of Sciences

  • Algal community patterns in Slovenian bogs 423

    Material and methods

    Study areaBog I is a small montane fen at Pohorje with a free-watersurface. The bog is surrrounded by a pine forest (Picea abiesL. Karst). During the sampling period, there were a lotof wood residues and dead plant matter in the bog, whilethe peat moss was present only along the margins. Besidesthe precipitation, the bog is supplied by a source. Samplingand measuring environmental parameters was performed on27.4.2005, 6.8.2005, 4.11.2005 and 28.5.2006.

    Bog II is a small montane fen at Pohorje with a free-watersurface, located close to the macadam road. The bog is sur-rounded by a pine forest (Picea abies). During the samplingperiod, the bog was lled with peat moss and rush (Jun-cus eusus L.). The bog is fed by precipitation. Samplingand measuring environmental parameters was performed on21.5.2005, 6.8.2005 and 28.5.2006.

    The bog-lake rno jezero at Pohorje is an articialmontane retarding basin, used in the past for oating thetimber to the valley. The bog is surrounded by a belt of bot-tle sedge community (Caricetum rostratae Osvald), passinginto a belt of montane pine (Pinus mugo Turra) and furtherto a pine forest (Picea abies). The bog-lake is fed by precip-itation and four brooks. Sampling and measuring environ-mental parameters was performed on 21.5.2005, 6.8.2005,4.11.2005 and 28.5.2006.

    The bog of ejna dolina is a lowland fen. Small poolswith Sphagnum on the margins are located between trees(Salix sp., Pinus nigra Arnold). Besides the precipitation,the bog is supplied by a source. Submerged macrophytes arepresent in the small pools. Sampling and measuring environ-mental parameters was performed on 13.5.2005, 19.8.2005,9.11.2005 and 16.6.2006.

    The bog at Holmec is a lowland peat bog surrounded bya pine forest (Picea abies). The majority of the bog areais overgrown by Typha latifolia L. and Menyanthes trifoli-ata L. The bog has no free-water surface and it is suppliedby precipitation and groundwater. Sampling and measur-ing environmental parameters was performed on 8.5.2005,24.7.2005, 31.10.2005 and 25.3.2006.

    The bog of Mali plac in Ljubljana Marsh is a lowlandbog. A live bog with stagnant water where peat could formno longer exists. The peat moss is present only in the west-ern part of the bog. Typhetum latifoliae Lang is the dom-inating community. The bog has a free-water surface andit is supplied by a brook. Sampling and measuring environ-mental parameters was performed on 23.1.2005, 26.5.2005,19.8.2005, and 9.11.2005.

    The bog of Ledina at Jelovica is a montane peat bog re-sulting from the owergrowing of a deeper lake. The remain-der of the lake is a small water body surrounded by peatmoss. Submerged macrophytes are also present. The bog issupplied by precipitation and three brooks; there is no con-tact with groundwater. Sampling and measuring environ-mental parameters was performed on 28.6.2005, 9.9.2005,16.11.2005 and 22.6.2006.

    Sampling and sample processingQualitative samples of epiphyton were taken in dierent sea-sons once per season in 2005 and 2006 in seven peat bogs

    Table 1. Scale for estimation of algal taxa abundance (Pantle &Buck 1955).

    Relative abundance Taxa present in % of visual elds

    1 single 1153 customary >15605 dominant >60100

    in Slovenia. Four samples were taken in each peat bog, ex-cept at the sampling point 2 where only three samples weretaken due to the desiccation of the peat bog. The algal sam-ples were squeezed out of water mosses. At the same time,the water temperature, pH, conductivity, dissolved oxygenand saturation were measured by the WTW Multiline/Fmeters. For identication we followed: Starmach (19661983), Hortobgyi (1973), Ettl (1978, 1983), Hindk et al.(1978), Rieth (1980), Krammer & Lange-Bertalot (19972004), Popovsky & Pester (1990), Hindk (1996, 2006),Lenzenweger (19962003), Krammer (2000), Komrek &Anagnostidis (1998, 2005) and Wolowski & Hindk (2005).The algal taxa were identied directly from living material.The diatoms were examined after preparation according toSchaumburg et al. (2004). Light microscopes Nikon EclipseE400 and Nikon Eclipse TE300 were used to determine thetaxa. The relative abundances of algal taxa (Table 1) wereestimated by the numbers 1, 3 and 5 (1single, 3customary,5dominant) (Pantle & Buck 1955). We assesed abundanceof diatom taxa from permanent slides (Schaumburg et al.2004) and abundance of taxa from other algal groups fromliving material.

    Data analysisA cluster analysis comparing dates (Bray-Curtis coecientof similarity) was performed on the matrixes of relativeabundance estimations using the programme CLUSTER(iko 2003). The relative abundance estimations and theenvironmental data (Table 2) were analysed by the canon-ical corresponding analysis (CCA), using the programmeCANOCO for Windows 4.5 (ter Braak & milauer 2002).We did not use any transformation of the environmentaldata.

    Results and discussion

    General descriptionThe analysis of epiphyton data showed a high speciesnumber in most of the peat bogs included in the study(Table 3). Bacillariophyceae, Desmidiales (Zygnemato-phyceae) and Cyanobacteria were the groups whichcontributed most to the high species number. In to-tal, 337 taxa and 10 algal classes were identied in allseven peat bogs (Table 3). By the number of identiedtaxa, diatoms prevailed with 157 (47%) taxa, followedby Zygnematophyceae with 75 (22%), Cyanobacteriawith 50 (15%), Chlorophyceae with 35 (10%), Xantho-phyceae with 8 (2%), Dinophyceae with 3 (1%), Chrys-ophyceae with 3 (1%), Euglenophyceae with 3 (1%),Charophyceae with 1 (0.5%) and Florideophyceae alsowith 1 taxa (0.5%). With respect to the identied taxa,diatoms dominated in all seven bogs (Table 3), fol-lowed by Zygnematophyceae (Desmidiales) in the bog-

  • 424 A. Krivograd Klemeni et al.

    Table 2. Characteristics of the sampling sites studied. Legend: 1 the bog I, 2 the bog II, 3 the bog-lake rno jezero, 4 the bogof ejna dolina, 5 the bog at Holmec, 6 the bog of Mali plac in Ljubljana Marsh, 7 the bog of Ledina at Jelovica; bedrock: 1 silicate, 2 limestone; shading: 1 no shade; 2 partly shaded; 3 intensive shade. With asterisk are marked environmental variablesused in CCA analysis.

    Samp- Bog Coordinates Surface Depth of *pH *T *Conductivity *Dissolved *Saturation *Bed- *Shading *Altitudeling types (after Gauss- area water [C] [S/cm] [mg/L] [%] rock [m]site Kruger) [m2] column [m]

    1 fen X=5537800Y=5148400

    70 0.4 7.07.1 7.313.9 5360 2.718.07 32.175.8 1 3 1090

    2 fen X=5535746Y=5143880

    4 0.1 6.47.6 10.213.4 131174 5.526.63 59.070.8 1 2 1225

    3 bog X=5535290lake Y=5144800

    560000 / 5.16.2 9.420.5 2436 7.279.14 90.297.1 1 1 1200

    4 fen X=5435660Y=5089110

    5000 0,2 7.07.9 9.314.2 188441 6.848.38 61.4101.0 2 1 550

    5 bog X=5491240Y=5156900

    20000 0,3 5.15.6 3.010.6 58110 0.199.53 5.780.2 1 2 488

    6 bog X=5452400Y=5094400

    15000 / 6.56.8 0.922.2 115194 1.052.22 9.117.7 2 3 310

    7 bog X=5431535Y=5124542

    23000 1 5.56.7 4.625.0 65211 0.452.69 6.524.3 2 1 1150

    lake rno jezero, the bog of ejna dolina, the bog atHolmec and the bog of Ledina, Chlorophyceae in thebogs I and II and Cyanobacteria in the bog of Mali plac.Bogs I and II are located near a track paved by lime-stone gravel, which could be the reason for higher pHvalues and dierent algal composition with less desmidsand more green algae. Similar eect of limestone gravelon algal composition in a montane bog was observed bySoukupov et al. (2001). The bog of Mali plac in Ljubl-jana Marsh used to be a real peat bog until 1993 whenthe runo was changed, which resulted in a considerablerise of water level. Subsequently the water drained, butsubstantial changes occured in vegetation, peat mosslargely disappeared, remaining to a lesser extent onlyin the western part of the bog, which was most likely thereason for a low number of desmid group members. Di-atoms and desmids are usually dominant in bog waters(Mataloni & Tell 1996; Watanabe et al. 2000; KrivogradKlemeni & Vrhovek 2003; Negro et al. 2003; Boricset al. 2003; Munoz et al. 2003). Cyanobacteria arenormally a good indicator of eutrophication; however,other authors report that Cyanobacteria are also an im-portant component of algal communities in oligotrophicenvironments (Krivograd Klemeni & Vrhovek 2003;Munoz et al. 2003, Borics et al. 2003; Rauch et al.2006). Cyanobacteria, which strongly colour the water,are the most important group of algae in waters withhigh concentration of organic matter. Due to low lightintensity in such waters and facultative heterotrophy,the Cyanobacteria have an advantage over the eucar-iontic algae (Munoz et al. 2003). The representativesof class Chlorophyceae were present in all seven bogs,with the largest number of species in the bog II, thebog-lake rno jezero and the bog at Holmec. In thelake of rno jezero, the dominant species in May 2005was Microspora pachyderma (Wille) Lagerheim, withfrequent occurrence of the species Stigeoclonium tenueKutzing (the bog I, the bog-lake rno jezero, the bog of

    Mali plac), the species of the genus Oedogonium Hirn(the bog I, the bog-lake rno jezero, the bog of Ledina),Draparnaldia plumosa (Vaucher) Agardh (the bog-lakerno jezero) and Chlamydomonas Ehrenberg (the bogII). Presence of taxa Stigeoclonium Kutzing, Oedogo-nium and Chlamydomonas point to an increased quan-tity of nutrients in oligotrophic bogs at low pH val-ues. Pietryka (2000) reports on the occurrence of Mi-crospora pachyderma species in peat bogs in Poland.Three taxa of the Dinophyceae were identied in the in-vestigated peat bogs: Amphidinium sphagnicola Conradwas present in the bog of ejna dolina. The species inthe genus Gymnodinium Stein were massively presentin May in the bog at Holmec and in January in thebog of Mali plac. The Peridinium Ehrenberg was iden-tied in the bog II. Graham et al. (2004) report on mas-sive occurrence of species of the genera Gymnodiniumand Peridinium in a peat bog (Wisconsin, USA), butthe mentioned genera are characteristic also of Euro-pean bogs (Novkov 2002; Munoz et al. 2003; Rauchet al. 2006). Only some algal taxa were identied ofthe Euglenophyceae, Xanthophyceae, Chrysophyceae,Florideophyceae and Charophyceae. The representa-tives of the Euglenophyceae were present in the bogII, the bog-lake rno jezero and the bog at Holmec.Euglenophyceae are characteristic of eutrophic waters(Wolowski & Hindk 2005), but they are often presentalso in oligotrophic peat bogs (Mataloni & Tell 1996;Watanabe et al. 2000; Muoz et al. 2003; Borics et al.2003; Rauch et al. 2006). The presence of the Eugleno-phyta representatives in oligotrophic waters can be ex-plained by their ability of active movement which al-lows them to reach the optimum light conditions andconcentration of nutrients (Munoz et al. 2003).

    CyanobacteriaAmong 50 identied Cyanobacteria taxa 33 taxa werefound in Slovenian bogs by Pevalek (1924), Lazar (1960,

  • Algal community patterns in Slovenian bogs 425

    Table 3. Species list in all the studied peat bogs with acronyms of taxa used in the CCA analysis and with relative abundanceestimation (1 single, 3 customary, 5 dominant). Legend: 1 the bog I, 2 the bog II, 3 the bog-lake rno jezero, 4 the bogof ejna dolina, 5 the bog at Holmec, 6 the bog of Mali plac in Ljubljana Marsh, 7 the bog of Ledina at Jelovica.

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    CYANOBACTERIAAnabaena augstumnalis Schmidle Ana aug 3Anabaena spp. Ana sp. 1 1 1 1Aphanocapsa grevillei (Berkeley) Rabenhorst Aph gre 1 1 1Aphanocapsa hyalina (Lyngbye) Hansgirg Aph hyl 1Aphanocapsa parasitica (Kutzing) Komrek & Anagnostidis Aph par 1 1 1Aphanothece microscopica Nageli Aph mic 3Aphanothece saxicola Nageli Aph sax 1Aphanothece stagnina (Sprengel) A. Braun Aph sta 1Calothrix spp. Cal spp. 1Calothrix minima Frmy Cal min 1Calothrix weberi Schmidle Cal web 1 1Chroococcus limneticus Lemmermann Chr lim 1Chroococcus membraninus (Meneghini) Nageli Chr mem 1Chroococcus obliteratus Richter Chr obl 1Chroococcus prescottii Drouet & Daily Chr pre 1Chroococcus quaternarius Zalessky Chr qua 1Chroococcus turgidus (Kutzing) Nageli Chr tur 1 1 1Coelomoron pusillum (Van Goor) Komrek Coe pus 1Cyanothece major (Schroter) Komrek Cya maj 1Cylindrospermum sp. Cyl sp. 1Geitlerinema splendidum (Greville ex Gomont) Anagnostidis Gei spl 3Gloeocapsa magma (Brbisson) Hollerbach Glo mag 1Gloeocapsopsis magma (Brbisson) Komrek & Anagnostidis Gloe magGomphosphaeria aponina Kutzing Gom apo 3Heterolebleinia spp. Het spp. 1Leptolyngbya spp. Lep spp. 1Limnothrix redekei (Van Goor) Meert Lim red 1Merismopedia hyalina (Ehrenberg) Kutzing Mer hya 3Merismopedia punctata Meyen Mer pun 1Microcystis wesenbergii (Komrek) Komrek Mic wes 1Nostoc commune Vaucher Nos com 1 1 1Nostoc paludosum Kutzing Nos pal 1Nostoc verrucosum Vaucher Nos ver 1Oscillatoria anguina (Bory) Gomont Osc ang 1Oscillatoria princeps Vaucher Osc pri 1 1Oscillatoria subbrevis Schmidle Osc sub 1Oscillatoria tenuis Agardh ex Gomont Osc ten 1Phormidium amoenum Kutzing Pho amo 5Phormidium breve (Kutzing ex Gomont) Anagnostidis & Komrek Pho bre 1Phormidium formosum (Bory) Anagnostidis & Komrek Pho for 1 1Phormidium interruptum Kutzing Pho int 1Phormidium spp. Pho spp. 1 3 1 1Pseudanabaena biceps Bocher Pse bic 3Pseudanabaena catenata Lauterborn Pse cat 3Pseudanabaena sp. Pse sp. 1Tolypothrix sp. Tol sp. 1Tychonema bornetii (Zukal) Anagnostidis & Komrek Tyc bor 3 3Woronichinia elorantae Komrek & Komrkov-Legnerov Wor elo 1Woronichinia robusta (Skuja) Komrek & Hindk Wor robWoronichinia sp. Wor sp. 1EUGLENOPHYTAEUGLENOPHYCEAEEuglena spp. 1Euglena anabaena Mainx 1Phacus alatus Klebs 1DINOPHYTADINOPHYCEAEAmphidinium sphagnicola Conrad 1Gymnodinium spp. 5 5 1Peridinium sp. 1HETEROKONTHOPHYTAXANTHOPHYCEAEBotryochloris minima Pascher 1 1Characiopsis anas Pascher 1Characiopsis tuba (Hermann) Lemmermann 1Gloeobotrys bichlorus Ettl 1

  • 426 A. Krivograd Klemeni et al.

    Table 3. (continued)

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    Ophiocytium cochleare A. Braun 1 1 1 1 1 1Ophiocytium lagerheimii Lemmermann 1 1 1Tribonema ane West 3 3Vaucheria spp. 1 1CHRYSOPHYCEAEDinobryon sertularia Ehrenberg 1 1 1Stylopyxis sp. 1Synura uvella Ehrenberg 1BACILLARIOPHYCEAEAchnanthes coarctata (Brbisson) Grunow Ach coa 1Achnanthes exella (Kutzing) Brun Ach e 1 1Achnanthes hungarica (Grunow) Grunow Ach hun 1 3 1Achnanthes laevis Oestrup Ach laeAchnanthes lanceolata (Brbisson) Grunow Ach lan 1 1 1 5 1 1Achnanthes minutissima Kutzing Ach min 1 3 1 1 1 1 5Achnanthes petersenii Hustedt Ach pet 1 1 1Achnanthes spp. Ach spp. 1Achnanthes subatomoides (Hustedt) Lange-Bertalot Ach sub 1 1Adlaa bryophila (J.B.Petersen) Gerd Moser, Lange-Bert. & Metz. Adl bry 1 1Adlaa minuscula (Grunow) Lange-Bert. Adl min 1Amphipleura pellucida (Kutzing) Kutzing Amp pel 1 1Amphora ovalis var. libyca (Ehrenberg) Cleve Amp o li 1 1 1Amphora pediculus (Kutzing) Grunow Amp ped 1Anomoeoneis brachysira (Brbisson) Grunow Ano bra 3Anomoeoneis styriaca (Grunow) Hustedt Ano sty 5Anomoeoneis vitrea (Grunow) Ross Ano vit 1 1 1Aulacoseira distans (Ehrenberg) Simonsen Aul dis 1Caloneis alpestris (Grunow) Cleve Cal alp 1Caloneis silicula (Ehrenberg) Cleve Cal sil 1 1Caloneis spp. Cal spp. 1Caloneis tenuis (Gregory) Krammer Cal ten 1 1Cavinula jaernefeltii (Hustedt) D.G.Mann & A.J. Stickle Cav jae 1Cavinula lapidosa (Krasske) Lange-Bert. Cav lap 3Cocconeis neodiminuta Krammer Coc neo 1Cocconeis placentula Ehrenberg Coc pla 1 1 1 1Cyclotella distinguenda Hustedt Cyc dis 1Cyclotella glabriuscula (Grunow) Hakansson Cyc gla 1Cyclotella spp. Cyc spp. 1Cymatopleura solea var. apiculata (W. Smith) Ralfs Cym s ap 1Cymbella anis Kutzing Cym a 1 1Cymbella amphicephala var. hercynica (Schmidt) Cleve Cym a he 1Cymbella aspera (Ehrenberg) Cleve Cym asp 1 1 1 1 1Cymbella cesatii (Rabenhorst) Grunow Cym ces 1 3 1Cymbella cistula (Ehrenberg) Kirchner Cym cis 1Cymbella cymbiformis Agardh Cym cym 3 1Cymbella gracilis (Ehrenberg) Kutzing Cym gra 1 1 1Cymbella incerta (Grunow) Cleve Cym inc 1Cymbella naviculiformis Auerswald Cym nav 1 1 1 1Cymbella subaequalis Grunow Cym suba 1 1Cymbella subcuspidata Krammer Cym subc 1Cymbopleura amphicephala (Nageli) Krammer Cyb amp 1Delicata delicatula (Kutzing) Krammer Del del 3 1Denticula kuetzingi Grunow Den kue 1 1Denticula tenuis Kutzing Den ten 1 1 1 1Diadesmis contenta (Grunow) D.G.Mann Dia con 1Diatoma mesodon (Ehrenberg) Kutzing Dia mes 1 1 1Diatoma moniliformis Kutzing Dia mon 1Diatoma vulgaris Bory Dia vul 1 1Diploneis elliptica (Kutzing) Cleve Dip ell 1 1 1Diploneis oblongella (Nageli) Cleve-Euler Dip obl 1 1Diploneis petersenii Hustedt Dip pet 1 1 1Encyonema silesiacum (Bleisch) D.G.Mann Enc sil 1 3 1 1 1Encyonopsis microcephala (Grunow) Krammer Enc mic 1 1 1 1Epithemia adnata (Kutzing) Brbisson Epi adn 1 1Eunotia arcus Ehrenberg Eun arc 3 3 1Eunotia bilunaris (Ehrenberg) Mills Eun bil 3 1 1 1 5 3 3Eunotia exigua (Brbisson ex Kutzing) Rabenhorst Eun exi 3 1 1 1Eunotia implicata Norpel Eun imp 1 1 1 1Eunotia incisa Gregory Eun inc 5 3

  • Algal community patterns in Slovenian bogs 427

    Table 3. (continued)

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    Eunotia meisteri Hustedt Eun mei 1Eunotia paludosa var. paludosa Grunow Eun p pa 1Eunotia paludosa var. trinacria (Grunow) Norpel Eun p tr 1Eunotia praerupta Ehrenberg Eun pra 1 1 1Eunotia spp. Eun spp. 1Eunotia tenella (Grunow) Hustedt Eun ten 1 1Fragilaria biceps (Kutzing) Lange-Bert. Eun bic 1Fragilaria capucina Desmazifres Fra cap 1 1 1Fragilaria construens (Ehrenberg) Grunow Fra con 1Fragilaria construens f. subsalina (Hustedt) Hustedt Fra c su 1Fragilaria fasciculata (C. Agardh) Lange-Bert. Fra fas 1Fragilaria pinnata Ehrenberg Fra pin 3Fragilaria tenera (W. Smith) Lange-Bert. Fra ten 1 1 3Fragilaria ulna (Nitzsch) Lange-Bert. Fra uln 1 3Fragilaria virescens Ralfs Fra vir 1 1Frustulia rhomboides (Ehrenberg) De Toni Fru rho 1 1 1 1Frustulia vulgaris (Thwaites) De Toni Fru vul 1 1Gomphonema acuminatum Ehrenberg Gmp acu 1 1 1Gomphonema ane Kutzing Gmp acu 1Gomphonema angustatum (Kutzing) Rabenhorst Gmp ang 1 1Gomphonema angustum Agardh Gmp ans 1 3 1Gomphonema clavatum Ehrenberg Gmp cla 1 1 1 1Gomphonema gracile Ehrenberg Gmp gra 1 1 1 1Gomphonema parvulum (Kutzing) Kutzing Gmp par 1 1 1 1 3 3 1Gomphonema subtile Ehrenberg Gmp sub 3Gomphonema truncatum Ehrenberg Gmp tru 1 1 1Gyrosigma attenuatum (Kutzing) Rabenhorst Gyr att 1Hantzschia amphioxys (Ehrenberg) Grunow Han amp 1 1 1 1Kobayasia subtilissima (Cleve) Lange-Bert. Kob sub 1 1 1Luticola mutica (Kutzing) D.G.Mann Lut mut 1Mastogloia smithii Thwaites Mas smi 1Meridion circulare var. circulare (Greville) C. A. Agardh Mer c ci 1 1Meridion circulare var. constrictum (Ralfs) Van Heurck Mer c co 1Navicula amphibola Cleve Nav amp 1Navicula capitatoradiata Germain Nav cap 1 3Navicula cryptocephala Kutzing Nav cry 1 3 1 1 3Navicula cryptotenella Lange-Bert. Nav crt 1Navicula elginensis var. elginensis (Gregory) Ralfs Nav e el 1Navicula gregaria Donkin Nav gre 1Navicula heimansii Van Dam & Kooyman Nav hei 1 1Navicula ignota var. palustris (Hustedt) Lund Nav i pa 1Navicula lanceolata (Agardh) Ehrenberg Nav lan 1Navicula nivaloides Bock Nav niv 1Navicula pupula var. pseudopupula (Krasske) Hustedt Nav p ps 1Navicula pupula var. pupula Kutzing Nav p pu 1 1 1 1Navicula radiosa Kutzing Nav rad 5 1 5Navicula rhynchocephala Kutzing Nav rhy 1Navicula seminulum Grunow Nav sem 1Navicula spp. Nav spp. 1 1 1 1 1 1Navicula veneta Kutzing Nav ven 1Neidium ane (Ehrenberg) Ptzer Nei a 1Neidium ampliatum (Ehrenberg) Krammer Nei amp 1 1Neidium bisulcatum (Lagerstedt) Cleve Nei bis 1 1 1Neidium iridis (Ehrenberg) Cleve Nei iri 1 1Neidium septentrionale Cleve-Euler Nei sep 1Nitzschia alpina Hustedt Nit alp 1Nitzschia amphibia Grunow Nit amp 1 1Nitzschia dissipata (Kutzing) Grunow Nit dis 1 1Nitzschia frustulum (Kutzing) Grunow Nit fru 3Nitzschia gracilis Hantzsch Nit gra 1 1Nitzschia hantzschiana Rabenhorst Nit han 5 1Nitzschia linearis (Agardh) W. Smith Nit lin 1 1 1 1Nitzschia palea (Kutzing) W. Smith Nit pal 1 1 1 1Nitzschia perminuta (Grunow) M. Peragallo Nit per 3 1 1 1Nitzschia sinuata var. sinuata (Thwaites) Grunow Nit s sin 1Nitzschia spp. Nit spp. 1 3Pinnularia acrosphaeria Rabenhorst Pin acr 1Pinnularia appendiculata (Agardh) Cleve Pin app 1 1 1 1Pinnularia borealis var. rectangularis Carlson Pin b re 1

  • 428 A. Krivograd Klemeni et al.

    Table 3. (continued)

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    Pinnularia braunii (Grunow) Cleve Pin bra 1Pinnularia divergentissima (Grunow) Cleve Pin div 1Pinnularia gibba Ehrenberg Pin gib 3 1 1 1 3 1 1Pinnularia gibba var. linearis Hustedt Pin g li 1Pinnularia intermedia (Lagerstedt) Cleve Pin int 1Pinnularia interrupta W. Smith Pin inr 3 1 1 1Pinnularia maior (Kutzing) Rabenhorst Pin mai 1 1 1 1 3 1 1Pinnularia microstauron (Ehrenberg) Cleve Pin mic 1 1 1 1 1Pinnularia nodosa (Ehrenberg) W.Smith Pin nod 1 1Pinnularia obcsura Krasske Pin obc 1 1Pinnularia rupestris Hantzsch Pin rup 1 3 1Pinnularia spp. Pin spp. 1Pinnularia stomatophora (Grunow) Cleve Pin sto 1Pinnularia subcapitata Gregory Pin sub 1 1 1 3 1Pinnularia viridis (Nitzsch) Ehrenberg Pin vir 1 1 1 3 1 1Psammothidium oblongellum (Oestrup) Van de Vijver Psa obl 1 1Puncticulata bodanica (Grunow) Hakansson Pun bod 1Reimeria sinuata (Gregory) Kociolek & Stoermer Rei sin 1 1Rhopalodia gibba (Ehrenberg) O. Muller Rho gib 1 1Sellaphora stroemii (Hustedt) H.Kobayasi Sel str 1Stauroneis acuta W. Smith Sta acu 1Stauroneis anceps Ehrenberg Sta anc 1 1 1Stauroneis kriegerii Patrick Sta kri 1Stauroneis phoenicenteron (Nitzsch) Ehrenberg Sta pho 1 1 1 1Stauroneis smithii Grunow Sta smi 1 1Surirella angusta Kutzing Sur ang 1Surirella biseriata Brbisson Sur bis 1Surirella linearis var. linearis W. Smith Sur l li 1Tabellaria occulosa (Roth) Kutzing Tab o 1 5 1 1 1 5CHLOROPHYTACHLOROPHYCEAEAnkistrodesmus falcatus (Corda) Ralfs 1Asterococcus superbus (Cienowski) Scherel 1 1Carteria crucifera Korschiko 1Chaetophora incrassata (Hudson) Hazen 1Characium ensiforme Hermann 1Chlamydomonas spp. 3 1 1 1 1Chlorella spp. 1Chlorella vulgaris Beijerinck 1Draparnaldia plumosa (Vaucher) Agardh 3Gloeocystis ampla (Kutzing) Rabenhorst 1 1Keratococcus bicaudatus (A. Braun) Boye-Petersen 1Klebsormidium accidum (Kutzing) Silva, Mattox & Blackwell 1 1Microspora abbreviata (Rabenhorst) Lagerheim 1 1Microspora occosa (Vaucher) Thuret 1Microspora pachyderma (Wille) Lagerheim 5Microthamnion kuetzingianum Nageli 1 1 1 1Oedogonium spp. 3 1 3 1 1 1 1Oocystis parva West & West 1Oocystis solitaria Wittrock 1 1Oocystis sp. 1Palmodictyon varium (Nageli) Lemmermann 1Pandorina morum (O. F. Muller) Bory 1 1Scenedesmus brasiliensis Bohlin 1 1 1Scenedesmus ecornis (Ralfs) Chodat 1Scenedesmus maximus (W. & G.S.West) 1Scenedesmus ovalternus Chodat 1Scenedesmus serratus (Corda) Bohlin 1Scenedesmus sp. 1Scenedesmus velitaris Komrek 1Stigeoclonium farctum Berthold 1Stigeoclonium subuligerum Kutzing 1Stigeoclonium tenue Kutzing 3 3 3Trentepohlia aurea (L.) Martius 1 1 1Ulothrix aequalis Kutzing 1Ulothrix variabilis Kutzing 1 1

  • Algal community patterns in Slovenian bogs 429

    Table 3. (continued)

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    ZYGNEMATOPHYCEAEDesmidialesActinotaenium palangula (Brbisson) Teiling Act pal 1Actinotaenium sp. Act sp. 1Actinotaenium turgidum (Brbisson) Teiling Act tur 1Closterium abruptum W. West Clo abr 1Closterium attenuatum Ralfs Clo att 1 1Closterium costatum Corda ex Ralfs Clo cos 1Closterium dianae Ehrenberg ex Ralfs Clo dia 1 1Closterium ehrenbergii Meneghini ex Ralfs Clo ehr 1Closterium incurvum Brbisson Clo inc 1Closterium intermedium Ralfs Clo int 1 1Closterium kuetzingii Brbisson Clo kue 1 1Closterium leibleinii Kutzing ex Ralfs Clo lei 3 1Closterium lineatum Ehrenberg Clo lin 1 1Closterium moniliferum (Bory) Ehrenberg ex Ralfs Clo mon 1 1Closterium navicula (Brbisson) Lutkemuller Clo nav 1Closterium parvulum Nageli Clo par 1 1 1 1Closterium ralfsii Brbisson ex Brbisson Clo ral 1Closterium ralfsii var. hybridum Rabenhorst Clo r hy 1Closterium rostratum Ehrenberg ex Ralfs Clo ros 1 1Closterium spp. Clo spp. 1 1 1Closterium striolatum Ehrenberg ex Ralfs Clo str 1 1 1 1Cosmarium botrytis Meneghini Cos bot 1 1Cosmarium cucumis (Corda) Ralfs Cos cuc 1Cosmarium depressum f. minuta Heimerl Cos d mi 1Cosmarium furcatospermum W. & G.S. West Cos fur 1Cosmarium granatum Brbisson Cos gra 1Cosmarium holmiense var. integrum Lundell Cos h in 1Cosmarium impressulum Elfving Cos imp 1Cosmarium leave Rabenhorst Cos lae 1Cosmarium microsphinctum var. crispulum Nordstedt Cos m-cri 1Cosmarium obtusatum (Schmidle) Schmidle Cos obt 1Cosmarium ochthodes Nordstedt Cos och 1Cosmarium pachydermum Lundell Cos pac 1Cosmarium perforatum Lundell Cos per 1Cosmarium punctulatum Brbisson Cos pun 1Cosmarium pygmaeum var. heimerlii (W.&G.S.West) Krieger & Gerlo Cos p he 1Cosmarium quadrum Lundell Cos qua 1Cosmarium regnellii Wille Cos reg 1Cosmarium spp. Cos spp. 1 1 1Cosmarium subgranatum (Nordstedt) Lutkemuller Cos sub 1Cosmarium tetraophthalmum (Kutzing) Brbisson Cos tet 1Cosmarium vexatum var. lacustre Messikommer Cos v la 1 1Cylindrocystis brebissonii Meneghini Cyl bre 1 1Desmidium swartzii (Agardh) Agardh ex Ralfs Des swa 1Euastrum ansatum var. pyxidatum Delponte Eua a py 1Euastrum bidentatum Nageli Eua bid 1Euastrum binale (Turpin) Ehrenberg Eua bin 1 1Euastrum oblongum (Greville) Ralfs Eua obl 1Hyalotheca dissiliens (J. E. Smith) Brbisson ex Ralfs Hya dis 1Hyalotheca dissiliens f. bidentula (Nordst.) Boldt Hya d bi 1Micrasterias crux-melitensis (Ehrenberg) Hassall ex Ralfs Mic cme 1Micrasterias rotata (Greville) Ralfs ex Ralfs Mic rot 1Micrasterias thomasiana Archner Mic tho 1Netrium digitus (Ehrenberg) Itzigs. & Rothe Net dig 1 1 1Penium polymorphum (Perty) Perty Pen pol 1Pleurotaenium ehrenbergii (Brbisson) de Bary Ple ehr 1Pleurotaenium trabecula (Ehrenberg) Nageli Ple tra 1 1 1Pleurotaenium trabecula var. crassum Wittrock Ple t cr 1Spondylosium pulchellum Archner Spo pul 1Staurastrum alternans (Brbisson) Ralfs Sta alt 1Staurastrum brachiatum Ralfs Sta bra 1Staurastrum echinatum Brbisson ex Ralfs Sta ech 1Staurastrum muricatum (Brbisson) Ralfs Sta mur 1Staurastrum muticum (Brbisson) Ralfs Sta mut 1Staurastrum polymorphum Brbisson Sta pol 1Staurastrum punctulatum Brbisson Sta pun 1

  • 430 A. Krivograd Klemeni et al.

    Table 3. (continued)

    Sampling siteTaxa Label

    1 2 3 4 5 6 7

    Staurastrum sp. Sta sp. 1Staurodesmus dejectus (Brbisson ex Ralfs) Teiling Sta dej 1 1Staurodesmus extensus var. isthmosus (Heimerl) Coes. Sta e is 1Staurodesmus triangularis (Lagerheim) Teiling Sta tri 1Teilingia granulata (Roy & Biss.) Bourrelly Tei gra 3 1Tetmemorus laevis (Kutzing) ex Ralfs Tet lae 1 1ZygnematalesMougeotia spp. 1 5 1 5 1 5 5Spirogyra spp. 1 5 5Zygnema spp. 3 3 5 1 3CHAROPHYCEAEChara sp. 1RHODOPHYTAFLORIDEOPHYCEAEAudouinella chalybea (Lyngbye) Fries 1

    1975) and Krivograd & Vrhovek (2003) and 17 taxawere identied for the rst time in Slovenia. Cyanobac-teria were present in larger number in the bog II, thebog of ejna dolina, the bog at Holmec and the bogof Mali plac. Species of the genus Anabaena Bory arecharacteristic of peat moss islands (Munoz et al. 2003),as the xation of atmospheric nitrogen enables them tothrive in oligotrophic peat bogs (Basilier et al. 1978).The species Phormidium amoenum Kutzing occurredmassively in the bog II, while other common specieswere Aphanothece microscopica Nageli (the bog atHolmec), Merismopedia hyalina (Ehrenberg) Kutzing(the bog at Holmec), Geitlerinema splendidum (Gre-ville ex Gomont) Anagnostidis (the bog II), Gomphos-phaeria aponina Kutzing (the bog of ejna dolina),Phormidium Kutzing ex Gomont (the bog of ejnadolina), Pseudanabaena biceps Bocher (the bog of e-jna dolina), P. catenata Lauterborn (the bog of ejnadolina), Tychonema bornetii (Zukal) Anagnostidis &Komrek (the bog of ejna dolina, the bog of Jelovica)and Anabaena augstumnalis Schmidle ( the bog-lakerno jezero). The species A. microscopica, G. splen-didum and P. catenata were common in peat bogs inthe Czech Republic (Novkov 2002). Pietryka (2000)reports on the presence of the species Anabaena augs-tumnalis in peat bogs in Poland and Krivograd Kle-meni & Vrhovek (2003) conrmed the presence ofthe species G. aponina in the bog of Lovrenka jezerain Slovenia.

    DiatomsPatrick (1977) wrote that in low pH waters with ahigh content of humine acids, the following genera pre-vailed among the diatoms: Eunotia Ehrenberg, Frus-tulia Rabenhorst and Pinnularia Ehrenberg; the Tabel-laria flocculosa (Roth) Kutzing species is also common.T. flocculosa was present in six bogs; it appeared mas-sively in the bog-lake rno jezero and the bog of Led-ina, and individually in other bogs. In total, the Eu-notia genus was represented by 11 taxa, the Frustu-lia genus by two and the Pinnularia genus by 18 taxa.

    The largest number of species in the Eunotia and Pin-nularia genera was recorded in peat bogs with acidicpH and low conductivity: the bog I and the bog-lakerno jezero. A high number of species in the Pinnulariagenus (10) were recorded also in the bog of Mali plac.Among the identied diatom taxa, the Nitzschia gracilisHantzsch species, common in European bogs (Munoz etal. 2003), was present in the bog-lake rno jezero andthe bog of Mali plac. The following taxa also occurredmassively: Achnanthes minutissima Kutzing (the bog ofejna dolina and the bog of Ledina), Anomoeoneis vit-rea (Grunow) Ross (the bog of ejna dolina), Eunotiabilunaris (Ehrenberg) Mills (the bog at Holmec), Navic-ula radiosa Kutzing (the bog II and the bog of Ledina)and Nitzschia hantzschiana Rabenhorst (the bog II). A.vitrea is a species characteristic of acid bogs occurringwithin the pH range from 3.6 to 6.5 (Poulkov et al.2001). The species Achnanthes minutissima, Eunotiabilunaris, Gomphonema parvulum Kutzing, Pinnulariagibba Ehrenberg and P. maior (Kutzing) Rabenhorstwere present in all seven bogs. The above-mentionedspecies are cosmopolitan, i.e. present in bogs through-out the world (Mataloni & Tell 1996; Mataloni 1999;Pietryka 2000; Watanabe et al. 2000; Novkov 2002;Negro et al. 2003; Munoz et al. 2003, Krivograd Kle-meni & Vrhovek 2003).

    DesmidsDesmids are known as ecologically highly sensitive or-ganisms living in less productive (oligo- to mesotrophic)waters. The most abundant desmid communities arefound in places with a relatively low content of elec-trolytes low electric conductivity and alkalinity (Glig-ora & Plenkovic-Moraj 2003). The proper habitat fordesmids is acid peat bog water, where they reachthe highest diversity (DellUomo & Pellegrini 1993);desmids are common in peat bogs where peat mossconsumes the nutrients from water and thus maintainsthe oligotrophic conditions necessary for their thriv-ing (Munoz et al. 2003). Negro et al. (2003) reporteda higher number of desmid species in acid ecosystems

  • Algal community patterns in Slovenian bogs 431

    -0.6 1.2

    -1.

    01.

    0

    Ana_aug

    Ana_sp.

    Aph_gre

    Aph_hyl

    Aph_par

    Aph_mic

    Aph_sax

    Aph_staCal_spp.

    Cal_min

    Cal_web

    Chr_lim

    Chr_memChr_obl

    Chr_pre

    Chr_qua

    Chr_tur

    Coe_pus

    Cya_maj

    Cyl_sp.

    Gei_spl

    Glo_mag

    Gom_apo

    Het_spp.

    Lep_spp.

    Lim_red

    Mer_hya

    Mer_pun

    Mic_wes

    Nos_com

    Nos_pal

    Nos_ver

    Osc_ang

    Osc_pri

    Osc_sub

    Osc_ten

    Pho_amo

    Pho_bre

    Pho_for

    Pho_int

    Pho_spp.

    Pse_bicPse_catPse_sp.

    Tol_sp.

    Tyc_bor

    Wor_elo

    Wor_sp.

    pH

    geol

    shad

    altitude

    Fig. 1. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand Cyanobacteria data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.

    than in less acid ones. Within this study, the largestnumber of desmids was identied in the bog-lake rnojezero and the bog of Ledina, with acid pH and in thebog of ejna dolina with basic pH. Among 75 identi-ed desmid taxa in this study 60 taxa were found inSlovenian bogs by Pevalek (1924), Lazar (1960, 1975)and Krivograd & Vrhovek (2003) and 15 taxa wereidentied for the rst time in Slovenia. All represen-tatives of desmids were present only individually; theresearch of other authors conrms that the desmids oc-curr in bogs in a large number of species, but withlow specimen representation (DellUomo & Pellegrini1993; Mataloni 1999; Krivograd Klemeni & Vrhovek2003; Munoz et al. 2003). The genera with the high-est number of taxa were Cosmarium Corda ex Ralfs(21) and Closterium Nitzsch ex Ralfs (18). In peatbogs, desmids occur especially in small pools; how-ever, they are less common at raised parts of bogs(Munoz et al. 2003). Desmid communities were re-ported to be reacher in bogs with open water andmoss carpets than in those with moss carpets only(Young et al. 1986). The bog at Holmec is com-pletely overgrown by peat moss and the number ofdesmids was lower than in other peat bogs with acidpH.

    CCA ordinationThe preliminary Cyanobacteria CCA analysis was car-ried out on the basis of eight variables, shown in Ta-ble 2. The forward selection within CCA indicatedthat four environmental variables explained signicant(P < 0.05) and independent amounts of variation in theCyanobacteria distributions. The strongest variable wasshading, followed by bedrock, altitude and pH. Kawecka(2003) and Novakova (2002) found out that dierentlight conditions aect signicantly the changes in thestructure of benthic algae communities.

    The eigenvalues of the rst two axes of theCyanobacteria CCA analysis performed on the fourvariables mentioned above, were 0.876 and 0.811, re-spectively. The rst axis explained statistically signi-cantly 10.4% and the second one 9.7% of the Cyanobac-teria community variance (P = 0.002). The species-environment correlation was 0.99 for axis 1 and 0.98 foraxis 2. The analysis showed that the main Cyanobac-teria variation gradient depended on shading (Fig. 1),which was strongly related to axis 1 (r = 0.97). Therst axis was in weak positive correlation with altitude(r = 0.11) and in negative correlation with the bedrock(r = 0.53) and pH (r = 0.06). The axis 2 was morecorrelated with bedrock (r = 0.76) and altitude (r =

  • 432 A. Krivograd Klemeni et al.

    0.71) and less with shading (r = 0.18) and pH (r =0.06).

    The CCA ordination (Fig. 1) positioned theCyanobacteria taxa typical of low altitude, shadedpeat bogs on limestone in the upper right quadrant(Phormidium breve (Kutzing ex Gomont) Anagnostidis& Komrek, Chroococcus limneticus Lemmermann,Chroococcus quaternarius Zalessky, Aphanocapsa saxi-cola Nageli, Calothrix minima Frmy, Gloeocapsa mag-ma (Brbisson) Komrek & Anagnostidis, Microcys-tis wesenbergii (Komrek) Komrek, Heterolebleinia(Geitler) Homann), whereas the taxa more common inhigh altitude, shaded peat bogs on silicate are locatedin the lower right quadrant (e.g. Leptolyngbya Anag-nostidis & Komrek, Aphanocapsa hyalina (Lyngbye)Hansgirg, Phormidium interruptum Kutzing, Geitler-inema splendidum, Phormidium amoenum, TolypothrixKutzing, Oscillatoria subbrevis Schmidle). The taxa in-dicative of unshaded peat bogs on limestone are posi-tioned in in the upper left quadrant (e.g. Cylindrosper-mum Schmidle, Oscillatoria anguina (Bory) Gomont,O. princeps Vaucher, O. tenuis Agardh ex Gomont, Ty-chonema bornetii, Nostoc paludosum Kutzing,Woroni-chinia Elenkin, Gomphosphaeria aponina, Phormidiumformosum (Bory) Anagnostidis & Komrek, Chroococ-cus membraninus (Meneghini) Nageli, C. oblitera-tus Richter, C. prescottii Drouet & Daily, Cyanoth-ece major (Schroter) Komrek, Merismopedia punc-tata Meyen, Pseudanabaena catenata, P. biceps, Coelo-moron pusillum (Van Goor) Komrek, Aphanocapsagrevillei (Berkeley) Rabenhorst).

    The preliminary diatom CCA analysis was car-ried out on the basis of eight variables showed in Ta-ble 2. The forward selection within CCA indicated thatfour environmental variables explained signicant (P< 0.05) and independent amounts of variation in thediatom distributions. Many authors found out that thepH was the factor having a signicant impact on the oc-currence and distribution of diatom communities (Can-tonati 1998; Bigler et al. 2000; Poulkov et al. 2001).In our case, the strongest variable was the bedrock, fol-lowed by altitude, shading and pH. Altitude inuencedsignicantly also the diatom composition in springs ofthe southern Alps (Cantonati 1998). Conductivity (Ne-gro et al. 2003; Soininen 2004) and water temperature(Rott et al. 1998) inuenced the diatom composition insome studies, but in our case, these variables did notexplain signicant additional variation in the diatomdata.

    The eigenvalues of the rst two axes of the diatomCCA performed on the four variables mentioned above,were 0.459 and 0.360, respectively. The rst axis ex-plained statistically signicantly 11.5% and the secondaxis explained 9.1% of the diatom community variance(P = 0.002). The species-environment correlation was0.96 for axis 1 and 0.98 for axis 2. The rst axis wasin a strong positive correlation with the bedrock (r =0.83), a weak positive correlation with pH (r = 0.37),negative correlation with shading (r = 0.62) and alti-tude (r = 0.29). The axis 2 was more correlated with

    altitude (r = 0.88) and less with shading (r = 0.56),pH (r = 0.28) and bedrock (r = 0.23).

    The CCA ordination (Fig. 2) positioned the di-atom taxa typical of low altitude, high pH, unshadedpeat bogs on limestone in the upper right quadrant(e.g. Nitzschia sinuata var. sinuata (Thwaites) Gru-now, Navicula lanceolata (Agardh) Ehrenberg, Sel-laphora stroemii (Hustedt) H.Kobayasi, Mastogloiasmithii Thwaites, Fragilaria construens (Ehrenberg)Grunow, F. fasciculata (C. Agardh) Lange-Bertalot,Gomphonema subtile Ehrenberg, Puncticulata bodan-ica (Grunow) Hakansson, Cymbella glabriuscula (Gru-now) Hakansson, Caloneis alpestris (Grunow) Cleve,Anomoeoneis styriaca (Grunow) Hustedt, Cymbopleuraamphicephala (Nageli) Krammer, Delicata delicatula(Kutzing) Krammer, Achnanthes lanceolata (Brbis-son) Grunow, Gyrosigma attenuatum (Kutzing) Raben-horst), whereas the taxa more common in high alti-tude, more acid, not or partly shaded peat bogs arelocated in the lower right quadrant (e.g. Cyclotelladistinguenda Hustedt, Navicula ignota var. palustris(Hustedt) Lund, N. amphibola Cleve, N. elginensisvar. elginensis (Gregory) Ralfs, N. pupula var. pseu-dopupula (Krasske) Hustedt, Cymbella cistula (Ehren-berg) Kirchner, C. subcuspidata Krammer, Fragilariapinnata Ehrenberg, Pinnularia stomatophora (Grunow)Cleve). The taxa indicative of shaded peat bogs are lo-cated in the upper left quadrant (e.g. Pinnularia bore-alis var. rectangularis Carlson, P. obcsura Krasske, P.appendiculata (Agardh) Cleve, Achnanthes coarctata(Brbisson) Grunow, Nitzschia frustulum (Kutzing)Grunow, Navicula seminulum Grunow, N. gregariaDonkin, Stauroneis kriegerii Patrick, Nitzschia alpinaHustedt, Eunotia meisteri Hustedt), and the taxa typ-ical of high altitude peat bogs on silicate are posi-tioned in the lower right quadrant (e.g. Eunotia palu-dosa var. paludosa Grunow, E. paludosa var. trinacria(Grunow) Norpel, Anomoeoneis brachysira (Brbisson)Grunow, Navicula nivaloides Bock, Cavinula jaerne-feltii (Hustedt) D.G.Mann & A.J. Stickle, Aulacoseiradistans (Ehrenberg) Simonsen, Neidium ampliatum(Ehrenberg) Krammer, Frustulia rhomboides (Ehren-berg) De Toni).

    The preliminary desmid CCA analysis was carriedout on the basis of eight variables shown in Table 2. Theforward selection within CCA indicated that ve en-vironmental variables explained signicant (P < 0.05)and independent amounts of variation in the desmiddistributions. The strongest variable was bedrock, fol-lowed by altitude, saturation, shading and pH. Conduc-tivity (Negro et al. 2003) inuenced the desmid compo-sition in some studies, but in our case, this variabledid not explain signicant additional variation in thedesmid data.

    The eigenvalues of the rst two axes of the desmidCCA performed on the ve variables mentioned above,were 0.846 and 0.666, respectively. The rst axis ex-plained statistically signicantly 10.1% and the secondone explained 7.9% of the desmid community variance(P = 0.002). The species-environment correlation was

  • Algal community patterns in Slovenian bogs 433

    -0.8 1.0

    -1.

    01.

    0 Ach_coa

    Ach_fle

    Ach_hun

    Ach_lae

    Ach_lan

    Ach_min

    Psa_obl

    Ach_pet

    Ach_spp.

    Ach_sub

    Amp_pel

    Amp_o_liAmp_ped

    Ano_bra

    Ano_sty

    Ano_vit

    Aul_dis

    Cal_alp

    Cal_sil

    Cal_spp.

    Cal_ten

    Coc_neo

    Coc_pla

    Pun_bod

    Cyc_dis

    Cyc_glaCyc_spp.Cym_s_ap

    Cym_aff

    Cyb_amp

    Cym_a_he

    Cym_asp

    Cym_ces

    Cym_cis

    Cym_cym

    Del_del

    Cym_gra

    Cym_inc

    Enc_mic

    Cym_nav

    Enc_sil

    Rei_sin

    Cym_suba

    Cym_subc

    Den_kue

    Den_ten

    Dia_mes

    Dia_mon

    Dia_vul

    Dip_ell

    Dip_obl

    Dip_pet

    Epi_adn

    Eun_arc

    Eun_bil

    Eun_exi

    Eun_imp

    Eun_inc

    Eun_mei

    Eun_p_pa

    Eun_p_tr

    Eun_pra

    Eun_spp.

    Eun_ten

    Eun_bic

    Fra_cap

    Fra_con

    Fra_c_su

    Fra_fas

    Fra_pin

    Fra_tenFra_uln

    Fra_vir

    Fru_rho

    Fru_vul

    Gmp_acu

    Gmp_acu

    Gmp_ang

    Gmp_ans

    Gmp_cla

    Gmp_gra

    Gmp_par

    Gmp_sub

    Gmp_tru

    Gyr_att

    Han_amp

    Mas_smi

    Mer_c_ci

    Mer_c_co

    Nav_amp

    Adl_bry

    Nav_cap

    Dia_con

    Nav_cry

    Nav_crt

    Nav_e_el

    Nav_gre

    Nav_hei

    Nav_i_pa

    Cav_jae

    Nav_lan

    Cav_lap

    Adl_min

    Lut_mut

    Nav_niv

    Nav_p_ps

    Nav_p_pu

    Nav_rad

    Nav_rhy

    Nav_sem

    Nav_spp.

    Sel_str

    Kob_sub

    Nav_venNei_aff

    Nei_amp

    Nei_bis

    Nei_iri

    Nei_sep

    Nit_alp

    Nit_amp

    Nit_dis

    Nit_fru

    Nit_gra

    Nit_han

    Nit_lin

    Nit_pal

    Nit_per

    Nit_s_si

    Nit_spp.

    Pin_acr

    Pin_app

    Pin_b_re

    Pin_bra

    Pin_div

    Pin_gib

    Pin_g_li

    Pin_int

    Pin_inr

    Pin_mai

    Pin_mic

    Pin_nod

    Pin_obc

    Pin_rup

    Pin_spp.

    Pin_sto

    Pin_subPin_vir

    Rho_gib

    Sta_acu

    Sta_anc

    Sta_kri

    Sta_pho

    Sta_smi

    Sur_ang

    Sur_bis

    Sur_l_li

    Tab_flo

    pHgeol

    shad

    altitude

    Fig. 2. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand diatom data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.

    0.99 for axis 1 and 0.95 for axis 2. The axis 1 is stronglycorrelated with bedrock (r = 0.76) and saturation (r= 0.54) and less correlated with pH (r = 0.38), shad-ing (r = 0.04) and altitude (r = 0.05). The axis 2 wasmore correlated with saturation (r = 0.61), shading(r = 0.58) and altitude (r = 0.51) and less correlatedwith bedrock (r = 0.26) and pH (r = 0.01).

    The CCA ordination (Fig. 3) positioned desmidtaxa typical of low altitude, shaded, more acid peatbogs on silicate in the upper right quadrant (Eu-astrum oblongum (Greville) Ralfs, Cosmarium ochth-odes Nordstedt, Pleurotaenium trabecula var. crassumWittrock, Actinotaenium palangula (Brbisson) Teil-ing, Micrasterias rotata (Greville) Ralfs ex Ralfs, Euas-trum ansatum var. pyxidatum Delponte), whereas thetaxa typical of unshaded peat bogs with high satu-ration are located in the lower right quadrant (e.g.Staurodesmus triangularis (Lagerheim) Teiling, Tet-

    memorus laevis (Kutzing) ex Ralfs, Teilingia granu-lata (Roy & Biss.) Bourrelly, Staurastrum brachiatumRalfs, Penium polymorphum (Perty) Perty, Spondy-losium pulchellum Archner, Cosmarium depressum f.minuta Heimerl, Closterium costatum Corda ex Ralfs,C. incurvum Brbisson, Cosmarium furcatospermumW. & G.S. West, C. pygmaeum var. heimerlii (W. &G.S.West) Krieger & Gerlo). The taxa more commonin peat bogs with low saturation are located in the up-per left quadrant (e.g. Closterium ehrenbergii Menegh-ini ex Ralfs, C. lineatum Ehrenberg, C. moniliferum(Bory) Ehrenberg ex Ralfs, C. striolatum Ehrenberg exRalfs, Cosmarium holmiense var. integrum Lundell, C.cucumis (Corda) Ralfs).

    We explained the distribution of algae in selectedpeat bogs in Slovenia on the basis of environmentalvariables. The unexplained percentage of variance couldhave been reduced by including additional environmen-

  • 434 A. Krivograd Klemeni et al.

    -1.0 1.0

    -1.

    01.

    0

    Act_pal

    Act_sp.Act_tur

    Clo_abr

    Clo_att

    Clo_cos

    Clo_dia

    Clo_ehr

    Clo_inc

    Clo_int

    Clo_kue

    Clo_lei

    Clo_lin

    Clo_mon

    Clo_nav

    Clo_par

    Clo_ral

    Clo_r_hy

    Clo_ros

    Clo_spp.Clo_str

    Cos_bot

    Cos_cuc

    Cos_d_mi

    Cos_fur

    Cos_gra

    Cos_h_in

    Cos_imp

    Cos_lae

    Cos_m-crCos_obt

    Cos_och

    Cos_pac

    Cos_per

    Cos_pun

    Cos_p_heCos_qua

    Cos_reg

    Cos_spp.

    Cos_sub

    Cos_tet

    Cos_v_la

    Cyl_breDes_swa

    Eua_a_py

    Eua_bidEua_bin

    Eua_obl

    Hya_dis

    Hya_d_biMic_cme

    Mic_rot

    Mic_tho

    Net_dig

    Pen_polPle_ehr

    Ple_tra

    Ple_t_cr

    Spo_pul

    Sta_alt

    Sta_bra

    Sta_ech

    Sta_mur

    Sta_mut

    Sta_pol

    Sta_pun

    Sta_sp. Sta_dej

    Sta_e_is

    Sta_triTei_gra

    Tet_lae

    pH

    satu

    geol

    shad

    altitude

    Fig. 3. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variablesand desmid data. Shad-shading, geol-bedrock, satu-saturation. Taxa acronyms are listed in Table 3.

    tal variables (nitrates, phosphates. . .) and in that casesome other environmental variables could have been thestrongest one.

    Cluster analysisWe tried to separate groups in all three dendograms(Figs. 46) in the most reasonable way with the help ofCCA analysis results. Four groups of samples could bedistinguished from the dendrogram based on the hier-archical cluster of the Cyanobacteria data (Fig. 4): I. unshaded peat bogs, II. partly shaded peat bogs,III. shaded peat bogs (the bog I), IV. sample takenon November 2005 at the bog of Mali plac in Ljubl-jana Marsh (no Cyanobacteria was found in this sam-ple). The dissimilarity between groups was higher than0.9. The results of Cyanobacteria CCA analysis re-vealed that the main factor inuencing the Cyanobac-teria communities in the examined bogs was shading bythe surrounding vegetation.

    Three groups of samples could be distinguished

    from the dendrogram based on the hierarchical clusterof the diatom data (Fig. 5): I. peat bogs on silicate,II. the bog-lake rno jezero and the bog of Mali plac(these two sampling sites dier from others in biggerdepth of water column), III. peat bogs on limestone.The dissimilarity between groups was higher than 0.7.The results of diatom CCA analysis also indicated thatthe bedrock is the main factor inuencing the diatomcommunities in the studied peat bogs.

    Five groups of samples could be distinguished fromthe dendrogram based on the hierarchical cluster of thedesmid data (Fig. 6): I. peat bogs on silicate and lime-stone, II. peat bogs on silicate, III. samples taken inApril and November at the bog I, IV. samples taken inAugust and November at the bog of Mali plac in Ljubl-jana Marsh, V. sample taken in January at the bog ofMali plac in Ljubljana Marsh (there were no desmidsfound in this sample). The dissimilarity between groupswas higher than 0.9. It is evident from the dendrogram(Fig. 6) that temporal changes in the desmids commu-

  • Algal community patterns in Slovenian bogs 435

    00,10,20,30,40,50,60,70,80,91

    4.maj.054.jun.064.avg.054.nov.057.sep.057.jun.067.nov.057.jun.053.maj.053.nov.053.avg.053.maj.065.maj.055.okt.055.jul.055.mar.062.maj.052.avg.052.maj.066.jan.056.maj.056.avg.051.apr.051.avg.051.nov.051.maj.066.nov.05

    I.

    II.

    III.

    IV.

    V.

    Fig. 4. Dendrogram of the investigated localities on the basis of the Cyanobacteria data.

    0,20,30,40,50,60,70,80,91

    1.nov.051.maj.061.apr.051.avg.052.maj.052.avg.052.maj.065.maj.055.okt.055.jul.055.mar.066.avg.056.nov.056.jan.056.maj.053.maj.053.avg.053.nov.053.maj.064.maj.054.jun.064.avg.054.nov.057.nov.057.jun.067.sep.057.jun.05

    I.

    II.

    III.

    Fig. 5. Dendrogram of the investigated localities on the basis of the diatom data.

    I.

    II.

    III.

    IV.

    V.

    0,20,30,40,50,60,70,80,91

    7.jun.057.jun.067.sep.057.nov.056.maj.052.avg.052.maj.054.avg.054.nov.054.maj.055.jul.055.mar.061.avg.051.maj.064.jun.062.maj.063.avg.053.maj.063.nov.053.maj.055.maj.055.okt.051.apr.051.nov.056.avg.056.nov.056.jan.05

    Fig. 6. Dendrogram of the investigated localities on the basis of the desmid data.

    nity composition are larger than the spatial ones, whichmay indicate that the seasons are one of the key factorsinuencing the presence and distribution of desmids in

    peat bogs. The same could not be said of Cyanobacte-ria and diatoms, as the dendrograms (Figs 4, 5) clearlyshow that spatial changes in the Cyanobacteria commu-

  • 436 A. Krivograd Klemeni et al.

    nity composition are greater than the temporal ones.However, further investigation is recomended to studythe factors that shape the desmid community structure.

    References

    Basilier K., Granhall U. & Stenstrom T. 1978. Nitrogen xationin wet minerotrophic moss communities of a subartic mire.Oikos 31: 236246.

    Bigler C., Hall R.I. & Renberg I. 2000. A diatom-training setfor palaeoclimatic inferences from lakes in northern Sweden.Verh., Internat. Verein. Limnol. 27: 19.

    Borics G., Tthmrsz B., Grigorszky I., Padisk J., Vrbr G.& Szabo S. 2003. Algal assemblage types of bog-lakes in Hun-gary and their relation to water chemistry, hydrological con-ditions and habitat diversity. Hydrobiologia 502: 145155.

    Cambra J., Hindk F. 1998. Green algae from mountain peat-bogin the Eastern Pyrenees (Catalonia, Spain). Biologia 53/4:467480.

    Cantonati M. 1998. Diatom communities of springs in the south-ern alps. Diatom research 13, 2: 201220.

    DellUomo A. & Pellegrini E. 1993. Desmids from a peat-bog inthe northern Apennines (Italy). Algological Studies 68: 2738.

    DellUomo A., Pellegrini E. & Prader K. 1992. Le Desmidiaceaedel Pal di Sotto nella Piana di Marcesina (Altopiano di Asi-ago, Prealpi vicentine). Archivio Botanico Italiano 68, 3/4:181194.

    Ettl H. 1978. Xanthophyceae. In: Ettl H., Gerlo J. & HeynigH. (eds), Suwasserora von Mitteleuropa. Band 3. GustavFischer Verlag, Stuttgart, New York, 530 pp.

    Ettl H. 1983. Chlorophyta I. Phytomonadina. In: Ettl H., GerloJ., Heynig H. & Mollenhauer D. (eds), Suwasserora vonMitteleuropa. Band 9. Gustav Fischer Verlag, Jena, 806 pp.

    Gligora M. & Plenkovic-Moraj A. 2003. Contribution of desmidsto phytoplankton assemblies in two Croatian karstic lakes.Biologia 58: 701708.

    Graham J.M., Kent A.D., Lauster G.H., Yannarell A.C., GrahamL.E. & Triplett E.W. 2004. Seasonal dynamics of phytoplank-ton and planktonic protozoan communities in a northern tem-perate humic lake: diversity in a dinoagellate dominated sys-tem. Microbial ecology 48: 528540.

    Hindk F. 1996. K na urovanie nerozkonarench vlaknitchzelench rias (Ulotrichineae,

    Ulotrichales, Chlorophyceae). Slovensk botanick spolonost priSAV, Bratislava, 73 pp.

    Hindk F. 2006. Zelen koklne riasy (Chlorococcales, Chloro-phyceae). Slovensk vodohospodrska spolonos ZSVTS priVVH, Bratislava.

    Hindk F., Marvan P., Komrek J., Rosa K., Popovsk J. &Lhotsk O. 1978. Sladkovodn riasy. Slovensk pedagogicknakladatelstvo, Bratislava, 724 pp.

    Hortobgyi T. 1973. The microora in the settling and subsoil wa-ter enriching basins of the Budapest waterworks. A compara-tive study in ecology, limnology and systematics. AkadmiaiKiad, Budapest, 610 pp.

    Kawecka B. 2003. Eect of dierent light conditions on Cyanobac-teria and algal communities in Tatra Mts Stream (Poland).Oceanological and Hydrobiological Studies XXXII, 2: 313.

    Komrek J. & Anagnostidis K. 1998. Cyanoprokaryota. Chroo-coccales. In: Ettl H., Gartner G., Heynig H. & MollenhauerD. (eds), Suwasserora von Mitteleuropa. Band 19/1. Spek-trum Akademischer Verlag, Heidelberg, Berlin, 548 pp.

    Komrek J. & Anagnostidis K. 2005. Cyanoprokaryota. Oscilla-toriales. In: Budel B., Krienitz L., Gartner G. & Schagerl M.(eds), Suwasserora von Mitteleuropa. Band 19/1. ElsevierSpektrum Akademischer Verlag, Munchen, 759 pp.

    Krammer K. & Lange-Bertalot H. 1997a. Bacillariophyceae. Nav-iculaceae. In: Ettl H., Gerlo J., Heynig H. & MollenhauerD. (eds), Suwasserora von Mitteleuropa. Band 2/1. GustavFischer Verlag, Stuttgart, 876 pp.

    Krammer K. & Lange-Bertalot H. 1997b. Bacillariophyceae.Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H.,

    Gerlo J., Heynig H. & Mollenhauer D. (eds), Suwasseroravon Mitteleuropa. Band 2/2. Gustav Fischer Verlag, Stuttgart,596 pp.

    Krammer K. & Lange-Bertalot H. 2004a. Bacillariophyceae. Cen-trales, Fragilariaceae, Eunotiaceae. In: Ettl H., Gerlo J.,Heynig H., Mollenhauer D. (eds.) Suwasserora von Mit-teleuropa. Band 2/3. Gustav Fischer Verlag, Stuttgart, 576pp.

    Krammer K. & Lange-Bertalot H. 2004b. Bacillariophyceae.Achnanthaceae, Kritische Erganzungen zu Navicula (Lineo-latae) und Gomphonema, Gesamtliteraturverzeichnis Teil 14. In: Ettl H., Gartner G., Gerlo J., Heynig H. & Mollen-hauer D. (eds), Suwasserora von Mitteleuropa. Band 2/4.Gustav Fischer Verlag, Stuttgart, 437 pp.

    Krammer K. 2000. The genus Pinnularia. In: Lange-Bertalot(ed.), Diatoms of Europe. Vol. 1. Ruggell, A.R.G. GantnerVerlag K.G., 703 pp.

    Krivograd Klemeni A. & Vrhovek D. 2003. Algae in the peatbogs Lovrenka jezera and ijec in Slovenia. Natura Croatica12, 3: 141150.

    Lazar J. 1960. Alge Slovenije. Seznam sladkovodnih vrst in kljuza doloanje. SAZU, Ljubljana, 279 pp.

    Lazar J. 1975. Razirjenost sladkovodnih alg v Sloveniji. SAZU,Ljubljana, 83 pp.

    Lederer F. 1999. Algal ora of peat bog erven blato (TeboBasin, Czech Republic). Preslia 70: 303311.

    Lenzenweger R. 1996. Desmidiaceenora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 101.J. Cramer, Berlin-Stuttgart, 162 pp.

    Lenzenweger R. 1997. Desmidiaceenora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 102.J. Cramer, Berlin-Stuttgart, 216 pp.

    Lenzenweger R. 1999. Desmidiaceenora von Osterreich. In: KiesL. & Schnetter R. (eds), Bibliotheca phycologica. Band 104.J. Cramer, Berlin-Stuttgart, 218 pp.

    Lenzenweger R. 2003. Desmidiaceenora von Osterreich. In: KiesL. & Schnetter R. (eds). Bibliotheca phycologica. Band 111.J. Cramer, Berlin-Stuttgart, 87 pp.

    Mataloni G. & Tell G. 1996. Comparative analysis of the phyto-plankton communities of a peat bog from Tierra del Fuego(Argentina). Hydrobiologia 325: 101112.

    Mataloni G. 1999. Ecological studies on algal communities fromTierra del Fuego peat bogs. Hydrobiologia 391: 157171.

    Munoz J., Aldasoro J.J., Negro A., de Hoyos C. & Vega J.C.2003. Flora and water chemistry in a relictic mire complex:the Sierra Segundera mire area (Zamora, NW Spain). Hydro-biologia 495: 116.

    Mulec J., Mihevc A., Pipan T. 2005. Intermittent lakes in thePivka basin. Acta Carsologica 34/4, 1: 543565.

    Negro A.I., de Hoyos C. & Aldasoro J.J. 2003. Diatom and desmidrelationships with the environment in mountain lakes andmires of NW Spain. Hydrobiologia 505: 113.

    Neustupa J. Novkov S., Sejnohov L., Skaloud P. & ezovM. 2002. Algae from aquatic, peat bog and aerial biotopesin the catchment area of the River Kemeln in umava Na-tional Park. Czech Phycology, Olomouc 2: 4761.

    Novkov S. 2002. Algal ora of subalpine peat bog pools in theKrkonoe Mts. Preslia 74: 4556.

    Pantle R. & Buck H. 1955. Die biologische der Uberwachung derGewasser und die Darstellung der Ergebnise. Gas-u. Wasser-fach 96: 604.

    Poulkov A., Hjek M. & Rybnek K. (eds.) 2005. Ecology andpalaeoecology of spring fens of the West Carpathians. PalackUniversity, Olomouc, 209 pp.

    Patrick R. 1977. Ecology of freshwater diatoms and diatom com-munities, pp. 284322. In: Werner D. (ed.), The biology ofdiatoms. Blackwell, Oxford.

    Pevalek I. 1924. Geobotanika i algoloka istraivanja cretova uHrvatskoj i Sloveniji. Rad Jugoslavenske akademije znanostii umjetnosti. Knjiga 230: 29117.

    Pietryka M. 2000. Biodiversity of phycoora of the peat bogs inthe Izerskie Mountains. Opera Corcontica 37: 351358.

    Popovsky J. & Pester L.A. 1990. Dinophyceae. In: Ettl H.,Gerlo J., Heynig H. & Mollenhauer D. (eds), Suwasserora

  • Algal community patterns in Slovenian bogs 437

    von Mitteleuropa. Band 6. Gustav Fischer Verlag, Stuttgart,272 pp.

    Poulkov A., Bogdanov K., Hekera P. & Hjkov P. 2001. Di-atom ora of the springs on the borderline between Moraviaand Slovakia I. Northeastern part of the territory. Czech Phy-cology, Olomouc 1: 6368.

    Rauch A., Fesl C. & Schagerl M. 2006. Inuence of environmen-tal variables on algal associations from a oating vegetationmat (Schwingmoor Lake Lunzer Obersee, Austria). AquaticBotany 84: 129136.

    Rieth A. 1980. Xanthophyceae. In: Ettl H., Gerlo J., HeynigH. (eds), Suwasserora von Mitteleuropa. Band 4. GustavFischer Verlag, Stuttgart, New York, 147 pp.

    Rott E., Duthie H.C. & Pipp E. 1998. Monitoring organic pol-lution and eutrophication in the Grand River, Ontario, bymeans of diatoms. Can. J. Fisher. Aquatic Sci. 55: 14431453.

    Schaumburg J., Schmedtje U., Schranz C., Kopf B., Schneider S.,Meilinger P., Hofmann G., Gutowski A. & Foerster J. 2004.Instruction Protocol for the Ecological Assessment of Run-ning Waters for Implementation of the EU Water FrameworkDirective: Macrophytes and Phytobenthos. Bavarian WaterManagement Agency, Munchen, 89 pp.

    Soininen J. 2004. Benthic diatom community structure in borealstreams. Distribution patterns along environmental and spa-tial gradients. Academic dissertation in limnology. Universityof Helsinki, Department of Biological and Environmental Sci-ences, Helsinki, 46 pp.

    Soukupov L., Huskov J., Lederer F. & Va J. 2001. Eectof limestone-paved track on the Rokyteck Mire, BohemianForest. Silva Gabreta 6: 124125.

    Starmach K. 1966. Cyanobacteria Sinice, Glauciphyta Glaukoty. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 808 pp.

    Starmach K. 1968. Xanthophyceae Roznowiciowe. In: StarmachK. (ed.), Flora slodkovodna polski. Panstwowe WydawnictwoNaukowe, Warszawa, 393 pp.

    Starmach K. 1972. Chlorophyta III. Zielenice Nitkovate: Ulotri-chales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales,Chaetophorales, Trentepohliales, Siphonales, Dichotomosi-phonales. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 750 pp.

    Starmach K. 1974. Cryptophyceae, Dinophyceae, Raphidophy-ceae. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 517 pp.

    Starmach K. 1977. Phaeophyta-Brunatnice, Rhodophyta Kras-norosty. In: Starmach K. (ed.), Flora slodkovodna polski.Panstwowe Wydawnictwo Naukowe, Warszawa, 443 pp.

    Starmach K. 1980. Chrysophyceae Zlotowiciowce (oraz zooag-ellata wolnozyjace). In: Starmach K. (ed.), Flora slodkovodnapolski. Panstwowe Wydawnictwo Naukowe, Warszawa, 774pp.

    Starmach K. 1983. Euglenophyta Eugleniny. In: Starmach K.(ed.), Flora slodkovodna polski. Panstwowe WydawnictwoNaukowe, Warszawa, 593 pp.

    Succow M. & Joosten H. (eds.) 2001. LandschaftsokologischeMoorkunde. E. Schweizerbartsche Verlagsbuchhandlung,Stuttgart, 622 pp.

    ter Braak C.J.F. & milauer P. 2002. CANOCO Reference Man-ual and CanoDraw for Windows Users Guide: Software forCanonical Community Ordination (version 4.5). Microcom-puter Power, Ithaca NY, USA, 500 pp.

    Watanabe M.M., Mayama S., Hiroki M. & Nozaki H. 2000.Biomass, species composition and diversity of epipelic algaein mire pools. Hydrobiologia 421: 91102.

    Wolowski K. & Hindk F. 2005. Atlas of Euglenophytes.VEDA, Publishing house of the Slovak Academy of Sciences,Bratislava, 136 pp.

    Young Y.K., Stokes P. & Gorham E. 1986. Algae of selected con-tinental and maritime bogs in North America. Can. J. Bot.64: 18251833.

    Received August 18, 2008Accepted June 11, 2009

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org?) /PDFXTrapped /False

    /SyntheticBoldness 1.000000 /Description >>> setdistillerparams> setpagedevice

Recommended

View more >