Download - 1032 pearson[2]

Transcript
Page 1: 1032 pearson[2]

The Lunar Space Elevator

Jerome Pearson, Eugene Levin,John Oldson, and Harry Wykes

NIAC Phase I Fellows MeetingAtlanta, GA, 16 Mar 2005

Page 2: 1032 pearson[2]

The Earth Space Elevator

Page 3: 1032 pearson[2]

An L2 Lunar Space Elevator

Page 4: 1032 pearson[2]

Types of Lunar Space Elevators

Page 5: 1032 pearson[2]

NIAC Study Phase I Goals

•Develop LSE System Architecture•Coordinate with NASA Moon-Mars

Initiative•Conceptual Design of all Components•Substantiate Revolutionary Impacts

Page 6: 1032 pearson[2]

System Architecture

•A Revolutionary Cis-Lunar TransportationSystem•Low-Cost Transportation of Lunar Materials and

Propellants to Earth orbits•Low-Cost Supply of Lunar Bases from LEO•Support for Moon and Mars Missions

Page 7: 1032 pearson[2]

Concept of Operations

•The Lunar Space Elevator is an Earth-Moon-L1 “Highway”•LSE Can Carry Traffic Throughout Cis-

Lunar Space, with Nodes in Earth Orbit, L1,Lunar Orbit, and the Lunar Surface•Robotic Vehicles Provide Redundancy,

Reliability, and Low Cost Transportation

Page 8: 1032 pearson[2]

Moon

Transportation Architecture

L1

Earth

Payloads

Payloads

Ballast

Page 9: 1032 pearson[2]

LSE to Earth Orbit Launches

0

50

100

150

200

250

300

60 90 120 150 180 210 240

Release height on L1 elevator, km

Ear

thor

bitr

adiu

s,km

Perigee

Synchronous orbit

Apogee

Page 10: 1032 pearson[2]

LSE Cis-Lunar Transportation

Moon to Earth Orbit:–Lunar Materials–Propellant to LEO–SSPS to GEO

Earth Orbit to Moon:–Ribbon to L1–Supplies to Lunar Bases

Page 11: 1032 pearson[2]

System Components

•LSE Ribbon•Robotic Climbers•Catenary to Pole•Surface Robots•Mining Bases

Page 12: 1032 pearson[2]

Lunar SE Materials

2553.61440Kevlar††49

5709.51700M5 Expected

3425.71700M5**

3163.0970Spectra¶ 2000

3795.81560Zylon§ PBO

3616.41810T1000G†

2200502266SWCN*

Break Heightσ/ρge, km

Stress Limitσ, GPa

Densityρ, kg/m3

Material

* Single-wall carbon nanotubes (lab measured) ¶ Honeywell extended chain polyethylene fiber† Toray carbon fiber ** Magellan honeycomb-like 3-D polymer§ Aramid, Ltd. Polybenzoxazole fiber †† DuPont aramid fiber

Page 13: 1032 pearson[2]

Meteoroid-Safe Ribbons

2.42.52.734Safety Factor

65432Strands

Mean Time BetweenMeteor Cuts:

T, yrs = 6 h2.6/Lh = width, mm

L = length, km

Page 14: 1032 pearson[2]

LSE Ribbon and CW Mass

1.E+04

1.E+05

1.E+06

1.E+07

60 120 180 240 300

Height, thousands of km

Mas

s,kg

ribbon

counterweight

Total Mass

Page 15: 1032 pearson[2]

Spinning Tethers for Lunar SlingLaunch (and Catch)

L1

4

4

h, km

31002.42.38236Escape

31002.41.68118Low Orbit

Tons/dayP, kWatip, g’sVtip, km/sr, kmType

Page 16: 1032 pearson[2]

Robotic Climber Design

•500-kg Climbers•100 Climbers on

Ribbon•10-20 m/s Speed•340,000 kg/yr

Page 17: 1032 pearson[2]

Robotic Climber Design

•Articulated Solar Panels•10 kW at Surface, 100 W at 0.26 L1•Big, Soft Drive Wheels•Ribbon Tracking Control•Full and Empty c.g. Control

Page 18: 1032 pearson[2]

Climber Components

Page 19: 1032 pearson[2]

Concept of Climber and LSEUnloaded Climber

Page 20: 1032 pearson[2]

c.g.

Page 21: 1032 pearson[2]

Polar Ice from Clementine Data

Page 22: 1032 pearson[2]

Curved LSE to Approach PolesMaxim um Latitude

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

Eta = vt2/v02

Lat

itud

e,D

egre

es

Curved LSE

0

1

2

0 1 2 3 4

x/rm

z/rm

x/rm

z/r m

= vt2/vo

2

Page 23: 1032 pearson[2]

“Polar Express” Catenary

200 km crater, 4 km deep

Page 24: 1032 pearson[2]

Regolith Encapsulation

Page 25: 1032 pearson[2]

Truncated OctohedronBlocks

Unfilled

Filled

Page 26: 1032 pearson[2]

Lunarcrete Blocks

Blocks Cast withTension Wires

Page 27: 1032 pearson[2]

Tensegrity Towers

0.36 lb/footon moon

Page 28: 1032 pearson[2]

Stations on the Polar Express

Equatorial:•Regolith mining•Factories•Habitats

Catenary stops on the 2700-km long Polar Express:•Mineral deposits•Water ice mining•Propellants

Page 29: 1032 pearson[2]

Two Man Catenary Crew Cab

Page 30: 1032 pearson[2]

Habitat Constructed withRegolith Blocks

Page 31: 1032 pearson[2]

Preliminary LSE Cost Analysis

•LSE Construction: ~$10 B•(Assumes $5 M per Ton Launched to LEO)•Ion Propelled Payloads: 10-15% of mass, 6

mos. from LEO to Moon or Moon to LEO

Page 32: 1032 pearson[2]

Vision and Significance

•Revolutionize Cis-Lunar Space•Drastically Reduce Cost of Propellants

and Supplies in Earth Orbit•Provide Low Cost Support of Lunar

Bases•Directly Support Moon-Mars Initiative

Page 33: 1032 pearson[2]

Potential Lunar Schedule

2008-15: Robotic Missions2015-20: Manned Missions2020-25: LSE Construction2025-35: Lunar Space Elevators Revolutionize

Cis-Lunar Transportation

Page 34: 1032 pearson[2]

Phase IIObjectives

•Complete LSE architecturefor future NASA missions

•Create LSE roadmap withall enabling technologies

•Evaluate benefits and costvs. performance

Page 35: 1032 pearson[2]

Conclusions•Lunar space elevators and slings are new,

revolutionary ideas with broad applications•The LSE is achievable, and provides

a new architecture for lunar development•The lunar space elevator creates a new

paradigm for lunar space transportation


Top Related