stratigraphy of quaternary oceanic deposits

23
I WVVNU SCIENCEPRESS/JI 1 Ж *вди|

Upload: moscowstate

Post on 07-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

I WVVNU SCIENCEPRESS/JI 1” Ж *в д и |

V N U Science P ress BV P .O . Box 2073 3500 G B U trech t T h e N ethe rlands

С 1984 V N U Science P ress BV

First pub lished 1984

ISBN 90-6764-012-3 Volume 3 ISBN 90-6764-009-3 set of 23 volumes

All right» reserved N o p a r t o f th is pub lica tion m ay be rep ro d u ce d , s to red in a re trieval system , o r tra n sm itted , in any fo rm o r by any m eans, e lec tro n ic , m echanical, photocopy ing , record ing , o r o th e rw ise , w ithou t th e p rio r perm ission o f the copyright ow ner.

P rin ted in G re a t B rita in by J . W . A rrow sm ith L td . Bristol

C O N T E N T S

P r e f a c e ____________________________________________________________________________________ I

Q u a t e r n a r y g e o l o g i c a l p r o b l e m s o f S i b e r i a

M . N . A l e x e e v . E . V . D e v y a t k i n , S . A . A r k h i p o v ,

S . A . L a u k h l n . Q . V . G r i n e n k o a n d

V . A . K a m a l e t d i n o v _______________________________________________________________ 1

T h o p i < n f f e n e - P l o l a t o c e n c b o u n d a r y i n t h e

0 a a k a G r o u p , J a p a n

M , I t i h a r u , T . K a n e i a n d S . Y o s h i k a w a 2 3

T h e P l i o c e n e - P l e i s t o c e n e b o u n d a r y i n

t e r r e s t r i a l d e p o s i t s o f s o u t h w e s t e r n , U S A

» . H . L i n d s a v _______________________________________________________________________ 3 5

C h r o n o s t r a t i g r a p h i с s c a l e o f t h e u p p e r

P l i o c e n e a n d Q u a t e r n a r y ( A n t h r o p o g e n c )

K . V . N i k i f o r o v a , N . V . K i n d a n d I . I . K r a s n o v 4 9

P i l l a r s o f t h e Q u a t e r n a r y s t r a t i g r a p h y i n

t h e P a n n o n i a n b a s i n

А» Bonal____________________________________11S t r a t i g r a p h y o f Q u a t e r n a r y o c e a n i c d e p o s i t s

M . S . B a r a s h . O . B . D a i t r e n k o . G . K h . K a z a r i n a ,

S . B . K r u g l i k o v a a n d V . V . M u k h i n a ______________________________8 7

B i o c h r o n o 1 o g y o f t h e I t a l i a n m a r i n e P l i o c e n e

a n d L o w e r P l e i s t o c e n e

M . L . C o l a l o n g o , G . P a a i n i , 1 . R a f f i , D . R i o ,

S . S a r t o n i a n d R . S p r o v l e r l ______________________________________1 0 9

vii

C o m p l e x p a l e o g e o g r a p h i c a l a t l a s e s - m o n o g r a p h s

f o r t h e A n t h r o p o g e n e . a n d t h e i r p r o g n o s t i c

v a l u e

I . P . G t m I b o t a n d A . A . V e l i t c h k o _________________________1 2 5

A n t h r o p o g o n o o f t h o U S S R C e n t r a l A s i a .

S t r a t i g r a p h y , c o r r e l a t i o n , p a l e o l i t h

A . B . D o d o n o v a n d V . A . R a n o v _ 1 5 5

D e s e r t a n d l o e s s e n v i r o n m e n t . i n C h i n a s i n c e

t h e Q u a t e r n a r y

L i u T u n g s h e n g , D o n g G u a n g r o n g a n d

A n Z h i s h o n g 1 8 5

P l a n a t i o n s u r f a c e s a n d t h e i r s i g n i f i c a n c e

f o r t h e m o r p h o s t r u c t u r a l a n a l y s i s o f v o u n g

p l a t f o r m s : c a s e s t u d y B o h e m i a n m a s s i f

J . D e m e k 1 9 9

S o m e p e c u l i a r i t i e s o f t e c t o n i c m o v e m e n t s a n d

N . I . N i k o l a e v 2 1 5

S t r u c t u r a l - g e o d y n a m i c l a y e r i n g o f t h e

l i t h o s p h e r e o f t h e n e o t e c t o n i c m o b i l e b e l t s

V . G . T r i f o n o v , V . I . M a k a r o v a n d

C. « A . V o s t r i k o v 2 3 1

viii

STRATIGRAPHY OF QUATERNARY OCEANIC DEPOSITS

BARASH, M.S., DMITRENKO, O.B., KAZARINA, G.KH.,KRUGLIKOVA, S.B., MUKHINA, V.V.P.P.Shirshov Institute of Oceanology, Academy of Sciences of the USSR, Moscow, USSR.

Different standpoints exist on the position of the Pliocene-Quaternary boundary varying from 0,6 to 4 m.y. (1). Lately, most researchers of oceanic sediments use to place it within the Olduvai paleomagnetic event, at its top or base, or shift it a bit up- or downward.Traditional Quaternary stratigraphy based on the histo­ry of land and mountain glaciation in Europe and North America faces certain difficulties to define the order and correlation of deposits, to determine their relative and absolute age and rank of corresponding climatic fluctuations. Figure 1 presents three versions of the scale only for the Alpine glaciations. It is clear that their evaluation coincide by the Holocene duration and, accordingly, by the upper Wurrn boundary, and are rather close by the position of the upper Riss boundary. The same situation is with North European and North American scales of the Quaternary glaciations. It is obvious that correlation between regions causes even greater contra­dictions.The main hope is the use of oceanic sediments as they

preserve records of global-scale events which can be re­constructed by physical and geochemical methods and which expose continuous sequences of Quaternary deposits. Com­bination of the paleomagnetic method based on the sequence of the Earth's magnetic field reversals, and of radio- metric geochronology gives a reference bench-mark for the stratigraphic levels and subdivisions. For the Quaternary, such bench-marks are the Brunhes lower boudary (0.73 m.y.), boundaries of the Jamarillo (0.88 to 0.94 m.y.) and the Olduvai (1.72 to 1.88 m.y.) eventsProceedings of the 27th International Geological Congress. Volume 3, pp. 87-108 Q U A T ER N A R Y G E O L O G Y AN D G E O M O R PH O LO G Y © 1984 VNU Scicnce Press

For many decades it was technically difficult to obtain long cores of oceanic sediments with undisturbed struc­ture, so marine geology studied samples of surface se­diment layer and those of short cores with stratigraphic duration to several hundreds of thousands years. Paleo­ntologists have formed a concept that no considerable evolutionary changes of the species happened for the time represented by the cores and, probably, for the en­tire Quaternary. Therefore, contrast to more ancient deposits, stratigraphy of Quaternary deposits or, to be exact, of late Quaternary deposits have been analysed by climatic-stratigraphy method, mainly by planktonic foraminifera. Ericson (9,10) pointed out a sequence of stratigraphic zones by the abundance of warm-water Globorotalis menardii froup (Fig.l). Though Ericson's scale is used till now, precision with which its sub­divisions can be identified seems doubtful but for the uppermost layers.Establishment of the oxygen-isotope scale and micropleon- tological paleotemperature analysis is one step further in the development of climatic stratigraphy. These tech­niques permit not only to sitinguish between warm- and cold-water stages, but also to estimate quantitatively pa- leotemperatures of the upper water layer, which, in its turn, permits to grade climatic stratigraphic subdivisions to correlate their sequence in various cores, which is graphically expressed as oxygen-isotope or paleotempera­ture curves.The oxygen-isotope tchnique is based on the variations in the isotope composition of the oceanic water oxygen con­nected with the dynamics of land glaciations and on the water temperature variations recorded in test composition of species which occurred geologically synchronously (up to 1500 years) over the entire World ocean. Affected by both process^g, cold-water stages are characterized by increase in 0 concentration, while warm-water stages by its decrease. The sequence of climatic variations recorded in the ratio of oxygen isotopes in planktonic or bottom foraminifera tests is free of geographic latitude and opens the possibility for global stratigraphic division

(16)

88

and correlation of Quaternary deposits.Precision of the oxygen-isotope method is restricted by a number of things: bioturbation, partial dissolution of tests, redeposition processes, etc. Dterete sampling can lead to some errors in the evaluation of extremes at "paleotemperature" curves, which might be presented not by actual extremal values or, sometimes, even omitted values of 6180 are also affected by local deviation of water isotopic composition and of temperature regime. Therefore, for stratigraphic correlation, absolute data measurements are not so important as the shape of plotted curves. The oxygen-isotope scale has been worked out for the entire Quaternary; its subdivisions are correla­ted with the paleomagnetic scale and dated (Fig.l). Its upper grades well agree with the epochs of land glacia­tions. The oxygen-isotope scale is actively used for the stratigraphy of oceanic deposits; it is especially produc­tive for the last several hundreds of thousands years.Elaborated methods of paleotemperature reconstructions

by thanatocoenosis allows to plot the curves similar to those of the oxygen-isotope one (15,17,18, and other).The way how the species composition and quantative properties of bioceonosis and, consequently, of thanato­coenosis in all groups of oceanic plankton varies in res­ponse to climate fluctuations is the basis for plotting the qualitative and half-quantative "paleoclimatic" curves (9,10, etc.). Micropaleontological paleotemperature and paleoclimatic curves and stratigraphic divisions correspond to the oxygen-isotope ones and are elements of climate stratigraphy as well.Age determination and stratigraphic division of sediments

by the oxygen-isotope scale and by paleontological cli­mate stratigraphy is possible only after continuous sequences. Occurrence of Recent or Holocene sediments is very important as a datum from which stages are counted Bioturbation of sediments which levels the contrast peaks on the reconstructed curves demands the cores with sedi­mentation rate not less than 10 to 15 cm per one thousand years. Omission of stages and errors in dating are possi­ble in case of a stratigraphic hiatus or a layer with no carbonaceous fossils fit for the oxygen-isotope analysis, or in case sampling is insufficiently detailed, or there

occur beds of redeposited sediments. All mentioned things do not permit to consider all climate stratigraphic me­thods as universal, and so it is expedient to use them in a combination with others.All these notes are true for the scale of magnetic

reversals which provides only five reference levels for the Quaternary, the latest of them (0,73 m.y.) often goes beyond the stratigraphic duration of the analysed cores.The paleomagnetic scale provides a stratigrapher with

only two parameters: direct and inversal polarity, the climate-stratigraphic scales permit to reconstruct only temperature fluctuations and variations of oxygen-isotope composition of water. Thus, they do not deal with elements of environment, the evolution of which is associated with irreversible changes, and only such changes, recorded in sediments, permit to estimate the age precisely.Irreversible processes include flora and fauna evolution,

that is, appearance of one species and extinction of others. Corresponding datum levels are the basis for a stratigraphic division into zones and subzones charac­terized by a set of organic fossils which cannot re-occur in time and, thus, can mark a definite evolutionary stage. In a sedimentary sequence, we can distinguish first-appea­rance datum levels (FADs) of various species, last-appea- rance datum levels (LADs), evolutionary transitions of one species into another, and acme levels (ALs). Alongside with levels of evolutionary appearance of species or their extinction there are levels of migrational appea­rance or extinction caused by change in the areals. As position of datum levels in each sequence depends on local climatic and facial conditions they can disagree with the actual levels of evolutionary appearance and extinction of species. Therefore, it is of prime impor­tance to use the same scale to perform zonation of Quarternary and more ancient deposits.In the review paper (2) the authors distinguish over

30 datum levels. By planktonic foraminifera, they point out the following datum levels for the late Pliocene and the entire Quaternary: LAD of Globorotalia miocenica and LAD of Globorotalia exilis in the tropical Atlantic, 2.2 and 2.0 m.y., respectively; FAD of Globorotalia truncatu-

linoides in the subtropical and temperate Atlantic and Pacific, direct under the base of the Olduvai event, 1,9 m.y.; LAD of Globigerinoides obllquus and LAD of Globi­gerinoides fistulosus in the tropical and subtropical Atlantic and Pacific, at the top of the Olduvai (1,7 m.y.) and a bit higher (1,6 m.y.), respectively; LAD of Globo- quadrina pseudofoliata in the Indian-Pacific province,0,22 m.y.Thompson and Sciarillo (19) point out several datum le­

vels in sediments of the equatorial Pacific: FAD of Neo- globoquadrina eggeri - 1.7 m.y.; FAD of Pulleniatina fi- nalis, 1.68 m.y.; LAD of Pullentiatina primalis , 1.51 m.y. LAD of Neogloboquadrina humerosa, 1.15 m.y.; LAD of Pulle­niatina praecursor , 1.00 m.y.; FAD of Globoquadrina con- glomerata , 0.610 m.y.; LAD of Globorotalia tosaensis, 0,590 m.y.; LAD of pink Globigerinoides ruber, 0.120m.у .In the sub-Antarctic region, a number of migration le­

vels are pointed out which are important, however, for the regional stratigraphy (2): FAD of Globorotalia trunc- atulinoides and LAD of Globoratilia crassaformis, between 0.3 and 0.27 m.y. (isotope stage 8); LAD of Globorotalia puncticulata and FAD of Globorotalia inflata , 0.73 m.y.In the temporate North Atlantic, sediments of isotope

stage 3 reveal sharp increase in size and number of Glo- bigerina bulloides (20). Some authors date LAD of Globo­rotalia tumida flexuosa in the Atlantic back to about 0.08 m.y. (stage 5). Detailed analysis of tens of cores dated by the radio-carbon method showed, however, later extinction of this species, before or during the maximum cooling of stage 2, 0.02 to 0.025 m.y. Similar data were obtained on Globoquadrina hexagona which died out XnView - [Обозреватель - D:\Mon документы\ 1025 to 0.027 m.y. Документы\ВСЕФ0Т0\2()12\12\] [e (12) based on plan-ktonic foraminifera where Quaternary system was ascribed to one zone of G.truncatulinoides. In the scheme by Blow (13) this zone was divided into two parts: N 22, for G.truncatulinoides s.s, and N 23, for Globigerina calida calida, or Sphaeroidinella dehiscens excavata; the boun­dary between them was dated back to 0.7 to 0.8 m.y. It was proposed to single out zone N 23 by appearance of zonal subspecies. These zones were detected by data from

91

numerous DSDP holes.For the Caribbean Sea sediments, according to several

datum levels partially of migration type, Bolli and Premoli Silva (14) distinguish five subzones (Fig.l) traced in sediments of various oceans (21). Wide ap­plication of this scheme seems difficult and hardly reasonable, at least in its original version. Numerous subspecies of Globorotalia crassaformis have transitio­nal forms which makes distinct specification of datum levels by them rather subjective. Species typical of the upper subzones are rare. Globorotalia fimbriata occurs in Pre-Holocene deposits, G.tumida flexuosa died out in the Atlantic later than comes from the scheme.FAD of G.calida calida is often detected considerably earlier, about 0.8 m.y.In the result of detailed analysis of planktonic fora-

minifera test distribution in the cores from Site 516 and 518 drilled during the 72 Leg of "Glomar Challenger" in the South Atlantic, Rio Grande Rise, the Quaternary sequence was divided into four biostratigraphic layers or subzones (15), partially based on the scheme by Bolli and Pemoli Sliva (14). G.truncatulinoides zone is sub­divided into (upward)(Fig.2): 1) Globorotalia crassa­formis viola layer - the interval of occurrence of index subspecies, G.truncatulnoides and Globorotalia tosaensis; 2) G.cr. hessi layer - the interval from LAD of C.cr. viola till appearance of developed species of G. calida calida. Acme interval of G.cr.hessi; 3) G. calida calida layer - the interval from FAD of index - subspecies to FAD of pink Globigerinoides ruber and Globigerina rubes- cens; 4) pink G.ruber and G. rubescens layer - the inter­val of these species occurrence.Considering homogeneity of lithological composition and absence of features of outwashing and redeposition in Site 516, we can suppose similar or close sedimentation rates for the Quaternary. Boundaries between layers are dated back to 1.47, 0.81 and 0.28 m.y. from interpolation of FAD of G. truncatulinoides accepted as 1.9 m.y.Proposed division, however, is only of regional value.

If compared with the scheme by Bolli and Premoli Silva (14), it has certain advantages: rare species and species

92

occurring only in the equatorial belt are excluded as well as some migration datum levels typical only of the Carib­bean Sea; division of Quaternary system according to this pattern is more regular; position of 0.81 m.y. - boun­dary corresponds to widely spread and well grouded sup­positions on the location of the boudary between zones N 22 and N 23 (13).From Site 516, a sequence of datum levels both evolu­tionary and migration is established: LAD of Globigeri- noides bollii, 1.92 m.y.; LAD of Sphaeroldlnellopsls seminulina, Globigerina bulbosa, Globigerinoides obliquus, 1.83 m.y.; FAD of G.cr.hessi, 1.65 m.y.; LAD of Globorota- lia praehxrsuta, 1.51 m.y.; LAD of Globigerina decoraperta Globoquadrina acostaensis, Gr. cr. viola.1.47 m.y.; LAD of G.tosaensis, 1.43 m.y.; FAD of Globorotalia aufracta, 1.40 m.y.; FAD of Globorotalia inflata var., 0.9 m.y.;LAD of G.cr. hessi, 0.5 m.y.; FAD of G.tumida flexuosa, 0.31 m.y.; FAD of pink G.ruber and G.rubescens,0.28 m.y.; FAD of Globorotalia hirsuta, about 0.2 m.y.; FAD of Globo­rotalia theyerit 0.09 m.y. (Fig 2). Comparison of levels with the paleotemperature curve reconstructed by paleonto­logical method (15) for Rio Grande Rise area revealed that LADs corresponded to periods of cooling.The following datum levels are detected by calcareous nannoplankton (2, and others): FAD of Gephyrocapsa aperta, 2.36 m.y.; LAD of Dlscoaster brouwerl, 1.77 m.y.; FAD of Gephyrocapsa caribbeanica, 1.74 m.y.; FAD of G.oceanica 1.68 m.y.; LAD of Cyclococcolithus macintyrei, 1.62 m.y.; LAD of Helicopontosphaera sellil, 1.25 m.y.; last domina­tion level of small species of Gephyrocapsa at a distinct absence of G.oceanica which occurred up- and downward the sequence, at the top of the Jaramillo event, 0.9 m.y.; LAD of Pseudoemiliania 1асипоза, 0.474 to 0.458 m.y.(stage 12); FAD of Emiliania huxleyi, about 0.275 m.y. (stage 8); beginning of domination of E.huxleyi over Gcphyrocapsa caribbeanica. about 0.073 (beginning of stage 4) im temperate latitudes, and about 0.085 (iso­tope substages 5b-5a) in tropical and subtropical lati­tudes .Several schemes for zonal stratigraphic division of

Quaternary oceanic deposits by calcareous nannoplankton are proposed from datum levels (22,23,24,25,26). The

93

most detailed scheme is one by Gartner (7 zones).Distribution analysis of nannoplankton in the Quaternary

sequence from Site 516, "Glomar Challenger", performed by Dmitrenko, verified the age of some datum levels or gave close estimates: LAD of Pseudoemlliania lacunosa, in cold-water stage 12; FAD of Emiliania huxleyi, over stage 10 (probably, in unrevealed stage 8); LAD of Dis- coaster brouweri, 1.65 m. y. similar to data by Gartner (24); FAD of Gephyrocapsa caribbeanica, 1.85 m.y.; FAD of G.oceanica, 1.8 m.y. These data provide for the pos­sibility to define reliable age of other datum levels by linear interpolation from FAD of Globorotalia truncatu- linoides (1.9 m.y.) in the sequence from Site 516. Two levels were determined considerably higher: LAD of Cy- clococcolithus macintyrei, 1.16 and LAD of Helicoponto- sphaera sellii, 0.76 m.y. (stage 16). Besides, in Site 516, additional datum levels are marked: LAD of Cyclococ- colithus rotulus, 1.56 m.y.; LAD of Umbillcosphaera sibo- gae and the end of acme of Neospaera coccolithomorpha, 1.16 m.y. (coincides with LAD of Cyclococcolithus macin- tyrei); LAD of Coccolithus doronicoides, 1.08 m.y.(in presumed stage 22); LAD of Gephyrocapsa aperta, about 0.51 m.y., clear and sharp, reduction in number from over 30% of all Coccolithes to 0%; at the same level the number of G.sinuosa also reduced sharply; FAD of Disco- sphaera tubifera, 0.47 m.y.According to enumerated datum levels, nine biostrati-

graphic subdivisions (Fig.2) are detected. Earlier, they were defined in schemes by various authors (22,24,26). This sequence exposes combinations of features revealed in sediments from various regions of the World Ocean and, therefore, it is possible to trace age correlation of datum levels and stratigraphic subdivisions and to single out the most detailed of the proposed schemes for zoning division which now is only of regional value.Changes occurred in the composition of Late Pliocene-

Quaternary diatom flora of the World Ocean are detected by several authors (2,27,28). The following datum levels were proposed for the tropical Pacific and Indian oceans: LAD of Thalassiosira convexa and LAD of T.convexa var. aspinosa, 2.2 m.y., (similar in temperate latitudes);

Г

b e g i n n i n g o f R h i z o s o l e n i a p r a e b e r g o n i i v a r . r o b u s t a

d o m i n a t i o n o v e r R . p r a e b e r g o n i i s . s . d i r e c t l y b e f o r e t h e

O l d u v a i e v e n t ; F A D o f P s e u d o e u n o t i a d o l i o l u s , 1 . 8 7 m . y .

( i n a l l o c e a n s b e t w e e n 4 0 ° N a n d S ) ; L A D o f R h i z o s o l e n i a

p r a e b e r g o n i i , 1 . 7 2 m . y . ; L A D o f R h i z o s o l e n i a p r a e b e r g o n i i

v a r . r o b u s t a , 1 . 5 6 m . y . ; F A D o f A s t e r o m p h a l u s h i l t o n i a n u s

1 . 4 m . y . ( i s t y p i c a l o f u p w e l l i n g r e g i o n s i n t h e e a s t e r n

P a c i f i c ) ; l e v e l o f r e - o c c u r r e r . c e o f s i l i c o f l a g e l l a t a

M e s o c e n a e l l i p t i c a , 1 . 3 m . y . ( o u r o b s e r v a t i o n s d e t e c t e d

a t w o - f o l d i n c r e a s e i n n u m b e r o f v a l v e s , t h e a c m e l e v e l

o f t h e g i v e n s p e c i e s c o i n c i d e s w i t h t h e J a r a m i l l o e v e n t ) ;

L A D o f M e s o c e n a e l l i p t i c a a f t e r B u r c k l e i s 0 . 7 9 m . y . ( i s o ­

t o p e s t a g e 2 2 ) , i n s o m e c a s e s , i n t r o p i c a l a n d t e m p e r a t e

r e g i o n s , w e r e c o g n i z e d h i g h e r p o s i t i o n o f t h i s l e v e l , t h a t

i s , o n t h e b a s e o f t h e p a l e o m a g n e t i c B r u n h e s e p o c h ; t h e

z o n e o f s h o r t - t i m e d e v e l o p m e n t o f R h i z o s o l e n i a m a t u j a m a l

w h i c h a p p e a r e d d i r e c t l y b e f o r e t h e J a r a m i l l o e v e n t a n d

d i e d o u t b y i t s t o p ; a c m e b e g i n n i n g o f T h a l a s 3 i o s i r a o e s -

t r u p i i , 0 . 7 4 5 ( s t a g e 2 1 ) , t h e t r o p i c a l P a c i f i c ; L A D o f

N i t z c h i a r e i n h o l d i i , 0 . 6 3 m . y . ( i s o t o p e s t a g e 1 8 ) , b y

o u r d a t a t h e s p e c i e s d i e d o u t i n t h e i n t e r v a l f r o m 0 . 6 t o

0 . 4 m . y . ; a c m e l e v e l o f R o p e r i a t e s s e l a t a v a r . o v a t a , 0 . 6 2

t o 0 . 6 1 m . y . ( s t a g e 1 7 ) i n t h e e q u a t o r i a l r e g i o n , a s a

r u l e i n r e l a t i v e v i c i n i t y o f t h e s h o r e .

I n t h e t r o p i c a l a n d t e m p e r a t e P a c i f i c a n d I n d i a n o c e a n s ,

w e r e c o g n i z e d a l s o o t h e r c h a n g e s i n t h e c o m p o s i t i o n o f

d i a t o m f l o r a ( 3 0 t o 3 2 ) : L A D o f B o g o r o v i a m e d i o p u n c t a t a

w i t h i n i n s i g n i f i c a n t ( 0 . 2 m . y . ) s t r a t i g r a p h i c i n t e r v a l

w h i c h i n c l u d e s t h e P l i o c e n e - P l e i s t o c e n e b o u n d a r y ; L A D o f

H e m i d i s c u s o v a l i s , b a s e o f t h e E o p l e i s t o c e n e , w a s t r a c e d

i n t h e e a s t e r n t r o p i c a l P a c i f i c ; L A D o f T h a l a s 3 i o s i r a p l i -

c a t a ( f o r m a ) , b a s e o f t h e E o p l e i s t o c e n e ( b e l o w 1 . 6 m . y . ) ,

t r o p i c a l r e g i o n ; L A D o f T h a l a s 3 i o s i r a r e g u l a t a , a b o u t 1 . 5

m . y . ( r a r e s p e c i e s ) , f o u n d i n t h e e a s t e r n t r o p i c a l P a c i f i c

a n d I n d i a n o c e a n s ; a c m e o f R h i z o s o l e n i a s t y l i f o r m i s , 0 . 7 4 5

m . y . , i n t h e e a s t e r n n e a r s h o r e t r o p i c a l P a c i f i c a n d I n d i a n

o c e a n s ; L A D o f N l t z s c h l a f o s s i l i s c o r r e s p o n d s t o t h e B r u h -

n e s b o u n d a r y , s p r e a d f r o m 3 5 ° N t o 3 5 ° S ; L A D o f N i t z s c h i a

p r o l o n g a t a a n d L A D o f T h a l a s s i o s i r a l e p t o p u s v a r . e l l i p t i ­

c a , 0 . 6 t o 0 . 5 m . y . ( t r o p i c a l r e g i o n ) ; L A D o f T h a l a s s i o s i ­

r a p l l c a t a , 0 . 3 5 t o 0 . 3 m . y . ; L A D o f C o s c i n o d i s c u s p s e u d o -

l n c e r t u s , 0 . 1 t o 0 . 0 8 m . y .

95

For the Antarctic latitudes the proposed datum levels are as follows: LAD of Coscinodiscus vulnificus, 1.9 m.y; LAD of Nitzschla kerguelensis on the base of the Olduvai event, 1.9 to 1.8 m.y.; LAD of Coscinodiscus kolbei, LADof Rhizosolenia barboi, FAD of Coscinodiscus elliptlporawithin the Olduvai event, 1.8 m.y.; FAD of Actinocyclus actinochilus, 1.6 m.y.; LAD of Coscinodiscus elliptiporaat the Matuyama/Bruhnes boundary, 0.73 m.y.; LAD of Cos­cinodiscus margaritaceus, 0.6 m.y.; acme level of Hemi- discus karstenli, 0.195 m.y.; LAD of Hemldiscus karstenii, about 0.15 m.y.For the northern temperate latitudes the proposed datum level are: LAD of Rhizosolenia barboi, on the base of the Olduvai event, 1.85; LAD of Thalasiosira zabelinae, LAD of Th.usatchevii, LAD of Th. antiqua, LAD of Stephanopy- xis lnermls, and LAD of S.horndus, within the Olduvai event, 1.75 m.y.; FAD of Rhizosolenia curvlrostrls, about 1.5 m.y.; LAD of Actinocyclus oculatus and FAD of A. ocho- tensis, 0.97 m.y.; LAD of Rhizosolenia curvirostris, about 0.27 m.y. (some authors recognize higher stratigraphic position of this species, approximately to 0.16 m.y.).Because of sharp changes in species composition of ty­pical diatom associations, several variants of zonation scheme are proposed for various biogeographical areas of the World Ocean.For the Arctic-boreal Pacific, the zonation scheme by

Barron (28) is used. It is a version of Koizumi scale (93) detailed for the low Pleistocene interval. Jouse (34) was the first to detect the sequence of changes in the diatom composition which was used as a basis for these schemes. After the scheme by Barron, Pleistocene is subdivided into the following zones: Actinocyclus oculatus, 1.75 to 0.97 m.y.; Rhizosolenia curvirostris, 0.97 to 0.27 m.y. with subzones "a", 0.97 to 0.63 m.y., and "b", 0.63 to 0.27 m.y.; Denticulopsis seminae, 0.27 m.y. to the Recent.For the tropical Pacific and Indian oceans the most valid scheme is the specified and completed version (30, 32) of the zonation scheme by Burckle (35). According to this scale Pleistocene can be subdivided into zones of Nitzschia fossills, 1.87 to 0.7 m.y., and Pseudoeunotia doliolus, 0.7 m.y. to the Recent. The latter is divided into the layers with Coscinodiscus pseudoincertus, 0.7

96

t o 0 . 1 o r 0 . 0 8 m . y . , a n d w i t h C o s e i n o d i s c u s n o d i - l i f e r ,

0 . 1 o r 0 . 0 8 m . y . t o t h e R e c e n t .

F o r t h e A n t a r c t i c a r e a o f t h e W o r l d O c e a n , s e v e r a l

v a r i a n t s o f z o n a t i o n s c h e m e s a r e p r o p o s e d b e c a u s e f l o r a

i n t h i s a r e a e x p o s e s c o n s i d e r a b l e p r o v i n c i a l v a r i a t i o n s .

T h e m o s t w e l l g r o u d e d s c h e m e s e e m s t o b e t h e c o m b i n a t i o n

o f z o n a t i o n s c h e m e s p r o p o s e d b y M c C o l l u m ( 3 6 ) a n d b y

J o u s e ( 3 7 ) . T h e f i r s t i s u s e d m o r e o f t e n . B y t h i s s c h e m e

P l e i s t o c e n e i s d i v i d e d i n t o t h r e e z o n e s : R h i z o s o l e n i a b a r -

b o i - N i t z s c h i a k e r g u e l e n s i s , 1 . 8 t o 1 . 6 m . y . . C o s e i n o d i s -

c u s e l l i p t i p o r a - A c t i n o c y c l u s i n g e n s , 1 . 6 t o 0 . 6 m . y . ,

a n d C o s c i n o d i s c u s l e n t i g i n o s u s , 0 . 6 m . y . t o t h e R e c e n t .

G r e a t n u m b e r o f d a t u m l e v e l s a n d e v e n t s a r e b a s e d o n

r a d i o l a r i a n s ( 3 2 , 3 8 , 4 0 , 4 1 ) . L A D o f c o s m o p o l l t h s p e c i e s

A x o p r u n u m a n g e l i n u m ( C a m p , e t C l a r k ) i s r e c o g n i z e d a t

0 . 3 8 t o 0 . 4 1 m . y . ( s t a g e 1 1 ) a n d i s w i d e l y t r a c e d . L e v e l s

b y o t h e r s p e c i e s a r e o f r e g i o n a l v a l u e .

I n t h e A n t a r c t i c , L A D ' s o f t h e f o l l o w i n g s p e c i e s a r e

d e t e c t e d : S t i c h o p o d i u m b i c o n i c u m ( V i n a s s a ) ( E u c y r t i d i u m

c a l v a l v e r t e n s e ) , 1 . 8 m . y . ( 3 9 ) ; C l a t h r o c y c l a s b i c o r n i s

H a y s , 1 . 7 2 m . y . ; P y l o s p l r a s p . P e t r u s h . , A n t a r c t i s s a

c y l i n d r l c a P e t r u s h . , A c t i n o m m a t e t r a r y l a ( H a y s ) , O c t o d e n -

d t o n s p . H a y s , S a c c o s p y r i s p r a e a n t a r c t i c a P e t r u s h . ,

a b o u t 0 . 7 m . y . ; P r u n o p y l e b u s p i n i g e r u m H a y s , P e r i c h l a m i -

d i u m s p . Q P e t r u s h . , a b o u t 0 . 4 m . y . A t a b o u t o . 7 m . y .

e x t i n c t i o n o f S a t u r n a l i s c l r c u l a r l s H c k . , P t e r o c a m u m

t n l o b u m H c k . o c c u r r e d i n t h e A n t a r c t i c , t h o u g h t h e y

o c c u r e v e n a t p r e s e n t i n t h e t r o p i c a l r e g i o n s .

I n t h e n o r t h e r n P a c i f i c , t h e f o l l o w i n g d a t u m l e v e l s a n d

e v e n t s a r e r e c o g n i z e d : e v o l u t i o n o f S p h a e r o p y l e r o b u s t a

K l i n g i n t o S p h . l a n g i i D r e y e r , n e a r t h e P l i o c e n e - P l e i s t o -

c e n e b o u n d a r y , a b o u t 1 . 8 m . y . ; L A D o f L a m p r o c y c l a s h e t e r o -

p o r o s H a y s a n d F A D o f E u c y r t i d i u m m a t u y m a i H a y s , 0 . 9 m . y . ;

L A D o f S t y l a c o n t a r i u m a g u i I o n i u m H a y s , 0 . 3 m . y .

I n t h e n o r t h - e a t e r n P a c i f i c , L A D o f L . h e t e r o p o r o s i s

h i g h e r t h a n F A D o f E . m a t u y a m a l , w h i c h c o r r e s p o n d s t o t h e

P I i o c e n e - P l e i s t o c e n e b o u n d a r y ( 4 2 ) ; L . h e t e r o p o r o s e v o l v e d

t h e r e i n t o L a m p r o c y r t l s n e o h e t c r o p o r o s K l i n g a b o u t 1 . 2

m . y . , i n i t s t u r n , t h e l a t t e r e v o l v e d i n t o C o n a r a c h n i u m

n i g r i n i a e C a u l e t a t 0 . 7 6 m . y . ( 4 0 ) .

I n t h e n o r t h e r n P a c i f i c , L A D o f A m p h i m e l i s s a s e t o s a

97

C l e v e a n d L y c h n o c a n i u m g r a n d e C a m p , e t C l a r k c a n b e a p p r o ­

x i m a t e l y d a t e d b a c k t o 0 . 1 a n d 0 . 0 8 m . y . T h e f i r s t o f t h e - »

s e s p e c i e s i s a m p h i b o r e a l a n d o c c u r r s e v e n n o w i n t h e b o ­

r e a l A t l a n t i c a n d A r c t i c , t h e s e c o n d d i e d o u t a t t h e

M i o c e n e - P l i o c e n e b o u n d a r y , i n t h e T r o p i c s , a n d i n t h e

P l i o c e n e , i n t h e A n t a r d t i c , a n d a n l y i n t h e L a t e P l e i s ­

t o c e n e , i n t h e n o r t h e r n P a c i f i c ( 4 1 ) .

I n t h e e q u a t o r i a l P a c i f i c a n d I n d i a n o c e a n s , t h e r e c o g ­

n i z e d d a t u m l e v e l s a n d e v e n t s a r e a s f o l l o w s ( 2 , 4 0 , 4 3 ,

e t c . ) : L A D o f P t e r o c a n i u m p r i s m a t i u m R i e d e l , 1 . 6 2 t o 1 . 7 6

m . y . ; e v o l u t i o n a r y t r a n s i t i o n o f T h e o c o r y t h i u m v e t u l u m

N i g r i n i i n t o T h . t r a c h e l i u m t r a c h e l i u m E h r e n b e r g , 1 . 3 9

t o 1 . 5 7 m . y . ; e v o l u t i o n a r y t r a n s i t i o n o f L . e o h e t e r o p o r o s

i n t o C . n i g r i n i a e , 0 . 9 5 t o 1 . 1 m . y . ; L A D o f A n t h o c y r t i d i u m

a n g u l a r e N i g r i n i , 0 . 9 2 t o 0 . 9 8 m . y . ; F A D o f C o l l o s p h a e r a

s p . A . J o h n s o n , 0 . 6 t o 0 . 6 5 m . y . ; F A D o f C . t u b e r o s a H a e c ­

k e l , 0 . 3 5 t o 0 . 3 8 m . y . ; e v o l u t i o n a r y t r a n s i t i o n o f C o l l o ­

s p h a e r a s p . A . J o h n s o n i n t o B u c c l n o s p h a e r a l n v a g i n a t a H c k . ,

0 . 1 9 t o 0 . 2 3 m . y .

I n t h e d e p o s i t s o f t h e e a s t e r n t r o p i c a l P a c i f i c G o l l ( 4 4 )

r e c o g n i z e d t h e f o l l o w i n g d a t u m l e v e l s : F A D o f C o l l o s p h a e r a

h u x l e y i H c k . , 1 . 7 4 t o 1 . 8 m . y . ; F A D o f N e o s e m a n t i s h o f f e r -

n i G o l l , 1 . 5 8 m . y . ; L A D o f S p h a e r o z o u m c r a s s u s G o l l , 1 . 2 8

m . y . ; L A D o f A m p h i s p y r i s r o g g e n t h e n i G o l l , 0 . 6 8 t o 0 . 6 5

m . y . ; F A D o f C o l l o s p h a e r a t u b e r o s a , 0 . 2 m . y . ; F A D o f

B . i n v a g i n a t a , 0 . 1 m . y .

F o r t h e s a m e r e g i o n , K r u g l i k o v a ( 3 2 ) r e v e a l e d t h a t F A D s

o f s i n g l e s p e c i e s o f P t e r o c o r y s m i n y t o r a x ( N i g r i n i ) a n d

L a m p r o c y c l a s m a r i t a l i s v e n t n c o s a N i g r i n i a p p r o x i m a t e l y

c o r r e s p o n d t o t h e p o s i t i o n o f t h e P l i o c e n e - Q u a t e r n a r y

b o u n d a r y ; L A D o f T h . v e t u l u m i n t h i s r e g i o n i s a t a b o u t

0 . 9 m . y . A b u n d a n t a p p e a r a n c e l e v e l s o f P . m i n y t o r a x a n d

L . m a r i t a l i s v e n t r i c o s a a n d F A D o f C a r p o c a n i u m p r a e c u r s o r u m

K r u g l i k o v a s t r a t i g r a p h l c a l l y o c c u r r e d a t t h e s a m e l e v e l .

L A D s o f A . a n g e l l n u m a n d C a r p o c a n i u m p r a e c u r s o r u m c o i n c i d e

w i t h L A D o f P e t i c h l a m y d i u m s p . O . P e t r u s h .

A c c o r d i n g t o d a t u m l e v e l s b a s e d o n r a d i o l a r i a n s , Q u a t e r ­

n a r y d e p o s i t s c a n b e d i v i d e d i n t o t h r e e o r f o u r s t r a t i g r a m

p h l c s u b d i v i s i o n s . I n t h e A n t a r c t i c , d e p o s i t s a r e d i v i d e d

i n t o t h r e e z o n e s ( h o r i z o n s ) ; t h e i r b o u d a r i e s a r e i n g o o d

c o r r e l a t i o n : f t , У , Ф ( 4 5 ) ; S a t u r n a l i s c i r c u l a r i s , S t y l a t r a c -

t u s u n x v e r s u s ( A . a n g e l i u m ) , A n t a r c t i s s a d e n t l c u l a t a ( 3 8 ) ,

I I I - I ( h o r i z o n s o f s i n g l e z o n e A ) ( 3 9 ) . B o u d a r i e s b e t w e e n

t h e m a r e d a t e d a s 0 . 7 a n d 0 . 4 m . y .

I n t h e N o r t h P a c i f i c , H a y s r e c o g n i z e d t h r e e z o n e s ( 2 ) :

E u c y r t i d i u m m u t u y a m a i , S t y l a t r a c t u s u n i v e r s u s , E u c y r t l d l u m

t u m i d u l u m . B o u n d a r i e s b e t w e e n t h e m a r e o f 0 . 9 a n d 0 . 4 m . y .

B e t w e e n t h e m i d d l e a n d u p p e r z o n e s , K l i n g ( 4 2 ) d i s t i n g u i s ­

h e d a n a d d i t i o n a l z o n e o f S t y l a c o n t a r i ’ j r i a q u i I o n i u m w i t h

i t s u p p e r b o u n d a r y o f 0 . 3 m . y . A b o v e t h i s b o u d a r y , o n e

m o r e z o n e c a n b e d i s t i n g u i s h e d - L y c h n o c a n i u m g r a n d e , 0 . 1

t o 0 . 0 8 m . y . , b y L A D o f i n d e x - s p e c i e s ( 4 1 ) . W i t h i n t h i s ?

z o n e L A D o f A m p h i m e l i s s a s e t o s a o c c u r s .

F o r t h e t r o p i c a l r e g i o n s , a f o u r - z o n e s c h e m e c a n b e

p r o p o s e d ( 4 3 ) : A n t h o c y r t i d i u m a n g u l a r e , A m p h i r r h o p a l u m

y p s i l o n , C o l l o s p h a e r a t u b e r o s a , B u c c i n o s p h a e r a i n v a g i n a t a ,

b a s a l b o u n d a r i e s b e i n g 1 . 7 , 0 . 9 4 , 0 . 3 7 a n d 0 . 2 1 m . y .

A s t h e e a s t e r n t r o p i c a l P a c i f i c h a s p e c u l i a r r a d i o l a r i a n

f a u n a ( 3 2 ) - m o r e c o l d - w a t e r c o m p o s i t i o n , o f t e n a b s e n c e o f

i n d e x - s p e c i e s p r o p o s e d b y N i g r i n i , o f t e n m o r e w i d e s t r a t i -

g r a p h i c i n t e r v a l s i n s p e c i e s d i s t r i b u t i o n - i t i s i m p o s ­

s i b l e t o u s e t h e s c h e m e b y N i g r i n i i n t h i s r e g i o n . T w o

n e w s c h e m e s a r e p r o p o s e d t o t h i s r e g i o n ( 3 2 , 4 4 ) . G o l l

p r o p o s e d t w o z o n e s : C o l l o s p h a e r a h u x l e y i a n d C o n a r a c h n i u m

n l g r i n a e w i t h t h e b o u d a r y b e t w e e n t h e m o f 0 . 9 m . y .

L e v e l s o f c o n s i d e r a b l e c h a n g e i n t h e e n t i r e f a u n a c h a r a c ­

t e r a n d a l s o d a t u m l e v e l s o f i n d i v i d u a l s p e c i e s a n d e v o l u ­

t i o n a r y e v e n t s a r e a c c e p t e d a s a r e f e r e n c e f o r s t r a t i g r a -

p h i c d i v i s i o n , i n t h e s c h e m e b y K r u g l i k o v a .

K r u g l i k o v a d i s t i n g u i s h e d l a y e r s w i t h f a u n a : T h e o c o r y t h i u m

v e t u l u m , C a r p o c a n i u m p r a e c u r s o r u m , P t e r o c o r y s m i n y t o r a x ,

t h e b o u d a r i e s b e t w e e n t h e m b e i n g a p p r o x i m a t e l y 0 . 9 a n d

0 . 4 m . y .

T h u s , m o r e t h a n 1 4 0 d i f f e r e n t l e v e l s a r e d e t e c t e d i n t h e

f o u r g r o u p s o f o c e a n i c m i c r o p l a n k t o n f o r t h e l a s t 2 m . y .

T h e y a r e e v o l u t i o n a r y a n d m i g r a t i o n F A D s a n d L A D s a n d a c m e

l e v e l s . T h e i r q u a n t i t a t i v e d i s t r i b u t i o n o n t i m e s c a l e w i t h

0 . 1 m . y . i n t e r v a l r e v e a l s c o n s i d e r a b l e r e g u l a r i t i e s ( F i g .

3 ) . T h r e e p e a k o f m a x im u m c h a n g e s i n p l a n k t o n c o m p o s i t i o n

c o r r e s p o n d t o t h e b e g i n n i n g o f t h e n o r m a l p o l a r i t y p e r i o d s

( t h e O l d u v a i e v e n t ; 2 3 l e v e l s ; t h e J a r a m i l l o e v e n t , 1 2

l e v e l s ; t h e B r u h n e s e p o c h , 1 7 l e v e l s ) . A f t e r m a x im u m

c h a n g e s o c c u r r e d a t t h e b a s e o f t h e O l d u v a i , t h e n u m b e r

99

of changes gradually reduced and reached its minimum (2 levels) in the middle of the inverse polarity, that is between the Olduvai and Jaramillo events, 1.4 to 1.2 m. y. Another minimum (2 levels) is recorded also during the inverse polarity, 0.9 to 0.8 m.y., between the Jaramillo event and Bruhnes epoch. These data, no doubt revealed the correlation, probably indirect, between the magnetic field inversions and development of oceanic microplankton. This correlation appeared to be more distinct in the composition of diatoms and radiolarians. We can suppose that it can be explained either by considerably greater variety in their species (it is an order higher than in planktonic foraminiferas and coccolithophorids), or by siliceous composition of their skbletons.Maximum of changes observed at the base of the Olduvai event and its absence at the top of the Olduvai allow to place the Pliocene-Quaternary boundary at its base.Position of the second peak at the base of the Bruhnes epoch verifies biostratigraphic significance of this level and the right of binomial division of the Quaternary.Comparatively great number of changes during the Bruhnes epoch (5 to 10 levels per 0.1 m.y.) can be first explained by strong climate variations which caused sharp and sig­nificant changes in the oceanic environment.All datum levels have limited application due to restric­tion of species areals- Besides, chronologic position of a datum level in a given sequence depends on regional climatic conditions, that is, they are not chronostrati- graphic levels and if they are - only within certain accuracy range. Some shift in levels is possible because of bioturbation of oceanic sediments and ofhiatuses in the geological recording. At last, when analysing long se­dimentary cores, especially of those obtained during sea drilling, it is necessary to consider the probability of artificial increase of vertical range in species dis­tribution.Duration of biostratigraphic zones is usually several hundreds of thousands years. Such degree of accuracy is insufficient for the Quaternary during which strong and short variations of physicogeographical conditions occurred.Therefore, paleontological methods alone can lead to

100

e r r o r s I n c o r r e l a t i o n o f d e p o s i t s a n d e s t i m a t e s o f t h e i r

a g e .

D e s p i t e g r e a t a c h i e v e m e n t s i n s t r a t i g r a p h i c m e t h o d s

u s e d t o s t u d y Q u a t e r n a r y o c e a n i c d e p o s i t s a n d c e r t a i n m e ­

r i t s o f e a c h a l l o f t h e m h a v e c o n s i d e r a b l e r e s t r i c t i o n

w h i c h c a n c a u s e s t r a t i g r a p h i c e r r o r s . C e r t a i n l y , w h e n

s u b d i v i d i n g c o n t i n u o u s a n d c o m p l e t e s e q u e n c e s , e s p e c i a l ­

l y t h o s e o f y o u n g d e p o s i t s , w e c a n o b t a i n r e l i a b l e r e s u l t s

u s i n g o n l y o n e o r t w o m e t h o d s , f o r i n s t a n c e , m i c r o p a l e o n -

t o l o g i c a l p a l e o t e m p e r a t u r e o n e w i t h c o n s i d e r a t i o n o f

l i t h o l o g y . F u r t h e r p r o g r e s s i n Q u a t e r n a r y s t r a t i g r a p h y

i s p o s s i b l e o n l y i n c a s e o f d e v e l o p i n g a l l m e t h o d s a n d

i n c a s e o f t h e i r c o m p r e h e n s i v e u s a g e .

R E F E R E N C E S

1 . N i k i f o r o v a , K . V . C h r o n o s t r a t i g r a p h y o f t h e U p p e r P l i o ­

c e n e a n d t h e Q u a t e r n a r y . - I n : S t r a t i g r a p h y i n i n v e s t i ­

g a t i o n s o f t h e G e o l o g i c a l I n s t i t u t e o f t h e A c a d e m y o f

S c i e n c e s o f t h e U S S R . M o s c o w : N a u k a , 1 9 8 0 , p . 2 5 4 - 2 5 8 .

( I n R u s s i a n ) .

2 . B e r g g r e n W . A . , B u r c k l e L . M . , C l t a M . B . , e t a l . T o w a r d s

a Q u a t e r n a r y T i m e S c a l e . - Q u a t e r n a r y R e s . , 1 9 8 0 , v . 1 3 ,

p . 2 7 7 - 3 0 2 .

3 . E m i l i a n l C . P l e i s t o c e n e t e m p e r a t u r e s . - J . G e o l o g y , 1 9 5 5 ,

v . 6 3 , p . 5 3 8 - 5 7 8 .

4 . E m i l i a n i C . P a l e o t e m p e r a t u r e a n a l y s i s o f C a r i b b e a n c o ­

r e s P 6 3 0 4 - 8 a n d P 6 3 0 4 - 9 a n d a g e n e r a l i z e d t e m p e r a t u r e

c u r v e f o r t h e p a s t 4 2 5 . 0 0 0 y e a r s . - J o u r . G e o l o g y , 1 9 6 6 ,

N 2 , p . 1 0 9 - 1 2 6 .

5 . S h a c k l e t o n N . J . , O p d y k e N . D . O x y g e n I s o t o p e a n d p a l e o -

m a g n e t l c s t r a t i g r a p h y o f E q u a t o r i a l P a c i f i c c o r e s V 2 8 -

2 3 ^ : o x y g e n I s o t o p e t e m p e r a t u r e s a n d I c e v o l u m e s o n a

1 0 y e a r a n d 1 0 y e a r s c a l e . - Q u a t e r n a r y H e s . , 1 9 7 3 ,

v . 3 , p . 3 9 - 5 5 .

6 . V a n D o n k J . 0 r e c o r d o f t h e A t l a n t i c O c e a n f o r t h e

e n t i r e P l e i s t o c e n e E p o c h . - G e o l . S o c . A m e r . M e m . , 1 9 7 6 ,

v . 1 4 5 , p . 1 4 7 - 1 6 4 .

7 . K u k l a G . J . P l e i s t o c e n e L a n d - S e a c o r r e l a t i o n s . I . E u r o p e .

101

E a r t h - S c i c n c e R e v i e w , 1 9 7 7 , v . 1 3 , N 4 , p . 3 0 7 - 3 7 4 .

8 . C o o k e H . B . S . P l e i s t o c e n e c h r o n o l o g y : l o n g o r s h o r t ? -

Q u a t e r n a r y R e s . , 1 9 7 3 , v . 3 , N 2 , p . 2 0 6 - 2 2 0 .

9 . E r i c s o n D . B . , E w i n g М . , W o l l i n G . , H e e z e n B . C . A t l a n t i c

d e e p - s e a s e d i m e n t c o r e s . - G e o l . S o c . A m e r . B u l l . , 1 9 6 1 ,

v . 7 2 , N 2 , p . 1 9 3 - 2 8 6 .

1 0 . E r i c s o n D . B . , W o l l i n G . P l e i s t o c e n e c l i m a t e s a n d c h r o ­

n o l o g y I n d e e p - s e a s e d i m e n t s . - S c i e n c e , 1 9 6 8 , v . 1 6 2 ,

N 3 8 5 9 , p . 1 2 2 7 - 1 2 3 4 .

1 1 . E r i c s o n D . B . , E w i n g М . , W o l l i n G . P l i o c e n e - P l e l s t o c e n e

b o u d a r y I n d e e p - s e a s e d i m e n t s . - S c i e n c e , 1 9 6 3 , v . 1 3 9 ,

N 3 5 5 6 , p . 7 2 7 - 7 3 7 .

1 2 . B a n n e r F . T . , B l o w W . H . P r o g r e s s I n p l a n k t o n l c f o r a m i n l -

f e r a l b l o s t r a t l g r a p h y o f t h e N e o g e n e . - N a t u r e , 1 9 6 5 , v .

2 0 8 , N 5 0 1 6 , p . 1 1 6 4 - 1 1 6 6 .

1 3 . B l o w W . H . L a t e M i d d l e E o c e n e t o R e c e n t p l a n k t o n l c f o r a -

m l n i f e r a l b i o s t r a t i g r a p h y . - I n : B r o n n i r a a n n a n d H . H .

R e n z ( e d s . ) , P r o c . 1 s t . I n t . C o n f . P l a n k t o n l c M i c r o ­

f o s s i l s , G e n e v a , 1 9 6 7 , L e i d e n , 1 9 6 9 , v . I , p . 1 9 9 - 4 2 1 .

1 4 . B o l l I H . M . , P r e m o l l S i l v a I . O l i g o c e n e t o R e c e n t p l a n k -

t o n i c f o r a m i n i f e r a a n d s t r a t i g r a p h y o f t h e L e g 1 5 s i t e s

I n t h e C a r i b b e a n S e a . I n : E d g a r N . T . , S a u n d e r s J . B . e t

a l . I n i t . R e p o r t s D S D P , 1 9 7 3 , v . 1 5 , p . 4 7 5 - 4 9 8 .

1 5 . B a r a s h M . S . , O s k l n a N . S . , B l y u m N . S . Q u a t e r n a r y b l o ­

s t r a t l g r a p h y a n d s u r f a c e p a l e o t e m p e r a t u r e s b y m e a n s o f

p l a n k t o n l c f o r a m l n l f e r s , S i t e s 5 1 6 a n d 5 1 8 , D S D P L e g

7 2 . - I n : B a r k e r P . F . , C a r l s o n R . L . e t a l . I n t t . R e p o r t s

D S D P , 1 9 8 3 , v . 7 2 .

1 6 . M a n k l n e n E . A . , D a r l y m p l e G . B . R e v i s e d g e o m a g n e t i c p o l a ­

r i t y e v e n t . - E a r t h a n d P l a n e t . S c . L e t t . , 1 9 7 9 , v . 1 9 , p .

4 4 3 - 4 5 2 .

1 7 . B a r a s h M . S . T h e p l a n k t o n i c f o r a m i n i f e r s I n t h e s e d i ­

m e n t s o f t h e N o r t h A t l a n t i c . M o s c o w : N a u k a , 1 9 7 0 , 1 0 3 p .

1 8 . C l i n e R . M . , H a y s J . D . I n v e s t i g a t i o n o f L a t e Q u a t e r n a r y

P a l e o c e a n o g r a p h y a n d P a l e o c l i m a t o l o g y . - G e o l . S o c . A m e r .

M e m . , 1 9 7 6 , v . 1 4 5 , p . 1 - 4 6 9 .

1 9 . T h o m p s o n P . R . , S c l a r l l l o J . R . P l a n k t o n l c f o r a m l n l f e r a l

b l o s t r a t l g r a p h y I n t h e E q u a t o r i a l P a c i f i c . - N a t u r e , 1978, V .2 7 6 .N 5 6 8 3 , p . 2 9 -3 3 .

2 0 . B a r a s h M . S . T h e v e r t i c a l a n d h o r i z o n t a l d i s t r i b u t i o n

o f p l a n k t o n l c f o r a m i n i f e r a i n Q u a t e r n a r y s e d i m e n t s o f

t h e A t l a n t i c O c e a n . - I n : B . M . F u n n e l l a n d W . R . R l e d e l

102

(eds.). The Micropaleontology of Oceans.L., 1971, p. 433-442.

21.Krasheninnikov V.A. Cenozoic scale of the continents and oceans (in Russian).- In: Stratigraphy in investi­gations of the Geological Institute of the Academy of Sciences of USSR. Moscow: Nauka, 1980, p.162-206.

22.Hay W.W., Mohler H.P., Roth P.H., Schmidt R.R., Bou­dreaux J.E. Calcareous Nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Anti 1lean area, and transocanic correlation.- Trans. Gulf Coast Assoc, of Geol.Soc., 1967, v.67, p.428-480.

23.Martini E., Worley T. Standard Neogene Calcareous nan­noplankton zonation.- Nature, 1970, v.225, p.290-298.

24.Gartner I. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene.-Marine Micropale­ontology, 1977, N2,p.1-25.

25.Bukry D. Biostratigraphy of Cenozoic marine sediments by calcareous NannofossiIs.-Micropaleontology, 1978,. V . 2 4 , N1, p.44-60.

26.0kada H., Bukry D. Supplemaentary Modification and Introduction of Code Numbers to the Low-Latitude Coccolith biostratigraphic zonation (Bukry, 1973;1975). Marine Micropaleontology, 1980, N5, p.321-325.

27.Burckle L.H., Trainer I. Middle and Late Pliocene dia­tom datum levels from the Central Pacific.- Micropale­ontology, 1979, v.25, p. 281-293.

28.Barron J.A. Late Cenozoic diatom biostratigraphy and paleoceanology of the middle-latitude estern North Pacific, Deep Sea Drilling Project, Leg 63.- In: Yeats, R., Haq B.U., et al. Init. Reports DSDP, 1981, v.63,p.507-536.

29.Weaver F.M., Gombos A.M. Southern High-Latitude Diatom biostratigraphy.-SEPM Special Publication, 1981, N 32, p. 445-470.

30.Kazarina G.Kh. Diatoms in the Upper Mtocene-Pleistocene sediments of the east tropical region of the Indian Ocean (in Russian).- In:Marine micropaleontology. Mos­cow: Nauka, 1978, p.5-18.

31.Jouse A.P., Kazarina G.Kh., Mukhina V.V. The most spe­cific features in distribution of Diatoms in Pliocene and Pleistocene deposits of the Middle American Trench off Guatemala.- In: Aubouin J.( von Huene R., et al.

103

I n i t . R e p o r t s D S D P , 1 9 8 2 , v . 6 7 , p . 4 5 5 - 4 7 1 .

3 2 . K r a s h e n l n n l k o v B . A . , K a z a r i n a G . K h . , K r u g l i k o v a S . B . ,

M u k h i n a V . V . , U s h a k o v a M . G . S t r a t i g r a p h y o f t h e P l i o ­

c e n e a n d Q u a t e r n a r y s e d i m e n t s o f t h e E a s t P a c i f i c R i s e

a n d G a l a p a g o s s p r e a d i n g C e n t e r o n t h e b a s e o f p l a n k t o -

n i c m l c r o o r g a n i s m a ( i n R u s s i a n ) . - I n : Q u e s t i o n s o f m i ­

c r o p a l e o n t o l o g y , v . 2 6 , M o s c o w : N a u k a , 1 9 8 3 .

3 3 . K o i z u m i I . L a t e C e n o z o i c d i a t o m b i o s t r a t i g r a p h y i n t h e

c i r c u m - N o r t h P a c i f i c r e g i o n . - G e o l . S o c . J a p a n J . , 1 9 7 5 ,

v . 8 1 , N 1 0 , p . 6 1 1 - 6 2 7 .

3 4 . J o u s e A . P . D i a t o m s i n t h e s e d i m e n t s o f P l e i s t o c e n e a n d

L a t e P l i o c e n e o f t h e B o r e a l z o n e o f t h e P a c i f i c O c e a n

( i n R u s s i a n ) . - I n : M i c r o p a l e o n t o l o g y a n d o r g a n o g e n o u s

s e d i m e n t a t i o n i n t h e O c e a n s . M o s c o w : N a u k a , 1 9 6 9 , p . 5 - 2 7 .

3 5 . B u r c k l e L . H . , O p d y k e N . D . L a t e N e o g e n e d i a t o m c o r r e l a ­

t i o n s I n t h e c l r c u m - P a c l f l c . - P r o c . 1 s t I n t e r n . C o n g r . o n

P a c i f i c N e o g e n e s t r a t i g r a p h y . T o k y o , 1 9 7 7 , p . 2 5 5 - 2 8 4 .

3 6 . M c C o l l u m D . W . D i a t o m s t r a t i g r a p h y o f t h e S o u t h e r n

O c e a n . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t . R e p o r t s

D S D P , 1 9 7 5 , v . 2 8 , p . 5 1 5 - 5 7 2 .

3 7 . J o u B e A . P . , P e t r u s h e v s k a y a M . G . D i a t o m s a n d R a d i o l a r l -

a n s I n t h e c o r e s t . 2 5 6 " O B " ( S o u t h e r n o c e a n ) ; e s s a y o f

b l o s t r a t l g r a p h l c c o r r e l a t i o n ( i n R u s s i a n ) . - I n : T h e

M i c r o p a l e o n t o l o g y o f O c e a n a a n d S e a s . M o s c o w : N a u k a ,

1 9 7 4 , p . 3 - 1 3 .

3 8 . C h e n P . A n t a r c t i c R a d i o l a r i a , L e g 2 8 , D e e p S e a D r i l l i n g

P r o j e c t . - I n : H a y e s D . E . , F r a k e s L . A . e t a l . I n i t .

R e p o r t s D S D P , 1 9 7 5 , v . 2 8 , p . 4 3 7 - 5 1 3 .

3 9 . P e r t u s h e v s k a y a M . G . C e n o z o i c r a d i o l a r l a n s o f t h e A n t ­

a r c t i c , L e g 2 9 , D S D P . - I n : K e n n e t t J . P . , H o u t z R . E . ,

e t a l . I n i t . R e p o r t s D S D P , 1 9 7 5 , v . 2 9 , p . 5 4 1 - 6 7 6 .

4 0 . J o h n s o n D . A . , K n o l l A . H . A b s o l u t e a g e s o f Q u a t e r n a r y

r a d i o l a r i a n d a t u m l e v e l s i n t h e e q u a t o r i a l P a c i f i c . -

Q u a t e r n a r y R e s . , 1 9 7 5 , v . 5 , p . 9 9 - 1 1 0 .

4 1 . K r u g l i k o v a S . B . R a d i o l a r i a i n t h e L o w e r - P l e i s t o c e n e

s e d i m e n t s o f t h e B o r e a l a n d N o r t h S u b t r o p i c a l z o n e s

o f t h e P a c i f i c O c e a n ( i n R u s s i a n ) . - O c e a n o l o g y , 1 9 7 6 ,

v . X V I , N 1 , p . 1 1 3 - 1 1 7 .

4 2 . K l l n g S . A . R a d i o l a r i a f r o m t h e e a s t e r n n o r t h P a c i f i c

D e e p S e a D r i l l i n g P r o j e c t , L e g . 1 8 . - I n : K u l m L . D . , v o n

H u e n e , e t a l . I n i t . R e p o r t s D S D P , 1 9 7 3 , v . 1 8 , p . 6 1 7 - 6 7 1

104

4 3 . N i g r i n i С . A . R a d l o l a r i a n z o n e s i n t h e Q u a t e r n a r y o f

t h e e q u a t o r i a l P a c i f i c O c e a n . - I n : F u n n e l B . M . a n d

R i e d e l W . R . ( e d s . ) . T h e M i c r o p a l e o n t o l o g y o f o c e a n s ,

L . , 1 9 7 1 , p . 4 4 3 - 4 6 1 .

4 4 . G o l l R . M . P l i o c e n e - P l e i s t o c e n e r a d i o l a r i a n s f r o m t h e

E a s t P a c i f i c R i s e a n d t h e G a l a p a g o s s p r e a d i n g c e n t e r ,

D e e p S e a D r i l l i n g P r o j e c t , L e g 5 4 . - I n : R o s e n d a h l B . R . ,

H e k i n i a n R . , e t a l . I n i t . R e p o r t s D S D P , 1 9 8 0 , v . 5 4 ,

p . 4 2 5 - 4 5 3 .

4 5 . H a y s J . D . R a d i o l a r l a a n d L a t e T e r t i a r y a n d Q u a t e r n a r y

h i s t o r y o f A n t a r c t i c s e a s . - I n : B i o l . A n t a r c t i c S e a s . ,

W a s h . , 1 9 6 5 , v . 2 , . p . 1 2 4 - 1 8 4 .

105