river terraces in the fiume tronto drainage basin: a contribution to morphotectonic investigations

13
Geogr. Fis. Dinam. Quat. Suppl. VI1(2005), 123-135, 13 f igg. MAR TA DELLA SETA ("') ,PAOLA FREDI ( ,f,) , ELVIDI O LUPIA PALMIERI ("' ), OLIVIA NESCI ("0"), DANIELE SAVELLI ("d,) & FRANCESCO TROIANI (,b") RIVER TERRACES IN THE FlUME TRONTO DRAINAGE BASIN, M arche Region: A CONTRIBUTION TO MORPHOTECTONIC INVESTIGATIONS AB STRACT: D ELLA SETA M., FRED! P ., LUPIA P ALMIE RI E., NESCI 0., SAVELLI D. & TROIANI F., River terraces in the Fiume Tronto drainage basin (Marche Region): a contribution to morpbotectonic investigations. (IT ISSN 1724-4757,2005). The aim of this work is to provide a methodological input based on geostatistical topographic analyses for the detection of morphological .anomalies induced by neotectonic activity on fluvial terrace surfaces. The study area corresponds to the distal portion of the Fiume Tron- to drainage basin (Southern Marche region of Central Italy); the basin deve loped on Plio-Pleistocene marine terrigenous deposits and its ar- rangement was strongly influenced by Quaternary uplift and regional WSW-ENE and E-W trending fault zones. Detailed surveys allowed to verify the location of surfaces, at several levels; they are the remnants of Quaternary fluvial terraces, formed in re- sponse to both climatic oscillations and regional uplift. Several points at the top of the surfaces were samp led by GPS and then geostatistically processed (Kriging method ) to provide an unbiased interpretation of the chronological seque nce of terraces . The geometrical setting of the terraces seems strongly influenced by the regional uplift and by the activity of the Tronto major fault. Results of geostatistical analysis, comp ared to the DTM indicated that minor Qu a- ternary faults dislocated the terraces. This is in agreement with the out- comes of previous works, thus confirming the usefulness of this methodo- logical approach in the study of fluvial terraces as neotectonic indicators. KEY WORDS: Morp honeotectonics, Geostatistical analysis, Fluvial terraces, Centra l Italy. RIA SSUNTO: DELLA SETA M., FRED! P., LUPIA P ALMIERI E., NESCI 0 ., SAVELLI D. & TROIANI F., I terrazdfluuiali delbacino idrografi codel Fiume Tronto (Marche): contributo aglistudi morfotettonici. (IT ISSN 1724-4757, 2005). Scopo del lavoro e forn ire un contributo metodologico, basato sul- l'analisi geostatistica, per l'individuazione di anomalie morfologiche delle superfici dei terrazzi fluviali, connesse alIa neotettonic a. (" ') Dipartimento di Scienze della Terra, Uniuersitd degliStudi di Roma «La Sapienza», p.zzale A. Moro 5 - 00100Roma. ("d') Istituto di Geologia, Uniuersitd degliStudi di Urbino. This research wasfunded by:Ministryfor Instruction, University and Res earch (MIUR) - Director of Rese arch Prof E. Lupia Palmieri; Research Fund of Urbino University - Director of Rese arch Prof 0. Nesci. I, ' area di stu dio cor rispo nde alIa po rzione terminale del ba cino idro - grafico del Fiume Tronto, nelle Marche meridionali. Essa si sviluppa su depositi marini trasgressivi del Plio-Pleistocene e presenta un assetto morfostrutturale fortemente influenzato da un sollevamemo differenziale quaternario e dall'artivita di faglie regionali ad andamento da WSW-ENE a E-W, che suddividono la regione in differenti blocchi morfotettonici. Rilevamenti dettagliati hanno permesso di localizzare superfici a di- versi livelli che rappresentano i lemb i residui di terrazzi fluviali qua- ternari, forrnari in rispos ta aIle oscillazioni climatiche e al sollevamento regionale. Sono stati campionati con un GPS vari punti quotati alIa somrnita delle superfici terrazzate e i dati ottenuti sono stati elaborati geostatistica- mente (rnerodo del Kriging) al fine di interpretare in modo oggettivo la sequenza crono logica dei terrazzi. L'assett o geome trico dei terrazzi fluviali semb ra essere stato forte - mente influenzato dal sollevamento regionale e dall'attivita della faglia principale del Tronto. I risultati dell'analisi geostatistica, confront ati con il DTM suggeriscono la presenza di faglie minori quaternarie che disloca- no i terrazzi. Tali risultati sono in accordo con quelli ottenuti in prece- denti lavori, a conferma dell'utilita di questo approccio metodologico nello studio dei terrazzi fluviali come indic atori neotetto nici. TERMINI CHIAVE: Morfoneotettonica, Analisi geostatistica, Terrazzi fluviali, Italia centrale. INTRODUCTION In tectonically active regions , neot ectonic events that leave their imp rints on the present landscape to different extents. Ther efore, the analysis of geomorphic records can be a valuable tool in the reconstruction of neotectonic events and it becomes crucial where outcropping litholo- gies have low susceptibility to preserve in a pervasive way the evidence of tectonic deformations. In recent tim es mo rphotectonic investigations have turned specifically to the quantitative approach. Appropri - ate geomorphic indices have been el abor ated; in differ ent geomorphological settings, they are capable to express the tectonically controlled shif t of l andscape featu res from their mo rphological «corr ect» assessment. 123

Upload: uniurb

Post on 17-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Geogr. Fis. Dinam. Quat.Suppl . VI1(2005), 123-135, 13 f igg.

MARTA DELLA SETA ("') , PAOLA FREDI (,f,) , ELVIDIO LUPIA PALMIERI ("'),OLIVIA NESCI ("0"), DANIELE SAVELLI ("d,) & FRANCESCO TROIANI (,b")

RIVER TERRACES IN THE FlUME TRONTO DRAINAGE BASIN, Marche Region:A CONTRIBUTION TO MORPHOTECTONIC INVESTIGATIONS

ABSTRACT: DELLA SETA M. , FRED! P., LUPIA PALMIERI E., NESCI0.,SAVELLI D. & TROIANI F., River terraces in the Fiume Tronto drainagebasin (Marche Region): a contribution to morpbotectonic investigations.(IT ISSN 1724-4757,2005).

The aim of this work is to provide a methodological input based ongeostatis tical topograp hic analyses for the detection of morphological.anoma lies induced by neotectonic activity on fluvial terrace surfaces.

The study area corresponds to the distal portion of the Fiume Tro n­to dra inage basin (Southern Marc he region of Central It aly); the basindeveloped on Plio-Pleistoce ne marine terrigenous deposits and its ar­rangement was strongly influenced by Quaternary uplift and regionalWSW-ENE and E-W trend ing fault zones.

Detailed surveys allowed to verify the location of surfaces, at severallevels; they are the remnant s of Q uaternary fluvial terraces, formed in re­spo nse to both climatic oscillations and regional uplift. Several points atthe top of the surfaces were samp led by GPS and then geostatisticallyprocessed (Kriging method) to provide an unbiased interpretation of thechronological seque nce of terraces .

The geometrical setting of the terraces seems strongly influenced bythe regional uplift and by the activity of the Tr onto major fault. Results ofgeostatistical analysis, comp ared to the DTM indic ated that minor Qu a­tern ary faults dislocated the terraces. This is in agreement with the out ­comes of previous works, thu s confirming the usefulness of this methodo­logical approach in the study of fluvial terraces as neotectonic indicators.

KEY WORDS: Morphoneotectonics, Geostatistica l ana lysis, Fluvialterraces, Centra l Italy.

RIASSUNTO: DELLA SETA M., FRED! P. , LUPIA PALMIERI E., NESCI 0 .,SAVELLI D. & TROIANI F. , I terrazdfluuiali del bacino idrograficodel FiumeTronto (Marche): contributo aglistudi morfotettonici. (IT ISSN 1724-4757,2005).

Scopo del lavoro e forn ire un contr ibuto metodologico, basa to sul­l'analisi geostatis tica, per l'individu azione di anomalie morfologiche dellesupe rfici dei terrazzi fluviali, conn esse alIa neotettonic a.

("') Dipartimento di Scienze dellaTerra, Uniuersitd degliStudi di Roma«La Sapienza», p.zzale A . Moro 5 - 00100Roma.

("d') Istituto di Geologia, Uniuersitd degli Studi di Urbino.This research was funded by: Ministry for Instruction, University and

Research (MIUR) - Director of Research Prof E. Lupia Palmieri; ResearchFund of Urbino University - Director ofResearch Prof 0. Nesci.

I, 'area di stu dio cor rispo nde alIa po rzione terminale del bacino idro ­grafico del Fiume Tronto, nelle Marc he meridionali. Essa si sviluppa sudepositi marini trasgressiv i del Plio-Pleistocene e presenta un assettomorfostrutturale fortemente influenzato da un sollevamemo differenzia lequaternario e dall 'artivita di faglie regionali ad andamento da WSW-ENEa E-W, che suddividono la regione in differenti blocchi morfotettonici.

Rilevamenti de ttagliati hann o permesso di localizzare superfici a di ­versi livelli che rappresent ano i lemb i residui di terrazzi fluviali qua­ternari, forrnari in rispos ta aIle oscillazioni climatiche e al sollevamentoregionale.

Sono stati campionati con un GPS vari punti quotati alIa somrnitadelle superfici terrazzate e i dati ottenuti sono stati elaborati geostatistica­mente (rnerodo del Kriging) al fine di interpretare in modo ogge ttivo lasequenza crono logica dei terrazzi.

L'assett o geome trico dei terrazzi fluviali semb ra essere stato forte ­mente influenzato dal sollevamento regionale e dall'a ttivita della fagliaprincipale del Tronto. I risultati dell'analis i geostatistica, confrontati conil DTM suggeriscono la presenza di faglie minori quaternarie che disloca­no i terrazzi. Tali risulta ti sono in accordo con quelli ottenuti in prece­denti lavori, a conferma dell'utilita di questo approccio metodologiconello studio dei terrazzi fluviali come indic atori neotetto nici.

TERMINI CHIAVE: Morfoneotettonica, Analisi geostatistica , Terrazzifluviali, Italia centrale.

INTRODUCTION

In tectonically active regions , neotectonic events thatleave their imprints on the present landscape to differentextents . Therefore, th e analysis of geomorphic records canbe a valuable tool in the reconstruction of neotectonicevents and it becomes crucial where outcropping litholo­gies have low susceptibility to preserve in a pe rvasive waythe evidence of tectonic deform ations.

In recent times mo rphotectonic investigations havetu rned specifically to the qu antitative app roach . Appropri­ate geomorphic indices have been elaborated ; in differentgeomorphological settings, th ey are capable to express thetec tonically controlled shift of landscape featu res fromtheir mo rphological «correct» assessment.

123

Drainage basins and networks are the traditionally pre­ferred topic of Quantitative Geomorphology; therefore,they have been often the object of morphotectonic studies(Str ahler, 1952; Hack, 1973; Ciccacci & alii, 1986; Cox,1994; Keller & Pinter, 1996; Belisario & alii, 1999; Curra­do & Fredi, 2000; Fredi & Peppoloni 2002 ; Currado &alii, 2002).

In traditional geomorphological investigations, fluvialterraces are probably the most widely used among basinlandforms to detect recent tectonic activity (Merritts &alii, 1994, and references therein). In fact they have a re­gional occurrence and therefore they can record large-scaletectonic uplift (Chen & Liu, 2000). As fluvial terraces rep­resent approximate geomorphic timelines, they are usefulalso in timing the tectonic deformations and in quantifyingthe vertical displacements of individual faults (Li & alii,1999; Houtgast & alii, 2002). In spite of the multiple sig­nificance of fluvial terraces, their morphometric analysishas been usually disregarded.

In this work traditional morphological analyses arecombined with the quantitative geomorphic approach inthe study of Quaternary fluvial terraces in the distal portionof the Fiurne Tronto drainage basins (southern Marche re­gion). The aim is double: to attempt the reconstruction ofthe morphotectonic history of this portion of Fiume Trontobasin and to test the reliability of fluvial terraces as neotec­tonic indicators. To these ends the outcomes of field surveyhave been coupled with the geostatistical topographicanalyses, performed to detect the morphological anomaliesof the terrace surfaces due to tectonic activity.

GEOLOGICAL AND MORPHOLOGICAL SETTING

The drainage basin of Fiume Tronto extends for 1,192km2 between Abruzzo and Marche regions. The mainstream flows initially northwards, then it turns to the Eastand, cutting transversely the major Apennine structures,flows into the Adriatic Sea. The lower portion of FiumeTronto basin, on which this research is focused, lies specif­ically in the southern sector of Marche Apennines.

In the western part of the study area, turbiditic de­posits (Tortonian-Upper Messinian) crop out (fig. 1). Theyrepresent the filling up of a foredeep basin (Cantalamessa& alii, 1986) and were strongly folded by compressive tec­tonics that acted during the Pliocene, along N-S to NW­SE oriented axes (Arnbrosetti & alii, 1986). In the easternpart, a Plio-Pleistocene trasgressive terrigenous sequenceof pelites and sands (Lower Pliocene-Lower Pleistocene) ispresent that shows , at different stratigrafic heights, con­glomeratic and arenitic beds, bodies and lenses . Thesetransgressive deposits unconformably overlie the turbiditicdeposits and show an east-north-eastward dipping homo­clinalic arrangement strongly influenced by the Quater­nary differential uplift that affected the Apennines, withdecreasing rates from the chain axis towards its margins(D'Agostino & alii, 2001).

The morphological arrangement of the lower portionof the Fiume Tronto basin clearly reflects the regional

124

structural setting of the peri-adriatic foothills , whose Plio ­Quaternary evolution was substantially driven by the re­gional uplift. The ENE and NE dipping Plio -Pleistocenedeposits (fig. 1) crop out in wide seaward-dipping cuestas.Moreover, large alluvial fans near the coastline testify to theincreased sediment supply, most likely induced by head­ward erosion of the main rivers as a result of the differen­tial uplift (D'Agostino & alii, 2001; Nesci & Savelli, 2003 ).

Recent studies on the Southern Marche evidencedboth regional and local morphotectonic features suggest­ing that the uplift process went along with block tectonicstied to the activity of regional WSW-ENE and E-W majorfault zones , often run by the main rivers (Gentili & alii,1998; Coltorti & alii, 1996).

A detailed analysis of the morphological indicators oftectonics pointed out the Fiume Tronto valley to be a faultangle depression (fig. 2) , confirming the presence of amain fault along the river and evidencing the existence ofminor dislocations variously oriented (W NW -ESE, NNE­SSW, SW-NE, NW-SE and N-S) (Della Seta & alii, 2004 ).Obviously, the analysis of morphorectonic indicators im­plied , along with aerial photo interpretation, a series offield surveys , in order to discard all the features inducedby lithological or litho-structural constraints.

QUANTITATIVE GEOMORPHOLOGY ANDMORPHOTECTONICS

More recently quantitative geomorphological analysesallowed to improve the knowledge about the morphostruc­tural arrangement of the study area; these analyses aimedparticularly at providing further and objective informationabout vertical displacement and regional uplift and aboutthe kinematics of morphologically inferred faults .

In particular, the spatial variations of the parameter am­plitude 0/relief (Ar ) , alread y tested as morphotectonic indi­cator (Centamore & alii, 1996), suggested that both region­al and local uplifts occurred within the Tronto drain agebasin (Della Seta & alii, 2004). The Ar parameter was cal­culated as local relief per unit areas of 1 krn'. Resulting val­ues were geostatistically processed by the kriging method,in order to get a contour map of Ar distribution. In thestudy area, the amplitude of relief regionally decreases fromWSW to ENE, according to the regional differential uplift;moreover the Ar distribution clearly reflects the asymmetryof the Tronto basin. The map of Ar residual values (fig. 3),obtained following the method by Ciotoli & alii (2003), ev­idences that Ar negative anomalies mark a large portion ofthe Fiume Tronto basin ; this suggests that local loweringoccurred with south-southeastward tilting of the left slope(downthrown block) along the Fiume Tronto inferredfault. The positive anomalies at the top of the right slope(upthrown block) support this hypothesis.

The kinematics of faults that acted along with the re­gional uplift was tentatively determined by the azimuthaltransect method (Belisario & alii, 1999). This method wasapplied to the faults inferred from the alignments of mor­photectonic indicators , and specifically to the Tronto main

~ Strike-slip component

B:;a Erosional terraces

A Alluvia l fan

II. Mud volcano,p~ Marche/Abruzzo Regional

¢#'# boundary

3(;"X

- .;·; -s

'( slightly dipping bedding

+ horizontal bedding

SSE

(a')T

. Beac h deposits, modern=flood plain and terraced alluv ium

. (Holocene)

Terrace alluvium(Middle-Upper Pleistocene)

Petites and sands withintercalated conglomerates (a)(Lower Ple istocene)

Pelites and sands wi thintercala ted con glomerates (a)(Lower-Upper Pliocene)

Turbi dites of the LagaFormation(Tortonian-Upper Messinian)

... .a'a'"..... cross sec tion

SE : NNW

Trasgressive boundary/

Thick colluvial covers

a)

? Ib)

NW(a)

III (a.s.l.j.;250

150

100m..·50

FIG. r .. Geological sketch of the study area (a) and geological section across the Tronto Valley (b).

125

410000405000

IOkm1iiiiiil1Iiiiii.....i=Iiii· iiiiiilliiiIiiilW.

4000003950003900004740000'•..............•.•.•.....•..............•................................................•......, .

385000

,-...47500008

'-"Q)

~s:::

:.al-<00o

:;s~;:J 4745000

4755000

UTM coordinate (m)

~ downcutting straight channel & asymmetrical drainage basin .A.A.A triangular facets

--.J stream elbow »> straight valley ~ peak alignment

S double stream elbow '>'>'> asymmetrical straight valley ••• • • straight ridge

J 90° stream junction ~ fluvial terraces --r planimetric ridgediscontinuity

~ discordant stream junction """trC"" scarp inferred fault or fracture

FIG. 2 - Computed DTM of the study area and morphotectonic indicators.

fault , and to the minor WNW-ESE oriented faults cross­ing it (fig. 2).

In fig. 4 interpretative models , location and results of theazimuthal transects of 1'( and 2nd order channels are shown.Bell-shaped spectra (transects 1, 4 and 8) suggest the hy­pothesis of a left-lateral slip component along the FiumeTronto inferred fault and the kinematic characterisation ofsome minor faults supports this observation (fig. 4d), ac­cording to the kinematic model for shear zones (Wilcox &alii, 1973). Moreover, the deformation pattern associated to

this possible shear zone was already suggested by the pres­ence of straight segments of the downstream portions of lefttributaries, aligned to WNW-ESE oriented discordantstream junctions on the right slope of the valley (fig. 2).

In addition to the classical interpretative models for az­imuthal transects (Belisario & alii, 1999) a new «step-likegeometry» was recognized (fig. -lc). This geometry is due

. to a rapid change in the preferred orientation of streams,which abruptly run along the «azimuthal domain» (Cic­cacci & alii, 1986) perpendicular to the fault direction.Such arrangement was interpreted as a consequence ofdip-slip movements, which caused uplifted blocks to becut by low order streams, statistically oriented along themaximum slope direction. This evidence was firstly ob­served across the Tronto fault , confirming the dip-slipcomponent of displacement, already suggested by thestrongly asymmetrical valley. The same geometry was de­tected across NNW-SSE minor faults and, for NW-SE and

126

o UTM coordinate (m) 10 km

W ..... ,n •

a)

4755

,-....s::~ 4750d.5"0

boo

4740385 390 395 L~OO 405 410

DAr400 111

360 111

320 111

280 m240 111

200 111

160 111

120 111

80 111

40 111

o In

-40 In

-80 111

-120 m- 160 In

4745

b) 4755

5~

~ 4750c~co~

2: 4745f-:J

4740385 390 395 400 405

UTM coordinate (m)Wkm

......• .....• .._.i=t._..•.....•

410

A I'

I.

!E~16i) III

~ I.tO III

>" -120 In

~j IOu In

lll ;;~: ~:M'm ·10 mL~i ~O m

4755~.

·5Q)

~ 4750c~ooo

z~

4740 ·385 390 395 400 :405

UTM coordinate (m): Uknl

:.._.•.....p .....•......•......•

IMp:

440 II'

'So In

3~O m

26n III

200 In

I ~~oll:n2(J Hi

.40 in

· !OO m

410

F IG. 3 - Amplitude of relief geostatistical analysi s; th e residual map (a) was obtained by subtracting the regional trend of Ar (b) from th eoriginal dataset grid (c ).

SW-NE oriented ones; in all these cases it is associated to«valley-shaped» and «bell-shaped» spectra as well, sug­gesting the presence of both dip- and strike-slip offsetsalon g these fault zones. However, this preliminary out­come does not provide information about the mechanism(oblique-slip or strain partitioning), which accompaniesthese two offset components.

THE TRONTO VALLEY FLUVIAL TERRACES

The first studies on the rivers draining the peri-adriaticregion of Central Italy focused on the classification anddescription of fluvial terraces ; four orders of terraces were

recognized and related to glacial and inter-glacial stages(Lipparini, 1939; Villa, 1942). This linear correlation wassuccessively considered inadequate to explain the terracesformation that occurred, more precisely, as response to al­ternating aggradational and erosive phases of rivers, asso­ciated to Quaternary climatic oscillations and to regionaluplift (Nesci & Savelli, 1986; Bisci & Dramis, 1991). Dur­ing the main glacial periods of the Middle-Upper Pleis­tocene increasing solid discharge, induced by strong weath­ering, led to aggradation. On the contrary, during moretemperate climatic periods, increasing erosional power ofrivers led to fluvial deepening, in a first time simply byload decrease, but successively under the control of re­gion al uplift (Nesci & Savelli; 1986 ; Coltorti & alii, 1991) ~

127

Bell-shaped spectra Valley-shaped spectra

~~~~ Fault

CI:J' 900WL[J!~;i~ :?:~

~ 900E

- :'~~-A BC D

a) INTERPRETATIVE MODEL

inferred fault or fracture

c)Tr an sect 1 - 2'~ order Gaussian SpectraNormalized

42.9181° La' 42.815' La'

J

I3.6II9: L:,g : ~ --1316sy~:~ngJ 30DW_.-----:....-; m- ~~'E

--- - I -~-----~---,--ru 600 E. - 90'E

IOkm

t1:~~~~,g_._1

I1

_1_

I 1

: ------------------:Q-._-------.-.I I

_-~ _ 1

IOkm

Transect 8 - 2nd order Gaussian Spectra Nonnalizcd

lm~A~: l-;,\ ,g : : t1:LJ6~~:~~

I - - -I _--'- _ ~~:~--~--~-~,~-----.----~--/ : - : '- ~~'E

_ I I _ 60'E9O"E

IOkm

Tr an sect 9 - 2nd order Gaussian Spectra Normalized

42.9914° 1." 42.905' till

II :.~~~=: -__ : 1 3~i3'~~

-:-t..-.------,__ ---.. 30'E

I 6O'E90'E

IOkm

Transect 10 · 2nd order Gaussian Spectra Normalized

[

tillJI_:l-:.'_n_g- -- i ~--~~~l:~

- I _ -- - 30'E--1- 60'E

-------~~----- 9O'E5km

Tr an sect 11 - 2'd order Gaussian Spectra Normalized

42.93(>4'1." 42.8789'Lat

tI3:48920Long ----~..r;t-------.----.. 13.602i2'~!

l±J 0'

- -- - - .~_.. --- : ' ~~:~

9O'EIOkm

Transect 13 - 2nd order Gaussian Spectra Normalized

1H6~S: l-;,~g 1 1 mm:l-:.'ng

mI --- -.- I : ::t __t.-- '.J.._-_--.- __ 30'W

--.--:: :. -••---.-------~ ~~'Ei l l 6O'E

90' E10 Ion

Tra nsect 14 - 2nd order Gaussian Spectra Normalized

r:~, : 1111j~I _- 1 6O'W

-- - --- --"<1 I _ . ~~'W

~--- - ' ------ '~'I .-_-1.. -' •_ 60 E

9O'E5 km

Transect 16 _1" order Gaussian Spectra Nonna lized

42.8944' Lat 42.9564' Lat

IJ 3~~L.}ng -'-~-- .: _--_------.-~~jo ~on~

- ~-- W'WI I 30'WI I 0'1 1 30'E...-:- .- _--I 60'E

9O"E

rm::~- .-.:-----;- -I _ : __ .

I _.r---

Transect 20 _1" order Gaussian Spectra Normalized

42.9097' La, I 42.9583'Lilt

~~~~~__~_ <--~-T- _,_c-~J~L 190"E

t Okm

Gaussian Spectra Nonnalizcd

42.9428'Lo'

-~-~'r~6O' W30<W0'300E

60' E9O'E

10km

I1

111

.--; I_~__ - ·-·_· ·

o"step-like" geometry

Transect 19 _2nd order

42.8717' Lo'

[:Gaussian Spectra Normalized

42.967goLo,

~m!~I 30'WI 0'.. ~__~Ia__. 3001::

- I W'E.- 9O"E

10 Ion

Transect 17 _2nd order

T. Tesino

dip-slip faults/ - - .::<?" -- .~ I 1-

_~, ~?-r~ .-- G,\.-\ '.":1- I,' / \ /'--£~- L \ l ' / ~ \ ;-:; .-- -r \ ," -c-, \

l~ "\.,'-./ ,1 , / j \ , , ' , ' --t. \

strike-slip faults \ --- '/ " \ !) / -~/\\ \.- -'\' '~I ~\I ;' I ~ 1- J.... _~,' "\. \ / \ \ I \ ' .-l "--0...< '\ / - '1 _1-, i . I \\ --..j

. \ !~/. /.\ I ' :/ \ . -. \faults WIthboth ~ :.... . ...... _\ I I , )....~<, ~/ \ -:Y ~ x J..-~ I \ ~ -,

dip- and strike-slip components ~<, ~ \ \ ; / j / -, \ ~~~..... If"-c -: "\ ~-\ Fi'Ironto

tectonic features not ~\ ,\ / \ / -.), ~\ -, '-' --- - \\' I ' /' ~evidenced by the transects , 'I ":i \;

~ \main streams

"""7

- :!!-:."""7

.L--

d)

FIG. 4 - Azimuthal transects. Interpretative model (a) and location of transects (b) are indic ated, along with the most significant output diagrams (c)and final results (d) .

128

In particular, the early glacial stages as well as the in­terglacials were characterized by fluvial entrenching andextensive terracement of previous valley fills (Nesci &Savelli, 1990); repeated aggradation episodes did occuralong the trunk-valleys (Coltorti, 1991; Nesci & alii,1995), but they superimposed to an overall down-cuttingtendency (Nesci & Savelli , 1991a , 1991b). During the in­ter glacials onl y the river mouth areas and the down­stream-valley reaches experimented thick and extensiveaggradation, mainly connected to sea-level rise (Nesci &alii, 1995). On the contrary, the aggradational upwardgrowing of the alluvial plain levels (i.e. the primitive, un­deformed, terrace level) - although repeatedly interruptedby cut-and-fill episodes (Calderoni & alii, 1991) - seem tocontinue during almost the whole second half of theglacial stages with both fluvial and alluvial-fan deposits(Nesci & alii, 1995).

Although the classification (succession) of the MiddlePleistocene-Holocene terraced units is confirmed in theMarche and Abruzzi regions (Fanucci & alii, 1991), theterrace sequence of the Fiume Tronto is more difficult todetermine, because of the strong tectonic influence on the

terraces formation acknowledged since the earliest studies(Lipparini, 1939).

To improve the comprehension of terraces develop­ment and to test a methodological approach for morpho­neotectonic studies , the quantitative topographic analysisof the Tronto terraces has been performed.

Quantitative topographic analysis

The geostatistical analysis was preceded by det ailedstratigraphic, sedimentological and morphological field sur­veys of the alluvial bodies. Once recognized the terracetop surfaces, their elevations were sampled (850 points)using a portable GPS with 5 m resolution. Five «levels» ofterraces, at most, was recognised, not necessarily coincid­ing to five different «orders». These levels were marked byprogressive letters (A, B, C, ...) from the talweg upward(fig. 5); the lowest one (level A), probably correspondingto the Holocene terrace, was not sampled because of thewide anthropogenic modifications.

With the exception of level A, the alluvial terraces arepresent only on the left valley slope, while on the right oneonly a level of erosional terrace is present (figs. 1b and 6).

FIG. 5 - Levels of terrace surfaces on the left slope of the Tronto valley.

FIG. 6 - View of the Tronto valley with the erosional terrac e on the right slope.

129

This asymmetrical distribution can be explained withsouth-southeastward migration of the main river due tothe Tron to fault downthrown block tilting. Moreover theright tributaries of Fiume Tronto deeply cut their valleyson the up thrown block, especially in the westernmost por­tion of the slope. Here, the powerful head-ward erosion ofthe Torrente Marino (fig. 1) shifted the Tronto dividesouthward; consequently the enhanced solid dischargecould have led to the formation of the large alluvial fanshown in fig. 7.

All the alluvial bodies show similar lithological and sed­imentological features, independently from their elevation:at the base, heterometric, polygenic (carbonate and sand­stone clasts) and grain-supported gravels (3-6 m thick) withsilty matrix are present; the gravel bed is overlain by a siltydeposit of variable thickness (3-4 m for higher terrace lev­els, 8-20 m for lower ones) with no evidence of sedimentarystructures (fig. 8). Comparing qualitatively the compositionof gravel clasts at different heights, a progressive decreasein the abundance of carbonate clasts is registered upward;this testifies for lithological changes within the Apenninicstratigraphical sequence, cut by the Fiume Tronto duringits progressive deepening. Finally, very large blocks havebeen observed just within the alluvial deposits of the topo­graphically higher levels of terraces (fig. 9).

Collected topographic data, processed as a whole bythe kriging method (Cressie, 1990, and references therein),

provided the «overall topography map» of all the terraces(fig. LOa) . Successively , a «residual contour map» was de­rived, indicating the relative elevations of terrace remnantsupon the present talweg. Finally, to better evidence thelongitudinal shape of terrace levels, their elevations wereprojected on the XZ plane (fig. 10c).

The general trend of the flattish surfaces indicates thatnot all the levels can be considered as different orders ofterraces; nevertheless, the continuity of levels Band Cindicates their possible correspondence to T} and T2 ter­race orders by Nesci & Savelli (1991a). The interpolationamong the remnants of the different levels evidences thepresence of «converging» terraces (Castiglioni, 1934). Infact, both the «overall topography map» and the «residualmap», show high gradients between levels Band C, and Cand D, in the westernmost portion of the area ; on the con ­trary, moving towards the Tronto mouth the difference inelevation between levels Band C tends to disappear. Thisconvergence confirms the influence of the regional uplifton the terrace development.

The interpretation of the longitudinal trends of levelsD and E is more difficult. Nevertheless some observationsare of interest. .

In the eastern portion of the projection of fig. 10c (i.e.to the East of the UTM coordinate 400 ,000), level Dseems to be shifted downward respect to the same levelin the western portion; with the exception of the area

130

FIG. 7 - Torrent e Mari no alluvialfan deposit, made up of gravelswith intercalet ed sandy beds and

lenses (a).

FIG. 8 - Typical terrace section.

FIG. 9 - Example of large block at the base of the terrace body athlgher levels.

close to the river mouth, where an increase in elevationis recorded.

Level E is rather discontinuous; where observable,however, it seems to keep parallel to level D. Moreover,the longitudinal trend of these two levels shows some sim­ilarity , as if they were the same level shifted in height. Al­though preliminary this observation is in accordance withthe results of previous morphotectonic analysis that indi­cate the existence, in this area, of faults, approximatelyWSW-ENE oriented, with dip-slip components as shownby the step-like geometry of some azimuthal transects (fig.4, transect 4 and 8). Then, the comparison of results sug­gests that level D and E can be really a single depositionalbody, corresponding to T 1 terrace (probably referable toT 1b in the sequence of Nesci & Savelli, 1991a) displaced bya normal fault of about 20 m (fig. 1Oc). This considerationis in accordance with Coltorti & alii (1991). The inferredfault is probably a conjugate plane of the major Trontofault (figs. 1 and lOb). In the eastern portion of the projec­tion in fig. 10c the effects of this fault are outlined also bythe general downward shift of all terrace levels whichprobably lie on the downthrown block, while the rem­nants in the westernmost part of the slope are on the up­thrown one.

A field evidence given by a counter slope (fig. 11) sug­gests the presence of a minor normal fault to the West ofCastel di Lama Town (fig. lOb) which could have dis­placed the T1 terrace, giving rise to back tilting of thedown thrown block. Thus, probably, the westernmost rem­nants of level C surface may belong to the T 1 te rrace andnot to the T, one.

131

a)

r-- 4750000 :S :'-' '

E~c::;a....ooo

~~

4745000 :

l : .L..

390000 392000 394000 396000 398000 400000 402000 404000 406000 408000

UTM coordinate (m)

260111

240m

220m

200m

180m

160m

140m

120m

100m

80m

60m

m

m

4745000 :

~ 4750000 :v

180111170 m160m150m140m130m120m110 m100m90m80 m70m

es 60m50m40m

mm

.........................L. t .b)

390000 392000 394000 396000 398000 400000 402000 404000 406000 408000

UTM coordinate (m)

10 mm

c)

200

-Sc.2 ...ro ~.

~ 100Q)

390000 392000 394000 396000

'fP ,~, we Sa f&

• ~~", '" bo %1\ ;,ffJ. "J '-~~%

. .. ..........................~,

398000 400000 402000 404000 406000 408000

U1M coordinate(m)

• Level B @ Level D • erosional

@ Level C ® Level E

FIG. 10 - Geostatistical topographic analysis of the Tronto basin fluvial terraces ; a) «overall topography» map of all terraces. The location of the differentlevels helps the interpretation of the terraces chronology; b) residual topography, given by the elevations of the surfaces on the taluieg, and inferred faultsdislocating the terraces; c) projection of the terraces absolute elevations on the XZ plane : the projection gives the longitudinal trend of terrace levels.

132

FIG. 11 - Counterslope to theWest of Castel di Lama town , sug­gesting the presence of a WSW­ENE dip -slip fault. Between theupthrown (Ut) and the down­thrown (Dr) the bedrock crop out,

outlined by the vegetation .

To the East of Castel di Lama town an altimetricanomaly indicates that the T2 and T3 terraces seem to belowered eastward, of about 20 and 10 meters respectively,by a normal fault transverse to the valley (fig. IOb); thisfault might correspond to the N-S trending one indicatedin fig. 1, along which active mud volcanoes were detected.Another altimetric anomaly is clearly evidenced by the lon­gitudinal trend of levels C, D and E near the mouth. Infact , they undergo an increase in elevation, which is in­compatible with the fluvial dynamics and probably due tothe activity of a WNW-ESE trending normal fault nearMonteprandone. Thus, all the terrace remnants to the

West of this fault probably belongs to T1b WSW-ENEfaulted terrace, while the highest level detectable in theprofile might represent a little remnant of the oldest fluvialterrace of the Tronto river (i.e. T 1a, Nesci & Savelli, 1991a).

The distribution of elevation points on the remnant sur­faces of terraces , as indicated by the contour map of figurelOa, suggests also that lower orders are more tilted towardsthe present flood plain than the higher ones , confirmingthe hypothesis of south-south-eastward tilting of the leftslope due to the Tronto fault dip -slip kinematic component(fig. 12). The erosional, rock-cut terrace on the right valleyside is about 25-30 m higher than the upper Pleistocene

FIG. 12 - Bedr ock and terrace de­posit slightly tilted towards theSSE confirm the presence of theTronto fault with a norm al kine­matic comp onent lowerin g andtilting the left slope of the valley.

133

terrace alluvium top-surface (T3) on the opposit valley flank(fig. 7). Supposing that the primitive rock-cut surface was aprosecution of the top-surface of the T3 alluvium, their ver­tical offset (about 25-30 rn) might be ascribed to the dip­slip displacement along the major fault. Since a slightly re­moulding of the T3 alluvium top-surface - with formationof unpaired minor terraces - cannot be ruled out, the offsetcould be fairly lesser than the above . Nevertheless, a cer­tain amount of fault-related terrace offset between the twovalley sides is to be confirmed on the basis of integratedquantitative and qualitative geomorphologic analysis.

CONCLUSIONS

Results obtained confirmed the reliability of the quan­titative geomorphic approach to the study of morphologi­cal records of neotectonic significance.

In particular, the methodological outcomes of thiswork demonstrate that fluvial terraces can be geostatisti­cally treated with success, as already confirmed for other

landscape features (relief, drainage patterns) . In fact, theapplication of geostatistical methods to the study of fluvialterraces can help the unbiased interpretation of their evo­lutionary sequence, thus increasing their importance asneotectonic indicators. In this perspective, since they rep­resent timelines capable of timing the tectonic defor­mations, the geostatistical topographic analysis of riverterraces can provides important constraints to morphotec­tonic reconstructions.

Locally, four orders of pre-Holocene alluvial terraceswere recognized on the left slope of the Tronto drainagebasin, while on the right one a single erosional terrace wasobserved (fig. 13). Their topographic arrangement is influ­enced by the ENE-ward dipping regional uplift and con­firms the activity of a WSW-ENE major fault, run by theFiume Tronto. Associated to this fault, a conjugate oneand two minor N-S and WNW-ESE trending active faultswere detected that displace the different orders of terracesby estimated amounts. Once the absolute ages of terraceswill be known, it will be possible to calculate exactly theslip rates of the identified faults.

Beach deposits, modem floodplainand terraced alluvium (Holocene)

410000

.... Mud volcano

405000

A Alluvial fan

.,." Marche/Abru zzo,..-.? -.? Regional boundary

IOkmi;;;;o;;IlIIIiiiiiiilldlii;;;;;;lllliiiii..;;;;;:'H

395000 400000

/ Watershed,,/

• Erosional terrace

-: Normal fault

~ strike-slip component

390000

Ti (Tlb according to Nesci& Savelli,1991)

• T2

4745000

4740000385000

4750000

4755000 ··..

FIG. 13 - Morphotectonic reconstruction of the low Tronto valley.

134

RE FERENCES

AMBROSETTI P ., BOSI c., CARRARO F. , CIARANFI N ., PANIZZA M., P APANIG., VEZZANI L. & ZANFERRARI A. (l986) - Neotectonic map of Italy,Modello strutturale, scala 1:500.000. CNR, Q uadern i de «La Rice rcaScie nt ifica», 114 .

BELISARIO F. , D EL MONTE M. , FREDIP ., FUNICIELLO R , LUPIAP ALMIERIE . & SALVINI F. (1999) - Azimuthal analysis ofstream orientations todefine regional tectonic lines. Zei t. G eom orph. N .F ., Suppl.-Bd 118,41-63 .

BISCIC. & D RAMIS F . (l991) - La geomorfologia delle Marche. In : AA.VV.«L'a mbiente Fisico delle Marche», Regione M arche - G iunta Re­gion ale, Assess o rato Urbanistic a e Ambiente, S.E L.C.A ., Fire nze,81 -113 .

CALDERONI G ., NESCI 0 ., SAVELLI D . & P ERGOLINI C. (1991) - Last­glacial terrace alluviu m in the Metauro River basin: new radiometricdates for the beginning of the aggradation stage. II Quaternario , 7,607 -6 11.

CANTALAMESSA G. , CENTAMORE E. , CHIOCCHINI V., COLALONGO M.L. ,MICARELLI A., N ANNI T ., PASINI G ., P OTETTI M. & RICCI LUCCHI F.con la coll ab orazion e di CRISTALLINI C. & D I LORITO L. (1986) - IlPlio-Pleistocene delle Marche. Studi G eol. Carnerti, Vo l. Spec. «LaGeolog ia delle Marche», 6 1-81.

CASTIG LIONI B. (1934) - Terrazze di diversione, C.R Congr. Intern. DeG eogr Varsavia, II (II), 606 -612 .

CENTAMORE E., CICCACCI S., D EL MONTE M., FREDIP . & LUPIA PALMIE­RI E. (1996) - Morphological and morphometric approach to the studyof the structural arrangement of the North-Eastern Abruzzo (CentralItaly). G eomorphology, 16 , 127 -137 .

CHEN Y.G . & LIU T K . (200 0) - Holocene uplift and subsidence alongan active tectonic margin, southwestern Taiwan. Quat. Sci . Rev., 19,923- 930.

C!CCACCI S. , FREDI P. , LUPIA P ALMIERI E. & SALVINI F. (1986) - A n ap­proach to the quantitative analysis of the relations between drainagepattern and fracture trend. In: «In te rna tiona l Geomorp ho logy» , JohnW iley & Sons Ltd, Chiches ter, Part II, 49- 68,9,2 .

CIOTOLI G ., D ELLA SETA M. , D EL MONTE M., FREDI P ., LOMBARDI S.,LUPIA PALMIERIE. & P UGLIESE F. (2003 ) - Morphological and geoche­mical evidence of neotectonics in the volcanic area of M. Vulsini(Latium, Italy). Q uaternary Internati on al, 101 -102 , 103-113.

COLTORTI M . (l991 ) - Modificazioni morfologicbe oloceniche nelle pianealluuionali marchigiane: alcuni esempi nei fiumi Misa, Cesano e Muso­ne. G eogr. Fis. D inam. Quat. , 14, 73 -86 .

COLTORTI M ., CONSOLI M. , D RAlvlIS F., G ENTILI B. & PAMBIANCHI G .(199 1) - Euoluzione geomorfologica delle piane alluvionali delle Mar­che centro-meridionali. G eogr. Fis. Dinam . Quat., 14, 87-100 .

COLTORTI M ., FARABOLLINI P ., G ENTILI B., & PAMBIANCHI G. (1996) ­Geomorphological evidence for anti-Apennine fau lts in the Umbro­marcbean Apennines and in the peri-Adriatic basin (Italy). G eo­morpho logy, 15 , 33-45 .

Co x RT (1994) - Ana lysis of drainage basin symmetry as a rapid techni­que to identify areas of possible Quaternary tilt-block tectonics: anexample from the Mississippi Embaymen t. G eol. Soc. Am. Bull. , 106,5 71-581.

CRESSIE N .A.C. , (1990) - The origins of kriging. M ath . G eol. , 22 ,23 9-252.

CURRADO C. & FREDI P . (2000) - Morphometric parameters of drainagebasins and morphotectonic sett ing of eastern Abruzzo . Mem . Soc.G eol. It. , 55 , 411 -419.

CURRADO c., FREDI P ., G IULIANI R & LUPIA P ALMIERI E . (2002 ) - Drai­nage systems and active extensional tectonics: an example from Central

Ap ennine (Italy). Studi G eologici Camerti , vol. spec. «La rge sca levert ical mo vem ents and rela ted gravita tio nal pro cesses», 69 -77.

D 'AGOSTINO N ., JACKSON ].A. , DRAMIS F. & FUNICIELLO R (2001) - Inte­ractions betw een mantle upwellin g, drainage evolution and active nor­mal faulting : an example f rom th e central Apennines (Italy). G eophys.]. Int. , 147 ,475-497.

DELLA SETA M ., D EL MONTE M ., FREDIP . & LUPIA PALMIERI E. (2004) ­Quantitative morphotectonic analysis as a tool for detecting deforma­tion patterns in soft rock terrains: a case study from the southern Mar­ches, Italy. Geomorphologie, 4,267-284.

FANUCCI F., MORETTI E., NESCI 0 ., SAVELLI D . & VENERI F. ( 991) - Ti­pologia dei terrazzi vallivi ed euoluzionedel rilievo nel uersante adriati­co dell'App ennino centro-settentrionale. Il Quaternario , 9, 255-258.

FREDI P . & P EPPOLONI S. (2002) - R ecent uplif: and plano-altimetricconfi­guration in some italian drainage basins. Studi G eologi Camerti , vo l.spec. «La rge scale vert ical mo vements and relat ed gravitational p ro­cesses», 95- 101.

GENTILI B., MATERAZZI M ., P AMBIANCHI G . & SCALPELLA G. con la col ­lab orazione di ARINGOLI D. , CI LLA G . & F ARABOLLINI P . ( 998) - Idepositi di versante del Monte dell'A scensione (Marche Meridionalz;Italia). G eogr. Fis. D inam. Quat ., 21, 205-214.

H ACKJ .T. (1973) - Stream-profile analysis and stream-gradient index. U. S.Geol. Surv. J ourn. Res., 1,421-429.

H OUTGAST RF., VAN BALEN RT, BOUWER L. M. , BRAND G .M .B. &BRI]KER ].M. (2002) - Late Quaternary activity of the Feldbiss FaultZone, Roer Valley Rift System, the Netherlands,based on displaced flu­vial terrace fragments. T ectonophysics, 352 , 295-3 15 .

KELLER E .A. & P INTER J. (1996) - Active Tectonics, Earthquakes, Uplift,and Landscape. Prentice H all , New J ersey, 338 p p .

LI Y., YANG]., TAN 1. & D UAN F. (1999) - Impact of tectonics on alluviallandforms in the Hexi Corridor, Northw est China. G eomorphology ,28,299-308.

LIPPARINI T . (1939) - I terraziifluuiali delle Marche. Giorn . G eol. , ser. 1,13,5-22 .

MERRITTS D.]. , VINCENT K.R & WOHL E.E . (l994) - Long river profiles,tectonism, and eustasy: a guide to inte rpreting fluvia l terraces. J ourn.G eoph . Res., 99, 14031 -14050.

N ESCI O. & SAVELLID . (1986) - Cicli continenta li tardo-quaternari lungo itratti vallivi mediani delle Marche Setten trionali. G eogr. Fis. Dinam.Quar., 9, 192-2 11.

NESCI O. & SAVELLI D . (1990) - Valley terraces in the North MarcheApennines (Central Italy): Cyclic deposition and erosion. Gi orn.Geol. , Ser. 3, 52 (112) , 189-195 .

N ESCI O. & SAVELLI D . (1991a) - Successioni alluvionali terrazzate nell'Ap­pennino Nord-Marchigiano. Geogr. Fis. Dinam . Quat., 14,149-162.

N ESCI O. & SAVELLI D . (199 1b ) - Lin eamenti geomorfo logici del terrazzofluuiale del «3 0 ordine» del Bacino del Met auro (Marche settentriona­to.G eogr. Fis . Dinam . Quat ., 14 , 141 -148.

N ESCI 0 ., SAVELLI D ., CALDERONI G. , ELMI C. & VENERI F . ( 995 ) ­Le antiche piane di fo ndoualle nell'Appennino Nord-Marchigiano. In:Castiglioni G .B. & Federici P .R (eds.), «A ssetto Fisico e ProblemiAmbientali delle Pianure laliane». Mem. Soc. Geogr. It. , 53 , 293-3 12 .

N ESCI O. & SAVELLI D . (2003) - Diverging drainage in the Marche Apen­nines (Central Italy) . Quaternary Internati on al , 101 -102 ,203-209.

STRAHLER A.N . ( 952) - Hypsometric (area-altitude) analysis of erosionaltopography. Geol. Soc . Am . Bull., 63 ,11 17-1142 .

VILLA G .M. (1942) - Nuove ricerche sui terrazzi fl uuiali delle Marche.Giorn . G eol. , ser. I , 16,5-75 .

WI LCOX R E., H ARDING T .P . & SEELY D .R (973 ) - Basic wrench tecto­nics. AAP G Bull ., 57 , 74-96 .

135