gentzen style modal logics

103
Gentzen Style Modal Logics Andrew Parisi Outline Motivation Sequent Calculus P k The System P S4 The System P S5 Hypersequents The System P HS5 Quantification Gentzen Style Modal Logics Andrew Parisi University of Connecticut May 24, 2013

Upload: uconn

Post on 16-Jan-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Gentzen Style Modal Logics

Andrew Parisi

University of Connecticut

May 24, 2013

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

1 Motivation

2 Sequent Calculus

3 Pk

4 The System PS4

5 The System PS5

6 Hypersequents

7 The System PHS5

8 Quantification

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Motivations

See what can be done in modal logic without mentioningpossible worlds.

Explore the Barcan formulas.

Explore cut elimination for modal systems.

See if there are any interesting overlaps between systemsof modal logic, the Barcan formulas, and Cut.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Motivations

See what can be done in modal logic without mentioningpossible worlds.

Explore the Barcan formulas.

Explore cut elimination for modal systems.

See if there are any interesting overlaps between systemsof modal logic, the Barcan formulas, and Cut.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Motivations

See what can be done in modal logic without mentioningpossible worlds.

Explore the Barcan formulas.

Explore cut elimination for modal systems.

See if there are any interesting overlaps between systemsof modal logic, the Barcan formulas, and Cut.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Motivations

See what can be done in modal logic without mentioningpossible worlds.

Explore the Barcan formulas.

Explore cut elimination for modal systems.

See if there are any interesting overlaps between systemsof modal logic, the Barcan formulas, and Cut.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus

Sequents, Γ⇒ Σ, are ordered pairs of sets of sentences, Γ,Σ.

I will often write Γ ∪ Σ as ΓΣ.

A deduction is a series of sequents wherein each sequent iseither an axiom, or obtained from the previous by anapplication of a rule.

Deductions are restricted to being finite constructions.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus

Sequents, Γ⇒ Σ, are ordered pairs of sets of sentences, Γ,Σ.

I will often write Γ ∪ Σ as ΓΣ.

A deduction is a series of sequents wherein each sequent iseither an axiom, or obtained from the previous by anapplication of a rule.

Deductions are restricted to being finite constructions.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus

Sequents, Γ⇒ Σ, are ordered pairs of sets of sentences, Γ,Σ.

I will often write Γ ∪ Σ as ΓΣ.

A deduction is a series of sequents wherein each sequent iseither an axiom, or obtained from the previous by anapplication of a rule.

Deductions are restricted to being finite constructions.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus

Sequents, Γ⇒ Σ, are ordered pairs of sets of sentences, Γ,Σ.

I will often write Γ ∪ Σ as ΓΣ.

A deduction is a series of sequents wherein each sequent iseither an axiom, or obtained from the previous by anapplication of a rule.

Deductions are restricted to being finite constructions.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus (Cont.)

Most of the work in this system is done with proof rules.

There are rules for the connectives and structural rules.

Each connective has a right and a left rule, forintroduction into the right or left of a sequent.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus (Cont.)

Most of the work in this system is done with proof rules.

There are rules for the connectives and structural rules.

Each connective has a right and a left rule, forintroduction into the right or left of a sequent.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Sequent Calculus (Cont.)

Most of the work in this system is done with proof rules.

There are rules for the connectives and structural rules.

Each connective has a right and a left rule, forintroduction into the right or left of a sequent.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Propositional Logic, Pc

Axioms:

AxΓ, ϕ⇒ ϕ,Σ

L⊥Γ,⊥ ⇒ Σ

→ Rules:

Γ, ϕ⇒ Σ Γ′ ⇒ ψ,Σ′L→

ΓΓ′, ψ → ϕ⇒ ΣΣ′

Γ, ψ ⇒ ϕ,ΣR→

Γ⇒ ψ → ϕ,Σ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Propositional Logic, Pc

Axioms:

AxΓ, ϕ⇒ ϕ,Σ

L⊥Γ,⊥ ⇒ Σ

→ Rules:

Γ, ϕ⇒ Σ Γ′ ⇒ ψ,Σ′L→

ΓΓ′, ψ → ϕ⇒ ΣΣ′

Γ, ψ ⇒ ϕ,ΣR→

Γ⇒ ψ → ϕ,Σ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Propositional Logic, Pc

¬ Rules:

Γ⇒ ϕ,ΣL¬

Γ,¬ϕ,⇒ Σ

Γ, ϕ⇒ ΣR¬

Γ⇒ ¬ϕ,Σ

Structural Rules:

Γ⇒ ΣLWeak

Γ, ϕ⇒ ΣΓ⇒ Σ

RWeakΓ⇒ ϕ,Σ

Γ, ϕ⇒ Σ Γ′ ⇒ ϕ,Σ′Cut

ΓΓ′ ⇒ ΣΣ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Propositional Logic, Pc

¬ Rules:

Γ⇒ ϕ,ΣL¬

Γ,¬ϕ,⇒ Σ

Γ, ϕ⇒ ΣR¬

Γ⇒ ¬ϕ,Σ

Structural Rules:

Γ⇒ ΣLWeak

Γ, ϕ⇒ ΣΓ⇒ Σ

RWeakΓ⇒ ϕ,Σ

Γ, ϕ⇒ Σ Γ′ ⇒ ϕ,Σ′Cut

ΓΓ′ ⇒ ΣΣ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System Pk

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Modal Logic: Pk

Pk is the system Pc extended by the rule: �.

Γ⇒ ϕ,Σ�

�Γ⇒ �ϕ,♦Σ

Where �∆ = {�δ|δ ∈ ∆}, similarly for other connectivesand sets.

The � rule is based off of Poggiolesi [5].

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Modal Logic: Pk

Pk is the system Pc extended by the rule: �.

Γ⇒ ϕ,Σ�

�Γ⇒ �ϕ,♦Σ

Where �∆ = {�δ|δ ∈ ∆}, similarly for other connectivesand sets.

The � rule is based off of Poggiolesi [5].

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Modal Logic: Pk

Pk is the system Pc extended by the rule: �.

Γ⇒ ϕ,Σ�

�Γ⇒ �ϕ,♦Σ

Where �∆ = {�δ|δ ∈ ∆}, similarly for other connectivesand sets.

The � rule is based off of Poggiolesi [5].

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Modal Logic: Pk

Pk is the system Pc extended by the rule: �.

Γ⇒ ϕ,Σ�

�Γ⇒ �ϕ,♦Σ

Where �∆ = {�δ|δ ∈ ∆}, similarly for other connectivesand sets.

The � rule is based off of Poggiolesi [5].

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same as system Pk

The axiomatic System K licenses this rule.

Following Dosen [2] we will use a translation:

1 t(ϕ) = ϕ2 t(Γ) = t(γ1) ∧ . . . ∧ t(γn), where γi ∈ Γ.3 t(Σ) = t(σ1) ∨ . . . ∨ t(σn), where σi ∈ Σ.4 t(Γ⇒ Σ) = t(Γ)→ t(Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same as system Pk

The axiomatic System K licenses this rule.

Following Dosen [2] we will use a translation:

1 t(ϕ) = ϕ2 t(Γ) = t(γ1) ∧ . . . ∧ t(γn), where γi ∈ Γ.3 t(Σ) = t(σ1) ∨ . . . ∨ t(σn), where σi ∈ Σ.4 t(Γ⇒ Σ) = t(Γ)→ t(Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same as system Pk

The axiomatic System K licenses this rule.

Following Dosen [2] we will use a translation:

1 t(ϕ) = ϕ2 t(Γ) = t(γ1) ∧ . . . ∧ t(γn), where γi ∈ Γ.3 t(Σ) = t(σ1) ∨ . . . ∨ t(σn), where σi ∈ Σ.4 t(Γ⇒ Σ) = t(Γ)→ t(Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same system as Pk (Cont.)

Pk is the sequent calculus formulation of the axiomaticSystem K.

System K licenses the � as an inference:

t(Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same system as Pk (Cont.)

Pk is the sequent calculus formulation of the axiomaticSystem K.

System K licenses the � as an inference:

t(Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same system as Pk (Cont.)

Pk is the sequent calculus formulation of the axiomaticSystem K.

System K licenses the � as an inference:

t(Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ).

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same system as Pk (Cont.)

Pk deduces System K:

Proof of Nec:⇒ ϕ

� ⇒ �ϕ

Proof of Dist:

ϕ⇒ ϕ ψ ⇒ ψ

ϕ→ ψ,ϕ⇒ ψ

�(ϕ→ ψ),�ϕ⇒ �ψ

�(ϕ→ ψ)⇒ �ϕ→ �ψ

⇒ �(ϕ→ ψ)→ (�ϕ→ �ψ)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System K is the same system as Pk (Cont.)

Pk deduces System K:

Proof of Nec:⇒ ϕ

� ⇒ �ϕProof of Dist:

ϕ⇒ ϕ ψ ⇒ ψ

ϕ→ ψ,ϕ⇒ ψ

�(ϕ→ ψ),�ϕ⇒ �ψ

�(ϕ→ ψ)⇒ �ϕ→ �ψ

⇒ �(ϕ→ ψ)→ (�ϕ→ �ψ)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination

Cut Elimination Theorem:

If there is a deduction of Γ⇒ Σ in Pk , then there is adeduction of Γ⇒ Σ in Pk that does not use the Cut rule.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination

Cut Elimination Theorem:

If there is a deduction of Γ⇒ Σ in Pk , then there is adeduction of Γ⇒ Σ in Pk that does not use the Cut rule.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Rank of a formula:

rk(ϕ) = 0 if ϕ is atomic.rk(ϕ→ ψ) = max(rk(ϕ), rk(ψ)) + 1.rk(�ϕ) = rk(ϕ) + 1, where � ∈ {�,¬}

Rank of a deduction: The highest rank of a formula overwhich there is a cut, plus 1.

I will use `r Γ⇒ Σ to say that there is a deduction ofrank r of Γ⇒ Σ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Rank of a formula:

rk(ϕ) = 0 if ϕ is atomic.rk(ϕ→ ψ) = max(rk(ϕ), rk(ψ)) + 1.rk(�ϕ) = rk(ϕ) + 1, where � ∈ {�,¬}

Rank of a deduction: The highest rank of a formula overwhich there is a cut, plus 1.

I will use `r Γ⇒ Σ to say that there is a deduction ofrank r of Γ⇒ Σ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Rank of a formula:

rk(ϕ) = 0 if ϕ is atomic.rk(ϕ→ ψ) = max(rk(ϕ), rk(ψ)) + 1.rk(�ϕ) = rk(ϕ) + 1, where � ∈ {�,¬}

Rank of a deduction: The highest rank of a formula overwhich there is a cut, plus 1.

I will use `r Γ⇒ Σ to say that there is a deduction ofrank r of Γ⇒ Σ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Cut Elimination Theorem: If there is a Pk `r Γ⇒ Σ, thenthere is a deduction of Pk `0 Γ⇒ Σ.

Lemma 1: If Pk `r Γ, ϕ⇒ Σ and Pk `r Γ′ ⇒ ϕ,Σ′, thenPk `r ΓΓ′ ⇒ ΣΣ′.

The important case is when we have these deductions:

Γ, ψ ⇒ θ,Σ�

�Γ,�ψ ⇒ �θ,♦ΣΓ′ ⇒ ψ,Σ′

��Γ′ ⇒ �ψ,♦Σ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Cut Elimination Theorem: If there is a Pk `r Γ⇒ Σ, thenthere is a deduction of Pk `0 Γ⇒ Σ.

Lemma 1: If Pk `r Γ, ϕ⇒ Σ and Pk `r Γ′ ⇒ ϕ,Σ′, thenPk `r ΓΓ′ ⇒ ΣΣ′.

The important case is when we have these deductions:

Γ, ψ ⇒ θ,Σ�

�Γ,�ψ ⇒ �θ,♦ΣΓ′ ⇒ ψ,Σ′

��Γ′ ⇒ �ψ,♦Σ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Cut Elimination Theorem: If there is a Pk `r Γ⇒ Σ, thenthere is a deduction of Pk `0 Γ⇒ Σ.

Lemma 1: If Pk `r Γ, ϕ⇒ Σ and Pk `r Γ′ ⇒ ϕ,Σ′, thenPk `r ΓΓ′ ⇒ ΣΣ′.

The important case is when we have these deductions:

Γ, ψ ⇒ θ,Σ�

�Γ,�ψ ⇒ �θ,♦ΣΓ′ ⇒ ψ,Σ′

��Γ′ ⇒ �ψ,♦Σ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Lemma 1: Keeping the Cut rank the same

Pk `r Γ, ψ ⇒ θ,Σ

Pk `r Γ′ ⇒ ψ,Σ′

By hypothesis rk(ϕ) < rk(�ϕ) ≤ r .

So we have this deduction:

Γ, ψ ⇒ θ,Σ Γ′ ⇒ ψ,Σ′Cut

ΓΓ′ ⇒ θ,ΣΣ′�

�ΓΓ⇒ �θ,♦ΣΣ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Lemma 2: We will prove that if Pk `r+1 Γ⇒ ∆ thenPk `r Γ⇒ ∆ by induction on the length of the deduction ofPk `r+1 Γ⇒ ∆.

1 The last inference in Pk `r+1 Γ⇒ ∆ is an instance of Cut:

Λ⇒ T , ϕ Λ′, ϕ⇒ T ′Cut

ΛΛ′ ⇒ TT ′

Where ΛΛ′ = Γ and TT ′ = ∆

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Lemma 2: We will prove that if Pk `r+1 Γ⇒ ∆ thenPk `r Γ⇒ ∆ by induction on the length of the deduction ofPk `r+1 Γ⇒ ∆.

1 The last inference in Pk `r+1 Γ⇒ ∆ is an instance of Cut:

Λ⇒ T , ϕ Λ′, ϕ⇒ T ′Cut

ΛΛ′ ⇒ TT ′

Where ΛΛ′ = Γ and TT ′ = ∆

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Whenever Pk ` Γ⇒ ∆, Pk `0 Γ⇒ ∆. By induction on the cutrank:

1 The base case is trivial

2 Let Pk `r Γ⇒ ∆. By Lemma 2: Pk `r−1 Γ⇒ ∆. We canthen use IH to get the result.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination (Cont.)

Whenever Pk ` Γ⇒ ∆, Pk `0 Γ⇒ ∆. By induction on the cutrank:

1 The base case is trivial

2 Let Pk `r Γ⇒ ∆. By Lemma 2: Pk `r−1 Γ⇒ ∆. We canthen use IH to get the result.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System Pk Summary

Since Pk is equivalent to the axiomatic System K, andSystem K is sound and complete for the Kripke semantics,Pk is sound and complete for the Kripke semantics.

Cut is eliminable for Pk .

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System Pk Summary

Since Pk is equivalent to the axiomatic System K, andSystem K is sound and complete for the Kripke semantics,Pk is sound and complete for the Kripke semantics.

Cut is eliminable for Pk .

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS4

Remove � from Pk , and add these two rules[4, pg. 114]:

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ Σ

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

This is sound and complete for S4 Kripke semantics, andCut is eliminable.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS4

Remove � from Pk , and add these two rules[4, pg. 114]:

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ Σ

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

This is sound and complete for S4 Kripke semantics, andCut is eliminable.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Features of PS4

This is an extension of Pk , it proves the � rule.

Since PS4 is an extension of Pk , we already know it provesNecessitation and Distriubution.

PS4 `⇒ �ϕ→ ��ϕ and PS4 `⇒ �ϕ→ ϕ:

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Features of PS4

This is an extension of Pk , it proves the � rule.

Since PS4 is an extension of Pk , we already know it provesNecessitation and Distriubution.

PS4 `⇒ �ϕ→ ��ϕ and PS4 `⇒ �ϕ→ ϕ:

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Features of PS4

This is an extension of Pk , it proves the � rule.

Since PS4 is an extension of Pk , we already know it provesNecessitation and Distriubution.

PS4 `⇒ �ϕ→ ��ϕ and PS4 `⇒ �ϕ→ ϕ:

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

S4 Deduces PS4

S4 licenses our inferences:

L�:

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

Since t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ) in the axiom systemS4.

R�:

�Γ⇒ ϕ,ΣR� �Γ⇒ �ϕ,♦Σ

Since t(�Γ⇒ ϕ,Σ) ` t(�Γ⇒ �ϕ,♦Σ) in S4

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination for PS4

Cut Elimination for PS4

The key is the reduction lemma when the formula cut overis �ϕ:

If PS4 `r Γ,�ϕ⇒ Σ and PS4 `r Γ′ ⇒ �ϕ,Σ′, thenPS4 `r ΓΓ′ ⇒ ΣΣ′.

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ ΣΓ′ ⇒ ϕ,T

R�Γ′ ⇒ �ϕ,Σ′

where T = {σ|♦σ ∈ Σ′}.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination for PS4

Cut Elimination for PS4

The key is the reduction lemma when the formula cut overis �ϕ:

If PS4 `r Γ,�ϕ⇒ Σ and PS4 `r Γ′ ⇒ �ϕ,Σ′, thenPS4 `r ΓΓ′ ⇒ ΣΣ′.

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ ΣΓ′ ⇒ ϕ,T

R�Γ′ ⇒ �ϕ,Σ′

where T = {σ|♦σ ∈ Σ′}.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination for PS4

Cut Elimination for PS4

The key is the reduction lemma when the formula cut overis �ϕ:

If PS4 `r Γ,�ϕ⇒ Σ and PS4 `r Γ′ ⇒ �ϕ,Σ′, thenPS4 `r ΓΓ′ ⇒ ΣΣ′.

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ ΣΓ′ ⇒ ϕ,T

R�Γ′ ⇒ �ϕ,Σ′

where T = {σ|♦σ ∈ Σ′}.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Elimination for PS4

Cut Elimination for PS4

The key is the reduction lemma when the formula cut overis �ϕ:

If PS4 `r Γ,�ϕ⇒ Σ and PS4 `r Γ′ ⇒ �ϕ,Σ′, thenPS4 `r ΓΓ′ ⇒ ΣΣ′.

Γ, ϕ⇒ ΣL�

Γ,�ϕ⇒ ΣΓ′ ⇒ ϕ,T

R�Γ′ ⇒ �ϕ,Σ′

where T = {σ|♦σ ∈ Σ′}.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Summary of PS4

This is equivalent to the axioms for S4.

Cut is eliminable for this system.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Summary of PS4

This is equivalent to the axioms for S4.

Cut is eliminable for this system.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS5

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS5

The System PS5 We add to Pc the following rules [4]:

1 L�

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

2 R5�

�Γ⇒ ϕ,�ΣR5�

�Γ⇒ �ϕ,�Σ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

System PS5

The System PS5 We add to Pc the following rules [4]:

1 L�

Γ, ϕ⇒ Σ

Γ,�ϕ⇒ Σ

2 R5�

�Γ⇒ ϕ,�ΣR5�

�Γ⇒ �ϕ,�Σ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 extends PS4

1 PS5 is an extension of PS4

2 We already have L�

3 We can prove the R� rule from the L� and R5�.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 extends PS4

1 PS5 is an extension of PS4

2 We already have L�

3 We can prove the R� rule from the L� and R5�.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 extends PS4

1 PS5 is an extension of PS4

2 We already have L�

3 We can prove the R� rule from the L� and R5�.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 is equivalent to S5

1 PS5 is equivalent to S5.

2 This system can prove the S5 Axiom: ♦ϕ→ �♦ϕ, wherewe define ♦ϕ as ¬�¬ϕ.

3 S5 licenses our inferences:

t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ)t(�Γ⇒ ϕ,�Σ) ` t(�Γ⇒ �ϕ,�Σ)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 is equivalent to S5

1 PS5 is equivalent to S5.

2 This system can prove the S5 Axiom: ♦ϕ→ �♦ϕ, wherewe define ♦ϕ as ¬�¬ϕ.

3 S5 licenses our inferences:

t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ)t(�Γ⇒ ϕ,�Σ) ` t(�Γ⇒ �ϕ,�Σ)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PS5 is equivalent to S5

1 PS5 is equivalent to S5.

2 This system can prove the S5 Axiom: ♦ϕ→ �♦ϕ, wherewe define ♦ϕ as ¬�¬ϕ.

3 S5 licenses our inferences:

t(Γ, ϕ⇒ Σ) ` t(Γ,�ϕ⇒ Σ)t(�Γ⇒ ϕ,�Σ) ` t(�Γ⇒ �ϕ,�Σ)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut is not eliminable from PS5

Cut cannot be eliminated from PS5 [6].

Counterexample to Cut elimination:

Ax ϕ⇒ ϕL¬ ¬ϕ,ϕ⇒

L� �¬ϕ,ϕ⇒R¬

ϕ⇒ ¬�¬ϕ

Ax�¬ϕ⇒ �¬ϕR¬⇒ �¬ϕ,¬�¬ϕR5�⇒ �¬ϕ,�¬�¬ϕL¬¬�¬ϕ⇒ �¬�¬ϕ

Cutϕ⇒ �¬�¬ϕ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut is not eliminable from PS5

Cut cannot be eliminated from PS5 [6].

Counterexample to Cut elimination:

Ax ϕ⇒ ϕL¬ ¬ϕ,ϕ⇒

L� �¬ϕ,ϕ⇒R¬

ϕ⇒ ¬�¬ϕ

Ax�¬ϕ⇒ �¬ϕR¬⇒ �¬ϕ,¬�¬ϕR5�⇒ �¬ϕ,�¬�¬ϕL¬¬�¬ϕ⇒ �¬�¬ϕ

Cutϕ⇒ �¬�¬ϕ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut is not eliminable from PS5

Cut cannot be eliminated from PS5 [6].

Counterexample to Cut elimination:

Ax ϕ⇒ ϕL¬ ¬ϕ,ϕ⇒

L� �¬ϕ,ϕ⇒R¬

ϕ⇒ ¬�¬ϕ

Ax�¬ϕ⇒ �¬ϕR¬⇒ �¬ϕ,¬�¬ϕR5�⇒ �¬ϕ,�¬�¬ϕL¬¬�¬ϕ⇒ �¬�¬ϕ

Cutϕ⇒ �¬�¬ϕ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents

A hypersequent is a set of sequents [1]

When G and H are sequents the hypersequent composedof them is G e dH .

We can read a hypersequent, G e dH as disjunctionbetween the sequents G and H.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents

A hypersequent is a set of sequents [1]

When G and H are sequents the hypersequent composedof them is G e dH .

We can read a hypersequent, G e dH as disjunctionbetween the sequents G and H.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents

A hypersequent is a set of sequents [1]

When G and H are sequents the hypersequent composedof them is G e dH .

We can read a hypersequent, G e dH as disjunctionbetween the sequents G and H.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents (Cont.)

Some examples of rules:

G e d Γ⇒ ϕ,Σ e dH G ′ e d Γ′, ψ ⇒ Σ′ e dH ′L→

G e dG ′ e d ΓΓ′, ϕ→ ψ ⇒ ΣΣ′ e dH e dH ′

G e d Γ⇒ ϕ,Σ e dHL¬

G e d Γ,¬ϕ⇒ Σ e dH

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents (Cont.)

Some examples of rules:

G e d Γ⇒ ϕ,Σ e dH G ′ e d Γ′, ψ ⇒ Σ′ e dH ′L→

G e dG ′ e d ΓΓ′, ϕ→ ψ ⇒ ΣΣ′ e dH e dH ′

G e d Γ⇒ ϕ,Σ e dHL¬

G e d Γ,¬ϕ⇒ Σ e dH

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Hypersequents (Cont.)

New rules:

G e dG e dHContract e

G e dHG e dH

Weak eG e dG ′ e dH

G e dHExchange e

H e dG

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

New Rules (Cont.)

G e d ΓΓ′ ⇒ ΣΣ′ e dHS

G e d Γ⇒ Σ e d Γ′ ⇒ Σ′ e dH

G e d Γ⇒ ϕ,Σ e dH G ′ e d Γ′, ϕ⇒ Σ′ e dH ′Cut

G e dG ′ e d ΓΓ′ ⇒ ΣΣ′ e dH e dH ′

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

The Sytem PHS5

1 PS4 within a sequent.

2 PHS5 proves the S5 Axiom

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

The Sytem PHS5

1 PS4 within a sequent.

2 PHS5 proves the S5 Axiom

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 is equivalent to S5 (Cont.)

S5 licenses PHS5 inferences:

A hypersequent, G e d Γ⇒ Σ e dH is represented in S5as: t(G ) ∨ t(Γ⇒ Σ) ∨ t(H) [1].

New Cases:

G e dG e dHContract e

G e dHG e dH

Weak eG e dG ′ e dH

G e dHExchange e

H e dG

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 is equivalent to S5 (Cont.)

S5 licenses PHS5 inferences:

A hypersequent, G e d Γ⇒ Σ e dH is represented in S5as: t(G ) ∨ t(Γ⇒ Σ) ∨ t(H) [1].

New Cases:

G e dG e dHContract e

G e dHG e dH

Weak eG e dG ′ e dH

G e dHExchange e

H e dG

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 is equivalent to S5 (Cont.)

S5 licenses PHS5 inferences:

A hypersequent, G e d Γ⇒ Σ e dH is represented in S5as: t(G ) ∨ t(Γ⇒ Σ) ∨ t(H) [1].

New Cases:

G e dG e dHContract e

G e dHG e dH

Weak eG e dG ′ e dH

G e dHExchange e

H e dG

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 is equivalent to S5 (Cont.)

S5 lisences Splitting:

G e d ΓΓ′ ⇒ ΣΣ′ e dHS

G e d Γ⇒ Σ e d Γ′ ⇒ Σ′ e dH

A closer look:

�p ⇒ pS

�p ⇒ed⇒ p

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 is equivalent to S5 (Cont.)

S5 lisences Splitting:

G e d ΓΓ′ ⇒ ΣΣ′ e dHS

G e d Γ⇒ Σ e d Γ′ ⇒ Σ′ e dHA closer look:

�p ⇒ pS

�p ⇒ed⇒ p

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut is Eliminable for PHS5

Cut Elimination for PHS5

The important lemma is Reduction: IfPHS5 `r G e d Γ, ϕ⇒ Σ e dH andPHS5 `r G ′ e d Γ′ ⇒ ϕ,Σ e dH ′ thenPHS5 `r G e dG ′ e d ΓΓ′ ⇒ ΣΣ′ e dH e dH ′.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Cut Free ♦ϕ→ �♦ϕ, S in action

PHS5 `0 ϕ→ �¬�¬ϕ [1]:

ϕ⇒ �¬�¬ϕ,ϕL¬ ¬ϕ,ϕ⇒ �¬�¬ϕ

L� �¬ϕ,ϕ⇒ �¬�¬ϕS

ϕ⇒ �¬�¬ϕ e d�¬ϕ⇒R¬

ϕ⇒ �¬�¬ϕ e d⇒ ¬�¬ϕR�

ϕ⇒ �¬�¬ϕ e d⇒ �¬�¬ϕWeak i

ϕ⇒ �¬�¬ϕ e dϕ⇒ �¬�¬ϕContraction e

ϕ⇒ �¬�¬ϕR→ ⇒ ϕ→ �¬�¬ϕ

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Adding Quantification

We can add the sequent rules for quantification.

Γ⇒ ϕ(x),ΣR∀

Γ⇒ ∀xϕ(x),Σ

Γ, ϕ(t)⇒ ΣL∀

Γ,∀xϕ(x)⇒ Σ

Where x is an eigenvariable, and t is any term.

Let ∃xϕ be defined as ¬∀x¬ϕ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Adding Quantification

We can add the sequent rules for quantification.

Γ⇒ ϕ(x),ΣR∀

Γ⇒ ∀xϕ(x),Σ

Γ, ϕ(t)⇒ ΣL∀

Γ,∀xϕ(x)⇒ Σ

Where x is an eigenvariable, and t is any term.

Let ∃xϕ be defined as ¬∀x¬ϕ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Adding Quantification

We can add the sequent rules for quantification.

Γ⇒ ϕ(x),ΣR∀

Γ⇒ ∀xϕ(x),Σ

Γ, ϕ(t)⇒ ΣL∀

Γ,∀xϕ(x)⇒ Σ

Where x is an eigenvariable, and t is any term.

Let ∃xϕ be defined as ¬∀x¬ϕ.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Barcan Formulas

BF: ∀x�ϕ→ �∀xϕ

CBF: �∀xϕ→ ∀x�ϕOur sequent systems prove only CBF [3].

PS4 can’t prove BF:

?ϕ(t)⇒ ∀xϕ(x)

L��ϕ(t)⇒ ∀xϕ(x)

R��ϕ(t)⇒ �∀xϕ(x)

L∀ ∀x�ϕ(x)⇒ �∀xϕ(x)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Barcan Formulas

BF: ∀x�ϕ→ �∀xϕCBF: �∀xϕ→ ∀x�ϕ

Our sequent systems prove only CBF [3].

PS4 can’t prove BF:

?ϕ(t)⇒ ∀xϕ(x)

L��ϕ(t)⇒ ∀xϕ(x)

R��ϕ(t)⇒ �∀xϕ(x)

L∀ ∀x�ϕ(x)⇒ �∀xϕ(x)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Barcan Formulas

BF: ∀x�ϕ→ �∀xϕCBF: �∀xϕ→ ∀x�ϕOur sequent systems prove only CBF [3].

PS4 can’t prove BF:

?ϕ(t)⇒ ∀xϕ(x)

L��ϕ(t)⇒ ∀xϕ(x)

R��ϕ(t)⇒ �∀xϕ(x)

L∀ ∀x�ϕ(x)⇒ �∀xϕ(x)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Barcan Formulas

BF: ∀x�ϕ→ �∀xϕCBF: �∀xϕ→ ∀x�ϕOur sequent systems prove only CBF [3].

PS4 can’t prove BF:

?ϕ(t)⇒ ∀xϕ(x)

L��ϕ(t)⇒ ∀xϕ(x)

R��ϕ(t)⇒ �∀xϕ(x)

L∀ ∀x�ϕ(x)⇒ �∀xϕ(x)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5 proves BF

PHS5 proves BF:

ϕ(a)⇒ �∀xϕ(x), ϕ(a)L�

�ϕ(a)⇒ �∀xϕ(x), ϕ(a)S

�ϕ(a)⇒ �∀xϕ(x) e d⇒ ϕ(a)L∀ ∀x�ϕ(x)⇒ �∀xϕ(x) e d⇒ ϕ(a)

R∀ ∀x�ϕ(x)⇒ �∀xϕ(x) e d⇒ ∀xϕ(x)R� ∀x�ϕ(x)⇒ �∀xϕ(x) e d⇒ �∀xϕ(x)

Weak i ∀x�ϕ(x)⇒ �∀xϕ(x) e d ∀x�ϕ(x)⇒ �∀xϕ(x)

∀x�ϕ(x)⇒ �∀xϕ(x)

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

PHS5, BF, and Cut

Conjecture: There is a close relation between Cut, BF andaxiom B. Hughes and Cresswell [3] point out that BF is invalidwithout Axiom B. Perhaps Cut/Hypersequent Calculus is alsorequired.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Arnon Avron.The Method of Hypersequents in the Proof Theory ofPropositional Non-Classical Logics, volume Logic: FromFoundations to Applications.Oxford University Press, New York, 1993.

Kosta Dosen.Sequent-systems for modal logics.The Journal of Symbolic Logic, 50(1), 1985.

G Hughes and M Cresswell.A New Introduction to Modal Logic.Taylor and Francis, 2012.

M. Ohnishi and K. Matsumoto.Gentzen method in modal calculi.Osaka Mathematical Journal, 9:113–130, 1957.

Gentzen StyleModal Logics

Andrew Parisi

Outline

Motivation

SequentCalculus

Pk

The SystemPS4

The SystemPS5

Hypersequents

The SystemPHS5

Quantification

Francesca Poggiolesi.Gentzen Calculi for Modal Propositional Logic.Springer, 2010.

Phiniki Stouppa.A deep inference system for the modal logic s5.Studia Logica: An International Journal for SymbolicLogic, 85(2):199–214, March 2007.