final feasibility study [redacted] - records collections

377
REGION 5 RAC2 REMEDIAL ACTION CONTRACT FOR Remedial, Enforcement Oversight, and Non-Time Critical Removal Activities at Sites of Release or Threatened Release of Hazardous Substances in Region 5 FINAL FEASIBILITY STUDY Pike and Mulberry Streets PCE Plume Site Martinsville, Morgan County, Indiana WA No. 262-RICO-B57N/Contract No. EP-S5-06-01 December 11, 2019 This document has been redacted to protect personally identifiable information. PREPARED FOR U.S. Environmental Protection Agency PREPARED BY FOR OFFICIAL USE ONLY 951485

Upload: khangminh22

Post on 23-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

REGION 5 RAC2R E M E D I A L A C T I O N C O N T R A C T F O R

Remedial, Enforcement Oversight, and Non-Time Critical Removal Activities at Sites of Release or Threatened Release of Hazardous Substances in Region 5

FINAL FEASIBILITY STUDYPike and Mulberry Streets PCE Plume SiteMartinsville, Morgan County, IndianaWA No. 262-RICO-B57N/Contract No. EP-S5-06-01

December 11, 2019

This document has been redacted to protect personallyidentifiable information.

PREPARED FOR

U.S. Environmental Protection Agency

PREPARED BY

FOR OFFICIAL USE ONLY

9 5 1 4 8 5

Final Feasibility Study Pike and Mulberry Streets PCE Plume Site Martinsville, Morgan County, IndianaWA No. 262-RICO-B57N/Contract No. EP-S5-06-01

Prepared for

December 11, 2019

AX0420181244MKE iii

Executive Summary CH2M HILL, Inc. (CH2M) prepared this feasibility study (FS) to evaluate remedial alternatives for the Pike and Mulberry Streets PCE Plume Site in Martinsville, Morgan County, Indiana (the site). The U.S. Environmental Protection Agency (EPA) placed the site on the Superfund program’s National Priorities List in May 2013 and the work is being performed pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act. The remedial alternatives were developed and preliminarily screened in the remedial alternatives screening (RAS) report, which was used as the basis for Sections 1 through 3 of this FS. The purpose of the FS is to develop site-specific conceptual designs and detailed analyses of alternatives retained from the RAS. The alternatives were developed to address unacceptable risks estimated for human health and the environment as well as to meet applicable or relevant and appropriate requirements (ARARs).

The former Master Wear facility (the Facility) operated as an industrial dry cleaner on the west side of the courthouse square in downtown Martinsville from January 1986 to November 1991 and is assumed to have been the main source of tetrachloroethene (PCE) to the site. Master Wear performed laundering and dry cleaning using PCE for commercial and institutional organizations. Other industries and businesses were also identified as possible sources of PCE and other chlorinated solvents, including several dry-cleaning facilities that operated historically in Martinsville. Based on historical information and subsequent investigations, the potential sources of contamination at the site are likely historical discharges of waste material and solvents from the Facility or other potential sources.

The site primarily consists of a PCE groundwater plume that is centered near the intersection of Pike and Mulberry Streets, near where the Facility is located and extends downgradient to the municipal wellfield. Since 2005, the City of Martinsville (the City) has used activated carbon filtration to treat water from its three municipal wells for its public drinking water supply. The contaminants of interest (COI) at the site consist of PCE and daughter products, including trichloroethene (TCE).

Various site investigations were performed in the past and a Time-Critical Removal Action (TCRA), overseen by EPA, was conducted from 2003 through 2008 at the Facility to address contamination in soil, groundwater, and soil vapor. The TCRA included installing a combination soil vapor extraction (SVE) and air sparging (AS) system in the source zone along with individual subslab depressurization (SSD) vapor intrusion mitigation systems in nearby buildings. The TCRA remedial systems were operated starting in 2005 and turned off at the end of March 2008, at which time indoor air, soil, and groundwater sample results indicated that the closure criteria had been met. The SVE/AS system and individual SSD systems were later removed.

CH2M conducted a remedial investigation (RI) at the site consisting of seven phases from April 2015 through January 2017. Groundwater, soil, and soil vapor samples were collected and analyzed for volatile organic compounds (VOCs) during the first five phases of the RI. Phase 6 consisted of a vapor intrusion investigation during which subslab soil vapor, crawlspace air, and indoor air samples were collected. Phase 7 was the second round of vapor intrusion sampling, which was performed during the colder months (the “heating months”).

Based on soil sampling results, soil contamination is limited; the TCE concentration in a shallow soil sample located immediately to the north of the Facility exceeded EPA’s residential Regional Screening Level. Based on groundwater sampling, PCE was the only constituent detected in groundwater above the Maximum Contaminant Level (MCL) of 5 micrograms per liter (µg/L). Other daughter products of PCE degradation have also been detected, though infrequently, at various locations within the monitoring well network. The results of soil vapor sampling indicate that the primary COIs in soil vapor are PCE and TCE. The PCE soil vapor plume seems to be extensive throughout the sampled area, with high-concentration areas present in the central, northwest, and southeastern portion of the site. The TCE soil vapor plumes are

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

iv AX0420181244MKE

more limited in extent. PCE and TCE are likely migrating through soil vapor and preferential flow pathways (for example, within permeable utility bedding materials) in the subsurface away from the Facility. The vapor intrusion investigation detected PCE and TCE at concentrations exceeding the screening levels in subslab soil vapor, crawlspace air, and indoor air, indicating that the vapor intrusion pathway is complete at some buildings.

A human health risk assessment (HHRA) and screening-level ecological risk assessment (SLERA) were completed as part of the RI. The SLERA concluded that VOC concentrations in soil and groundwater do not present significant risk to ecological receptors, and no further evaluation relative to ecological risk is necessary. The HHRA evaluated potential risks to current and future residents (adults and young children) and workers posed by detected chemicals at the site through various exposure pathways. PCE was identified as a contaminant of concern (COC) in groundwater and in soil vapor at 15 residential or commercial properties, TCE was identified as a COC in soil vapor at 2 residential or commercial properties, and both PCE and TCE were identified as COCs in soil vapor and indoor air at 2 residential or commercial properties.

Chemical-specific, location-specific, and action-specific ARARs were identified. Chemical-specific ARARs include the National Primary Drinking Water Standards, which establish primary MCLs for public water systems measured at the tap. Indiana Primary Drinking Water Standards are also ARARs and are equivalent to the federal MCLs. The location-specific ARARs for the site are the Migratory Bird Treaty Act and the National Historic Preservation Act. The Endangered Species Act may also be an ARAR, and it therefore will be evaluated further as the remedy progresses. Action-specific ARARs that will be triggered by excavating soil relate to the management and handling of soil, erosion, and sediment control during construction, and control of air pollution, specifically fugitive dust emissions. Underground injection control regulations, which apply to the subsurface emplacement of fluids, would be applicable to in situ groundwater treatment remedies that inject chemicals or substrates into the subsurface. Groundwater ex situ treatment ARARs at the City Water Treatment Plant (WTP) include achievement of all Safe Drinking Water Act MCLs in the treated water and potentially include air emissions regulations related to the National Ambient Air Quality Standards and/or Hazardous Air Pollutants.

Remedial action objectives (RAOs) and preliminary remediation goals (PRGs) were developed to address groundwater and soil vapor. The proposed human health risk based PRGs for the site are presented in the following table:

Proposed Human Health Risk Based Preliminary Remediation Goals

Basis PCEb TCEb

Groundwater

MCLa 5 µg/L NA

Soil Vapor

Commercial, TCR = 1x10-4, THQ = 1 5,840 µg/m3 292 µg/m3

Commercial, TCR = 1x10-5, THQ = 1 5,840 µg/m3 292 µg/m3

Commercial, TCR = 1x10-6, THQ = 1 1,572 µg/m3 100 µg/m3

Residential, THQ = 1 1,390 µg/m3 70 µg/m3

Notes:

a EPA’s National Primary Drinking Water Regulations b The lower of the cancer-based and noncancer-based PRGs are presented for soil vapor PRGs

µg/m3 = micrograms per cubic meter NA = not applicable (not a COC in groundwater) TCR = target cancer risk THQ = target hazard quotient

EXECUTIVE SUMMARY

AX0420181244MKE v

The following groundwater alternatives were developed and analyzed as part of this FS:

• Alternative GW1—No Action

• Alternative GW2–Water Treatment Plant Alternatives

• Alternative GW3—Monitored Natural Attenuation and Institutional Controls

• Alternative GW5—In Situ Chemical Reduction, Long-term Monitoring (LTM), and Institutional Controls

• Alternative GW6—In Situ Chemical Oxidation, LTM, and Institutional Controls

The following soil vapor alternatives were developed and analyzed to address the indoor air pathway:

• Alternative SV1—No Action

• Alternative SV3—Pathway Sealing, vapor intrusion mitigation (VIM), LTM, and Institutional Controls

• Alternative SV4—Soil Vapor Source Removal, LTM, and Institutional Controls

• Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

Although the “no action” alternatives are not effective in protecting human health and the environment, they are retained as alternatives to provide a baseline for comparison as required by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

The groundwater and soil vapor alternatives were evaluated against seven of the nine NCP criteria (community acceptance and state acceptance criteria will be evaluated based on the state and public comments on the proposed plan). For the purposes of the groundwater comparative evaluation, the FS assumes that Alternative GW2A (treatment at the City WTP with granular activated carbon) represents the WTP operations that will be implemented concurrently with Alternatives GW3, GW5, and GW6. The implementation of GW2A (or the other GW2 subalternatives) provides protection of the drinking water pathway to City residents while Alternatives GW3, GW5, and GW6 address treatment of the PCE plume. The findings of the comparative analysis indicate that Alternatives GW3, GW5, and GW6 are protective of human health and the environment and capable of complying with ARARs. While GW3 was the lowest-cost alternative, GW5 and GW6 can reduce PCE concentrations to below PRGs in about half the time.

Alternatives SV3 and SV5 are the only two alternatives that are protective of human health and the environment and comply with ARARs. SV5 is higher in capital cost (but overall lower cost than SV3) and includes removal of sources of soil vapor contamination, which provides better protection to current and future receptors.

AX0420181244MKE vii

Contents Section Page

Executive Summary ........................................................................................................................... iii

Acronyms and Abbreviations ............................................................................................................. xi

1 Introduction ....................................................................................................................... 1-1 1.1 Purpose and Organization of Report ............................................................................... 1-1 1.2 Background Information .................................................................................................. 1-2

1.2.1 Site Description ................................................................................................... 1-2 1.2.2 City of Martinsville Water Treatment Plant and Wellfield ................................. 1-2 1.2.3 Site History .......................................................................................................... 1-3 1.2.4 Investigations and Site Activities ........................................................................ 1-4

1.3 Summary of Site Characteristics ...................................................................................... 1-6 1.3.1 Site Geology ........................................................................................................ 1-6 1.3.2 Site Surface Water Hydrology ............................................................................. 1-6 1.3.3 Site Hydrogeology ............................................................................................... 1-6 1.3.4 Site Buildings and Structures .............................................................................. 1-7 1.3.5 Ecological Habitat ............................................................................................... 1-7

1.4 Summary of Soil and Groundwater Characteristics ......................................................... 1-7 1.4.1 Soil....................................................................................................................... 1-7 1.4.2 Groundwater ....................................................................................................... 1-7

1.5 Nature and Extent of Contamination .............................................................................. 1-8 1.5.1 Soil....................................................................................................................... 1-8 1.5.2 Groundwater ....................................................................................................... 1-9 1.5.3 Soil Vapor .......................................................................................................... 1-10 1.5.4 Subslab Soil Vapor, Crawlspace Air, and Indoor Air ......................................... 1-11

1.6 Contaminant Fate and Transport Summary .................................................................. 1-12 1.7 Conceptual Site Model ................................................................................................... 1-12

1.7.1 Contaminant Release ........................................................................................ 1-13 1.7.2 Surface and Unsaturated Subsurface Soil ......................................................... 1-13 1.7.3 Saturated Soil and Groundwater ...................................................................... 1-13 1.7.4 Soil Vapor .......................................................................................................... 1-13

1.8 Risk Assessment Summary ............................................................................................. 1-15 1.8.1 Human Health Risk Assessment........................................................................ 1-15 1.8.2 Ecological Risk Assessment ............................................................................... 1-16

2 Identification and Screening of Technologies ....................................................................... 2-1 2.1 Applicable or Relevant and Appropriate Requirements .................................................. 2-1

2.1.1 Overview of ARARs ............................................................................................. 2-1 2.1.2 Chemical-specific ARARs ..................................................................................... 2-2 2.1.3 Location-specific ARARs ...................................................................................... 2-2 2.1.4 Action-specific ARARs ......................................................................................... 2-3

2.2 Development of Remedial Action Objectives .................................................................. 2-4 2.3 Development of Preliminary Remediation Goals ............................................................ 2-4 2.4 Contaminated Media Exceeding PRGs ............................................................................. 2-6

2.4.1 Groundwater ....................................................................................................... 2-6 2.4.2 Soil Vapor ............................................................................................................ 2-6

2.5 General Response Actions ............................................................................................... 2-7

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

viii AX0420181244MKE

2.5.1 No Action ............................................................................................................ 2-7 2.5.2 Institutional Controls .......................................................................................... 2-7 2.5.3 Collection ............................................................................................................ 2-7 2.5.4 Treatment ........................................................................................................... 2-7 2.5.5 Disposal ............................................................................................................... 2-7

2.6 Identifying and Screening Technology Types and Process Options ................................. 2-8 2.7 Process Options Evaluation ............................................................................................. 2-9

3 Development and Screening of Alternatives ........................................................................ 3-1 3.1 Development of Alternatives ........................................................................................... 3-1

3.1.1 Approach for the Development of Alternatives ................................................. 3-1 3.1.2 Groundwater ....................................................................................................... 3-1 3.1.3 Soil Vapor ............................................................................................................ 3-9

3.2 Preliminary Screening of Alternatives ........................................................................... 3-15 3.2.1 Preliminary Screening Approach ...................................................................... 3-15 3.2.2 Groundwater ..................................................................................................... 3-16 3.2.3 Soil Vapor .......................................................................................................... 3-25

3.3 Summary of Screening Results ...................................................................................... 3-29 3.3.1 Groundwater ..................................................................................................... 3-29 3.3.2 Soil Vapor .......................................................................................................... 3-29

4 Detailed Analysis of Alternatives ......................................................................................... 4-1 4.1 Evaluation Process and Criteria ....................................................................................... 4-1

4.1.1 NCP Threshold Criteria ........................................................................................ 4-2 4.1.2 NCP Balancing Criteria ........................................................................................ 4-3 4.1.3 NCP Modifying Criteria ....................................................................................... 4-5

4.2 Remedial Alternative Descriptions .................................................................................. 4-5 4.2.1 Groundwater Alternatives .................................................................................. 4-5 4.2.2 Soil Vapor Alternatives ..................................................................................... 4-10

4.3 Detailed Evaluation ........................................................................................................ 4-20 4.4 Comparative Evaluation ................................................................................................. 4-20

4.4.1 Groundwater ..................................................................................................... 4-20 4.4.2 Soil Vapor .......................................................................................................... 4-23

5 Summary and Conclusions ................................................................................................... 5-1

6 References .......................................................................................................................... 6-1

Appendixes

A Closure Report for the Former Masterwear Facility Removal Action B City of Martinsville Utility Maps C PCE Concentrations in Shallow Groundwater over Time for Select Monitoring Wells D Cost Estimates for Alternatives E REMChlor Modeling Results

CONTENTS

AX0420181244MKE ix

Tables

1-1 Summary of Dry-Cleaning Facilities in Martinsville 1-2 Summary of Remedial Investigation Activities 1-3 Summary of Hydrogeological Conditions of Water-Bearing Zones 1-4 Statistical Summary of Groundwater Quality Parameters and Field Measurements 1-5 Statistical Summary of Groundwater General Chemistry 1-6 Summary of Phase 6 and Phase 7 Vapor Intrusion Sampling 1-7 Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence Evaluation 1-8 Pathway and Receptor Screening 1-9 Summary of Media/Receptor Contaminants of Concern 2-1 Applicable or Relevant and Appropriate Requirements 2-2 Preliminary Identification of Historic Resources in Martinsville, Indiana 2-3 Preliminary Remediation Goals 2-4 Estimate of Groundwater Area and Volume Exceeding PRGs 2-5 Estimate of Soil Vapor Area and Volume Exceeding PRGs 2-6 Identification and Screening of Groundwater Remedial Technology and Process Options 2-7 Identification and Screening of Soil Vapor Remedial Technology and Process Options 2-8 Evaluation of Retained Groundwater Technologies and Process Options 2-9 Evaluation of Retained Soil Vapor Technologies and Process Options 2-10 Technologies and Process Options Retained for Assembly into Groundwater Alternatives 2-11 Technologies and Process Options Retained for Assembly into Soil Vapor Alternatives 3-1 Preliminary Screening of Groundwater Alternatives 3-2 Preliminary Screening of Soil Vapor Alternatives 3-3 Summary of PCE Concentration Trends in Shallow Groundwater for Select Monitoring Wells 3-4 Total Oxidant Demand Results 4-1 Air Stripper Design Parameters 4-2 AOP Design Parameters 4-3 Groundwater Alternative Sampling Frequency and Analytical List 4-4 Summary of Actions by Property – Alternatives SV3 and SV5 4-5 VIM Summary – Alternatives SV3 and SV5 4-6 Summary of Actions by Property – Alternative SV4 4-7a, b Detailed Evaluation of Remedial Alternatives – Groundwater4-8 Detailed Evaluation of Remedial Alternatives – Soil Vapor 4-9 Comparative Evaluation Summary of Groundwater Remedial Alternatives 4-10 Comparative Evaluation Summary of Soil Vapor Remedial Alternatives

Figures

1-1 Site Location Map 1-2 Site Features and Land Use 1-3 Possible PCE Plume Sources 1-4 Geologic Cross Section 1-5 Potentiometric Surface – Shallow Water Bearing Zone 1-6 Potentiometric Surface – Intermediate Water Bearing Zone 1-7 Potentiometric Surface – Top of Bedrock Water Bearing Zone 1-8 VOC Concentrations in Soil – Phase 2 (July/August 2015) 1-9 PCE Concentrations in Shallow Groundwater (2010 – 2015) 1-10 PCE Exceedances in Shallow Groundwater – Phase 3 1-11 PCE Exceedances of VISL in Shallow Groundwater (Phases 1 through 3)

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

x AX0420181244MKE

1-12 TCE Soil Vapor Results (Phases 2 through 5) and Property Type Designations 1-13 PCE Soil Vapor Results (Phases 2 through 5) and Property Type Designations 1-14 Properties Exceeding Screening Levels for PCE or TCE during Phases 6 and 7 Vapor Intrusion Investigation 1-15 Conceptual Site Model – PCE in Groundwater and Soil Vapor 1-16 Conceptual Site Model – TCE in Groundwater and Soil Vapor 1-17 Conceptual Site Model – PCE and TCE in Soil 1-18 Conceptual Site Model – Vapor Intrusion 2-1 Shallow Groundwater Area Exceeding PRGs 2-2 Intermediate Groundwater Area Exceeding PRGs 2-3 Soil Vapor Area Exceeding Residential PRGs 2-4 Soil Vapor Area Exceeding Commercial/Industrial PRGs 4-1 Alternatives GW5 and GW6 – Conceptual Injection Zone Layout 4-2 Alternatives GW5 and GW6 Cross Section 4-3 Example Subslab Depressurization System 4-4 Example Subslab Depressurization System Detail 4-5 Example Submembrane Depressurization System 4-6 Example Submembrane Depressurization System Detail 4-7 Alternatives SV4 and SV5 – Soil Vapor Source Removal Conceptual Design

AX0420181244MKE xi

Acronyms and Abbreviations µg/kg micrograms per kilogram µg/L micrograms per liter µg/m3 micrograms per cubic meter ADT active depressurization technology AEE Astbury Environmental Engineering, Inc. amsl above mean sea level AOP advanced oxidation process ARAR applicable or relevant and appropriate requirement AS air sparging ATSDR Agency for Toxic Substances and Disease Registry bgs below ground surface CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations CH2M CH2M HILL, Inc. 1,1-DCE 1,1-dichloroethene cis-1,2-DCE cis-1,2-dichloroethene City City of Martinsville, Indiana COC contaminant of concern COI contaminant of interest CSM conceptual site model DPT direct-push technology ELCR excess lifetime cancer risk EPA U.S. Environmental Protection Agency ERD enhanced reductive dechlorination Facility the former Master Wear facility FS feasibility study ft/year feet per year GAC granular activated carbon GC/MS gas chromatograph/mass spectrometer GCW groundwater circulating wells gpm gallons per minute GRA general response action H2O2 hydrogen peroxide HAP hazardous air pollutants HAPSITE Hazardous Air Pollutants Onsite HCA high-concentration area HHRA human health risk assessment HI hazard index HQ hazard quotient IDCL Industrial Default Cleanup Levels IDEM Indiana Department of Environmental Management ISCO in situ chemical oxidation ISCR in situ chemical reduction Kh Henry’s Law constant Koc organic carbon/water partition coefficient LTM long-term monitoring LUC land-use control

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

xii AX0420181244MKE

Master Wear Master Wear, Inc. MCL maximum contaminant level mg/L milligrams per liter mgd million gallons per day MNA monitored natural attenuation mV millivolts NA not applicable NCP National Oil and Hazardous Substances Pollution Contingency Plan O&M operation and maintenance OM&M operation, maintenance, and monitoring ORP oxidation-reduction potential OSWER Office of Solid Waste and Emergency Response PA preliminary assessment PCA pre-closure assessment PCE tetrachloroethene PRG preliminary remediation goal PVC polyvinyl chloride RAO remedial action objective RAS remedial alternatives screening RDCL Residential Default Closure Level REMChlor Remediation Evaluation Model for Chlorinated Solvents RI remedial investigation RISC Risk Integrated System of Closure ROW right-of-way RSL regional screening level SI site investigation site Pike and Mulberry Streets PCE Plume Site in Morgan County, Indiana SLERA screening-level ecological risk assessment SMD sub-membrane depressurization SRM sorptive-reactive media SSD subslab depressurization SVE soil vapor extraction SVP soil vapor point TBC to be considered TCR target cancer risk TCRA Time-Critical Removal Action TCE trichloroethene THQ target hazard quotient TOC total organic carbon trans-1,2-DCE trans-1,2-dichloroethene UV ultraviolet VIM vapor intrusion mitigation VIMS vapor intrusion mitigation system VISL vapor intrusion screening level VOC volatile organic compound WTP water treatment plant yd3 cubic yards ZVI zero-valent iron

AX0420181244MKE 1-1

SECTION 1

Introduction CH2M HILL, Inc. (CH2M) prepared this feasibility study (FS) to evaluate remedial alternatives for the Pike and Mulberry Streets PCE Plume Site in Martinsville, Morgan County, Indiana (site). The U.S. Environmental Protection Agency (EPA) placed the site on the Superfund program’s National Priorities List in May 2013, and the work is being performed pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This document was prepared for the EPA under Work Assignment Nos. 189-RICO-B57N and 262-RICO-B57N, Contract No. EP-S5-06-01.

1.1 Purpose and Organization of Report The purpose of the FS is to develop site-specific conceptual designs and perform detailed analyses of alternatives to address unacceptable risks estimated for human health and the environment and to meet applicable or relevant and appropriate requirements (ARARs). As specified in EPA’s Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final (EPA 1988a) and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), the alternatives encompass a range of alternatives in which treatment is used to reduce the toxicity, mobility, or volume of wastes but vary in the degree to which long-term management of residuals or untreated waste is required. In addition, a no-action alternative was also evaluated. The FS is organized as follows:

• Section 1 (Introduction)—The remainder of Section 1 summarizes the site description, history,investigation activities, and past remediation activities for context purposes. This summary of theFinal Remedial Investigation Report for Pike and Mulberry Streets PCE Plume Site, Martinsville,Morgan County, Indiana (CH2M 2018), includes site-specific characteristics, nature and extent ofcontamination, contaminant fate and transport, and risk assessments.

• Section 2 (Identification and Screening of Technologies)—Section 2 includes the evaluation ofARARs, development of remedial action objectives (RAOs), development of preliminary remediationgoals (PRGs), calculation of the extent of contaminated media, development of general responseactions (GRAs), identification of treatment technologies, and screening of technologies.

− ARARs—Remedial actions performed under CERCLA, also known as Superfund, must meetARARs for selected remedies unless a specific ARAR waiver is invoked.

− RAOs—Site-specific RAOs that are protective of human health and the environment areidentified based on existing information. The RAOs specify the contaminants and media ofconcern, the exposure routes and receptors, and an acceptable contaminant level or range oflevels for each exposure route (that is, PRGs).

− PRGs—PRGs are risk-based or ARAR-based chemical-specific concentrations that act asquantitative goals to define the extent of cleanup needed to achieve the RAOs. The PRGs areused to define the extent of contaminated media requiring remedial action.

− Extent of contaminated media—The extent of contaminated media that exceeds the PRGs isquantified, such as by areas, volumes, or locations. GRAs, which apply to the extent ofcontaminated media, are developed for each medium of interest by defining containment,treatment, removal, disposal, or other actions, singly or in combination, to satisfy RAOs.

− GRAs—The GRAs consider requirements for protectiveness as identified in the RAOs and thesite’s chemical and physical characteristics.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-2 AX0420181244MKE

− Treatment technologies—Applicable remedial technologies are identified based on the GRAs.Treatment technologies are screened so that technologies are applicable to the contaminantspresent, their physical matrix, and other site characteristics.

• Section 3 (Development and Screening of Alternatives)—Representative remedial technologies andprocess options resulting from the screening are carried forward into the alternative developmentstage. This effort includes combining representative technologies and GRAs into alternatives anddeveloping alternatives in sufficient detail to identify action-specific ARARs. Potential remedialalternatives are screened with respect to three criteria: effectiveness, implementability, and cost.Section 3 presents the development of remedial alternatives for each of the media at the site andthe preliminary screening of remedial alternatives.

• Section 4 (Detailed Analysis of Alternatives)—Section 4 presents a detailed analysis of thealternatives, including detailed descriptions, costs, alternative assessments, and comparativeanalysis. The detailed descriptions of alternatives include conceptual designs and assumptions madefor costing purposes. The detailed analysis was performed using the nine evaluation criteria inaccordance with EPA’s Guidance for Conducting Remedial Investigations and Feasibility Studiesunder CERCLA, Interim Final (EPA 1988a).

• Section 5 (Summary and Conclusions)—Section 5 presents the summary and conclusions of theevaluations.

• Section 6 (References)—Section 6 documents the references used to prepare this report.

1.2 Background Information Background information for the site is summarized from the remedial investigation (RI) report (CH2M 2018) and other historical reports that are part of the administrative record.

1.2.1 Site Description Martinsville, Indiana, is located approximately 30 miles southwest of Indianapolis, Indiana (Figure 1-1). The town’s residential population is approximately 11,800 people (2010 Census) and 5,100 housing units. Martinsville is surrounded by rural farmland. The north-to-south-flowing White River is located 1.5 miles to the west/northwest of Martinsville.

The site is primarily a tetrachloroethene (PCE) groundwater plume that is centered near the intersection of Pike and Mulberry Streets in Martinsville and extends downgradient to the municipal wellfield. This wellfield is used as a public drinking water supply by the City of Martinsville (the City). Figure 1-2 depicts site features, land use, monitoring wells, and municipal wells. The contaminants of interest (COI) at the site, which are CERCLA hazardous substances, consist of PCE and daughter products, including trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride. However, the daughter products are not frequently detected. The site also includes soil vapor contamination resulting from COIs volatilizing from soil and groundwater.

1.2.2 City of Martinsville Water Treatment Plant and Wellfield The City operates three municipal wells (PW-1, PW-2, and PW-3) that draw water from the unconsolidated sand and gravel aquifer down to between 82 and 85 feet below ground surface (bgs). The wells are capable of providing up to 800 gallons per minute (gpm), 500 gpm, and 640 gpm for PW-1, PW-2, and PW-3, respectively. The three wells are within close proximity to each other and in the northwestern corner of town, approximately 2,000 feet northwest of the former Master Wear facility (Figure 1-2).

SECTION 1: INTRODUCTION

AX0420181244MKE 1-3

Starting in 2005, water from the wells have been conveyed into four granular activated carbon (GAC) treatment vessels, operated in parallel, to remove PCE to meet drinking water standards. The treated water is then dosed with fluoride, phosphate, and chlorine before distribution to the City.

The water treatment plant (WTP) currently operates only one well at a time for four hours and then cycles to the next well. If an increase in demand for water occurs, a second well is activated. The demand for water rarely exceeds the need for more than two wells at a given time. On average, the WTP provides 1 million gallons per day (mgd) of water to the City. The current maximum capacity of the WTP is 2 mgd.

Since 2005, the carbon in the treatment vessels has been replaced five times. The carbon is replaced when the treated water sampled indicates a detection of PCE. Wells are also routinely maintained through visual inspection of pumps, flow testing, chemical cleaning, and scrubbing.

1.2.3 Site History The former Master Wear facility (the Facility) is located on the west side of the courthouse square in downtown Martinsville. The Facility was constructed in 1956 and operated as a furniture store until 1985. Master Wear, Inc. (Master Wear), also known as American Glove, operated in the Facility from January 1986 to November 1991. Master Wear was an industrial dry cleaner that performed laundering and dry cleaning using PCE for commercial and institutional organizations. Between 1987 and 1991, multiple complaints of illegal dumping and mishandling of waste drums at the Facility were reported to the Indiana Department of Environmental Management (IDEM). Several spills and releases were also reported. The warehouse portion of the Facility was vacated in 1991, but since then, miscellaneous household items have been stored there. According to the Closure Report for the removal action at the Facility (Appendix A) prepared by Astbury Environmental Engineering, Inc. (AEE), the western portion of the Facility periodically housed miscellaneous shops, such as a hair-styling business, an antiques shop, a curios shop, a manicure service, and an insurance office (AEE 2008). In August of 1992, IDEM removed drums from the Master Wear Facility. Follow-up investigations were performed at or near the Facility between 1996 and 1999.

In November 2002, the PCE concentration in City well PW-1 exceeded the maximum contaminant level (MCL) of 5 micrograms per liter (µg/L). The IDEM Office of Water Quality ordered the well temporarilyclosed, and the drinking water supply was diverted to the other two wells in the wellfield until the GACtreatment was implemented in 2005. The IDEM Site Investigation Program was given approval andfunding by EPA to investigate the presence of PCE in the municipal wellfield in late 2002 (IDEM 2004).The Facility was entered into the Comprehensive Environmental Response, Compensation, and LiabilityInformation System database in January 2003 (IDEM 2011).

During the Hazard Ranking System evaluation, IDEM also identified the following industries and businesses as possible PCE and other chlorinated-solvent sources (IDEM 2012) (see Figure 1-3):

• Former Black Lumber Company (located west of the Facility along Washington Street)

• Semi-truck repair facility (located southeast of Black Lumber Company)

• Twigg Corporation (located 0.75 mile southeast of the Facility)—manufactured metal alloy parts forthe aerospace industry using a process that included the use of chlorinated solvents

• Former Harman-Motive (located 1 mile southeast of the Facility)—manufacturer of high-qualityautomotive speakers; historical uses of the facility include manufacturing aluminum kitchenware,kitchen and bath cabinets, automotive horn pads, and airplane engines

• Junkyard (located south and adjacent to Black Lumber Company)

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-4 AX0420181244MKE

In addition, IDEM identified several dry-cleaning facilities that operated historically in Martinsville near the contaminated groundwater plume, which are summarized in Table 1-1 and depicted on Figure 1-3. Most of these sites cannot be linked as a source to the groundwater plume because of insufficient data. However, IDEM is currently (at the time of this report) investigating a PCE groundwater plume and a potential soil vapor plume related to O’Neal’s Clothes Depot, which is now operating as Vista Cleaners.

1.2.4 Investigations and Site Activities Various site investigations were conducted in the past, and a removal action was implemented to address contamination in soil, groundwater, and soil vapor at the site. AEE prepared a Closure Report for the removal action at the Facility (Appendix A), referred to herein as the Closure Report.

1.2.4.1 Previous Investigations and Removal Actions

IDEM staff conducted a preliminary assessment (PA)/site inspection (SI) in 2003 and 2004. The PA/SI included sampling municipal and residential wells, advancing soil borings, collecting soil and groundwater samples, and collecting indoor air samples. Several rounds of indoor air sampling were also conducted by IDEM separate from the PA/SI.

The investigations indicated that indoor air at several nearby properties exceeded the sub-chronic action levels for PCE and TCE. PCE concentrations in soil and groundwater exceeded the IDEM Risk Integrated System of Closure (RISC) Industrial Default Cleanup Levels (IDCLs). An administrative order required that indoor air concentrations of PCE be reduced to below the IDEM sub-chronic action level of 110 milligrams per cubic meter and that contaminated soil adjacent to the Facility be treated or removed to eliminate the point source of contamination. The administrative order did not contain requirements to address groundwater. Figures 5 through 7 of the Closure Report summarize results of the investigations (Appendix A). The investigations showed:

• PCE concentrations detected in surface soils exceeded the IDEM RISC Residential Default ClosureLevel (RDCL) of 16,000 micrograms per kilogram (µg/kg) but not the IDCL of 27,000 µg/kg.

• PCE and TCE concentrations detected in subsurface soils exceeded the 2004 IDEM RISC IDCLs of640 and 82 µg/kg, respectively.

• PCE and TCE were detected in groundwater at concentrations as high as 31,000 and 51 µg/L,respectively. PCE exceeded the IDEM RISC IDCL of 55 µg/L and the RDCL of 5.0 µg/L. TCE exceededthe RDCL of 5.0 µg/L and the 2004 IDCL of 7.2 µg/L.

• PCE was detected in indoor air at concentrations as high as 8,244 micrograms per cubic meter(µg/m3), which exceeded the IDEM sub-chronic action level of 110 µg/m3. TCE was detected at aconcentration of 69.8 µg/m3, which exceeded the sub-chronic action level of 2.7 µg/m3.

A Time-Critical Removal Action (TCRA), overseen by EPA, was conducted from 2003 through 2008 at the Facility. The TCRA was implemented by Master Wear under an Administrative Order issued by EPA (EPA 2012a). The action was conducted to address PCE contamination in soil, groundwater, and indoor air on or near the Facility property. The treatment of the identified source area included installing a combination air sparging (AS) and soil vapor extraction (SVE) system over a limited area of the source zone, including the parking lot just north of the Facility and along portions of Mulberry Street up to Morgan Street. Figures 8 through 10 of the Closure Report show details of the (Appendix A). The SVE/AS system, along with individual subslab depressurization (SSD) vapor intrusion mitigation systems (VIMS) and passive venting in nearby structures, began operation on January 7, 2005, to address vapor intrusion (AEE 2008). The TCRA did not include removal of impacted soils except from piping trenches and SVE/AS well locations when the remedial system was installed (AEE 2008).

SECTION 1: INTRODUCTION

AX0420181244MKE 1-5

The system operated until November 9, 2006, when the closure criteria were met; at that time, the system was shut down. Two pre-closure assessments (PCAs) were conducted in 2006 to evaluate the efficiency of the system at addressing soil and soil vapor contamination near the Facility; the first PCA was performed in April and the second in November. Ten direct-push borings were advanced during the first PCA adjacent to soil borings demonstrating the highest PCE concentrations in soil during previous investigations. Five more borings were advanced during the November PCA adjacent to soil borings where PCE concentrations exceeded the IDEM RISC IDCL of 640 µg/kg during the April PCA. Figure 11 of the Closure Report summarizes results of the PCAs are (Appendix A).

Figure 11 shows a comparison of PCE concentrations in subsurface soil from the original investigations to the PCE concentrations from the PCAs. The borings advanced during the April PCA are denoted with an “A” suffix after the original boring name, and the borings advanced during the November PCA are denoted with a “B” suffix. The PCE concentrations that exceeded the soil IDCL of 640 µg/kg are shown in red, and PCE concentrations less than the IDCL are shown in blue.

Results from the original investigations show PCE concentrations ranging from 3,700 to 270,000 µg/kg. The maximum concentration was located within the center of the former Facility parking lot adjacent to where the SVE-1 extraction well was installed. PCE concentrations in soil samples collected from the April PCA range from 16 to 1,600 µg/kg, and PCE concentrations in soil samples collected from the November PCA range from below the quantitation limit to 750 µg/kg at SB-4B, which was the only remaining soil boring location after the November PCA with a PCE concentration in soil exceeding the IDCL of 640 µg/kg. This sample was collected from the 18- to 20-foot depth interval and the boring was located within the Facility parking lot towards the northwest corner of the building, approximately 30 feet to the northwest of the MW-1 well cluster and 15 feet southeast of the SVE-1 extraction well. Although the system included one SVE well and two air sparge wells beneath the Facility, the Closure Report did not provide analytical results for soil samples from beneath the Facility nor did it assess the effectiveness of the SVE/AS under the Facility.

The system was restarted in August 2007 after indoor air samples from two of three spaces sampled within the Facility exceeded the sub-chronic action levels (AEE 2008). The system was turned off again on March 31, 2008, at which time indoor air, soil, and groundwater sample results indicated that the closure criteria had been met (AEE 2008). The SVE/AS system and individual SSD systems were later removed. Analyses of soil and groundwater samples collected after the TCRA, to evaluate the performance of the SVE/AS system, detected residual levels of PCE concentrations below target levels (IDEM 2011).

1.2.4.2 Remedial Investigation Activities

CH2M conducted an RI as part of the overall RI/FS process, consisting of seven phases from April 2015 through January 2017, as summarized in Table 1-2. The RI activities, data collection methodologies, resulting data, physical characteristics of the site, nature and extent of contamination, contaminant fate and transport, and conceptual site model (CSM) are documented in detail in the Final Remedial Investigation Report, Pike and Mulberry Streets PCE Plume Site, Martinsville, Morgan County, Indiana (CH2M 2018). Phases 6 and 7 results are also documented in the Vapor Intrusion Data Evaluation Technical Memorandum (CH2M 2017).

A human health risk assessment (HHRA) and a screening-level ecological risk assessment (SLERA) were also completed as part of the RI. The SLERA was presented as Appendix O of the final RI and the HHRA was included as Appendix M in the final RI (CH2M 2018). The risk assessments are discussed in Section 1.8.

1.2.4.3 Concurrent Investigations

A third-party vapor intrusion investigation was performed in August 2015, for three noncontiguous buildings located within the footprint of the PCE groundwater plume. The findings of this investigation

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-6 AX0420181244MKE

indicated the presence of volatile organic compounds (VOCs) within and underneath these three buildings (Alt & Witzig Consulting Services 2015). Additional vapor intrusion sampling was conducted by EPA’s Superfund Technical Assessment and Response Team in January 2016, after the preliminary findings of the first four phases of the RI were evaluated. The Agency for Toxic Substances and Disease Registry (ATSDR) recommended that additional testing be conducted at two properties to determine if vapor intrusion presents a potential health hazard to current and future occupants (ATSDR 2016). Nine residential properties were sampled based on the ATSDR recommendation and proximity to the PCE groundwater plume.

As previously mentioned, IDEM is also conducting a vapor intrusion investigation related to O’Neal’s Clothes Depot (currently Vista Cleaners), which is located approximately 0.5 mile to the east of the Facility.

1.3 Summary of Site Characteristics The site-specific physical characteristics are summarized from the RI report (CH2M 2018), in the following subsections that also include details on regional characteristics.

1.3.1 Site Geology The description of the site geology is based on regional reports and boring logs from previous investigations and the RI. Figure 1-4 presents a representative geologic cross section across the site. The surface geology at the site generally consists of approximately 5 to 8 inches of topsoil (when present) composed of silt or clay with variable amounts of sand. Locations without topsoil are usually paved with fine sand below asphalt/concrete and gravel base. Below the topsoil and pavement material is predominately fine to medium, coarse to rounded, gravel and fine to coarse sand with no to some silt and clay. Bedrock is encountered at approximately 53 to 98.5 feet bgs. No local or regional confining layers appear to be present within the sand and gravel aquifer, except for a silt lens of limited extent that was encountered in the MW-4 boring log, as depicted on Figure 1-4.

1.3.2 Site Surface Water Hydrology Because the site is located in urban commercial and residential areas, the surface drainage pattern was altered by roadway, driveway, and building construction. Surface water runoff from buildings, developments, and streets is directed into the City’s stormwater sewer system. The only surface water body near the site is Nutter Ditch, which begins in an area to the southwest of the site and drains to the southwest into a lake adjacent to the White River. The fluvial and glaciofluvial (glacial outwash) sand and gravel aquifer extends beneath the White River and local streams. The streams are connected hydraulically to the aquifer and usually gain water from it; however, during drought or when heavy pumping occurs nearby, the streams can act as recharge sources for the aquifer (U.S. Geological Survey 1994).

1.3.3 Site Hydrogeology The groundwater surface is encountered between 5 and 15 feet bgs, which corresponds to elevations of 580 to 590 feet above mean sea level (amsl) from the southeastern to the northwestern end of the site. The regional fluvial and glaciofluvial (glacial outwash) sand and gravel aquifer above the bedrock was observed across the site. Local topography effects on groundwater flow would likely result in a westerly groundwater flow direction toward the White River. However, the City’s municipal wellfield pumping appears to be influencing groundwater flow to the northwest toward the municipal wells. On average, 700 gallons per minute of water is pumped from one of the three City wells. Based on figures presented in the Closure Report (AEE 2008) and potentiometric maps included in the RI (CH2M 2018), the influence of pumping of the municipal wellfield is interpreted to also draw the groundwater contaminant plume towards the municipal wells and prevent the contamination from migrating toward the surface water

SECTION 1: INTRODUCTION

AX0420181244MKE 1-7

features. Figures 1-5, 1-6, and 1-7 present the potentiometric surfaces using water levels measured on October 7, 2016, in the shallow, intermediate, and deep (top-of-bedrock) water-bearing zones, respectively. Characteristics of each water-bearing zone are summarized in Table 1-3. The average groundwater seepage velocity in the shallow water-bearing zone is 62.4 feet per year (ft/year).

1.3.4 Site Buildings and Structures The Facility, which consists of a two-story brick building, is currently used by various commercial businesses, including a hair salon, a driving school, and an insurance office. Buildings surrounding the Facility consist of a mixture of commercial, industrial, residential, and government-owned buildings. Buildings vary in age from recently constructed (for example, the new fire station) to historic buildings dating back to the civil war era (for example, the Morgan County Courthouse). Figure 1-2 depicts the land use in Martinsville around the Facility. Utility maps were obtained from the City and are provided presented in Appendix B.

1.3.5 Ecological Habitat The site is mostly residential and/or urban with light industry. Due to the urban nature of the site, terrestrial habitat is limited, consisting mostly of mowed lawns, grassy areas, trees, bushes/shrubs in residential yards, and adjacent green space. The Martinsville City Park is located approximately 0.75-mile northeast of the Facility and consists of approximately 50 acres of mixed-use land that is approximately 40 percent open space and 60 percent wooded areas. Overall, the habitat quality of the site is poor due to the developed nature of the area. Because of the poor habitat quality and size, the site is not expected to support significant populations of wildlife.

The site is surrounded by rural farmland and the White River, which is located 1.5 miles to the west/northwest and flows from north to south. No onsite aquatic habitats were identified. However, Nutter Ditch begins at a culvert at the southwestern boundary of the site and is fed by storm sewers to collect runoff from roads. It is an intermittent channelized drainage ditch flowing west/southwest and terminates at quarry ponds. No aquatic invertebrates, fish, or semiaquatic birds or mammals were observed to be present in Nutter Ditch during the site visit conducted to survey ecological habitat in April 2015.

1.4 Summary of Soil and Groundwater Characteristics During the RI field activities, various parameters were measured that provide important physical and chemical characteristics for site-specific soil and groundwater. These physical parameters and general chemistry analyses are summarized from the RI report (CH2M 2018) in the subsequent sections.

1.4.1 Soil

Soil samples were collected from selected new and reinstalled groundwater monitoring well locations. Grain size was analyzed for four samples from the unsaturated zone and indicate that the unsaturated zone of the aquifer consists mostly of sand and gravel. Based on soil borings advanced at the site, the aquifer is relatively homogeneous. The results of the grain-size analysis are also expected to be representative of the saturated aquifer.

1.4.2 Groundwater

Groundwater quality parameters were measured as part of low-flow groundwater sampling during RI Phases 1 through 3. Table 1-4 presents a statistical summary of these measurements for each aquifer. During RI Phase 2 activities, samples from select locations were analyzed for natural attenuation parameters, including nitrate, nitrite, sulfate, chloride, and sulfide. Samples from six locations were also

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-8 AX0420181244MKE

analyzed for dissolved-phase total organic carbon (TOC) and alkalinity. Table 1-5 presents a statistical summary of the general chemistry results.

Based on these results, the shallow aquifer appears to be aerobic with dissolved-oxygen concentrations ranging from 0.11 to 10.02 milligrams per liter (mg/L) and an average (arithmetic mean) concentration of 5.23 mg/L. The oxidation-reduction potential (ORP) measured within the shallow groundwater zone ranged from -128.4 to 221.1 millivolts (mV), with an average value of 102.1 mV, indicating that the

aquifer is primarily oxic (greater than +50 mV).

Additionally, analysis of general chemistry constituents indicates that nitrate and sulfate are dominant; nitrite and sulfide were not detected. The concentrations reflect aerobic conditions. Nitrate concentrations within shallow groundwater ranged from 2.2 to 9.6 mg/L, and sulfate concentrations ranged from 17.3 to 65.5 mg/L. General chemistry analysis indicates that the oxidized form of a constituent typically is stable throughout the plume over time within shallow groundwater, and reduced forms do not appear to be generated. Dissolved TOC was also analyzed as part of the general chemistry parameters. The maximum TOC concentration observed in the shallow aquifer was 1.6 mg/L; TOC concentrations below 20 mg/L do not tend to support biological remediation processes.

1.5 Nature and Extent of Contamination This subsection summarizes the nature and extent of contamination identified in groundwater, soil, soil vapor, subslab soil vapor, crawlspace air, and indoor air at the site during the RI. Screening levels developed in the RI and the Vapor Intrusion Data Evaluation Technical Memorandum (CH2M 2017) for each medium of interest to evaluate the nature and extent of contamination are summarized as follows:

• Groundwater—EPA MCLs

• Soil—EPA Regional Screening Levels (RSLs), May 2016, based on a residential exposure scenario, target excess lifetime cancer risk (ELCR) of 10-6, and target hazard quotient (HQ) of 1

• Soil vapor and subslab soil vapor—EPA Vapor Intrusion Screening Levels (VISLs), Version 3.5.1, updated with May 2016 RSLs, residential exposure scenario, target ELCR of 10-6 and target HQ of 1

• Crawlspace and indoor air—EPA RSLs, May 2016, based on a residential or commercial exposure scenario (depending on the property sampled), target ELCR of 10-6 and target HQ of 0.1

The nature and extent of contamination was determined by comparing analytical data from the seven phases of the RI to the screening levels for each medium. Sampling locations with analytical results that exceeded the screening levels were considered within the extent of contamination. Plume maps were developed for several media to visualize the extent of contamination, as described in the following subsections. This discussion was summarized from the RI report (CH2M 2018) and the Vapor Intrusion Data Evaluation Technical Memorandum (CH2M 2017).

1.5.1 Soil During Phase 2 of the RI, soil samples were collected from soil borings advanced when monitoring wells and permanent soil vapor points (SVPs) were installed. These samples were analyzed for VOCs, and the results were compared to EPA residential RSLs. In surface soil, detections of various VOCs were observed within the area north of the Facility. PCE and TCE were the most frequently detected VOCs. TCE exceeded the screening level in only one location (SG-1), just to the north of the Facility, as depicted on Figure 1-8. This sample, which was collected from the 1- to 2-foot depth interval and located immediately north of the Facility, contained TCE at a concentration of 3,600 micrograms per kilogram, which exceeds the residential RSL of 410 micrograms per kilogram. Soil samples were not collected

SECTION 1: INTRODUCTION

AX0420181244MKE 1-9

beneath the Facility during the RI, and it is possible that residual soil contamination may exist beneath the building.

1.5.2 Groundwater Groundwater samples were collected from existing and newly installed monitoring wells as part of the Phase 1, 2, and 3 investigations. Groundwater contamination consists of chlorinated VOCs. Though chlorinated VOCs were commonly observed, only PCE was detected at concentrations greater than screening levels for groundwater. PCE exceeded the MCL of 5 µg/L in 1 municipal well (PW1), 18 shallow wells, and 1 intermediate well (MW-7M).

Figure 1-9 depicts the PCE concentrations in shallow groundwater from Phases 1, 2, and 3. PCE concentrations from groundwater sampling conducted by IDEM in 2010 are also presented for historical context. The highest PCE concentration (210 µg/L) was detected in a sample collected during Phase 3 from MW-1S. Other elevated PCE concentrations (greater than 100 µg/L) were detected at MW-2S, MW-4S, MW-16S, and MW-34S. PCE concentrations consistently exceeded the MCL in the intermediate well MW-7M during Phases 1, 2, and 3 at concentrations between 20 and 25 µg/L. PCE did not exceed the MCLs in groundwater samples collected from the top-of-bedrock wells. Several private residential wells were also sampled, and PCE concentrations did not exceed the MCLs in these wells.

The PCE pre-treatment concentration was detected at an average of about 20 µg/L in PW-1 (municipal Pumping Well No. 1) during Phases 1 through 3. PCE was also detected at low concentrations that were less than the MCL and estimated below the reporting limit in samples from the other two municipal wells. Because these wells likely draw water from the three hydrogeologic zones, caution should be used when using the municipal well data to delineate the extent of the PCE plume in a specific aquifer zone.

Other chlorinated VOCs have been detected in groundwater, though infrequently, in various wells within the monitoring well network. Specifically, low levels of TCE and cis-1,2-DCE (common PCE degradation products), below their respective MCLs, were detected in shallow monitoring wells, municipal wells, and one residential well. TCE was detected in the three municipal wells.

PCE plume maps were developed for the shallow aquifer zone. Figure 1-10 depicts PCE concentrations using data from Phase 3. Based on the PCE concentrations, three lobes appear to radiate out from the Facility. The southeast lobe, encompassing MW-29, MW-34, and MW-4, is upgradient from the Facility. The western lobe, encompassing MW-23 and MW-9, is further west of the Facility. Wells that are upgradient of MW-23 and MW-9 either have no detections of PCE or have very low detections below the MCL. The third lobe is proximal and downgradient of the Facility. This third lobe appears to extend towards the northwest to the municipal well field.

Reviewing data from the three quarterly sampling events (Phases 1, 2, and 3) from April 2015 through October 2015, it appears that the PCE (and TCE) concentrations were stable. The PCE concentrations in groundwater have not varied over the course of the three phases of this RI and have been within an order of magnitude since the last pre-RI sampling event performed in 2010. Based on the stability and relative magnitude of contaminant of concern (COC) concentrations in groundwater, there does not appear to be a significant ongoing source of groundwater contamination. As previously discussed, an SVE/AS system was operated at the site to remediate the contaminated soil and groundwater source (Appendix A).

Overall, the groundwater PCE plume seems to be well-defined in both lateral and vertical extents. Impacted wells are limited to those screened in the shallow portion of the aquifer, with higher-concentration wells situated within the center of the site and lower-concentration wells located on the periphery.

PCE, TCE, and vinyl chloride concentrations in shallow groundwater were also compared to VISLs calculated using the EPA VISL Calculator (version 3.5.1), updated with May 2016 RSLs, to determine

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-10 AX0420181244MKE

whether groundwater may be a contributing source of soil vapor contamination. The calculation assumed a residential exposure scenario with a target ELCR of 10-6, a target HQ of 1, and a site-specific average groundwater temperature of 15.9 degrees Celsius based on temperatures measured from Phases 1 through 3. No VISL was calculated for cis-1,2-DCE due to lack of an inhalation toxicity value for this chemical. Vinyl chloride was not detected in shallow groundwater. Although the reporting limit of 0.5 µg/L was greater than the VISL of 0.19 µg/L, the method detection limit of 0.1 µg/L did not exceed the VISL. The maximum TCE concentration detected in shallow groundwater was 1.6 µg/L, which did not exceed the calculated VISL of 1.9 µg/L—this concentration was detected in a sample collected from MW-1S in October 2015.

Based on the comparison, PCE concentrations in shallow groundwater exceeded the calculated VISL of 25 µg/L. Figure 1-11 depicts the two areas where PCE concentrations exceeded the VISL in shallow groundwater using the maximum PCE concentration detected at each well during the three phases of groundwater sampling. These areas include one area that extends downgradient of the Facility, and the other area is located downgradient of the former site of Central Dry Cleaners. The maximum detected PCE concentration at MW-20S between the two areas was 20 µg/L, which does not exceed the VISL; therefore, the PCE concentrations exceeding the VISL were presented as two distinct areas.

1.5.3 Soil Vapor Soil vapor samples were collected from permanent SVPs installed within the vicinity of the Facility during Phases 2 and 3 of the RI and analyzed at an offsite laboratory. Based on PCE and TCE concentrations that exceeded the VISLs, a soil vapor delineation event was conducted as part of Phases 4 and 5. During this event, soil vapor samples were collected from temporary SVPs arrayed in six concentric rings centered on the permanent SVPs. The collected samples were analyzed for VOCs using a Hazardous Air Pollutants on Site (HAPSITE) portable onsite gas chromatograph/mass spectrometer (GC/MS). Figures 1-12 and 1-13 depict TCE and PCE concentrations in soil vapor, respectively, exceeding the VISL, using data from Phases 2 through 5. The data includes samples collected from both temporary and permanent SVPs. Detections of various VOCs in soil vapor were observed within the footprint of the PCE groundwater plume and in other areas at the site. PCE and TCE were the most frequently detected VOCs that exceeded their respective screening levels.

PCE was identified as the primary COI in soil vapor in the RI. The PCE soil vapor plume that exceeds the VISL seems to be extensive throughout the sampled area. Three areas within the PCE soil vapor plume demonstrated highly elevated PCE concentrations in soil vapor (greater than 15,000 micrograms per cubic meter [µg/m3]):

• Central high-concentration areas (HCAs) (around the Facility and near Manitorium Cleaners).

• Northwest HCA (HAP-023 and HAP-084).

• Southeastern HCA (near Central Dry Cleaners, HAP-011, and SG-18).

• The northwest HCA exhibited the highest PCE concentrations detected during Phase 4 (30,380 µg/m3 at HAP-023) and Phase 5 (23,870 µg/m3 at HAP-084). However, these locations do not seem to be correlated with an identified possible source or with high PCE concentrations in groundwater.

The soil vapor plumes of TCE exceeding the VISL are more limited in extent. Three main HCAs were identified where TCE concentrations in soil vapor exceeded the VISL:

• Main HCA (around the Facility and near Manitorium Cleaners)

• Southeastern HCA (near Central Dry Cleaners, HAP-12, and MW-35)

• Northeastern HCA (near Artesian City Cleaners)

SECTION 1: INTRODUCTION

AX0420181244MKE 1-11

• Elevated TCE detection limits reported for two of the soil vapor samples (HAP-023 and HAP-085) exceeded the VISL. These locations are not identified as separate HCAs for TCE but correspond to HCAs for elevated PCE concentrations.

Based on the comparison of soil vapor results to the residential VISLs, the impacted area of soil vapor is delineated except in two areas: along South Cherry Street on the south side of the sampling area (HAP-142) and along East Washington Street on the east side of the sampling area (HAP-148 and HAP-161). The soil vapor samples from HAP-142, HAP-148, and HAP-161 exhibited elevated PCE concentrations that exceed the VISL. Utility corridors along South Cherry Street and East Washington Street (Appendix B) may potentially be acting as pathways for COIs in soil vapor. In addition, it is possible that contamination from O’Neal’s Clothing Depot is contributing to the site soil vapor plume at the east end of East Washington Street. The PCE concentration in soil vapor observed at HAP-161 (8,693 µg/m3) is approximately four times greater than the concentration observed at HAP-147 (2,238 µg/m3), located just to the west of HAP-161. IDEM is currently conducting vapor intrusion investigations related to O’Neal’s Clothing Depot. EPA will continue to coordinate the investigation and remedial efforts between the two sites with IDEM as necessary.

1.5.4 Subslab Soil Vapor, Crawlspace Air, and Indoor Air A vapor intrusion investigation was conducted during Phase 6 and Phase 7 of the RI. Forty-six properties (26.5 residential and 19.5 commercial) were sampled during the Phase 6 investigation (non-heating season) completed in July and September 2016. Forty-three of these properties (23.5 residential and 19.5 commercial) were re-sampled during the Phase 7 investigation (heating season) completed in January and February 2017. The same residential and commercial properties that were accessed during Phase 6 were sampled during Phase 7, except for three residential properties due to access and scheduling issues.

The results of the Phase 6 and Phase 7 vapor intrusion sampling indicate that PCE concentrations exceeding the screening level in subslab soil vapor or crawlspace air are widespread throughout the sampling area. Generally, in locations where PCE concentrations exceeded the RSL in indoor air, PCE concentrations also exceeded the screening level in subslab soil vapor or crawlspace air. PCE concentrations exceeded the RSL in indoor air at the following properties near possible sources of soil vapor contamination:

• Phase 6: RP-157

• Phase 7: CP-46

• Phases 6 and 7: CP-110 and CP-099

However, PCE concentrations also exceeded the RSL in indoor air at the following properties not known to be associated with possible soil vapor contamination sources:

• Phase 6: RP-229

• Phase 7: Two residential properties (RP-133 and RP-193) and two commercial properties (CP-168 and CP-169)

• Phases 6 and 7: RP-021 and RP-201

Locations where TCE concentrations exceeded the screening levels in subslab soil vapor or crawlspace air are more sporadic throughout the sampled area. In addition, TCE concentrations exceeded the RSL in indoor air but did not exceed the screening level in subslab soil vapor or crawlspace air at the following properties:

• Phase 6: RP-083 and RP-131

• Phase 7: RP-005, RP-028, RP-047, RP-135, RP-189, RP-229, CP-073, and CP-099

• Phase 6 and 7: RP-022

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-12 AX0420181244MKE

These properties are located on the west side of the sampling area, except RP-229 and CP-073. TCE concentrations exceeded the screening level in subslab soil vapor or crawlspace air and indoor air in samples collected from the following properties during Phase 6 only: CP-146, CP-099, and RP-160. TCE concentrations were not detected in indoor air at CP-146 or RP-160 during Phase 7. CP-146 is not located immediately adjacent to identified potential sources of soil vapor contamination. TCE concentrations were not detected above the subslab soil vapor screening level in samples collected at CP-099 during Phase 7.

Vinyl chloride was not detected in subslab soil vapor, crawlspace air, indoor air, or outdoor air samples collected during Phase 6 or Phase 7. Cis-1,2-DCE was detected in four subslab soil vapor samples, one crawlspace air sample, and three indoor air samples collected during Phase 6. Cis-1,2-DCE was detected in one subslab soil vapor sample, six indoor air samples, and one outdoor air sample collected during Phase 7. However, screening levels are not available for cis-1,2-DCE due to lack of toxicity data. Table 1-6 summarizes the results for the vapor intrusion sampling program, including the properties where PCE or TCE concentrations exceeded the screening levels in subslab soil vapor, crawlspace air, or indoor air. Figure 1-14 summarizes properties for which either PCE or TCE exceeded screening levels during Phases 6 and 7 vapor intrusion sampling.

1.6 Contaminant Fate and Transport Summary This section summarizes the environmental fate and transport of contaminants identified at the site. A more detailed discussion of these properties is presented in the RI report (CH2M 2018). The fate and transport mechanisms that are relevant at the site primarily include contaminant migration in groundwater and migration in soil vapor. Contaminant migration is further discussed as part of the CSM within Section 1.7. The relevant physical and chemical properties of the COIs that affect contaminant fate and transport are as follows:

• Solubility—The TCE solubility is 1,280 mg/L, indicating that it will readily dissolve in water; while the PCE water solubility is 206 mg/L, indicating that it will not as readily dissolve in water.

• Adsorption—The combination of low organic content in the aquifer and low organic carbon/ water partition coefficient (Koc) values for PCE (and other COIs), indicate that the contaminants will not preferentially bind to the soil, and the PCE is expected to continue to migrate with the groundwater.

• Volatilization—Henry’s Law Constant (Kh) values indicate that PCE and vinyl chloride have properties indicative of high volatility. However, only PCE and TCE have been detected in soil vapor at concentrations greater than their respective VISLs. The detections of PCE and TCE in soil vapor indicate that volatilization is occurring at the site.

• Degradation—PCE and TCE typically can be biodegraded via reductive dechlorination and by abiotic reactions, particularly in the presence of iron. Both these degradation pathways typically occur in anaerobic environments. However, site conditions, as evidenced by the dissolved oxygen and ORP measurements, and limited detections of PCE/TCE degradation products (1,2-DCE, 1,1-DCE, and vinyl chloride), are not conducive to reductive or abiotic dechlorination.

1.7 Conceptual Site Model This subsection summarizes the current CSM presented in the RI report (CH2M 2018). Figure 1-15 presents the CSM of PCE in groundwater and soil vapor, Figure 1-16 presents the CSM of TCE in groundwater and soil vapor, and Figure 1-17 presents the CSM of PCE and TCE in soil. The contaminant fate and transport processes that govern the COI distribution at the site are discussed in the following subsections.

SECTION 1: INTRODUCTION

AX0420181244MKE 1-13

1.7.1 Contaminant Release Based on historical information and subsequent investigations, the sources of potential contamination at the site are likely historical discharges of waste material and solvents from the Facility or other potential sources. Several soil investigations have been conducted and the soil within the source area was previously treated by an SVE/AS system. Therefore, the vadose zone is not expected to be a significant continuing source of groundwater contamination. However, residual COI concentrations in soil are still present, and the TCE concentration in one shallow soil sample collected on the Facility property exceeded the screening level.

1.7.2 Surface and Unsaturated Subsurface Soil VOCs in surface and subsurface vadose zone soils are subject to possible fate and transport processes. VOCs released to the environment as dissolved-phase constituents or from a highly contaminated source area could migrate downward and be subject to soil sorption, volatilization, and infiltration. An SVE/AS system treated soil within the potential source area at the Facility and soil investigations were conducted before and after treatment.

Tables 4 and 6 of AEE’s Closure Report (Appendix A) provide the PCE concentrations and percent reductions in soil from original site investigations to the concentrations reported for the April and November 2006 PCAs, respectively. These PCAs were conducted just before and just after operation of the SVE/AS system was first discontinued in November 2006. PCE concentrations in 9 of 10 soil samples analyzed during the April PCA showed a reduction greater than 95 percent, and 7 of the soil samples showed reductions greater than 99 percent. PCE concentrations in all 5 soil samples analyzed during the November PCA showed a reduction greater than 99 percent. The previous SVE/AS system was largely successful at achieving the TCRA treatment objectives and reducing COC concentrations in soil from the area surrounding the Facility.

As stated in Section 1.2.4, SB-4B was the only soil boring location from the November PCA where PCE concentrations in soil exceeded the IDCL of 640 µg/kg. A PCE concentration of 750 µg/kg was detected in the soil sample from the 18- to 20-foot depth interval of this boring. Figure 11 of the Closure Report shows the location of SB-4B, which is in the same general vicinity as SG-1 (Figure 1-8). The TCE concentration in shallow soil (1 to 2 feet bgs) exceeded the screening level at SG-1, which is located adjacent to MW-01 and the Facility. In addition, PCE and TCE were detected in shallow soils at multiple locations within the vicinity of the Facility, indicating low levels of residual soil contamination. It is also unknown what contamination, if any, remains beneath the Facility. As a result, some areas of soil contamination could still be a contributing source of PCE and TCE concentrations in soil vapor.

1.7.3 Saturated Soil and Groundwater Contaminant transport in groundwater is primarily by advection and dispersion. As a result, the contaminants are expected to continue to migrate with the groundwater. Based on groundwater potentiometric maps from October 2015, groundwater flow is to the northwest, towards the municipal supply wells, and is likely influenced by the pumping of the municipal supply wells. Using the average groundwater velocity (62 ft/year) and considering retardation factors, PCE could travel an estimated 38 ft/year within the shallow aquifer, assuming no degradation. Vinyl chloride, which is more mobile, could be expected to travel 54 ft/year within the shallow aquifer. The velocity of TCE and 1,2-DCE would be expected to fall between that of PCE and vinyl chloride. Using these velocities, it would be expected to take between 39 and 56 years for COCs from the Facility to reach the municipal pumping wells.

1.7.4 Soil Vapor COCs located in subsurface soils or in groundwater can volatilize, migrate through soil vapor, and be transported into indoor spaces, where inhalation exposures can occur. Based on the RI data, PCE and

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-14 AX0420181244MKE

TCE in soil vapor appear to be migrating away from the Facility and generally correlate to exceedances in groundwater and preferential pathways (i.e., utility corridors). In addition, PCE in soil vapor from O’Neal’s Clothing Depot may be migrating from the east along a utility corridor. As a result of vapor migration, COI concentrations exceeding the screening levels may be present in soil vapor within areas where COI concentrations in soil and groundwater do not exceed their relative screening levels. COIs may volatilize from soil or groundwater in one area of the site and then migrate within the subsurface to other areas.

COC concentrations in soil do not need to exceed the screening levels to impact soil vapor. Residual soil contamination within the sampled area is likely contributing to the observed PCE and TCE concentrations in soil vapor. As depicted on Figure 1-8, PCE and TCE were detected in soil samples throughout the sampled area with the highest concentrations located near the Facility and, to a lesser extent, near Central Dry Cleaners. It is also possible that residual soil contamination is present beneath the Facility. Soil samples were not collected to confirm or rule out the presence of residual soil contamination beneath the building.

As previously discussed, Figure 1-11 was developed to evaluate whether PCE concentrations in shallow groundwater may be contributing to soil vapor impacts. Using the maximum PCE concentration detected at each well during the three phases of groundwater sampling, two areas are observed where PCE concentrations in shallow groundwater exceed the VISL of 25 µg/L: one area extends downgradient of the Facility, and the other area is located downgradient of the Central Dry Cleaners. In these locations, PCE concentrations in groundwater may be contributing to PCE concentrations in soil vapor.

Vapor intrusion CSMs integrate available, relevant, and reliable information into a comprehensive representation of the vapor intrusion exposure pathway, which consists of three fundamental components:

1. Subsurface vapor sources 2. Receptors 3. Vapor migration connecting the vapor source and receptors.

If one or more of these fundamental components is absent or insignificant, the vapor intrusion pathway will not be a concern, and further assessment is not needed. In addition to the three primary components of the CSM, background sources of COCs are important because they may affect interpretation of indoor air COC samples.

1.7.4.1 Vapor Intrusion Conceptual Site Model

The CSM for vapor intrusion was developed using the data summarized in Table 1-7 and is presented on Figure 1-18. Properties evaluated during Phases 6 and 7 were assigned to one of the following categories:

• Eight properties likely currently have complete vapor intrusion pathways that are causing indoor and/or crawlspace air site-related COC concentrations to exceed the applicable VISLs and have the potential for this in the future.

• Eleven properties possibly currently have complete vapor intrusion pathways that are causing indoor and/or crawlspace air site-related COC concentrations to exceed the applicable VISLs and have the potential for this in the future.

• Twelve properties unlikely currently have complete vapor intrusion pathways that are causing indoor and/or crawlspace air site-related COC concentrations to exceed the applicable VISLs but have the potential for this in the future.

SECTION 1: INTRODUCTION

AX0420181244MKE 1-15

• Fifteen properties unlikely currently have complete vapor intrusion pathways that are causing indoor and/or crawlspace air site-related COC concentrations to exceed the applicable VISLs and unlikely have the potential for this in the future.

The properties are shaded by color according to each assigned category on Figure 1-18. As shown on Figure 1-18, there does not seem to be a strong geographic pattern between vapor intrusion category and property location; however, there are multiple properties where access was not granted for vapor intrusion sampling. PCE or TCE concentrations in one or more indoor air samples exceeded EPA’s Removal Management Level at six buildings, which are also indicated on Figure 1-18. However, an exceedance of the Removal Management Level does not necessarily correspond to where buildings likely have complete vapor intrusion pathways. Other factors are considered, including the potential for other indoor air sources of contaminants unrelated to the site.

1.8 Risk Assessment Summary A summary of risk assessment activities is provided in the following subsections.

1.8.1 Human Health Risk Assessment A baseline HHRA was prepared to evaluate potential current and future risks associated with detected constituents at the site. Indoor air, crawlspace air, subslab and exterior soil vapor at 20 commercial and 27 residential properties, sitewide soil, and groundwater from sitewide, private, and municipal wells were evaluated in the HHRA.

Potential ELCRs and noncancer hazard indices (HIs) were evaluated for the following exposure pathways and receptors as shown in Table 1-8. COCs are identified when the potential ELCR or HI for a receptor group exceeds EPA’s threshold values (a total ELCR of 1 x 10-4 or a target-organ-specific HI of 1) and concentrations are site-related. COCs for applicable media are discussed herein with ELCRs and/or HIs presented in Table 1-9.

The potential ELCRs and noncancer HIs were less than EPA’s target risk range and target HI, and COCs were not identified, for the following media and receptor groupings:

• Future construction workers—Soil 0 to 10 feet bgs, shallow groundwater, and exterior soil vapor.

• Current/future industrial/commercial workers—Groundwater at all exposure areas.

• Current industrial/commercial workers—Indoor air at commercial properties CP-046, CP-073, CP-110, CP-146, CP-150, CP-155, CP-168, and CP-169.

• Current residents—Indoor air at residential properties RP-157, RP-160, RP-189, RP-193, RP-200, RP-201, and RP-229.

• Current/future residents—Groundwater at Municipal Well 1 and Residential Well 1.

• Future industrial/commercial workers—Subslab soil vapor (migrating to indoor air) at commercial properties CP-023, CP-119, and CP-169.

• Future residents—Subslab soil vapor (migrating to indoor air) at residential properties RP-121, RP-133, RP-223, and RP-224.

However, potential ELCRs or noncancer HIs exceeded EPA’s target risk range or target HI for the media and receptors indicated in Table 1-9 and summarized as follows:

• Current industrial/commercial workers—Indoor air at commercial property CP-099.

• Current resident—Indoor air at residential properties RP-021 and RP-133.

• Current/future residents—Sitewide groundwater at all exposure areas.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

1-16 AX0420181244MKE

• Future industrial/commercial workers—Subslab soil vapor (migration to indoor air) at commercial properties CP-046, CP-074, CP-099, CP-110, CP-140, CP-150, and CP-168.

• Future residents—Subslab soil vapor (migration to indoor air) at residential properties RP-021, RP-022, RP-038, RP-047, RP-095, RP-157, RP-160, RP-162, and RP-201.

1.8.2 Ecological Risk Assessment A SLERA was conducted in accordance with EPA guidance (EPA 1992, 1997, 1998a). The surface soil and groundwater data generated from the RI activities were used to conservatively assess potential risk for both aquatic and terrestrial invertebrates, fish, and wildlife (i.e., ecological receptors) by comparing measured concentrations of COCs in soil and groundwater with ecological screening levels for soil and surface water, respectively. The conclusion of the SLERA is that COC concentrations in soil and groundwater do not present significant risk to ecological receptors, and that no further evaluation relative to ecological risk at the site is necessary.

SECTION 2

AX0420181244MKE 2-1

Identification and Screening of Technologies This section completes the following steps of the FS process:

1. Identify ARARs 2. Develop RAOs 3. Determine PRGs and identify areas exceeding the PRGs 4. Develop GRAs 5. Identify and screen technologies

Identified technologies applicable to the site will be combined and developed into remedial alternatives in the next section of this report.

2.1 Applicable or Relevant and Appropriate Requirements Under the CERCLA statute, two mandates establish the underlying legal requirements for CERCLA actions. Remedial actions must attain a degree of cleanup that provides protection of human health and the environment. This requirement is implemented by performing a risk assessment, which identifies compound-specific exposure pathways that present either a current or potential future unacceptable risk. When such a risk is identified, remedial or removal action is required to address the unacceptable risk. CERCLA onsite remedial actions also must meet the standards and criteria that are otherwise legally applicable to the hazardous substance, pollutant, or contaminant, or that are relevant and appropriate under the circumstances. This subsection summarizes the ARARs process and presents the ARARs specifically identified for the site.

2.1.1 Overview of ARARs Requirements of CERCLA, the Superfund Amendments and Reauthorization Act, and the NCP state that ARARs are to be identified during the development of remedial alternatives. The FS evaluates the ability of contemplated remedial alternatives to comply with these requirements. ARARs are federal and state human health and environmental requirements used to accomplish the following:

• Evaluate the appropriate extent of site cleanup.

• Define and formulate remedial action alternatives.

• Govern implementation and operation of the selected action.

ARARs are defined by the NCP at 40 Code of Federal Regulations (CFR) 300.5 as “…those clean-up standards, standards of control, and other substantive requirements, criteria or limitations promulgated under federal environmental or state environmental or facility citing laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location or other circumstance found at a CERCLA site.” In addition to ARARs, the lead agency may, as appropriate, identify other advisories, criteria, or guidance to be considered (TBC) for a release. The TBC category consists of advisories, criteria, or guidance issued by federal or state agencies that are not legally binding and are not considered ARARs but may be included as performance criteria in developing CERCLA remedies, if necessary.

The extent to which any type of ARAR will apply depends upon where response activities take place. The ARARs provision applies only to onsite actions. Superfund responses must comply with substantive requirements that are "applicable" or "relevant and appropriate." Administrative requirements do not need to be met for onsite actions and would only apply to hazardous substances sent offsite for further management. EPA interprets “onsite” to include the “areal extent of contamination and all suitable areas in very close proximity to the contamination necessary for implementing the response action” (1988b).

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

2-2 AX0420181244MKE

It is not necessary to identify ARARs for any actions conducted offsite because laws and regulations apply in the normal manner to offsite actions.

For purposes of this analysis of ARARs for the site, “onsite” is defined as follows:

• The extent of soil contamination that exceeds the EPA residential RSL (Figure 1-8)

• The extent of the groundwater plume where COC concentrations in groundwater exceed the PRGs (Figures 2-1 and 2-2)

• The extent of the soil vapor plume where COC concentrations in soil vapor samples exceed the PRGs (Figures 2-3 and 2-4)

• The area where properties require remedial action based on COC concentrations in subslab soil vapor, crawlspace air, and/or indoor air

• The area immediately adjacent to or near the above areas

Table 2-1 presents the ARARs identified for the site, including chemical-specific, location-specific, and action-specific ARARs. The ARARs are discussed in greater detail for each category in the following subsections. Table 2-1 also presents two key regulatory considerations for which compliance with administrative requirements would be necessary, even though they are not considered ARARs.

2.1.2 Chemical-specific ARARs Chemical-specific ARARs include laws and requirements that establish health- or risk-based concentration limits in various environmental media for specific chemicals. State standards are considered ARARs only where they are promulgated in adopted regulations and are more stringent than the equivalent federal ARAR.

National Primary Drinking Water Standards (40 CFR Part 141) establish primary MCLs for public water systems measured at the tap based on protecting health and considering technical and economic feasibility. Indiana Primary Drinking Water Standards establish primary MCLs for public water systems and are equivalent to the federal MCLs. Because the aquifer is used as a drinking water source for Martinsville, the MCLs for the site COCs are applicable to developing PRGs. Thus, groundwater alternatives that include conveying treated groundwater back to the public through the public water supply system must be treated to meet the MCLs. No applicable or relevant and appropriate chemical-specific requirements exist for soil vapor or indoor air. TBC factors for soil vapor and indoor air include the EPA RSLs and the EPA VISL Calculator, which are listed in Section 1.5.

2.1.3 Location-specific ARARs Location-specific ARARs are requirements that relate to the geographical position of the site. They are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they occur in special locations. Examples of location-specific ARARs include state and federal laws and regulations that apply to protecting wetlands, constructing in floodplains, and protecting endangered species in streams or rivers. Location-specific ARARs that were identified for the site include the Migratory Bird Treaty Act and the National Historic Preservation Act. The Endangered Species Act was identified as a potential location-specific ARAR, and it will be addressed as the remedy selection process progresses.

The Migratory Bird Treaty Act establishes federal responsibility for protecting international migratory bird resources. Indiana is located within the Mississippi flyway. Taking, killing, or possessing migratory birds is unlawful without proper authorization. Remedial designs can incorporate aspects to minimize disturbance to protected migratory birds and their active nests. Consultation with the U.S. Fish and

SECTION 2: IDENTIFICATION AND SCREENING OF TECHNOLOGIES

AX0420181244MKE 2-3

Wildlife Service during remedial design and remedial construction often occurs to assure that the cleanup of the site does not unnecessarily impact migratory birds.

The National Historic Preservation Act establishes procedures to preserve scientific, historical, and archaeological data that might be destroyed through altering terrain because of a federal construction project or a federally licensed activity or program. Several buildings within Martinsville are included on the National Register of Historic Places, including the Morgan County Courthouse and the Morgan County Sheriff’s House and Jail. Several historic districts have also been identified within Martinsville. Table 2-2 preliminarily identifies historic resources within Martinsville, Indiana, based on the National Register of Historic Places. A preliminary search indicates that state historic resources may also be present within the county and should be evaluated further. Consultation with the State Historic Preservation Office should occur to define requirements related to compliance with the National Historic Preservation Act.

A site survey was performed to characterize the ecological setting at the site, identify habitat types, identify onsite or nearby water bodies, and collect other ecologically relevant information necessary to complete the SLERA. Based on the site visit, no wetlands or potential wetland habitats were identified. The SLERA includes a current list of federal- and state-listed threatened and endangered species potentially occurring in Morgan County, Indiana. An online review identified the Bald eagle (Haliaeetus leucocephalus), Indiana bat (Myotis sodalis), and Northern long-eared bat (Myotis septentrionalis) as federally listed threatened or endangered species that are known or believed to occur in Morgan County, Indiana. However, during the site visit, no U.S. Fish and Wildlife Service or state-listed threatened or endangered species were observed. The Endangered Species Act is listed as a potential ARAR; additional evaluation is needed to determine whether threatened or endangered species or their habitat are present at the site. However, it is expected that the remedy can be designed to avoid or minimize adverse effects on threatened or endangered species and their habitat.

2.1.4 Action-specific ARARs Action-specific ARARs regulate the specific type of action, technology under consideration, or management of regulated materials. Action-specific ARARs generally set performance, design, or other similar action-specific controls or restrictions on certain activities related to management of hazardous substances or pollutants. These requirements are triggered by the remedial activities selected to accomplish a remedy. Because several alternative actions may occur at a site, very different requirements may apply. The action-specific requirements do not solely determine the design of the remedial alternative but indicate how or to what level treatment or cleanup will be achieved.

Action-specific ARARs that will be triggered by excavating soil, drilling activities, or disturbing the ground surface relate to the management and handling of soil, erosion, and sediment control during construction, and air pollution control related to fugitive dust emissions. Groundwater ex situ treatment ARARs at the City WTP include achievement of all Safe Drinking Water Act MCLs in the treated water and potentially include air emissions regulations related to prevention of significant deterioration.

The site does not contain listed hazardous waste, and waste characterization from the RI indicates the wastes generated from the site (groundwater and soil) are not characteristically hazardous wastes. However, impacted soil located under the Facility, which may be contributing to soil vapor contamination, has only been tested on a very limited basis. Underground injection control regulations, which apply to the subsurface emplacement of fluids, would be applicable to in situ treatment groundwater remedies that include injecting chemicals or substrates into the subsurface.

Title 13 of the Indiana Code requires the recording of an environmental restrictive covenant for properties if the remedial action will leave contamination in place where unrestricted land use is not permitted, which may apply to several of the proposed remedies. CERCLA requires that an institutional control be implemented when unrestricted land use criteria are not met and provides guidance on

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

2-4 AX0420181244MKE

institutional controls. Title 13 of the Indiana Code also requires that this regulation be listed as an “other regulatory consideration” rather than an ARAR because it is anticipated that IDEM will desire full compliance with administrative requirements.

2.2 Development of Remedial Action Objectives RAOs describe the goals that the proposed remedial action is expected to accomplish. They are specific to media for protecting human health and the environment. Potential risk can be associated with current or potential future exposures. Therefore, an important component of developing RAOs is determining future land use. The preliminary RAOs developed for the site are based on assumptions that future land use would not differ from current land use.

Preliminary RAOs consider the contaminant levels and exposure pathways that present potentially unacceptable risk to human health and the environment as determined during the RI and risk assessments. The preliminary RAOs presented in this section address indoor air based on data from the Phase 6 and Phase 7 vapor intrusion sampling events, which indicate that COC concentrations in indoor air are likely present risk above EPA-acceptable levels at some locations. In addition, contaminant concentrations in soil are within EPA-acceptable levels for human health. Therefore, RAOs were not developed for soil.

The conclusion of the SLERA was that COC concentrations in soil and groundwater do not present significant risk to ecological receptors and that no further evaluation relative to ecological risk at the site is necessary. Therefore, RAOs were not developed to protect ecological receptors.

RAOs developed to protect human health receptors from potentially unacceptable risk resulting from contamination at the site are as follows:

• Groundwater

− GW RAO 1—Protect human health by reducing or eliminating exposure (via ingestion, inhalation, or direct contact) to groundwater COCs at concentrations that could pose an unacceptable risk to human health for current and future groundwater use.

− GW RAO 2—Reduce COC concentrations in groundwater to restore the aquifer to its beneficial use as a drinking water aquifer within a reasonable timeframe.

− GW RAO 3—Protect human health by reducing or eliminating the potential for COCs in groundwater to volatilize and migrate into buildings through the vapor intrusion pathway.

• Soil Vapor

− Soil Vapor RAO 1—Protect human health by reducing or eliminating exposure (via inhalation) to COCs in indoor air, resulting from the intrusion of soil vapors, at concentrations that could pose an unacceptable risk to human health for current and future use of affected properties.

2.3 Development of Preliminary Remediation Goals PRGs are risk-based or ARAR-based chemical-specific concentrations that act as quantitative goals to define the extent of cleanup needed to achieve the RAOs. The final remedial goals, which will be defined in the Record of Decision, will become the performance requirements and the main basis for measuring the success of the selected response actions. When identifying PRGs, the following are often considered in parallel:

1. Risk-based concentrations corresponding to target ELCR levels of 10-4, 10-5, and 10-6, and noncancer target HI of 1 and 0.1.

SECTION 2: IDENTIFICATION AND SCREENING OF TECHNOLOGIES

AX0420181244MKE 2-5

2. Background (upgradient) concentrations identified based on the data collected during the RI or from other relevant background studies.

3. Chemical-specific ARARs, such as the federal MCLs and state drinking water standards.

The risk-based PRGs for protection of human health were calculated using three target ELCR levels within EPA’s acceptable risk range (10-4, 10-5, and 10-6) and a target HI of 1. EPA will select and document the final PRGs in the Record of Decision.

Table 2-3 presents the proposed PRGs for the site, which are summarized for each constituent and medium as follows:

Proposed PRGs

Basis PCEb TCEb

Groundwater

MCLa 5 µg/L NA

Soil Vapor

Commercial, TCR = 1x10-4, THQ = 1 5,840 µg/m3 292 µg/m3

Commercial, TCR = 1x10-5, THQ = 1 5,840 µg/m3 292 µg/m3

Commercial, TCR = 1x10-6, THQ = 1 1,572 µg/m3 292 µg/m3

Residential, THQ = 1 1,390 µg/m3 70 µg/m3

Notes:

a EPA’s National Primary Drinking Water Regulations b The lower of the cancer-based and noncancer-based PRGs are presented for soil vapor PRGs. NA = not applicable (not a COC in groundwater) TCR = target cancer risk THQ = target hazard quotient

As shown in Table 1-9, all risk exceedances are due to exceedances of the noncancer hazard threshold,

except for the future indoor air exposures from subslab soil vapor at location CP-099. Both the cancer

risk threshold and noncancer hazard threshold were exceeded at CP-099. When determining the PRG for

each exposure scenario, the calculated PRG for noncancer risk threshold and noncancer hazard

threshold are compared to determine the proposed PRG (Table 2-3). For example, the PRG of 5,840

µg/m3 calculated for PCE in soil vapor (commercial) based on the noncancer hazard threshold is lower

than the PRG of 15,723 µg/m3 calculated based on the ELCR of 10-5; therefore, the proposed PRG is

5,840 µg/m3, considering an ELCR of 10-5. However, the PRG of 5,840 µg/m3 based on the noncancer

hazard threshold is higher than the PRG of 1,572 µg/m3 calculated based on the ELCR of 10-6; therefore,

the proposed PRG is 1,572 µg/m3, considering an ELCR of 10-6.

The calculated PRG for PCE in groundwater based on noncancer risk is 46 µg/L (Table 2-3). Cancer risk for PCE in groundwater did not exceed the risk threshold, as shown in Table 1-9. Although the calculated risk-based PRG for PCE in groundwater is calculated as 46 µg/L, the proposed PRG is the MCL of 5 µg/L, considering that the aquifer is used as a drinking water supply. While the proposed PRG for PCE is the MCL, the risk-based value of 46 µg/L was selected as a performance standard for active groundwater treatment in some of the groundwater alternatives, which is discussed in greater detail in Section 4.2.1.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

2-6 AX0420181244MKE

2.4 Contaminated Media Exceeding PRGs Areas and volumes of contaminated media to be addressed by the remedial alternatives were calculated based on the PRGs. These areas and volumes are estimated quantities based on locations where COC concentrations exceed the PRGs or regulatory criteria.

2.4.1 Groundwater As discussed in Section 1.5.2, PCE concentrations exceeded the MCL in 18 shallow wells, 1 intermediate well (MW-7M), and 1 municipal well (PW-1). PCE daughter products (e.g., TCE and cis-1,2-DCE) were detected at low levels in various wells but did not exceed their respective MCLs. The extent of groundwater-containing COC concentrations exceeding their PRGs is presented in Figure 2-1 and corresponds to an estimated surface area of about 2,410,000 square feet. The plume is approximately 3,500 feet long (including the portion upgradient of the Facility) and 580 feet wide (not including the western lobe). Based on an average groundwater elevation of 583 feet amsl (17 feet bgs) and the concentrations detected in the shallow and intermediate-depth wells (see Figure 1-4), the depth of contamination extends to an elevation of about 570 feet amsl (30 feet bgs). Using an average depth of contamination of about 13 feet, approximately 1,160,000 cubic yards (yd3) of the shallow portion of the aquifer (including the plume and western lobe areas) contains groundwater COC concentrations (specifically PCE) that exceed the PRGs (Table 2-4).

In addition, PCE concentrations in groundwater samples collected from MW-7M, screened in the intermediate zone, exceed the PRG; this area is depicted on Figure 2-2 and represents an estimated area of approximately 284,000 square feet. The vertical extent of contamination within the intermediate zone was estimated to be from the bottom of the shallow zone (570 feet amsl) to about 555 feet amsl (approximately 45 feet bgs). Using an average depth of contamination of 15 feet, approximately 160,000 yd3 of the intermediate zone contains COC concentrations that exceed the PRGs. Considering both the shallow and intermediate zones, a total of approximately 1,320,000 yd3 of groundwater in the aquifer contains COC concentrations that exceed the PRGs.

2.4.2 Soil Vapor PCE and TCE concentrations in soil vapor exceeded their respective risk-based PRGs. Figures 2-3 and 2-4 depict the area of soil vapor where PCE and TCE exceeded the residential and commercial/industrial PRGs, respectively. Figure 2-3 presents the areas where PCE and TCE concentrations in soil vapor exceeded their respective residential PRGs of 1,390 µg/m3 and 70 µg/m3 based on a TCR = 10-5 or 10-4 and target hazard quotient (THQ) = 1. Figure 2-4 presents the areas where PCE and TCE concentrations in soil vapor exceeded their respective commercial/industrial PCE PRGs of 1,572 µg/m3 (TCR = 10-6 and THQ = 1) and 5,840 µg/m3 (TCR = 10-5 or 10-4 and THQ = 11) and TCE PRG of 292 µg/m3 (TCR = 10-5 or 10-4 and THQ = 1). These shaded areas are based on the contours developed during screening and presented as Figures 1-12 and 1-13.

The soil volumes with COC concentrations in soil vapor exceeding the residential and industrial/commercial PRGs were calculated based on Figure 2-3, Figure 2-4, and the geologic cross section (Figure 1-4) and are presented in Table 2-5. Soil vapor contamination was assumed to extend vertically from the ground surface (600 feet amsl) to the water table (583 feet amsl) for an average depth of 17 feet in affected areas.

1 When TCR = 10-5 or 10-4 and THQ = 1, THQ = 1 is the risk driver. When TCR = 10-6 and THQ = 1, TCR = 10-6 is the risk driver.

SECTION 2: IDENTIFICATION AND SCREENING OF TECHNOLOGIES

AX0420181244MKE 2-7

2.5 General Response Actions Following development of RAOs and PRGs, GRAs were identified to address the affected media at the site. As defined in EPA’s Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final (EPA 1988a), GRAs are media-specific actions that satisfy RAOs. Actions for mitigating risk posed by affected media may be applied individually or in combination. The general response actions considered for the site are as follows:

• No action

• Institutional controls

• Collection

• Treatment

• Disposal

2.5.1 No Action Under this GRA, no remedial action will be undertaken at the site. The site will remain in its current state; however, nearby municipal wells that are currently pumping will no longer be pumping, and no actions will be conducted to remove, isolate, monitor, or remediate the contamination. The risk to human health and the environment would remain unchanged. Under the no-action response, long-term monitoring (LTM) would not be used to assess changes in COC concentrations within affected media. No additional access or deed restrictions would be put into place. The NCP requires that the no-action alternative be retained through the FS process to provide a baseline for comparison against other remedial response actions.

2.5.2 Institutional Controls Institutional controls are non-engineering measures, usually legal or administrative means, of limiting potential exposures to a site or medium of concern by limiting or preventing access. Institutional controls prevent human exposure to site COCs but do not reduce the toxicity, mobility, or volume of contamination. Examples of institutional controls that may apply to the site include land access and deed restrictions to maintain any mitigation systems installed. Deed restrictions may also allow access for monitoring and inspection activities. Other institutional controls could include restricting future development or requiring installation of vapor mitigation measures in new buildings.

2.5.3 Collection Collection activities remove contaminated media from their existing location(s) to facilitate treatment or disposal actions but do not contribute to reducing toxicity, mobility, or volume. The contaminated media can then be treated or disposed. Excavating contaminated soil or extracting groundwater or vapor are examples of collection activities.

2.5.4 Treatment Treatment processes are used to reduce COC toxicity, mobility, and/or volume in affected media, either in situ or ex situ. COCs are either removed or altered by physical, chemical, or biological processes. These processes can either occur onsite or at an offsite facility.

2.5.5 Disposal Treated or untreated wastes can be disposed of either onsite or offsite. Disposal options determine the ultimate location of treated or untreated media in an environmentally sound, publicly acceptable, and cost-effective manner, such as at a Resource Conservation and Recovery Act Subtitle C or D landfill. Disposal actions typically do not involve reducing the toxicity or volume of contaminated media but may reduce COC mobility because of containment associated with most disposal actions.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

2-8 AX0420181244MKE

2.6 Identifying and Screening Technology Types and Process Options

In this subsection, technologies and process options applicable to each GRA are identified for each media of interest and screened to eliminate those that cannot be implemented at the site for technical reasons or are not applicable to the site-specific conditions. The term “technologies” refers to general categories of “process options,” such as chemical or physical treatment, in situ bioremediation, thermal treatment, vertical barriers, and other viable technologies. The term “process options” refers to specific processes within each technology type. For example, in situ physical or chemical treatment technologies would include such process options as electrical separation, soil flushing, stabilization and solidification, and SVE. The technology types and process options were identified based on a variety of reference sources, including the following:

• EPA Contaminated Site Clean-Up Information

• EPA Publications on Remediation Technologies for Cleaning Up Contaminated Sites

• Superfund Remedy Report, Fourteenth Edition (EPA 2013)

• Interstate Technology and Regulatory Council technical guidance documents

• Literature search of various technical journals, case studies, vendor information, and conference proceedings

• Professional experience

The technology types and process options were evaluated for groundwater and soil vapor, and this evaluation will be the basis for developing potential remedial alternatives at the site. The conclusion of the SLERA was that COC concentrations in soil and groundwater do not present risk to ecological receptors. The findings of the HHRA indicated that the COC concentrations in soil did not present unacceptable risk to human receptors. Therefore, alternatives were not specifically developed to address contaminated soil. However, soil may be treated incidentally to address soil vapor, such as by installing and operating an SVE system. Additionally, some limited soil removal may be considered as part of soil vapor source reduction.

Although indoor air was also sampled as a separate medium at the site, few process options are available specifically to address indoor air; most process options address the contaminated soil vapor by treating the soil vapor or disconnecting the vapor intrusion pathway of soil vapor into indoor air. The purpose of sampling indoor air is to assess the vapor intrusion pathway and the potential for exposure of receptors to indoor air contamination. According to the Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (EPA 2015), the vapor intrusion pathway is referred to as “complete” for a building when:

1. A subsurface source of vapor-forming chemicals is present (e.g., in the soil or groundwater) underneath or near the building.

2. Vapors form and have a route along which to migrate toward the building.

3. The building is susceptible to soil vapor entry, which means that openings exist for the vapors to enter the building and driving forces exist to draw the vapors from the subsurface through the openings into the building. Driving forces may consist of air pressure differences between the building and the subsurface environment.

4. Vapor-forming chemicals are present in the indoor environment that correspond to those found in the subsurface vapor source(s).

5. The building is occupied by one or more individuals when the vapor-forming chemicals are present indoors.

SECTION 2: IDENTIFICATION AND SCREENING OF TECHNOLOGIES

AX0420181244MKE 2-9

If one (or more) of the five conditions is currently absent and is reasonably expected to be absent in the future, the vapor intrusion pathway is referred to as “incomplete.” When the vapor intrusion pathway is determined to be incomplete, then vapor intrusion mitigation is not generally warranted. The preferred long-term response to the intrusion of vapors into buildings is to “eliminate or substantially reduce the level of contamination in the subsurface vapor source (e.g., groundwater, subsurface soil, sewer lines) by vapor-forming chemicals to acceptable-risk levels, thereby achieving a permanent remedy. Remediation of the groundwater plume or a source of vapor-forming chemicals in the vadose zone will eventually eliminate potential exposure pathways” (EPA 2015). The vapor intrusion pathway is best addressed by remediating the source of contaminated vapors in soil or groundwater. Indoor air is typically treated only when necessary to reduce immediate risk to receptors and is considered a temporary solution. Therefore, technology types and process options were not evaluated specifically for indoor air.

Tables 2-6 and 2-7 describe the technology types and process options for groundwater and soil vapor, respectively. These tables also screen the technology types and process options based on applicability to the site and technical implementability. Process options that were not considered to be applicable or technically implementable were eliminated; these process options are shaded gray in the tables. This screening was performed considering the RAOs, site characteristics, and volumes of contaminated media. The retained remedial technologies from the results of this screening were then carried forward for further evaluation.

2.7 Process Options Evaluation In this stage of the screening, applicable and technically implementable processes are evaluated in greater detail for each media. This process simplifies developing and evaluating alternatives. The representative process options provide a basis for evaluation during this FS; however, the specific process used to implement the remedial alternative may not be selected until the remedial design phase. The technology types and process options are evaluated based on three criteria: effectiveness, implementability, and relative cost, as follows:

• Effectiveness—The ability of the technology or process option to perform adequately to achieve the RAOs alone or as part of an overall system considering the estimated areas or volumes of contaminated media. This criterion considers the degree to which the process options are proven and reliable with respect to the hazardous substances and site conditions. In addition, this criterion evaluates the potential effects on human health and the environment during the implementation phase.

• Implementability—The degree of difficulty anticipated in implementing a particular measure under technical, regulatory, and schedule constraints. This criterion evaluates both the technical and administrative feasibility of implementing each of the technology options. Administrative aspects include the ability to meet substantive requirements of permits; the availability of treatment, storage, and disposal services (including capacity); and the availability of necessary equipment and skilled workers.

• Cost—A relative cost evaluation of the various process options within a given technology type. At this stage of evaluation, the relative costs are comparative based on professional judgement. The cost criterion plays a limited role in the screening process at this point; it is used to preclude further evaluation of process options that are very costly when other choices are available that perform similar functions with comparable effectiveness. Each process option is evaluated as to whether costs would be low, medium, or high relative to other process options within the same technology type. It includes consideration for construction (capital) and long-term operation and maintenance (O&M) costs.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

2-10 AX0420181244MKE

Tables 2-8 and 2-9 use the three criteria to evaluate the process options associated with each technology type for groundwater and soil vapor, respectively. The technologies and process options that are eliminated are shaded in the tables. Screening is based on professional experience, published sources, and other relevant documents. The process options and technology types that are retained for assembly into alternatives are presented in Tables 2-10 and 2-11 for groundwater and soil vapor, respectively. Technology types and process options are combined into remedial alternatives for each media at the site in Section 3.

SECTION 3

AX0420181244MKE 3-1

Development and Screening of Alternatives This section presents the development and preliminary screening of alternatives. The technologies that remain following screening are assembled into remedial alternatives for each media that meet RAOs, satisfy ARARs, and address COCs that pose unacceptable risks. The remedial components discussed for each alternative are intended to serve as representative examples. Other process options within the same remedial technology that achieve the same objectives may be evaluated during the remedial design.

The alternatives are discussed in general as they may apply to the site. The preliminary screening evaluates the effectiveness, implementability, and relative cost of the alternatives.

3.1 Development of Alternatives This subsection presents remedial alternatives to address unacceptable risk at the site and achieve the RAOs identified in Section 2.

3.1.1 Approach for the Development of Alternatives In accordance with the EPA RI/FS guidance document (EPA 1988a), the general response actions, technologies, and process options that are retained in Section 2 are combined to form alternatives. Each alternative may have several components to meet the RAOs. The range of general response actions incorporated into the remedial alternatives includes no action, institutional controls, collection, treatment, and disposal.

Alternatives are developed for groundwater and soil vapor at the site; unacceptable risk posed by COCs in indoor air will be addressed by mitigating soil vapor and by addressing COCs in groundwater. Separate alternatives are developed for each media rather than sitewide alternatives to allow for flexibility during remedy evaluation and selection. For example, alternatives developed to address soil vapor are developed independent of alternatives to address groundwater contamination. Maintaining separate alternatives for each media allows the alternatives to be combined in various configurations when remedies are selected. However, certain combinations of remedies are more synergistic than others. For example, a less aggressive approach to addressing vapor intrusion may require a more aggressive approach to address groundwater contamination, and vice versa. These interactions between media, especially groundwater and the vapor intrusion pathway, should also be considered when evaluating and selecting the overall remedy for the site.

The remedial alternatives are derived using experience and engineering judgment to assemble process options into feasible remedial action alternatives. However, treatability studies during the remedial design phase may be necessary to further identify the specific technology option to achieve the remedial goals. Predesign investigations may also be conducted to further refine the COC mass, areas, and depth intervals for treatment. The main components of the alternatives are discussed in general in the following subsections. Additional details, a conceptual design, and a cost estimate are developed for alternatives that are retained for further evaluation as part of this FS.

3.1.2 Groundwater The following eight remedial alternatives are developed to address COCs in groundwater:

• Alternative GW1—No Action

• Alternative GW2—WTP Alternatives

• Alternative GW3—Monitored Natural Attenuation (MNA) and Institutional Controls

• Alternative GW4—Enhanced In Situ Bioremediation, LTM, and Institutional Controls

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-2 AX0420181244MKE

• Alternative GW5—In Situ Chemical Reduction (ISCR), LTM, and Institutional Controls

• Alternative GW6—In Situ Chemical Oxidation (ISCO), LTM, and Institutional Controls

• Alternative GW7—In Situ Sorptive-Reactive Media (SRM), LTM, and Institutional Controls

• Alternative GW8—In-Well Air Stripping, LTM, and Institutional Controls

3.1.2.1 Alternative GW1—No Action

Alternative GW1 consists of taking no action. The NCP requires that the no-action response be included among the alternatives evaluated in every FS to provide a baseline for comparison to the other remedial response actions. The no-action alternative implies that no remedial action would be undertaken and that no institutional controls, containment, removal, treatment, or other mitigating actions would be implemented to control exposure to COCs. The no-action alternative also assumes that the City would no longer pump and operate its current wellfield and WTP. Therefore, the potential human health and environmental risks associated with exposure to the COCs would not be mitigated. Five-year site reviews would be conducted as long as hazardous substances remain at the site at concentrations that do not allow unlimited use and unrestricted exposure, in accordance with the NCP.

3.1.2.2 Alternative GW2—WTP Alternatives

Alternative GW2 is not a standalone alternative. It is assumed that Alternative GW2 would be implemented concurrently with the other groundwater alternatives GW3 to GW8 presented below. Alternative GW2 is implemented to protect the drinking water pathway to City residents, while the other alternatives provide treatment of the PCE plume to below PRGs. This alternative maintains the current pumping from the three existing municipal extraction wells and only evaluates different treatment processes at the WTP for the extracted groundwater.

Groundwater Extraction. Alternative GW2 includes pumping from the three existing municipal wells (PW-1, PW-2, and PW-3) currently being used by the City and does not include groundwater extraction from other existing wells or newly installed wells.

Water Treatment. Three subalternatives were developed that incorporate the different treatment technologies to reduce PCE concentrations to meet drinking water standards in groundwater that is already being pumped for municipal use. The three GW2 subalternatives are described as follows:

• Alternative GW2A. Alternative GW2A would continue operations of the City WTP using GAC treatment to reduce PCE concentrations to below PRGs, addressing the drinking water pathway for potential receptors.

• Alternative GW2B. Alternative GW2B would replace the existing GAC treatment system with an air stripper. Air strippers remove COCs from liquid (water) by providing contact between the liquid and air. The air is then released to the atmosphere or potentially treated to remove the COCs and subsequently released to the atmosphere.

• Alternative GW2C. Alternative GW2C would replace the existing GAC treatment system with an advanced oxidation process (AOP) treatment system. AOP treatment combines ultraviolet light (UV) or ozone with hydrogen peroxide (H2O2) to form hydroxyl radicals, which are powerful oxidants that effectively oxidize recalcitrant organics.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-3

3.1.2.3 Alternative GW3—Monitored Natural Attenuation and Institutional Controls

Alternative GW3 addresses the risk to current and potential future receptors by relying on natural attenuation to decrease COC concentrations in groundwater and using institutional controls to prevent COC exposure while natural attenuation is ongoing. The following are the main components of Alternative GW3:

• MNA, including the following:

− Sampling and analyzing groundwater samples to assess natural attenuation of COCs in groundwater

− Modeling groundwater and natural attenuation processes

− Completing five-year reviews

• Implementing institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Each of the main components of this alternative is discussed in the follow paragraphs.

Monitored Natural Attenuation. MNA is defined by the EPA in Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4-17, 1997 as “the reliance on natural attenuation processes (within the context of a carefully controlled and monitored clean-up approach) to achieve site-specific remedial objectives within a timeframe that is reasonable compared to other methods.” Natural attenuation processes include a variety of physical, chemical, or biological processes that act without human intervention to reduce the contaminant mass, toxicity, mobility, volume, or concentrations in soil and groundwater. Biodegradation is the most important destructive attenuation mechanism, although abiotic destruction of some compounds does occur. Nondestructive attenuation mechanisms include sorption, dispersion, dilution from recharge, and volatilization (EPA 1998b).

MNA is appropriate as a remedial approach only when it can be demonstrated to be capable of achieving the RAOs within a timeframe that is reasonable compared to that offered by other methods. MNA is typically applied in conjunction with active remediation measures (e.g., source control), or as a follow-up to active remediation measures that have already occurred. As previously discussed, an SVE/AS system was operated at the site to remediate the contaminated soil and groundwater source (AEE 2008).

Evaluating natural attenuation usually involves not only determining what natural attenuation processes are occurring, but also estimating future results of these processes. Therefore, if selected, this remedy would include continued monitoring and data evaluation over time to document and verify the effectiveness of these processes. The evaluation may consist of groundwater or fate-and-transport modeling to predict the effects of natural attenuation. The evaluation method may also be updated periodically to verify progress and compare groundwater analysis results to the predictions.

In addition to modeling, the use of natural attenuation as part of the remedial plan will require that a LTM program be instituted. The monitoring data would provide information to allow EPA to decide if natural attenuation is meeting site objectives and to verify that changes in site conditions do not reduce the effectiveness of natural attenuation. Groundwater would be monitored to determine if COC concentrations within the plume decrease as the result of existing natural attenuation processes or if additional remedial action would be required. The existing monitoring well network would be used to monitor groundwater COC concentrations, breakdown products, geochemical conditions, and natural attenuation parameters (dissolved oxygen, ORP, turbidity, pH, and conductivity). A detection plan for early warning of impacts on sensitive receptors, such as residential wells, would be provided. Plans would also be developed for contingent remedial efforts that could be executed if natural attenuation processes do not fulfill expectations.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-4 AX0420181244MKE

The NCP requires five-year site reviews as long as hazardous substances with the potential to cause risk to human health and the environment remain at the site. As part of the five-year review process, EPA would evaluate risk and determine if MNA is continuing to be protective of human health and the environment.

Institutional Controls. Institutional controls would protect human health and the environment while natural attenuation processes (which are expected to continue decreasing the PCE plume concentrations) are occurring. Institutional controls would restrict access, land use, and domestic use of groundwater at the site. The following are some examples of potential institutional controls that could be employed to address COCs in groundwater upgradient of the municipal wells:

• Working with the local jurisdiction to develop ordinances to restrict well drilling and prohibit groundwater access

• Recording the groundwater contamination in the land record to provide notice of the issue to the public

• Recording contaminated aquifers on the state registry to maintain institutional tracking

Institutional controls for groundwater would remain in place for as long as COC concentrations in groundwater exceed the remedial goals. Once groundwater remedial goals are achieved, WTP alternatives would no longer be needed.

3.1.2.4 Alternative GW4—Enhanced In Situ Bioremediation, Long-term Monitoring, and Institutional Controls

Alternative GW4 consists of enhancing biological natural attenuation processes to stimulate reductive dechlorination. The following are the main components of Alternative GW4:

• Enhanced in situ bioremediation, including the following:

− Injecting organic substrates (such as amendments, nutrients, or microorganisms) into the subsurface to stimulate the microorganisms to metabolize the COCs within the core2 of the shallow groundwater plume

− Natural attenuation to achieve the PRGs for the areas of the plume with lower COC concentrations

• LTM, including the following:

− Sampling and analyzing groundwater samples for COCs and daughter products

− Completing five-year reviews

• Institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Institutional controls would be implemented as discussed for Alternative GW3. The remaining alternative components are discussed in the follow paragraphs.

Enhanced In Situ Bioremediation. Adding organic substrate to the aquifer can stimulate microbial growth and development, creating an anaerobic environment in which anaerobic degradation rates of chlorinated COCs may be improved through enhanced reductive dechlorination (ERD) (The Parsons Corporation 2004). Alternative GW4 would include injecting substrates into the shallow aquifer to promote reductive dechlorination and enhance natural attenuation processes. If necessary, the aquifer could be bioaugmented with Dehalococcoides Ethenogenes cultures or similar to enable or accelerate

2 The core of the groundwater plume is defined as areas of the plume having COC concentrations exceeding performance standards. As further discussed in Section 4.2.1.4, the performance standard was selected as a PCE concentration of 46 µg/L based on the noncancer risk hazard. The actual performance standard(s) would be determined during the design phase.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-5

degradation of the chlorinated COCs to ethene; additional studies may be conducted to determine if bioaugmentation would be beneficial at the site. Other predesign investigations may be conducted to refine estimates of contaminant mass and depth intervals or to collect remedy-specific parameters. The potential for methane generation and the need for methane control during remediation could also be evaluated.

Injections would be accomplished using a permanent network of new injection wells or by temporary injection wells through direct-push technology (DPT) and screening tools. Injections via permanent or temporary injection points are typically spaced evenly on a grid pattern across the area requiring treatment or injected in rows to create a reactive zone that intercepts the contaminated groundwater; the latter option may be more feasible at the site given the commercial and residential land use where the plume is located. The injection points could be arranged in rows within street rights-of-way (ROWs) perpendicular to the groundwater flow direction to intercept the core of the groundwater plume with the highest COC concentrations. The injections would be focused on treating the core of the groundwater plume having the highest PCE concentrations. Areas of the plume with lower PCE concentrations would be treated by a combination of injected substrate that has migrated downgradient of the injection area and natural attenuation processes, which were described as part of Alternative GW3.

Before and subsequent to treatment, performance monitoring would be conducted to establish baseline conditions prior to remediation, determine the degree of contaminant reduction, and monitor contaminant migration. Parameters specific to the performance of ERD may also be monitored, such as substrate, microorganisms, pH, ORP, dissolved oxygen, methane, ethane, ethene, and general chemistry.

Long-term Monitoring. During and subsequent to treatment, groundwater would be monitored as part of a LTM program to monitor the effectiveness of ERD, similar to what was discussed for Alternative GW3. However, the monitoring parameters would be limited to COCs, daughter products, and additional parameters specific to ERD. The full suite of natural attenuation parameters would not necessarily be analyzed. If microorganisms are added to the site via bioaugmentation, samples may be collected to verify survival and propagation of the microorganisms.

Depending on the time required for natural attenuation processes to decrease COC concentrations to below the PRGs in the downgradient plume, five-year site reviews will be performed. As part of the five-year review process, EPA would evaluate risk at the site and determine if the alternative is continuing to be protective of human health and the environment.

3.1.2.5 Alternative GW5—In Situ Chemical Reduction, Long-term Monitoring, and Institutional Controls

Alternative GW5 consists of injecting an insoluble chemical amendment (zero-valent iron [ZVI], carbon sources, or a combination) in solid or slurry form into the core of the groundwater plume to create a zone of strongly reducing conditions, accelerating reductive dechlorination of the COC contaminants. The carbon source acts as an enhancement, thereby promoting biodegradation of COCs in the treatment zone. The following are the main components of Alternative GW5:

• In situ chemical reduction, including the following:

− Injecting ZVI, nutrients, and carbon substrate into the subsurface within the core of the shallow groundwater plume to stimulate abiotic and biotic processes

− Relying on natural attenuation to achieve the PRGs for the areas of the plume with lower COC concentrations

• LTM, including the following:

− Sampling and analyzing groundwater samples for COCs and daughter products

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-6 AX0420181244MKE

− Completing five-year reviews

• Institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Institutional controls would be implemented as discussed for Alternative GW3 and LTM would be implemented as discussed for Alternative GW3. The remaining component of this alternative is discussed in the follow paragraphs.

In Situ Chemical Reduction. Alternative GW5 would primarily consist of injecting ISCR amendments (e.g., ABC+, Provect-IR, EZVI, or EHC) into the shallow aquifer to promote ISCR. Injecting an ISCR reagent has proven to be highly effective in treating chlorinated compounds based on an oxidation-reduction process where the contaminant serves as an electron acceptor and the ISCR reagent as the electron donor. Chlorinated compounds can accept electrons from ZVI and be reduced to nontoxic end products, such as ethene and ethane. In addition to the chemical component of ISCR, the reduced conditions in groundwater created by the ZVI are also favorable for stimulating the growth of microorganisms capable of degrading compounds. In addition, if ZVI is combined with nutrients and an electron acceptor or energy source, several physical, chemical, and microbiological processes combine to create strong reducing conditions that stimulate rapid and complete dechlorination of organic solvents. These biogeochemical reductions minimize the generation of daughter products, such as vinyl chloride, and result in end products of ethene and ethane.

Similar to Alternative GW4, injections would be accomplished using a permanent network of wells or by temporary injection wells through DPT and screening tools. Injection points could be spaced on a grid pattern at the Facility and/or in off-set rows to create a reactive zone to intercept contaminated groundwater. Like Alternative GW4, the injections would be focused on treating the core of the groundwater plume having the highest PCE concentrations. The geochemical conditions induced by ISCR, would also induce biotic processes in downgradient portions of the groundwater plume to reduce COC concentrations within the remainder of the groundwater plume to below the PRGs.

Predesign investigations may be conducted to refine estimates of contaminant mass and depth intervals or to collect remedy-specific parameters. During and after treatment, performance monitoring would be conducted to establish baseline conditions at the site prior to remediation, determine the degree of contaminant reduction, and monitor contaminant migration. The potential for methane generation and need for methane control during remediation would also be evaluated. Parameters specific to the performance of ISCR may also be monitored, such as ISCR amendments, microorganisms, pH, ORP, dissolved oxygen, methane, ethane, ethene, and general chemistry. During performance monitoring, an evaluation could be conducted to determine if additional injections are necessary and if so, whether to continue with ISCR injections or to implement ERD alone and which would be the more cost effective.

3.1.2.6 Alternative GW6—In Situ Chemical Oxidation, Long-term Monitoring, and Institutional Controls

Alternative GW6 consists of injecting a liquid chemical oxidant (persulfate, permanganate, or peroxide) into the shallow groundwater. The following are the main components of Alternative GW6:

• ISCO, including the following:

− Injecting an oxidant into the subsurface to oxidize COCs within the core of the shallow groundwater plume

− Relying on natural attenuation to achieve the PRGs for the areas of the plume with lower COC concentrations

• LTM, including the following:

− Sampling and analyzing groundwater samples for COCs and daughter products

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-7

− Completing five-year reviews

• Institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Institutional controls would be implemented as discussed for Alternative GW3 and LTM would be implemented as discussed for Alternative GW3. The remaining component of this alternative is discussed in the follow paragraphs.

In Situ Chemical Oxidation. Oxidation chemically converts hazardous contaminants to nonhazardous or less toxic compounds that are inert, more stable, or less mobile. Oxidants have been able to rapidly and completely destroy many toxic organic chemicals through chemical reactions. Alternative GW6 would primarily consist of injecting a chemical oxidant into the core of the groundwater plume within the shallow aquifer to treat the COCs present in groundwater HCAs. The COCs would be converted into innocuous compounds commonly found in nature, such as carbon dioxide, water, and inorganic chloride.

The oxidants that may be applicable to the site include permanganate and persulfate, which have been used for the remediation of chlorinated solvents like PCE. Permanganate is commonly available in two forms: potassium permanganate, a crystalline solid that is typically mixed with water onsite to form a solution; and a liquid sodium permanganate. Compared to other oxidants, permanganate is relatively more stable and persistent in the subsurface; as a result, it can migrate by diffusive processes. Persulfate typically must be activated in the field by applying iron ethylenediaminetetraacetate, or a base (e.g., sodium hydroxide) to increase pH. For persulfate to be effective in field applications, the activator must be distributed and transported with the persulfate. Natural mineral activated persulfate using ambient groundwater minerals should also be considered.

Like previous alternatives, injections would be accomplished using a permanent network of injection wells or temporary injection wells using DPT and screen tools. The oxidant would be injected into the subsurface; it would then exit the screens, spreading laterally into the aquifer formation. The oxidant would mix and react with the COCs within the surrounding groundwater. Recirculation wells or injection and extraction well combinations may be employed to improve mixing and oxidant distribution in the subsurface. Fewer wells would be required using these delivery approaches. This could be an advantage in a highly developed area.

The injection points could be arranged in rows to create a reactive zone to intercept contaminated groundwater. If necessary, injection points could also be spaced on a grid pattern within the parking lot of the Facility. Like previous in situ treatment alternatives, the injections would be focused on treating the core of the groundwater plume with the highest PCE concentrations. After the initial injection period, an evaluation could be conducted to determine if additional injections are necessary.

Potassium permanganate encapsulated in wax cylinders are another in situ delivery mechanism of oxidant to the subsurface; however, the limited permanganate concentration emitted from these are likely not sufficient to treat PCE in the sandy aquifer. If used, the cylinders could be placed in the aquifer using DPT applications or could be lowered into wells. The presence of the protective wax barrier slows down and controls oxidant release, resulting in sustained oxidant release creating reactive zones in the subsurface for long-term passive treatment of groundwater. Regardless of the oxidant delivery method, the oxidants would be targeted at treating the core of the plume having the highest COC concentrations and the relatively higher PCE concentrations in the perimeter of the plume around the core.

Predesign investigations may be performed to refine the COC mass estimate and vertical intervals for injections. During and after treatment, performance monitoring would be conducted to establish baseline conditions at the site prior to remediation, determine the degree of contaminant reduction, and monitor contaminant migration. Parameters specific to the performance of ISCO would also be monitored, such as oxidant concentrations, metals that may be solubilized due to highly oxidative

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-8 AX0420181244MKE

conditions (e.g., arsenic, barium, cadmium, chromium, lead, or selenium), pH, ORP, dissolved oxygen, and general chemistry.

3.1.2.7 Alternative GW7—In Situ Sorptive-reactive Media, Long-term Monitoring, and Institutional Controls

Alternative GW7 consists of reducing COC mobility by adsorbing them onto SRM that is injected into the subsurface. The following are the main components of Alternative GW7:

• SRM, including the following:

− Injecting SRM into the subsurface within the core of the shallow groundwater plume or downgradient prior to the municipal wells

− Injecting other substrate amendments, nutrients, or microorganisms as necessary

• LTM, including the following:

− Sampling and analyzing groundwater samples for COCs and daughter products

− Completing five-year reviews

• Institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Institutional controls would be implemented as discussed for Alternative GW3, and LTM would be implemented as discussed for Alternative GW3. The remaining component of this alternative is discussed in the follow paragraphs.

In Situ Sorptive-reactive Media. SRM products combine the sorptive capacity of carbon, activated carbon, or other sorptive types of media with reactive technologies, often tailored for certain contaminant groups. SRM serves a dual function: it sorbs contaminants, quickly removing them from the dissolved phase, and provides a surface favorable for microbial growth. The goal of the SRM is to reduce contaminant availability in situ while simultaneously accelerating contaminant destruction via treatment. SRM products sorb back-diffused contaminants and hence decrease the associated contaminant rebound often observed.

Alternative GW7 would consist of injecting SRM into the shallow aquifer to adsorb COCs to the media and reduce COC mobility. SRM would be injected into the aquifer using DPT methods. SRM can be injected as a liquid or as a slurry composed of a fine powder. The injections could be conducted in two rows with offset centers to form a permeable reactive zone. Several zones would be created along the street ROWs to intercept the groundwater plume, like injections of other in situ treatment chemicals described for Alternatives GW4 through GW6. Like previous alternatives, the injections could be focused towards treating the core of the groundwater plume having the highest COC concentrations. Alternatively, SRM could be injected to form a single reactive zone to intercept the downgradient portion of the plume, thereby reducing COCs to concentrations below the PRGs prior to the plume reaching the municipal wells. SRM could also be injected in combination with other in situ treatment technologies, such as ZVI or substrates to promote reductive dechlorination of COCs.

Predesign investigations may be performed to refine the COC mass estimate and vertical intervals for injections. During and after treatment, performance monitoring would be conducted to establish baseline conditions at the site prior to remediation, determine the degree of contaminant reduction, and monitor contaminant migration. Parameters specific to the performance of SRM would also be monitored.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-9

3.1.2.8 Alternative GW8—In-well Air Stripping, Long-term Monitoring, and Institutional Controls

Alternative GW8 consists of in-well air stripping and groundwater recirculation within the shallow aquifer to strip the COCs from the groundwater. The following are the main components of Alternative GW8:

• In-well air stripping, including the following:

− Installing groundwater circulating wells (GCWs) within the core of the shallow groundwater plume

− Implementing vapor treatment of the volatilized COCs

− Relying on natural attenuation to achieve the PRGs for the areas of the plume with lower COC concentrations

• LTM, including the following:

− Sampling and analyzing groundwater samples for COCs and daughter products

− Completing five-year reviews

• Institutional controls to prevent domestic use of untreated groundwater within or nearby the plume

Institutional controls would be implemented as discussed for Alternative GW3, and LTM would be implemented as discussed for Alternative GW3. The remaining component of this alternative is discussed in the follow paragraphs.

In-well Air Stripping. In-well air stripping involves creating a groundwater circulation pattern using dual-screened wells and simultaneously aerating within the treatment well to volatilize COCs from the circulating groundwater. This technology is targeted towards volatile contaminants, including halogenated VOCs. Volatile contaminants in the groundwater are transferred from the dissolved phase to the vapor phase by the air stripping process inside the treatment well. The contaminated vapors are extracted by an SVE system and treated aboveground via GAC or other technologies.

Alternative GW8 would consist of installing GCWs at strategic locations at the site, most likely within street ROWs. The wells could be installed longitudinally along the axis of the plume from southeast to northwest to treat the groundwater having the greatest COC concentrations. Alternatively, wells could be installed in lines that bisect the plume, mostly perpendicularly to the groundwater flow direction. This configuration would allow treatment zones to be formed to remove COCs from groundwater as it passes through. Lastly, the wells may be distributed throughout the entire plume for aggressive treatment, although this configuration may not be cost effective. It is most likely that the wells would be focused in a location to treat the groundwater plume with the highest PCE concentrations or to provide treatment zones as groundwater passes through prior to reaching the municipal wells. Areas with lower PCE concentrations and zones downgradient of the target treatment areas would be part of an LTM program to assess the impacts of treatment.

Predesign investigations could be performed to refine the COC mass estimate and vertical intervals for injections. During and after treatment, performance monitoring would be conducted to establish baseline conditions at the site prior to remediation, determine the degree of contaminant reduction, and monitor contaminant migration. Parameters specific to the performance of in-well air stripping would also be monitored.

3.1.3 Soil Vapor Five remedial alternatives were developed to address COCs in soil vapor at the site:

• Alternative SV1—No Action

• Alternative SV2—Pathway Sealing, LTM, and Institutional Controls

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-10 AX0420181244MKE

• Alternative SV3—Pathway Sealing, Vapor Intrusion Mitigation (VIM), LTM, and Institutional Controls

• Alternative SV4—Soil Vapor Source Removal, LTM, and Institutional Controls

• Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

The soil vapor remedial alternatives are described in more detail in the following subsections. As previously mentioned, indoor air is typically not directly treated, but COC concentrations in indoor air (and crawlspace air) will be used as a screening mechanism to identify the properties and locations where soil vapor treatment is warranted and as a point of compliance for soil vapor. Soil vapor and subslab soil vapor samples will also be used as screening mechanisms to determine potential future vapor intrusion issues.

3.1.3.1 Alternative SV1—No Action

Alternative SV1 consists of taking no action, which the NCP requires as a baseline alternative for comparison to the other remedial response actions. The no-action alternative implies that no remedial action would be undertaken, and affected soil vapor would remain at the site without implementing any institutional controls, containment, removal, treatment, or other mitigating actions to control exposure to COCs. Therefore, the potential human health and environmental risks associated with exposure to the COCs would not be mitigated. Five-year site reviews would be conducted as long as hazardous substances remain at the site at concentrations that do not allow unlimited use and unrestricted exposure, in accordance with the NCP.

3.1.3.2 Alternative SV2—Pathway Sealing, Long-term Monitoring, and Institutional Controls

Alternative SV2 addresses the risk to current and potential future receptors by interrupting the vapor intrusion pathway through sealing of the base of the building envelope with sealants and using institutional controls to prevent COC exposure. This alternative would be most appropriate for buildings where COC concentrations within indoor and crawlspace air correspond to the lower end of the EPA acceptable risk range. Additionally, this alternative could be applied as a preemptive measure where the vapor intrusion pathway could be a potential future concern based on COC concentrations within subslab soil vapor. The following are the main components of Alternative SV2:

• Pathway sealing to close the primary routes of vapor intrusion into buildings and maintaining the sealing

• LTM, including the following:

− Sampling and analyzing indoor and crawlspace air samples for COCs and daughter products

− Sampling and analyzing subslab soil vapor samples for COCs and daughter products, if warranted

− Completing five-year reviews

• Institutional controls to restrict building and land use within or nearby the soil vapor plume

The main alternative components are discussed in the following paragraphs.

Vapor Intrusion Pathway Sealing. Cracks and openings in the building foundation are the preferential routes of vapor entry, rather than diffusion through the concrete slab itself. Thus, an important first step in preventing vapor intrusion is to seal preferential vapor entry points, which can include the following:

• Cracks or holes in the building walls, floors, slabs, and foundation

• Gaps in and around fieldstone walls, utilities, floor drains, dry utilities, and pipes

• Construction joints between walls and slabs

• Floor and utility penetrations, such as those for plumbing, sewer drainage, heating ducts, and electrical conduit

• Floor drains and open sumps

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-11

As part of Alternative SV2, each building to be sealed would be thoroughly inspected to identify preferential vapor entry points prior to initiating monitoring. The base of the building envelope would be visually inspected to identify cracks, building joints, and other building features that could be potential soil vapor entry points. In addition, potential entry points would be surveyed with a portable photoionization detector or a portable HAPSITE GC/MS. It is often possible to find elevated concentrations of COCs at particular points (that is, preferential pathways) where vapor intrusion is occurring. The sealing technique would be selected to be appropriate for each type of vapor entry point. Periodic maintenance and visual inspections of the seal would be performed, and appropriate repairs would be made as needed.

Long-term Monitoring. COC concentrations in indoor, outdoor, and crawlspace air would be monitored by collecting samples at buildings where vapor intrusion presents an unacceptable risk to human health or where the vapor intrusion pathway may present an unacceptable risk in the future. Samples would be periodically collected, including during both the heating and cooling seasons, to evaluate trends and to verify that COC concentrations do not exceed the PRGs. Outdoor ambient air would be concurrently sampled, both for quality control and for comparison to determine if contaminants are likely to be attributable to vapor intrusion rather than ambient or indoor sources. Subslab soil vapor samples may also be collected, if necessary, to verify that COC concentrations in indoor or crawlspace air are the result of vapor intrusion. Depending on the sampling results, the sampling period may be reduced unless building use changes or construction occurs in a manner that would increase the amount of vapor intrusion into the building. Monitoring would continue while the vapor intrusion pathway still presents unacceptable risk to human health. If indoor air concentrations exceed the PRGs, a contingency remedy would be implemented.

Sealing and monitoring only would not address residual soil vapor sources. However, subslab soil vapor concentrations may dissipate over time due to natural attenuation of the groundwater plume or if the groundwater plume is actively remediated. Subslab soil vapor monitoring would be used to track these changes in concentrations. Five-year site reviews would be conducted as part of this alternative as long as hazardous substances with the potential to cause risk to human health and the environment remain at the site. As part of the five-year review, EPA would re-evaluate the vapor intrusion pathway, including potential sources to soil vapor, and notify property owners of potential risks.

Institutional Controls. Institutional controls to restrict land use, building use, or other activities would be a necessary part of this remedy to protect human health. Specifically, land-use controls (LUCs) would be implemented at the site in areas where indoor and crawlspace air sampling indicates that the vapor intrusion pathway potentially presents an unacceptable risk. COC concentrations in subslab soil vapor may indicate potential future vapor intrusion issues. As a result, subslab soil vapor sampling may also be considered when determining where LUCs would be implemented.

3.1.3.3 Alternative SV3—Pathway Sealing, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

Alternative SV3 consists of installing active or passive VIM for existing buildings to reduce COCs in indoor air. The following are the main components of Alternative SV3:

• Pathway sealing to close the preferential routes of vapor intrusion into buildings.

• VIM, including the following:

− Performing predesign diagnostic testing for design of a VIM system (VIMS)

− Installing a VIMS for each building where COCs in indoor or crawlspace air pose an unacceptable risk to human health due to the vapor intrusion pathway

− Operating active VIMS in buildings where selected as the appropriate mitigation measure.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-12 AX0420181244MKE

− Performing O&M activities and monitoring the performance of the VIMS

• LTM, including the following:

− Sampling and analyzing indoor, outdoor, and crawlspace air samples for COCs and daughter products

− Sampling and analyzing subslab soil vapor samples for COCs and daughter products, if warranted

− Completing five-year reviews

• Institutional controls to restrict building and land use within or near the soil vapor plume and to ensure the integrity of the VIMS

Pathway sealing and LTM would be implemented as discussed for Alternative SV2. Pathway sealing makes active VIM more efficient and is a necessary supplement. Sealing would result in VIM being more effective because it reduces short-circuiting between the subslab environment and the occupied space. The remaining alternative components are discussed in the follow paragraphs.

Vapor Intrusion Mitigation. An appropriate mitigation measure would be selected for each building where COCs in indoor or crawlspace air potentially pose an unacceptable risk to human health or where there is the potential for COCs to pose a future risk to human health. Future risk may be assessed by COC concentrations in soil vapor or subslab soil vapor. Mitigation measures can generally be classified as active or passive technologies. Active VIM technologies would be implemented in buildings where there is current unacceptable risk to human health. Passive VIM technologies would more likely be selected for buildings with acceptable COC concentrations in indoor and crawlspace air, but where there is the potential for future unacceptable risk.

A common active mitigation measure is active depressurization technology (ADT), which has been used successfully to mitigate the vapor intrusion pathway into residential, commercial, and school buildings. ADT systems are widely considered the most practical VIM strategy for most existing buildings, including those with basement slabs or slab-on-grade foundations. ADT systems are generally recommended for consideration for VIM because of their moderate cost and their demonstrated capability to achieve significant concentration reductions in a wide variety of buildings (EPA 2015).

SSD systems, a common type of ADT system, function by creating a pressure difference across the building slab to prevent soil vapor from entering the building, thus overcoming the building’s natural under-pressurization, which is the driving force for vapor intrusion. Alternative SV3 would include installing SSD systems in buildings where ADT is warranted. The SSD system would be constructed by coring one or more holes through the existing slab, removing soil from beneath the slab to create a “suction pit,” placing vertical suction pipes into the holes, and sealing the openings around the pipes. These pipes would be manifolded together and connected to powered mitigation fans or blowers. The fans would extract soil vapor collected from the targeted subslab area, creating a negative pressure field between the subslab and indoor spaces. The extracted air would be discharged to the atmosphere outside the structure at a height above the outdoor breathing zone and away from windows and air supply intakes. As part of the design process, pre-mitigation diagnostic testing may be required to optimize the VIMS design.

In buildings with a crawlspace foundation or basement with an earthen floor, a vapor-resistant membrane would be placed over the ground to retard the flow of vapor into the building. The membrane would be sealed to the walls of the building, and one or more suction points would be fitted through the membrane using a gasket (EPA 2008). This type of system is referred to as submembrane depressurization (SMD) and is like an SSD, except that the membrane is used as a surrogate for a slab to depressurize the soil; this type of system is the most effective mitigation method in crawlspaces (ITRC 2007).

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-13

Before or shortly after mitigation systems are installed, an operation, maintenance, and monitoring (OM&M) Plan would be prepared to identify activities that should be performed following start-up of the system and a schedule for conducting these activities, including an exit strategy for discontinuing SSD/SMD system operation. The SSD/SMD systems would be inspected periodically by measuring field parameters and conducting visual inspections. Routine inspections would also include evaluating significant changes made to the building that would impact the design of the mitigation system or the environment in which it is operated. Routine maintenance of the systems may include periodic fan replacement.

Alternative SV3 may include installing passive venting systems in lieu of SSD/SMD systems for lower-risk buildings or where there may be future risk to human health. Passive venting relies on natural diffusion, natural pressure gradients, the “stack effect,” and wind-driven ventilation fans to cause soil vapor to migrate to collection pipes and exhaust to the atmosphere. Passive systems generally have the same components as active systems, except that they do not include electric-powered fans. As a contingency measure, the passive system could be converted to an active system by adding a fan based on monitoring results and predetermined criteria. For future construction, VIM technology may include barriers, such as geomembranes or spray-applied membranes. Other technologies for new buildings that could be considered under this alternative include passive venting layers and aerated floor systems.

Institutional Controls. Like Alternative SV2, institutional controls would be a necessary part of this remedy. In addition to implementing LUCs, other institutional controls may also be necessary to allow access for the installation, startup, and long-term OM&M of VIM and to ensure the integrity of the systems. Institutional controls may also inform the need for VIM for future construction prior to the remediation of the groundwater plume. The institutional controls would require onsite vapor intrusion evaluations at building construction sites. If the results of the evaluation indicate potential vapor intrusion issues or if vapor intrusion is not evaluated, VIM technology would be applied to address soil vapor that could enter the future building. These institutional controls would be necessary to ensure that the vapor intrusion pathway is effectively addressed in the future. It is expected that institutional controls would be in effect on an interim basis until the cleanup goals are met and unacceptable risk to human health is no longer present.

3.1.3.4 Alternative SV4—Soil Vapor Source Removal, Long-term Monitoring, and Institutional Controls

Alternative SV4 primarily relies on removing sources of soil vapor contamination to decrease COC concentrations in soil vapor that act as the driving force of vapor intrusion. The following are the main components of Alternative SV4:

• Soil vapor source removal, including the following:

− Excavating shallow soil within the Facility parking lot that may be acting as a source of COCs in soil vapor

− Installing and operating an SVE system or multiple SVE systems to address high-concentration soil vapor areas

• LTM, including the following:

− Sampling and analyzing indoor, outdoor, and crawlspace air samples for COCs and daughter products

− Sampling and analyzing subslab soil vapor samples for COCs and daughter products, if warranted

− Completing five-year reviews

• Institutional controls to restrict building and land use within or nearby soil vapor plume

This alternative would include LTM and institutional controls as described for Alternative SV2. The remaining component of this alternative is discussed in the following paragraphs.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-14 AX0420181244MKE

Soil Vapor Source Removal. Alternative SV4 would reduce a significant source of soil vapor contamination. As depicted on Figure 1-8, residual soil contamination may be contributing to COCs in soil vapor. The highest PCE and TCE concentrations were detected within the 1- to 2-feet depth interval of SG-1, which is in the Facility parking lot. The soil within the immediate vicinity of this sample location would be excavated and transported offsite for disposal at a landfill. The goal of soil excavation would be to remove contaminated soil acting as a continuing source of soil vapor contamination near the Facility that is readily accessible. Waste characterization sampling would determine whether the soil would be disposed of as hazardous or nonhazardous waste. Following excavation, the excavated area would be backfilled with clean fill material from an offsite source, and site restoration would be performed.

As previously discussed, the identified source area at the Facility was treated by an SVE/AS system from 2005 to 2008 as part of a TCRA. This removal action was successful in reducing COC concentrations in the soil and groundwater by several orders of magnitude and achieving the closure criteria of the TCRA. However, the PCAs did not evaluate the effectiveness of treatment of soil beneath the Facility, which could be a contributing source of contamination to soil vapor. Additionally, the residual soil contamination below the PRGs (Figure 1-8) may still be acting as a source of soil vapor contamination. Section 1.5.3 identified three main HCAs with highly elevated PCE concentrations in soil vapor (greater than 15,000 µg/m3) and three main soil vapor plumes where TCE concentrations exceed the VISL; these areas are depicted on Figures 1-12 and 1-13.

In addition to soil excavation, Alternative SV4 would also include installing SVE systems within one or more of the high-concentration PCE soil vapor areas. An SVE system would be installed in the area surrounding the Facility. The goal of an SVE system would be to treat the source of soil vapor contamination that cannot be readily addressed by excavation. The most-elevated TCE concentrations in soil vapor (greater than 1,000 µg/m3) are near the Facility and would be among the areas addressed by this system. Extraction wells could be installed beneath the Facility using directional drilling to address residual soil contamination. Secondary systems could also be installed to address the northwest PCE HCA near HAP-023 and HAP-084, as well as the southeastern HCA near the former location of Central Dry Cleaners. The need for these secondary systems would be determined as part of predesign investigations. The extracted soil vapor would be treated to remove COCs prior to discharge to the atmosphere if required by state and federal air discharge regulations.

Predesign activities would be required for the design of the SVE system(s). Soil samples may also be collected in targeted areas as part of a predesign investigation to optimize the SVE design and to determine the need for secondary systems. If possible, soil samples would be collected to assess if soil contamination is present beneath the Facility. A field pilot study would also be conducted, if necessary, to establish the radius-of-influence and other design parameters for the SVE system. Based on the results of the predesign activities, the SVE system could also be thermally enhanced, if warranted. OM&M would also be required for the SVE system(s), including periodic inspections, field measurements, and performance verification. Maintenance of the SVE system(s) would include periodic carbon replacement, if offgas treatment is implemented, and system component replacement, as needed.

3.1.3.5 Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

Alternative SV5 is a combination of Alternative SV3 and SV4 in that it includes VIM for individual buildings, as well as soil vapor source removal to address residual soil contamination and high-concentration soil vapor areas. The following are the main components of Alternative SV5:

• Pathway sealing to close the preferential routes of vapor intrusion into buildings

• Soil vapor source removal, including the following:

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-15

− Excavating shallow soil within the Facility parking lot that may be acting as a source of COCs in soil vapor

− Installing and operating an SVE system or multiple SVE systems to address high-concentration soil vapor areas

• VIM, including the following:

− Performing predesign diagnostic testing for design of the VIMS

− Installing a VIMS for each building where COCs in indoor or crawlspace air pose an unacceptable risk to human health due to the vapor intrusion pathway

− Operating active systems in buildings, where selected as the appropriate VIM measure

− Performing OM&M activities and monitoring the performance of the VIMS

• LTM, including the following:

− Sampling and analyzing indoor, outdoor, and crawlspace air samples for COCs and daughter products

− Sampling and analyzing subslab soil vapor samples for COCs and daughter products, if warranted

− Completing five-year reviews

• Institutional controls to restrict building and land use within or nearby soil vapor plume and to ensure the integrity of the VIMS

The components for Alternative SV5 have been previously discussed as part of Alternatives SV3 and SV4.

3.2 Preliminary Screening of Alternatives This subsection presents the preliminary screening of the remedial alternatives developed for each media.

3.2.1 Preliminary Screening Approach The initial screening of technologies and process options presented in Section 2 was conducted based on whether the technologies and process options could meet the RAOs. During alternative screening, the entire alternative is evaluated with respect to three broad criteria: effectiveness, implementability, and cost. Because the purpose of the screening evaluation is to reduce the number of alternatives that will undergo a more thorough and extensive analysis, alternatives are evaluated more generally in this phase than during the detailed analysis. Tables 3-1 and 3-2 summarize the preliminary screening of groundwater and vapor intrusion alternatives, respectively. Alternatives retained from the preliminary screening will be evaluated in detail later in this FS using nine criteria in accordance with the EPA RI/FS guidance document (EPA 1988a).

Effectiveness. Each alternative was evaluated for effectiveness in protecting human health and the environment. Specifically, the evaluation focused on the ability of the technology to address COCs and meet the RAOs and the reliability of the technology. For preliminary screening purposes, the effectiveness of each alternative is generally classified qualitatively as low, moderate, or high. For some alternatives, a range of effectiveness is given, such as low to moderate.

Implementability. The alternatives were also evaluated based on implementability, which considers the technical and administrative feasibility of implementing a remedial action at the site. Technical feasibility refers to the ability to construct, reliably operate, and meet technology-specific regulations for process options until a remedial action is complete. For preliminary screening purposes, the implementability of each alternative is generally classified qualitatively as easy, moderate, or difficult. For some alternatives, a range of implementability is given, such as easy to moderate.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-16 AX0420181244MKE

Cost. The cost criterion was generally evaluated on a qualitative basis to identify alternatives that are significantly costlier than other alternatives achieving the same level of effectiveness. Absolute accuracy of cost estimates during this stage of screening is not essential. For preliminary screening purposes, the costs are classified as low, moderate, or high. The cost ranges are based on a review of the literature, quotations, professional or engineering judgment, and/or data prepared for other studies. Capital costs, OM&M costs, and overall costs of the alternatives were considered. Note that the cost evaluation is preliminary and may change upon development of the alternative costs during the detailed analysis of alternatives. Although cost is one consideration, it is not as important as effectiveness or implementability.

3.2.2 Groundwater Table 3-1 summarizes the preliminary screening of alternatives to address unacceptable risk due to COCs in groundwater at the site. The preliminary screening of alternatives to address unacceptable risks posed by groundwater is presented in the following subsections. The overall effectiveness and implementability for the groundwater alternatives (except GW1) would be impacted by moving or replacing the current wellfield due to its influence on the groundwater flow direction at the site.

3.2.2.1 Alternative GW1—No Action

Alternative GW1 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. Under the no-action alternative, COCs in groundwater would be left in place without implementing any institutional controls, containment, removal, treatment, or other mitigating actions to control exposure to COCs. Therefore, this alternative would not be effective in protecting human health and the environment. The “no-action” alternative would not meet the RAOs because no remedial action would be implemented.

Implementability. Alternative GW1 would be easily implemented because there would not be any associated activities.

Cost. Alternative GW1 would not include capital or OM&M costs. However, the NCP requires five-year site reviews as long as hazardous substances remain at the site at concentrations that do not allow for unlimited use and unrestricted exposure. Costs associated with this alternative would consist of the costs to complete five-year reviews.

Screening Result. Alternative GW1 is retained, as required by the NCP for the FS process because it provides a baseline for comparison with other alternatives.

3.2.2.2 Alternative GW2—WTP Alternatives

Each of the GW2 subalternatives is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost. The relocation of the wellfield is not evaluated as part of this alternative, but it would eliminate the need for this alternative, assuming the new wellfield would be located outside of the plume area.

Alternative GW2A Effectiveness. Alternative GW2A would rely on the existing City WTP with GAC treatment to reduce PCE concentrations to below PRGs. The City WTP implemented GAC treatment in 2005 and has been able to reduce the groundwater PCE concentration to below MCLs before distribution to the City. This alternative is effective in protecting the drinking water pathway but would not remediate the HCA of the PCE contamination.

Alternative GW2A Implementability. Alternative GW2A has already been implemented by the City. However, the following continued implementability challenges of this alternative exist:

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-17

• Replacing GAC every 2 to 3 years.

• Due to the limited space available in the WTP, the GAC treatment capacity cannot be expanded by addition of another carbon vessel if the demand for drinking water greatly increases. The current design of the GAC treatment system allows for treatment of up to 2 mgd of groundwater for a short period of time or a sustained increase in capacity of approximately 25 percent. However, increased flow through the GAC treatment system would require more frequent GAC changeouts.

• The adsorption process shifts the contaminant from one phase (water) to another medium (GAC).

Alternative GW2A Costs. The relative continued cost of this alternative is expected to be high. GAC would need to be replaced every 2 years (assumed replacement frequency) because the HCA for PCE is not addressed by this alternative. As a result, it is expected that PCE would exist in groundwater until natural attenuation processes or other plume remedies reduce PCE concentrations to below PRGs.

Alternative GW2B Effectiveness. Alternative GW2B would rely on modifying the existing WTP by implementing air-stripping treatment to transfer PCE from the groundwater to air to reduce concentrations to below PRGs. Overall, this alternative is very effective (greater than 99 percent removal can be expected).

Alternative GW2B Implementability. Air strippers are readily available and can be easily installed with careful design and sizing for the required flow rates and contaminants. Removing the existing GAC vessels would allow for optimization of the treatment area footprint at the WTP, which may allow for greater than the 25 percent increased treatment capacity that currently limits the system. A detailed study would need to be performed to evaluate impacts on treatment capacity, which is beyond the scope of this FS. Bacterial growth or scaling can foul the media and presents an implementability challenge.

Alternative GW2B Cost. The cost of this alternative is expected to be higher than that of GW2A because an air stripper would have to be designed, constructed, and operated. Air strippers need to be maintained, and media may need replacement if they are fouled due to source water quality. O&M costs of this alternative need to be considered until natural attenuation processes or other plume remedies reduce PCE concentrations to below PRGs.

Alternative GW2C Effectiveness. Alternative GW2C would rely on modifying the existing WTP by implementing AOP treatment to reduce PCE concentrations to below PRGs. The technology for AOP treatment is proven with numerous successful full-scale applications operating to treat groundwater. AOP treatment systems have an advantage over other water treatment technologies, such as stripping or carbon adsorption, in that contaminants are oxidized to innocuous products rather than transferred from one phase to another. Overall, this alternative is very effective (greater than 99 percent removal can be expected).

Alternative GW2C Implementability. Removing the existing GAC vessels would allow for optimization of the treatment area footprint at the WTP, which may increase the treatment capacity by greater than 25 percent. A detailed study would need to be performed to evaluate impacts on treatment capacity, which is beyond the scope of this FS. Of the three subalternatives, AOP has the smallest treatment system footprint. However, the following implementability challenges exist:

• Water quality parameters can reduce the effectiveness of the UV light by causing iron or calcium or other fouling of lamps and quartz sleeves. A water-softening step may be required before the AOP treatment.

• Operators would need specialized training to operate the UV equipment.

Alternative GW2C Cost. The cost of this alternative is expected to be higher than that of GW2A or GW2B because a new process unit would have to be designed, constructed, and operated. UV lamps need to be maintained and may need frequent replacement if they are fouled. Costs for O&M of this alternative

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-18 AX0420181244MKE

would need to be considered until natural attenuation processes or other plume remedies reduce PCE concentrations to below PRGs.

3.2.2.3 Alternative GW3—Monitored Natural Attenuation and Institutional Controls

Alternative GW3 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate under its current configuration (Alternative GW2A).

Effectiveness. Alternative GW3 would rely on natural biological, chemical, and/or physical processes to reduce COC concentrations and institutional controls to prevent exposure. The effectiveness of this remedy depends on how likely it is that natural attenuation processes would be sufficient to decrease COC concentrations and reduce the size of the groundwater plume. The effectiveness was evaluated by assessing the following:

• Shallow aquifer conditions based on measured field parameters

• Shallow aquifer conditions based on general chemistry data

• PCE daughter products concentrations

• Historical trends of PCE concentrations in shallow groundwater

• The potential for upgradient HCAs

As previously discussed in Section 1.5.2, daughter products of PCE degradation (for example, TCE and cis-1,2-DCE) have only been detected infrequently and at concentrations below their respective PRGs. Given the absence or very low concentrations of PCE daughter products in groundwater, reductive dechlorination does not appear to be occurring at the site. However, if vinyl chloride were to form, it would readily biodegrade under the prevailing aerobic groundwater conditions. Section 1.4.2 discusses shallow aquifer conditions, including dissolved oxygen, ORP, general chemistry, and TOC concentrations. Based on the aerobic nature of the shallow aquifer, the general chemistry data, the TOC concentrations, and the lack of significant PCE daughter products, the site conditions are not conducive for natural attenuation of PCE to occur through biological processes. If natural attenuation of PCE is occurring, it would likely be the result of abiotic processes, such as sorption, dispersion, dilution, and volatilization.

The historical groundwater data were evaluated to assess the likelihood that abiotic natural attenuation processes would be effective at reducing groundwater PCE concentrations. Historical PCE concentrations in groundwater are presented as Table 7 in the Closure Report (Appendix A). PCE concentrations in groundwater were graphed over time from 2004 to 2015 for select shallow monitoring wells (i.e., for wells where historical data before 2010 were available and where PCE concentrations were consistently detected). The graphs are presented in Appendix C. Using vertical lines, the graphs depict the operational period for the SVE/AS system (January 2005 through March 2008), not including the interim shutdown period. Furthermore, the MCL for PCE (5 µg/L) is depicted in graphs as a horizontal line, where discernable (depending on the Y-axis scale range). Supplemental graphs were developed for MW-1S and MW-2S due to the large range of PCE concentrations. The secondary graphs for MW-1S and MW-2S show concentrations below 600 µg/L and 250 µg/L, respectively, after the SVE/AS system had been operating for several months. The graphs enable trends to be evaluated.

Table 3-3 summarizes the shallow groundwater trend analysis based on a visual interpretation of the graphs. Groundwater concentrations were evaluated both during and after the SVE/AS system operation. The pre-operation data consist of two sampling events in July and September 2004. The data from when the system operated consist of three years of sampling from February 2005 through February 2008. The post-operation data consist of up to four rounds of sampling, beginning with the 2010 sampling event by IDEM and concluding with the Phase 3 sampling in October 2015. For each period, the groundwater concentration trend was generally categorized as increased, decreased, stable, or variable (no discernable pattern). This analysis is solely based on visually interpreting the data and

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-19

using professional judgement. Not enough data points are available after the SVE/AS system operation to statistically analyze the data, and trends observed during the system operation could not be attributed to natural attenuation, especially for wells within or downgradient of the treatment area. Table 3-3 also includes the approximate distance and direction from the Facility and the location of the wells with respect to the SVE/AS system treatment area.

Wells located within the SVE/AS system treatment area (MW-1S, MW-2S, and MW-3S) showed a significant decrease (one to two orders of magnitude) in PCE concentrations during the operation period. Once the remediation system ceased operation, PCE concentrations either increased (MW-1S and MW-2S) or remained stable (MW-3S). Several wells were located adjacent to the SVE/AS treatment area; the concentrations were variable or remained stable during the operational period for the cross-gradient wells (MW-18S, MW-19S, and MW-22S) and upgradient well (MW-20S) and decreased for the one downgradient well (MW-17S). The PCE concentrations remained below detection limits in MW-19S and MW-20S for the duration of system operation. Following the system operation, PCE groundwater concentrations in most of these wells either remained stable or were variable. Concentrations in MW-19S have increased since 2010 to 5 µg/L in October 2015.

PCE groundwater concentrations within downgradient wells that were not within or adjacent to the SVE/AS treatment area either decreased (MW-16S) or were variable (MW-15S) during the system operational period, although not as much as those wells that were within the treatment area. After the remediation system ceased operating, the PCE concentration in MW-15S decreased in 2010 to below its PRG; however, it increased in 2015 to concentrations observed in the downgradient portion of the plume during the remediation effort. PCE concentrations in MW-16S decreased following the remediation, although due to damage to this well, samples could not be collected at this location in the latter part of 2008 to April 2015.

PCE groundwater concentrations within the upgradient well (MW-4S) increased during the SVE/AS system operation and have decreased after the system was shut off. This well, located approximately 990 feet upgradient of the Facility, is highly unlikely to have been influenced by the SVE/AS system. It is possible that the increase in PCE concentrations observed during 2005 to 2008 was due to a secondary release not related to the Facility. Figure 1-3 presents the possible source areas of PCE that have been identified. PCE groundwater concentrations within MW-9S, a cross-gradient well approximately 1,510 feet from the Facility, increased during the system operation. After the system ceased operating, concentrations initially decreased and then have since increased to similar concentrations detected during the remediation effort. PCE groundwater concentrations within the remainder of the cross-gradient wells that are not located adjacent to or within the SVE/AS treatment area remained stable (MW-5S and MW-13S), were variable (MW-6S), or increased (MW-9S) from 2004 to 2015.

Except for MW-4S, an upgradient well, the PCE groundwater concentrations within wells analyzed either increased, remained stable, or were variable since the operation of the SVE/AS system. The footprint of the groundwater plume defined by PCE concentrations greater than the MCL did not significantly increase or decrease in size from 2004 to 2015. Figure 1-9 presents PCE concentrations in shallow groundwater for monitoring wells sampled since 2010. The data shown in this figure support that the plume is generally stable. The PCE concentrations within most of the wells are either stable or slightly increasing but remain within the same general order of magnitude. Therefore, the data support a case for abiotic natural attenuation processes occurring at rates sufficient to reduce PCE groundwater concentrations at the site at a rate that equals the transport of PCE mass downgradient. It is uncertain at what rate PCE concentrations would decrease in the future to meet ARARs based solely on abiotic natural attenuation; further analysis of the timeframes required to meet the ARARs is discussed in Section 4.2.1.2.

As previously mentioned, other possible upgradient PCE HCAs may exist that have not been fully characterized. If other HCAs are present, PCE in groundwater may migrate downgradient and would

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-20 AX0420181244MKE

likely result in a lengthy timeframe for groundwater PRGs to be achieved. Alternative GW3 would rely on monitoring to assess the effectiveness of natural attenuation.

This alternative would be effective in restricting access to and use of groundwater at the site, thereby preventing direct contact with or ingestion of COCs in groundwater and protecting human health. Natural attenuation processes appear to be effective at maintaining plume stability. However, it is uncertain if the RAOs would be achieved within a reasonable timeframe if this alternative was implemented. Additional analysis will be required to estimate how long this alternative would take to achieve the RAOs if this alternative is considered in the detailed analysis. Overall, the effectiveness of this alternative would be moderate.

Implementability. Alternative GW3 is easy to implement since it relies on natural biochemical and physical processes to reduce COC concentrations in groundwater and does not require active construction of a treatment system. Groundwater sampling, sample analysis, data evaluation, and modeling would be easy to implement. The greatest challenge of this alternative would be implementing institutional controls to restrict access to and use of groundwater at the site. However, institutional controls are included in the other alternatives and are not unique to Alternative GW3.

Cost. Because intrusive treatment system construction activities would not occur, capital costs would be low. Most of the costs associated with this alternative would consist of LTM, analyzing samples for natural attenuation parameters, evaluating the data to assess the effectiveness of MNA, and modeling, as necessary. Although the annual OM&M costs may be relatively low for this alternative, the OM&M period during which monitoring must occur may be long. Additionally, the reliance on MNA as the primary technology for this alternative may result in an extensive list of groundwater analytes required for each sampling event. Depending on the frequency of monitoring events, the number of wells monitored, the parameters analyzed, and the number of years required to achieve the RAOs, the overall relative cost of Alternative GW3 is expected to be low to moderate. Detailed costs will be developed during this FS for alternatives retained from the preliminary screening.

Screening Result. Due to its ease of implementation and low-to-moderate cost, Alternative GW3 is retained for further consideration.

3.2.2.4 Alternative GW4—Enhanced In Situ Bioremediation, Long-term Monitoring, and Institutional Controls

Alternative GW4 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate as Alternative GW2A.

Effectiveness. Alternative GW4 relies on biological processes to reduce the toxicity and volume of COCs through reductive dechlorination. Injecting suitable substrate amendments would help this natural process to occur. The effectiveness of this alternative would depend on the aquifer conditions and the native microorganisms that are present within the aquifer. Under the right conditions, ERD is effective and reliable at treating PCE and TCE. However, given that the aquifer is currently aerobic and daughter products of PCE have not been observed at significant concentrations, it does not appear that reductive dechlorination is naturally occurring, and it is uncertain if the requisite microorganisms are present. Additionally, the aerobic aquifer would need to be converted to an anaerobic aquifer with a high dose of substrate to support reducing conditions needed for reductive dechlorination. The reliability of this technology could be increased if the aquifer was bioaugmented with inoculum to accelerate degradation of the COCs. A pH buffer may also need to be added to the injected solution to maintain a near-neutral pH. If successful at degrading the COCs, ERD would be protective of human health and the environment and would achieve the RAOs. Overall, this alternative is expected to be moderately effective.

Implementability. Considering the size of the overall groundwater plume and the location of the plume in a downtown commercial and residential area, it is not feasible to inject substrates on a grid pattern

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-21

over the entire plume. Instead, substrates would be injected in rows that transect the plume like a permeable reactive barrier but without having to excavate soil to construct a barrier wall. Most of the implementability challenges of this alternative are a result of working within a populated commercial and residential downtown area, including the following:

• Limiting injections to the street ROWs and working in tight spaces.

• Avoiding work on private property to the extent possible and obtaining access agreements to work on private property, if necessary.

• Temporarily closing streets and protecting the public from construction activities.

• Working around subsurface and overhead utilities.

However, these challenges could be overcome through careful coordination with the local authorities and by applying engineering controls. Equipment for injections (e.g., DPT) and technical experts for implementing these remediation strategies are readily available. Most implementability challenges discussed involving injection also apply to other in situ alternatives so these challenges are not unique to Alternative GW4. Methane generation may be a concern, but careful control and monitoring and possibly the addition of a methane-inhibiting supplement could reduce this associated risk. There is also the risk for the accumulation of cis-1,2-DCE or vinyl chloride under anaerobic conditions and incomplete PCE reduction. In the event that accumulation of vinyl chloride occurs, the aquifer would require returning to an aerobic state to complete the dechlorination process. Overall, the ease of implementing this alternative is considered moderate.

Cost. The relative cost of this alternative is expected to be moderate to high. Carbon substrate is generally not expensive per unit cost compared to other remediation reagents; however, a high dose would be required to convert the aerobic, permeable aquifer to anaerobic conditions. Substrates are generally longer-lived in the subsurface than many oxidants, requiring fewer injection events. However, bioremediation approaches are generally slower than oxidation or other more aggressive treatments. As a result, this alternative would require a longer time to achieve the RAOs compared to other active remedies, which would increase the cost of LTM. If required, adding inoculum and a pH buffer would also increase the cost of the alternative, although the cost increase would be relatively small.

Screening Result. Biological processes are required to convert PCE to nontoxic by-products through reductive dechlorination. Though this alternative would be moderately effective, other alternatives would provide a more effective solution without the potential generation of harmful by-products; therefore, this alternative is eliminated from further consideration.

3.2.2.5 Alternative GW5—In Situ Chemical Reduction, Long-term Monitoring, and Institutional Controls

Alternative GW5 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate as Alternative GW2A.

Effectiveness. Alternative GW5 would include injecting ISCR amendments, such as ZVI, to induce reductive conditions in the aquifer, thus promoting PCE reduction to nontoxic by-products. In addition, carbon substrate could be injected with the ISCR amendments. As a result, both biological and geochemical processes would be employed to reduce the toxicity and volume of COCs. Not only would the COCs be degraded through ERD, they would initially undergo chemical reactions via the beta-elimination pathway, ensuring a more reliable and quick conversion of PCE to ethene.

ZVI proved to be effective in treating many chlorinated compounds, including PCE. By adding ZVI to the carbon substrates, stronger reducing conditions may be generated, which may be more likely to overcome the aquifer’s current aerobic and oxidizing nature. Like Alternative GW4, the aquifer could be bioaugmented with inoculum to increase the effectiveness of the alternative, if necessary. A pH buffer is

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-22 AX0420181244MKE

usually not needed for ISCR applications as the combined reactions (biological and abiotic processes) usually do not cause significant shifts in the pH. This alternative would be protective of human health and the environment and would achieve the RAOs. Overall, this alternative is expected to be highly effective.

Implementability. Like Alternative GW4, injections for Alternative GW5 would be injected within street ROWs in rows that transect the plume to create reactive zones within the shallow groundwater aquifer. Consequently, Alternative GW5 would have some of the same implementation challenges as Alternative GW4, which were previously discussed. Like Alternative GW4, equipment for injections (e.g., DPT) and technical experts for implementing these remediation strategies are readily available.

Injecting ISCR amendments is specific to Alternative GW5; for purposes of discussion, it is assumed that ZVI would be injected. The particle size of the ZVI will be selected based on the tradeoffs between the smaller-sized ZVI being easier to distribute throughout a larger area and the larger-sized ZVI having a longer reactivity period. The goal of this alternative is to create permeable reactive barrier treatment walls through an array of injections. The ZVI does not have to be distributed throughout the entire HCA of the plume to achieve this goal. Methane generation may be a concern, but careful control and monitoring and/or the addition of a methane-inhibiting supplement could reduce the associated risks. Overall, the ease of implementing this alternative is considered moderate.

Cost. The relative cost of this alternative is expected to be moderate to high due to the addition of ISCR amendments to the carbon substrate. However, injecting ZVI or other ISCR amendments may result in a shorter time to achieve the RAOs, thereby decreasing the cost of LTM.

Screening Result. ISCR of PCE occurs via an abiotic pathway that minimizes the production of the harmful by-products of Alternative GW3 and could potentially be effective in treating the COCs. This alternative was retained for further consideration.

3.2.2.6 Alternative GW6—In Situ Chemical Oxidation, Long-term Monitoring, and Institutional Controls

Alternative GW6 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate as Alternative GW2A.

Effectiveness. Oxidants have been shown to effectively and reliably treat a wide range of organic contaminants, including PCE. However, oxidants are typically not as long-lasting in the subsurface due to their rapid reaction times compared to other reagents. The generally faster reaction times of oxidants translates to a shorter distribution distance in the aquifer where they can react with COCs; however, permanganate can remain reactive for months to years if the demand of the aquifer is low, as is the case for the site. A laboratory test performed during Phase 2 of the RI indicates that the permanganate total oxidant demand ranges from 1.0 to 1.4 grams per kilogram at a low dose of permanganate over a 96-hour period (see Table 3-4).

Using slow-release oxidants, such as potassium persulfate as a slurry, and letting it dissolve slowly over time into the groundwater may be a viable oxidation option. Another slow-release option is potassium permanganate wax cylinders whereby oxidant is slowly released over time as the wax dissolves. Groundwater extraction and re-injection wells could be employed as an oxidant delivery mechanism to increase the distribution of the oxidant throughout the aquifer. This push-pull approach enables treatment under areas not accessible by direct injection.

During injections, construction workers may potentially be exposed to chemical reagents. Oxidants are highly reactive chemicals that require careful handling. Certain oxidants may also require a strong base as an activator. As a result, oxidants and associated activators present a potential safety risk to construction workers. Using appropriate personal protective equipment and following safety protocols would mitigate this risk.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-23

Overall, this alternative is expected to be moderately effective. This alternative would be protective of human health and the environment and would achieve the RAOs.

Implementability. Like other alternatives, oxidant could be applied to the aquifer via direct injection into the subsurface. If this method was selected, the oxidant would likely be injected within street ROWs in rows that transect the plume, like other alternatives. Injections could also be spaced on a grid pattern within the parking lot of the Facility, although this may negatively impact the businesses that are currently operating and rely on the parking lot. If injections are located along street ROWs, Alternative GW6 would have some of the same implementation challenges as other in situ treatment alternatives, which were previously discussed.

Depending on the oxidant type applied and the viscosity and consistency of the oxidant solution, hydraulic or pneumatic injection techniques may be required, and horizontal delivery wells could also be considered. If a groundwater extraction and re-injection system were selected as the oxidant delivery mechanism, the oxidant solution could be distributed under areas not accessible by direct vertical injection points. However, it may not be practical to lay out a pipe conveyance system necessary to recirculate the extracted water within a downtown commercial/residential area on the scale needed to treat the HCA of the plume. Overall, the ease of implementing this alternative is considered moderate.

Cost. The relative cost of this alternative is expected to be moderate. Although the cost of oxidants by weight compared to carbon substrates is higher, the low permanganate demand of the aquifer determined during Phase 2 of the RI suggests that low quantities of oxidant would be required at the site. Multiple rounds of oxidant injections may be necessary to achieve the PRGs. ISCO is typically more efficient at decreasing higher COC concentrations within a source zone. However, for aggressive plume treatment, the relatively shorter timeframe to achieve RAOs and, therefore, the shorter OM&M period would lead to cost savings.

Screening Result. Because ISCO is generally effective at treating a wide range of COCs, including PCE, this alternative was retained for further consideration.

3.2.2.7 Alternative GW7—In Situ Sorptive-reactive Media, Long-term Monitoring, and Institutional Controls

Alternative GW7 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate as Alternative GW2A.

Effectiveness. SRM is typically comprised of a carbon source that is relatively safe to handle and the risk of exposure to COCs is low during construction. The performance of this technology depends on its ability to effectively absorb and ultimately treat or enhance treatment of COCs. In situ SRM may be an effective tool for treating sites with low contaminant concentrations and for treating long-term, slow matrix COC back-diffusion. However, in situ SRM is a relatively new technology, and it does not have the proven history of past performance that more well-established technologies have. Therefore, the long-term effectiveness of the technology is rated as low to moderate. Concerns regarding the technology include the following:

• The potential to increase COC concentrations within saturated soil due to the COCs absorbed on the SRM.

• The need to collect saturated soil samples to demonstrate the fate of COCs that are no longer in the dissolved phase.

• The possibility of reaching the adsorptive capacity of the SRM and biodegradation occurring at a slower rate than the flux of new COCs onto the SRM.

• Application challenges of the SRM onsite.

• The need for higher injection pressures and larger injection pumps than anticipated.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-24 AX0420181244MKE

It is uncertain if the RAOs would be met if COCs exceed the SRM adsorptive capacity or if COCs desorb from the SRM. Overall, this technology is expected to be moderately effective. Combining this alternative with other technologies would increase its effectiveness and the likelihood of achieving the RAOs.

Implementability. SRM would be injected into the aquifer. Therefore, many of the same challenges apply to this alternative as were discussed previously. Overall, the ease of implementing this alternative is moderate.

Cost. Analytical techniques may be available to extract the activated carbon particles from soil and determine COC distribution. However, if regulatory agencies require collecting many post-application saturated soil samples, this alternative may not be a cost-effective option. In addition, the cost of SRM compared to other injection chemistries is relatively high so the overall cost of this alternative is expected to be high. However, SRM would be most cost-effective if applied in a limited area to decrease downgradient plume concentrations in conjunction with another primary technology like ERD or ISCR.

Screening Result. Because of the uncertain effectiveness of this alternative and limited history of use, this alternative was eliminated from further consideration.

3.2.2.8 Alternative GW8—In-well Air Stripping, Long-term Monitoring, and Institutional Controls

Alternative GW8 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost and assumes that the City WTP would operate as Alternative GW2A.

Effectiveness. Alternative GW8 would rely on in-well air stripping and groundwater circulation to volatilize PCE from the circulating groundwater. Physical processes would be used to reduce the toxicity and volume of COCs. The long-term effectiveness of the alternative would rely on how well the GCWs performed to reduce COC concentrations. PCE and TCE are both volatile, making them suitable for air stripping. In general, in-well air stripping systems are more effective at sites with high concentrations of dissolved contaminants; however, the initial PCE concentrations in groundwater at the site are relatively low. Another potential limitation of the technology includes limited vertical space for mounding. The head differential created by mounding drives the circulation cell and determines the radius of influence within the aquifer.

Advantages of GCWs are that they do not rely on horizontal advective flow like other in situ alternatives, and create active, vertical flushing throughout the circulation cell. This proactively treats COCs sorbed in relatively finer-grained lenses deposited within the glacial outwash. GCWs for low COC concentrations are not limited by the in-well sparging treatment effectiveness, but rather by how effectively groundwater circulation can transport new COCs to the GCW systems. Reagents (such as nutrient amendments for bioremediation or treatment chemicals) could also be added and recirculated through the aquifer to increase the effectiveness of the technology.

Although the recirculation well system may not be able to decrease COCs to concentrations below the PRG, it may be effective enough to reduce COC mass and allow natural attenuation processes to further reduce concentrations. Overall, this alternative is expected to be moderately effective at the site.

Implementability. Alternative GW8 would require installing multiple recirculation wells throughout the main HCA of the groundwater plume. Subsurface concrete vaults or small sheds would also be required to house equipment associated with each well, such as blowers, electrical components, and a GAC vessel to treat offgases (if required). Although the recirculation wells could be installed within the street ROWs, the well vaults or sheds may require more space than is available and would need to be easily accessed for maintenance. It is likely that each recirculation well and equipment vault would need to be in an open area, such as a parking lot.

Wells and equipment would be installed on City property to the extent possible, but the required spacing and location of wells may require the use of private property. As such, property owners may

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-25

have to agree to allow recirculation wells and associated equipment vaults to be installed on their property and grant access to the systems; meaning implementing this alternative would be difficult from an administrative perspective. Additionally, depending on the number and location of wells required compared to the available open space in a residential/commercial area, space constraints for equipment may make implementing this alternative challenging from a technical perspective.

Water storage, handling, and discharge or disposal are not required with recirculation wells because groundwater remains below-ground. Because the recirculation wells operate independently, constructing a pipe network, which would be difficult to implement across a large commercial/residential area, would not be necessary. Overall, the ease of implementing this alternative is moderate to difficult due to system requirements.

Cost. The capital costs for this alternative are expected to be moderate because it would not include a large, aboveground treatment system or require costs associated with water storage, handling, and discharge or disposal. Although the annual OM&M costs are relatively low, the system may need to be operated for a long OM&M period to achieve the PRGs or to reduce the COC mass enough for natural attenuation processes to achieve the PRGs. Therefore, the overall relative cost of this alternative is expected to be moderate to high.

Screening Result. Due to the difficulty in implementing the systems in a commercial, unprotected area, this alternative was eliminated from further consideration.

3.2.3 Soil Vapor The preliminary screening of alternatives to address unacceptable risks posed by soil vapor is presented in the following subsections. Table 3-2 summarizes the preliminary screening of alternatives to address unacceptable risk due to COCs in soil vapor at the site.

3.2.3.1 Alternative SV1—No Action

Alternative SV1 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. Under the no-action alternative, actions to address exposure to COCs in indoor air (including institutional controls, containment, removal, treatment, or other mitigating actions) would not be implemented. Therefore, this alternative would not be effective in protecting human health and the environment. The no-action alternative would not meet the RAOs because no remedial action would be implemented.

Implementability. Alternative SV1 would be easily implemented because there would not be any associated activities.

Cost. Alternative SV1 would not include capital or O&M costs. However, the NCP requires five-year site reviews as long as hazardous substances remain at the site at concentrations that do not allow unlimited use and unrestricted exposure. Costs associated with this alternative would consist of the costs to complete five-year reviews.

Screening Result. Alternative SV1 is retained as required by the NCP for the FS process because it provides a baseline for comparison with other alternatives.

3.2.3.2 Alternative SV2—Pathway Sealing, Long-Term Monitoring, and Institutional Controls

Alternative SV2 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. Alternative SV2 would rely on sealing preferential vapor intrusion entry points in buildings to disrupt the risk pathway, which is an applicable technology for a wide range of volatile contaminants. The reliability and effectiveness of this alternative depends on how well the vapor intrusion pathways are

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-26 AX0420181244MKE

sealed and maintained over time. It can be difficult to identify and permanently seal the pathways where vapors may be entering, as normal settling of the building opens new entry routes and reopens old ones. Therefore, EPA takes the position that sealing alone is not a reliable technology (EPA 2008). Maintenance of sealants in buildings may be a challenge to enforce, even with institutional controls in place.

In general, this alternative could not be relied upon to protect of human health and would not achieve the RAOs in buildings where vapor intrusion poses unacceptable risk. The overall effectiveness of this alternative would be low. However, this alternative may be appropriate as a preemptive measure when risk levels are acceptable, but vapor intrusion may occur in the future.

Implementability. Although the sealants used to seal pathways are commonplace and relatively straightforward to use, it can be very difficult to identify, access, and permanently seal the pathways where vapors may be entering. Collecting samples to evaluate the indoor air pathway would be relatively easy to implement. Alternative SV2 would require imposing institutional controls on buildings for land use restrictions and to maintain the sealants, at least until the source of the vapor intrusion was addressed. However, institutional controls are included in all the alternatives and are not unique to Alternative SV2. Overall, the implementability of Alternative SV2 would be moderate.

Cost. The capital cost of Alternative SV2 would be low relative to other alternatives because limited actions would be taken. Pathway sealing, which would be the main capital cost of SV2, would also be included in alternatives SV3 and SV5. Most of the costs of this alternative would be associated with LTM to routinely collect subslab soil vapor, indoor air, crawlspace air, and outdoor air samples. Overall, the relative cost of this alternative would be low.

Screening Result. Alternative SV2 is eliminated from further consideration due to its low effectiveness. However, pathway sealing is also included in other alternatives and may be appropriate as a stand-alone remedy for individual lower-risk properties. Additionally, vapor intrusion pathways can be preemptively sealed where the vapor intrusion pathway can be a potential future concern but where COC concentrations in indoor and crawlspace air do not pose a current risk.

3.2.3.3 Alternative SV3—Pathway Sealing, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

Alternative SV3 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. In addition to sealing preferential vapor intrusion entry points as described for Alternative SV2, Alternative SV3 would employ VIMS to reduce unacceptable risk to occupants of the buildings. Vapor intrusion pathway sealing would increase the effectiveness of the VIMS, which would primarily consist of SSD systems or passive venting systems to remove the driving force for vapor intrusion into buildings. Active SSD systems are the most reliable, cost effective, and efficient technique for controlling vapor intrusion in most cases, with concentration reductions in the range of 90 to 99 percent (ITRC 2007).

Typically, passive venting systems are incorporated into new building construction using permeable venting layers and vapor barriers placed under the slab. For existing buildings, the long-term effectiveness of passive systems will depend on the ability of thermal and atmospheric effects to create pressure gradients. For this reason, passive venting systems are not as reliable as active SSD systems for existing buildings. Consistent depressurization should not be expected, and passive venting systems are unlikely to perform as well as active systems in most buildings. In existing buildings, only moderate reductions (30 to 70 percent) in COC concentrations due to vapor intrusion are expected from passive venting systems (ITRC 2007). However, passive venting may be appropriate for lower-risk buildings or where there is the potential for future risk due to vapor intrusion. As a contingency measure, passive venting systems can later be converted to active SSD systems, if necessary, by adding a fan.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-27

Although VIM technologies are effective at reducing vapor intrusion into buildings, they generally do not target the source of the vapor intrusion, such as COCs in soil vapor or COCs in groundwater or soil that may migrate into soil vapor. Therefore, VIMS may need to be operated indefinitely while COCs that are a potential source of vapor intrusion remain onsite. Overall, the effectiveness of this alternative would be moderate to high.

Implementability. Active SSD systems and passive venting systems are a common technology to address vapor intrusion, and equipment and labor would be readily available to install the systems. VIM technologies are relatively straightforward and are not difficult to install, assuming there is a floor slab and it is accessible. The largest implementability challenge of Alternative SV3 would be coordinating with building owners to install VIMS inside privately-owned buildings. Additionally, Alternative SV3 would require imposing institutional controls on buildings to maintain the sealants and VIMS, at least until the source of the vapor intrusion is addressed. Overall, the implementability of Alternative SV3 would be moderate.

Cost. The capital cost of Alternative SV3, which would consist of sealing pathways and installing a VIMS, would be moderate relative to other alternatives because VIM technology is generally low in cost, although VIM would be required for each building having unacceptable risk. However, O&M costs would include regular maintenance and inspections over the lifetime of the remedy. SSD systems may be operated indefinitely so long as COCs remain as a source of vapor intrusion. During this time, LTM would be conducted to routinely collect subslab soil vapor, indoor air, crawlspace air, and outdoor air samples. Overall, the relative cost of this alternative would be high.

Screening Result. Alternative SV3 is retained for further consideration due to its moderate to high effectiveness. Active SSD systems are the most commonly employed technology to address vapor intrusion issues within existing buildings.

3.2.3.4 Alternative SV4—Soil Vapor Source Removal, Long-term Monitoring, and Institutional Controls

Alternative SV4 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. Alternative SV4 would address vapor intrusion into buildings by targeting the source of soil vapor contamination. This alternative would include removing shallow contaminated soil (as a precaution to remove a potential source for VI) and installing one or more SVE system(s) to address soil vapor HCAs, thereby directly addressing soil vapor contamination in the subsurface. Excavation is a reliable technology for removing contaminated soil and would remove a portion of the soil vapor contamination source. SVE is typically effective for volatile compounds with a Kh greater than 0.01 or a vapor pressure greater than 0.5 millimeter of mercury. In the past, SVE was effective at the site in treating the source area soil and is expected to be effective at controlling high-concentration soil vapor areas. The degree to which SVE would be effective at treating residual soil contamination depends on the concentrations remaining.

The previous SVE/AS system was operated until the concentrations reached asymptotic levels, at which point, the system was shut off. While relatively low COC concentrations in soil can contribute to soil vapor contamination, it remains to be seen if further reductions in soil concentrations could be achieved. If untreated soil contamination is present beneath the Facility, then SVE would be expected to be effective at treating that soil. The previous SVE/AS system was able to reduce PCE concentrations by 99 percent. In addition, SVE would remove contaminated soil vapor from the subsurface and control its movement prior to intrusion into indoor air.

Although the source of the vapor intrusion is ultimately targeted, this alternative may not be as effective at immediately addressing unacceptable risk in individual buildings as VIM technologies, particularly for those buildings that are farther from the HCAs where the SVE system(s) would be installed. However,

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

3-28 AX0420181244MKE

after the source of vapor intrusion is addressed, it is expected that COC concentrations in indoor and crawlspace air would decrease over time to acceptable levels. The overall effectiveness of this alternative would be moderate to high.

Implementability. Soil vapor source removal would consist of SVE and excavation of soil. SVE is a well-established technology that could be readily implemented. Installing SVE wells beneath existing buildings would present more of a technical challenge, but directional drilling techniques could be used to install these wells. However, wells and extraction piping may need to be installed in various areas throughout the City to control the high-concentration soil vapor areas. Subsurface utilities could also present a challenge to installing SVE wells and extraction piping. The SVE system(s) may also require installing extraction pipes across or underneath existing streets, which would require coordination with the City and temporarily closing streets during construction. Access and coordination with building owners would also be required if SVE wells are installed beneath privately owned buildings.

Excavation and offsite disposal are well-established technologies and could be readily implemented. Because excavation would be limited to shallow soil, no special equipment or protective measures are required. In addition, dewatering to lower the groundwater table would not be required. The greatest challenges for the excavation portion of this alternative would be maneuvering heavy construction equipment at the Facility within tight confines to access the excavation area, working around subsurface and overhead utilities, and coordinating with the current property owner of the Facility to allow excavation to occur within their property boundaries. Overall, the implementability of Alternative SV4 would be moderate to difficult.

Cost. The capital cost of Alternative SV4 would include installing one or more SVE system(s) and removing soil, which would be disposed of at an offsite location. O&M costs would include electricity to operate the SVE system(s) as well as regular maintenance and inspections. However, the O&M period may be shorter if the VI source removal (i.e., shallow contaminated soil) is conducted compared to installing individual VIMS. LTM would also be conducted to assess the vapor intrusion pathway over time by collecting indoor, outdoor, and either a crawlspace air or subslab soil vapor samples. Overall, the relative cost of this alternative would be moderate to high.

Screening Result. Alternative SV4 is retained for further consideration due to its moderate to high effectiveness and because it would directly address the source of vapor intrusion.

3.2.3.5 Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

Alternative SV5 is evaluated in the following paragraphs based on effectiveness, implementability, and relative cost.

Effectiveness. In addition to the components described for Alternative SV3, Alternative SV5 would include soil vapor source removal by installing one or more SVE system(s) and removing residual soil contamination. Alternative SV5 is a combination of Alternatives SV3 and SV4. As a result, it would be highly effective because it would immediately address the unacceptable risk due to COCs in indoor air (including crawlspace air), and it would also directly address the source of vapor intrusion. The effectiveness of these components was previously discussed as part of Alternatives SV3 and SV4.

Implementability. Alternative SV5 would include the implementability challenges of both Alternatives SV3 and SV4, including access and coordinating with property owners to install VIM technologies within privately owned buildings, install SVE wells beneath some existing buildings, and excavate soil from the parking lot of the Facility. In addition, streets may need to be temporarily closed during SVE system installation. Subsurface and overhead utilities would pose a challenge to SVE system installation and soil removal. As a result, Alternative SV5 would be difficult to implement.

SECTION 3: DEVELOPMENT AND SCREENING OF ALTERNATIVES

AX0420181244MKE 3-29

Cost. The capital cost of Alternative SV5 would be high relative to other alternatives. Not only would VIMS be installed, but one or more SVE systems would be installed and soil would be removed. O&M costs would also be high due to the SVE system(s), which would also need to be maintained along with the SSD systems. O&M costs would include electricity to operate the SVE and SSD systems as well as regular maintenance and inspections. LTM would also be conducted to assess the vapor intrusion pathway over time by collecting indoor, outdoor, and crawlspace air samples, as well as possibly subslab soil vapor samples. Overall, the relative cost of this alternative would be high.

Screening Result. Alternative SV5 is retained for further consideration due to its high effectiveness. It would address the immediate risk in individual buildings and the source of vapor intrusion.

3.3 Summary of Screening Results This subsection presents the preliminary screening results. Results of the screening evaluation, based on effectiveness, implementability, and cost, are summarized in Tables 3-1 and 3-2.

3.3.1 Groundwater Based on the results of the screening, the following alternatives for groundwater will be carried forward for detailed analysis in this FS:

• Alternative GW1—No Action

• Alternative GW2–WTP Alternatives

• Alternative GW3—MNA and Institutional Controls

• Alternative GW5—ISCR, LTM, and Institutional Controls

• Alternative GW6—ISCO, LTM, and Institutional Controls

Although Alternative GW1 is not effective in protecting human health and the environment, it is retained for detailed analysis because it provides a baseline for comparison with alternatives as required by the NCP for the FS process.

3.3.2 Soil Vapor Based on the results of the screening, the following alternatives for soil vapor will be carried forward for detailed analysis in this FS:

• Alternative SV1—No Action

• Alternative SV3—Pathway Sealing, VIM, LTM, and Institutional Controls

• Alternative SV4—Soil Vapor Source Removal, LTM, and Institutional Controls

• Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

Although Alternative SV1 is not effective in protecting human health and the environment, it is retained for detailed analysis because it provides a baseline for comparison with alternatives as required by the NCP for the FS process.

SECTION 4

AX0420181244MKE 4-1

Detailed Analysis of Alternatives This section presents the detailed analysis of alternatives. The groundwater and soil vapor alternatives are evaluated separately due to the differences in general response actions and associated technologies. Additionally, this will allow for greater flexibility in the remedial action by allowing the selection of separate remedies for groundwater and soil vapor.

The remedial technologies and process options remaining after screening are assembled into a range of conceptual remedial alternatives. The specific details of the remedial components discussed for each conceptual alternative serve as a basis for the alternative evaluations. These descriptions incorporate sufficient detail and assumptions, as necessary, to develop a cost estimate that will be within a +50 percent to -30 percent accuracy range for this FS. The site remedial design may evaluate other viable options within the same remedial technology category that achieve the same objectives.

Section 4.1 presents the remedial alternative evaluation process and criteria. Section 4.2 presents descriptions of the remedial alternatives evaluated, and Sections 4.3 and 4.4 present the detailed and comparative evaluations (respectively).

4.1 Evaluation Process and Criteria In accordance with the NCP (40 CFR 300), remedial actions must:

• Be protective of human health and the environment.

• Attain ARARs or provide grounds for invoking a waiver of ARARs that cannot be achieved.

• Be cost effective.

• Use permanent solutions and alternative treatment technologies or resource-recovery technologies to the maximum extent practicable.

• Satisfy the preference for treatment that reduces toxicity, mobility, or volume as a principal element.

In addition, the NCP emphasizes long-term effectiveness and related considerations, including the following:

• The long-term uncertainties associated with land disposal

• The goals, objectives, and requirements of the Solid Waste Disposal Act

• The persistence, toxicity, and mobility of hazardous substances and their constituents, and their propensity toward bioaccumulation

• The short- and long-term potential for adverse health effects from human exposure

• The long-term maintenance costs

• The potential for future remedial action costs if the selected remedial action fails

• The potential threat to human health and the environment associated with excavation, transportation, disposal, or containment

Provisions of the NCP require that each alternative be evaluated against nine criteria listed in 40 CFR 300.430(e)(9). The criteria were published in the March 8, 1990, Federal Register (55 FR 8666) to provide grounds for comparison of the relative performance of the alternatives and to identify their advantages and disadvantages. This approach is intended to provide sufficient information to adequately compare the

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-2 AX0420181244MKE

alternatives and to select the most appropriate alternative for implementation at the site as a remedial action. Sections 4.1.1, 4.1.2, and 4.1.3 define the nine NCP criteria.

The detailed alternatives analysis includes the following steps:

• A detailed evaluation of each alternative against seven of the nine NCP criteria (community acceptance and state acceptance criteria are evaluated based on the state and public comments on the proposed plan).

• A comparative analysis using the same criteria to identify key differences between alternatives. The detailed analysis discussed below presents the significant components of each alternative, the assumptions used, and the uncertainties associated with the assessment.

Sections 4.3 and 4.4 present the detailed and comparative evaluations, respectively.

4.1.1 NCP Threshold Criteria To be eligible for selection, an alternative must meet the threshold criteria described in the following subsections, or in the case of compliance with ARARs, must justify that a waiver is appropriate. An alternative not meeting these criteria, or where a waiver is not justified, is not acceptable.

4.1.1.1 Overall Protection of Human Health and the Environment This criterion evaluates whether an alternative can protect human health and the environment and draws on the analyses performed for other evaluation criteria, particularly long-term effectiveness and permanence and short-term effectiveness. Evaluation of the overall protection of human health and the environment offered by each alternative is focused on the following:

• Determining whether an alternative achieves adequate protection

• Considering how site risks associated with each exposure pathway are either eliminated, reduced, or controlled through treatment, engineering, or institutional controls

• Determining if an alternative will result in any unacceptable short-term or cross-media effects

4.1.1.2 Compliance with ARARs This criterion determines whether an alternative meets the substantive portions of the federal and state ARARs defined in Section 2. Under CERCLA, permits are not required for environmental and facility siting activities conducted onsite; however, the alternative must meet the substantive requirements of the associated ARARs.

CERCLA authorizes the waiver of an ARAR with respect to a remedial alternative if any of the following exists (40 CFR 300):

• The alternative is an interim measure that will become part of a total remedial action that will attain the ARAR.

• Compliance with the requirement will result in greater risk to human health and the environment than other alternatives.

• Compliance with the requirement is technically impracticable from an engineering perspective.

• The alternative will attain a standard of performance that is equivalent to that required under the otherwise applicable standard, requirement, or limitation through use of another method.

• With respect to a state requirement, the state has not consistently applied, or demonstrated the intention to consistently apply, the promulgated requirement in similar circumstances at other remedial actions within the state.

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-3

• For Superfund-financed response actions only, an alternative that attains the ARAR will not provide a balance between the need for protection of human health and the environment at the site and the availability of fund monies to respond to other sites.

4.1.2 NCP Balancing Criteria Alternatives meeting the threshold criteria are further evaluated using the five primary balancing criteria outlined in the following subsections. Unlike the threshold criteria, the five balancing criteria weigh the tradeoffs between alternatives. If appropriate, a high rating on one balancing criterion can compensate for a low rating on another.

4.1.2.1 Long-Term Effectiveness and Permanence Assessment against this criterion evaluates the long-term effectiveness of alternatives in maintaining consistent protection of human health and the environment. A key component of this evaluation is to consider the extent and effectiveness of controls that may be required to manage risk posed by treatment residuals and/or untreated waste. The long-term effectiveness of an alternative considers the following:

• Magnitude of residual risk assesses the residual risk remaining from untreated waste or treatment residuals after the remedial activities.

• Adequacy and reliability of controls evaluates the capability and suitability of controls, if any, used to manage treatment residuals or untreated wastes that remain at the site.

4.1.2.2 Reduction of Toxicity, Mobility, or Volume through Treatment This evaluation criterion addresses the statutory preference for selecting remedial actions that employ treatment technologies resulting in the permanent and significant reductions of toxicity, mobility, or volume of the hazardous substances as their principal element. This preference is satisfied when treatment reduces the principal threats at a site through destruction of toxic contaminants, irreversible reduction in contaminant mobility, or reduction of total volume of contaminated media. Evaluation of this criterion considers the following six factors:

• The treatment processes that the remedy will employ and the materials they will treat.

• The amount of hazardous materials that will be destroyed or treated (including how the principal threat(s) will be addressed).

• The degree of expected reduction in toxicity, mobility, or volume measured as a percentage of reduction (order of magnitude).

• The degree to which the treatment is irreversible.

• The type and quantity of treatment residuals remaining following treatment.

• Whether the alternative satisfies the statutory preference for treatment as a principal element.

Of particular importance in evaluating this criterion is the assessment of whether treatment reduces principal threats, including the extent of toxicity, mobility, or volume reduction either alone or in combination.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-4 AX0420181244MKE

4.1.2.3 Short-term Effectiveness This criterion assesses the effects of an alternative during construction and implementation prior to meeting the project RAOs. Evaluation of the potential effects on human health and the environment during implementation of the alternative considers the following factors:

• Protection of the community during remedial actions addresses any risk resulting from the remedy implementation. Examples include dust from excavations, transportation of hazardous materials, and air-quality impacts.

• Protection of workers during remedial actions assesses threats potentially posed to workers and the effectiveness and reliability of the protective measures needed.

• Environmental impacts consider the environmental impacts potentially resulting from the construction and implementation of the alternative and assesses the reliability of available mitigation measures for preventing or reducing those impacts.

• Time to achieve RAOs includes an estimate of the time required to achieve protection for either the entire site or individual elements associated with specific site areas or threats.

4.1.2.4 Implementability The implementability criterion assesses the technical and administrative feasibility of implementing an alternative and the availability of various services and materials required. The following factors are considered:

• Technical feasibility, which includes the following:

– Construction and operation consider the technical difficulties and unknowns associated with a technology.

– Reliability of technology focuses on the likelihood that technical problems associated with the implementation will result in schedule delays.

– Ease of undertaking additional remedial action includes a discussion of how difficult it would be to implement future remedial actions.

– Monitoring considerations addresses the ability to monitor the effectiveness of the remedy and includes an evaluation of exposure risk should monitoring be insufficient to detect a failure.

• Administrative feasibility assesses the activities required to coordinate with other offices and agencies (for example, access and ROW).

• Availability of services and materials includes an evaluation of the availability of appropriate offsite treatment, storage capacity, and disposal services; necessary equipment and specialists; services and materials (including the potential for competitive bidding); and the availability of prospective technologies.

4.1.2.5 Cost This criterion includes the engineering, construction, and O&M costs incurred over the life of the project. The evaluation of cost consists of three principal components:

• Capital costs include direct (construction) and indirect (non-construction and overhead) costs. Equipment, labor, and materials required for the installation of the remedy are direct costs. Indirect costs consist of expenses related to the engineering, financial, and other services necessary to complete the remedy installation but are not part of the actual installation or construction activities.

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-5

• Annual O&M costs refers to post-construction expenditures required to ensure continued effectiveness of the remedial action. Components of annual O&M costs include auxiliary materials, monitoring expenses, equipment or material replacement, and 5-year review reporting.

• Present-worth analysis is a method of evaluating expenditures, such as construction and O&M costs, that occur over different lengths of time. This allows costs for remedial alternatives to be compared by discounting all costs to the year that the alternative is implemented. The present worth of a project represents the amount of money that, if invested in the initial year of the remedy and disbursed as needed, would be sufficient to cover all costs associated with the remedial action.

The level of detail required to analyze each alternative with respect to the cost criteria depends on the nature and complexity of the site, the types of technologies and alternatives considered, and other project-specific considerations. The analysis is conducted in sufficient detail to understand the significant aspects of each alternative and to identify the uncertainties associated with the evaluation.

The cost estimates presented for each alternative have been developed to compare the alternatives. The final costs of the selected remedy will depend on actual labor and material costs, competitive market conditions, final project scope, the implementation schedule, and other variables. The cost estimates are order-of-magnitude estimates with an intended accuracy range of +50 to -30 percent. The range applies only to the alternatives as described in this report and does not account for changes in the scope of the alternatives.

4.1.3 NCP Modifying Criteria The two modifying criteria are state acceptance and community acceptance. Evaluation of these criteria typically occurs after receipt of state and public comments on the proposed plan.

4.2 Remedial Alternative Descriptions Five alternatives were developed for the site groundwater and four alternatives for the soil vapor. At least one alternative for each media will be required to achieve the RAOs for the site. The specific details of the remedial components discussed herein for each alternative are intended to serve as representative examples to allow order-of-magnitude cost estimates in this FS. Other viable options within the same remedial technology that achieve the same objectives may be evaluated during remedial design activities for the site. The following sections provide a detailed description of each alternative.

4.2.1 Groundwater Alternatives The five groundwater alternatives carried forward from the preliminary screening are described in detail in the following sections.

4.2.1.1 Alternative GW1—No Action

The objective of Alternative GW1 (no action) is to provide a baseline for comparison to other alternatives, as required by the NCP. Alternative GW1 does not include any remedial action for groundwater. It does not include monitoring, institutional controls, or five-year reviews.

4.2.1.2 Alternative GW2—WTP Alternatives

One GW2 subalternative will be implemented (to provide protection of the drinking water pathway while treatment of the PCE plume is ongoing) in addition to one of the other groundwater alternatives (Alternatives GW3, GW5, and GW6) described in the following subsections.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-6 AX0420181244MKE

Alternative GW2A Treatment at the City WTP with GAC

The objective of Alternative GW2A is to prevent exposure of residents and workers to groundwater containing PCE at concentrations greater than the MCLs. This objective is accomplished by treating PCE in groundwater using the existing GAC treatment system at the City WTP. Operation of the City WTP would continue as described in Section 1.2.2. For cost-estimating purposes, only costs related to maintenance (O&M) of the GAC treatment system are included (not including electricity costs required to overcome head pressure to pump water through the GAC filter bed). It is assumed that GAC would be replaced every 2 years.

Alternative GW2B Treatment at the City WTP using Air Stripping

Alternative GW2B would replace the current GAC treatment system and incorporate air stripping at the WTP to reduce PCE in groundwater and in the public water supply.

Air Stripping

For the purposes of alternative development and analysis, a packed air stripper is used, and the system would emit less than 10 tons per year of a single hazardous air pollutant (HAP) and less than 25 tons per year of combined HAPs. In a conventional air stripper, contaminated water is introduced at the top of a packed bed. The packing material is typically plastic media that provide a large surface-area-per-unit volume for mass transfer. Water flows down the packed bed in the opposite direction of airflow. The air strips the PCE (and daughter products) out and exits the top of the stripper. Clean water leaves the bottom of the packed section into a sump.

For cost-estimating purposes, it is assumed that the air stripper would treat an average of 1 mgd with a peak flow of 2 mgd. No offgas treatment is assumed based on the estimated HAP emissions. The packing material would be made of plastic (i.e., polypropylene or polyethylene). The air-stripping system would consist of one low-profile packaged system: one duty, power distribution system, and monitoring system with required instrumentation and controls for complete process control. Table 4-1 summarizes additional preliminary design criteria used in developing the alternative cost estimate Appendix D contains costs, additional details, and cost assumptions.

Alternative GW2C Treatment at the City WTP using AOP Treatment

Alternative GW2C would replace the current GAC treatment system and incorporate AOP treatment at the WTP to reduce PCE in groundwater.

AOP Treatment

For the purposes of alternative development and analysis, AOP would be a combination of UV and H2O2. In the presence of UV light, H2O2 forms hydroxyl radicals that act with high efficiency to destroy organic compounds such as PCE.

For costing purposes, it is assumed that UV with H2O2 would treat an average of 1 mgd and a peak flow of 2 mgd. The AOP designed for the WTP would be a pressurized low-pressure high-output packaged system consisting of two UV reactors, each having a 1-mgd capacity, as follows:

• One duty and one standby

• Power distribution system

• Complete UV intensity monitoring system

• H2O2 delivery system

• All required instrumentation and controls for complete process control, process performance monitoring, and safety

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-7

Table 4-2 summarizes additional preliminary design criteria. Appendix D contains costs, additional details, and cost assumptions.

4.2.1.3 Alternative GW3—MNA and Institutional Controls

Alternative GW3 assumes that the City WTP would continue to treat groundwater to remove PCE until the LTM program indicates that the plume concentrations are below PRGs. Alternative GW3 would rely on natural attenuation to decrease COC concentrations in groundwater to below their respective MCLs. Institutional controls would be implemented to prevent exposure of residents and workers to PCE until natural attenuation reduces COC concentrations to below the MCLs. A five-year review would be performed to evaluate the performance of MNA and institutional controls in protecting human health and the environment. If the monitoring program indicates that concentrations are not being reduced by MNA, a more active remedy could be implemented instead.

The following subsections describe the main remedial components of Alternative GW3. Costs, additional details, and cost assumptions are presented in Appendix D.

Monitored Natural Attenuation

This alternative would monitor the degree of natural attenuation and estimate the time necessary to reach PRGs through groundwater sampling and modeling/analysis of the groundwater plume. The lateral extents of groundwater PCE concentrations exceeding its PRG is shown on Figures 2-1 and 2-2. If monitoring data indicate further spreading of the plume above remedial goals along with a potential for adverse effects on receptors, active restoration with one of the remaining alternatives (Alternative GW5 or GW6) would be implemented.

The objective of the monitoring program would be to collect sufficient information to track the lateral and vertical extent of the PCE contaminant plume, monitor changes in its concentration, and provide additional natural attenuation parameter data to evaluate attenuation of PCE. The program would also evaluate if there are other ongoing sources that may require further action.

The alternative would include the use of modeling, such as using Remediation Evaluation Model for Chlorinated Solvents (REMChlor), to estimate the time in which the noncancer risk concentration (46 µg/L) and the PRG for PCE would be achieved. The REMChlor (or equivalent model) would be updated every 5 years as part of the five-year review to evaluate changes in the plume and update the timeframe required to achieve the PRG.

For cost-estimating purposes, the groundwater plume is modeled using REMChlor (Appendix E) to determine the approximate time required to achieve the PRGs. REMChlor is selected because it uses separate modeling inputs for the source component and the dissolved plume, which allows modeling of both source depletion and plume remediation. REMChlor also has an advantage over other modeling software in that it provides for a gamma factor that can be used to control the rate at which contaminants are released from the source into the dissolved plume. REMChlor can incorporate a larger gamma factor to account for unknown and potential releases upgradient of a known source area. After calibrating the model (under a simulation time of 100 years to estimate the time it would take for PCE to decrease below its MCL at the given degradation rates), the base-model scenario projected that the plume would attenuate in 34 years. This timeframe is used for cost-estimating purposes for Alternative GW3.

The groundwater monitoring network for Alternative GW3 is assumed to include the existing shallow monitoring wells at the site and up to 3 newly installed shallow monitoring wells for a total of up to 39 monitoring wells. Wells would be analyzed for the constituents listed and at the frequency listed in Table 4-3 for a period of 34 years. A data evaluation technical memorandum would be prepared after each monitoring event. Appendix D contains costs, additional details, and cost assumptions.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-8 AX0420181244MKE

Institutional Controls

Institutional controls would include restrictions on well drilling and groundwater use to protect public health by preventing exposure to groundwater containing PCE. The institutional control could take the form of a City ordinance or a regulation restricting or eliminating the use of existing wells and restricting the installation of new residential wells that would have a reasonable probability of drawing groundwater containing PCE. The area where new construction of residential wells would be prohibited would be determined based on the location of PCE within groundwater, the groundwater flow direction, and groundwater modeling. A buffer area beyond the area of impact (i.e., where groundwater drawn from the area would have a reasonable probability of containing COCs) would also be included within the restricted zone for an additional factor of safety. These distances from the restricted areas would be determined during the design phase and include input from the City of Martinsville, IDEM, and EPA. Upon agreement on the extent of the restricted areas, a survey would be conducted to define the institutional control boundaries for the site.

4.2.1.4 Alternative GW5—In Situ Chemical Reduction, Long-term Monitoring, and Institutional Controls

Alternative GW5 assumes that the City WTP would continue to treat groundwater to remove PCE until the LTM program indicates that the plume concentrations are below PRGs. Alternative GW5 would use ISCR to treat the groundwater plume where concentrations are greater than a performance standard. For purposes of this FS, the performance standard for PCE was selected as 46 µg/L, which is calculated based on PCE concentrations exceeding the noncancer risk hazard, as shown in Table 2-3. However, the actual performance standard would be selected during the design phase.

LTM would be performed to assess concentrations within the remainder of the plume and to determine the downgradient effects of treatment of the HCA. LTM and institutional controls would also be implemented as a part of this alternative. Five-year reviews would be performed to evaluate the effectiveness of this alternative and institutional controls.

The following subsections describe the main remedial components of Alternative GW5. Costs, additional details, and cost assumptions are presented in Appendix D.

In Situ Chemical Reduction

For the purposes of alternative development and analysis, it is assumed that a controlled-release carbon source and ZVI would be used for ISCR treatment. A wide range of commercially available chemicals are likely feasible for PCE reduction (e.g., ABC+, Provect-IR, EZVI, and EHC), and a final product selection would be made during remedial design. For cost-estimating purposes, EHC (a product provided by PeroxyChem) is selected as the representative reagent for this alternative. The ISCR reagent would be delivered to the aquifer in a solid or slurry form into injection zones creating an area of strongly reducing conditions, initiating reductive dechlorination of PCE. The ISCR reagent would treat PCE in groundwater migrating through the injection zones and the area of strongly reducing conditions extending out from the injection zones. As groundwater passes through the series of injection zones, PCE would be degraded into its daughter products and, ultimately, to ethene. The addition of a carbon source would act as an enhancement to indigenous microorganisms that may be present in the treatment zone, although this alternative is intended to rely primarily on abiotic chemical reduction.

The ISCR reagent would be injected into the subsurface by DPT. For cost-estimating purposes, it is assumed that injection points would be placed as a single row transect perpendicular to the direction of groundwater flow as shown on Figure 4-1. Efforts would need to be made to avoid underground utilities and crossing major street intersections to prevent major interruptions to city operations. If injection points are not practical due to the location of utilities, buildings, or street intersections, horizontal wells could be considered. Due to the present uncertainty, use of horizontal wells is not included in the cost estimate.

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-9

For cost-estimating purposes, it is assumed that injection points would be placed on 20-foot centers. A total of five separate injection zones placed across the entire length of the plume and a small grid array (56 feet by 64 feet) adjacent to the Facility would allow full reagent coverage of the portion of the plume exceeding the performance standard (as shown on Figure 4-1). Approximately 49 to 58 injection points within a 13-foot interval between 570 to 590 feet amsl would be required to treat groundwater across the portion of the plume where concentrations exceed the performance standard, in addition to as many as 25 injection points within the parking lot of the Facility. Assuming a product life of 5 years and groundwater velocity of 62 feet per year, it is estimated that an approximate area of 433,000 square feet would be treated by ISCR.

If monitoring results after the first 3 years indicate that high-concentration PCE areas still exist, a second injection event could be conducted using the same injection zone areas as the first injection event but with only half of the injection points. The same concentration, spacing, and depth intervals would be targeted, but the total volume would be reduced by 50 percent because half of the injection points would be used. After the completion of each injection event, a construction completion report would be prepared.

Long-term Monitoring

It is assumed that the same groundwater monitoring network used for Alternative GW3 would be used for the LTM program for Alternative GW5, and three shallow monitoring wells would be installed as part of this LTM. A baseline sampling event would be performed to define groundwater concentrations and aquifer conditions before implementing Alternative GW5. Based on the active treatment model output from REMChlor, an LTM duration of 17 years is assumed for cost-estimating purposes to achieve the PRG of 5 µg/L. During the LTM program, wells would be analyzed for the parameters and at the frequency listed in Table 4-3. If a second injection event is required, the same sampling frequency, wells, and analytes would be repeated for years 4, 5, and 6. Otherwise, a sampling event would only be conducted once every two years after the completion of the third year of sampling. For cost-estimating purposes, it is assumed that a second injection event would be required. A data evaluation technical memorandum or equivalent would be provided after each monitoring event.

Institutional Controls

Institutional controls would be implemented in the same manner as those described for Alternative GW3.

4.2.1.5 Alternative GW6—In Situ Chemical Oxidation, Long-term Monitoring, and Institutional Controls

Alternative GW6 assumes that the City WTP would operate as Alternative GW2A until the LTM program indicates that the plume concentrations are below PRGs. Alternative GW6 would use ISCO to treat the groundwater plume where concentrations are greater than the performance standard. For the purposes of this FS, the performance standard for PCE is assumed to be 46 µg/L. The rationale for selection of this performance standard was discussed as part of Alternative GW5. LTM would be performed to assess concentrations within the remainder of the plume and to determine the downgradient effects of treatment of the HCA. LTM and institutional controls would also be implemented as a part of this alternative. Five-year reviews would be performed to evaluate the effectiveness of this alternative and institutional controls.

The following subsections describe the main remedial components of Alternative GW6. Appendix D contains costs, additional details, and cost assumptions.

In Situ Chemical Oxidation

For the purposes of alternative development and analysis, it is assumed that sodium permanganate would be used for ISCO treatment. However, potassium permanganate could also be used for chemical oxidation and could be considered for the remedial design. For cost-estimating purposes, a timeframe of 15 years is used based on the active treatment model output using REMChlor to achieve the PRG of

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-10 AX0420181244MKE

5 µg/L. It is assumed that sodium permanganate would be delivered to the aquifer in a liquid form and create oxidizing conditions in the groundwater to accelerate the conversion of PCE to harmless by-products. As with Alternative GW5, sodium permanganate would be placed into injection zones. Unlike Alternative GW5, the injection zones for Alternative GW6 would create strongly oxidizing conditions (instead of reducing conditions) extending out from each of the injection zones. PCE would be degraded into carbon dioxide, water, and inorganic chloride.

The general delivery method, placement, and number of injection points for ISCO would be identical to the approach used for Alternative GW5. However, chemical handling and injection quantities would differ for this approach. It is assumed that 175,000 square feet would be treated as a part of this alternative (assuming permanganate persistence over 2 years in the sandy aquifer and a groundwater velocity of 62 ft/year).

If monitoring results after the first 3 years indicate that areas with high concentrations of PCE still exist, a second injection event could be conducted using the same injection zone areas as the first injection event but with only half of the injection points. The same concentration, spacing, and depth intervals would be targeted, but the total volume would be reduced by 50 percent because half of the injection points would be used. After the completion of each injection event, a construction completion report would be prepared.

Long-term Monitoring

It is assumed that the same groundwater monitoring network used for Alternative GW3 would be used for the LTM program for Alternative GW6 and that three shallow monitoring wells would be installed as part of this LTM. A baseline sampling event would be performed to define groundwater concentrations and aquifer conditions before implementing Alternative GW6. Based on REMChlor modeling results and for cost-estimating purposes, the LTM program is assumed to last for 15 years. Wells would be analyzed for the parameters and at the frequency listed in Table 4-3. If a second injection event is required, the same sampling frequency, wells, and analytes would be repeated for years 3 and 4. Otherwise, a sampling event would only be conducted once every 2 years after the completion of the second year of sampling. A data evaluation technical memorandum or equivalent would be prepared after each monitoring event. For cost-estimating purposes, it is assumed that a second injection event would be required.

Institutional Controls

Institutional controls would be implemented in the same manner as those described for Alternative GW3.

4.2.2 Soil Vapor Alternatives The four soil vapor alternatives carried forward from the preliminary screening are described in detail in the following subsections.

4.2.2.1 Alternative SV1—No Action The objective of Alternative SV1 (no action) is to provide a baseline for comparison to other alternatives, as required by the NCP.

No action would leave affected soil vapor in place and would not monitor potential future impacts to indoor air. No mechanisms would be in place to prevent or control exposure to contaminants or to monitor whether indoor air concentrations increase over time. The lack of active cleanup or controls may allow users to be exposed to contaminants in indoor air if concentrations increase over time due to:

• Changes in building use, condition, or operation (other uses, alterations, or deterioration may alter subslab-to-indoor air soil vapor migration)

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-11

• Heating, ventilation, and air-conditioning system changes (changes to these systems may affect airflow and pressure in the building)

• Seasonal variation (changes in outdoor temperature and pressure may alter subslab-to-indoor air soil vapor migration)

Alternative SV1 does not include any remedial action for the soil vapor. It does not include monitoring, institutional controls, or five-year reviews.

4.2.2.2 Alternative SV3—Pathway Sealing, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

The objectives of Alternative SV3 are to disconnect the vapor intrusion pathway between the subsurface and indoor environment and to mitigate exposure to current (and potential future) receptors of subsurface soil vapor. Alternative SV3 consists of sealing preferential vapor entry points, if any, and routine collection of samples at existing buildings to evaluate how COC concentrations in indoor air and crawlspace air or subslab soil vapor change over time within the buildings identified for this alternative. Alternative SV3 also includes VIM to actively reduce unacceptable risk to occupants of the buildings and institutional controls to limit exposure by restricting use of land impacted by contaminated soil vapor. Five-year reviews would be performed to reevaluate the vapor intrusion pathway, including potential sources to soil vapor (that is, COCs in soil and/or groundwater) and notify property owners of potential risks.

The following subsections describe the main remedial components of Alternative SV3. Costs, additional details, and cost assumptions are presented in Appendix D. Table D-18A presents the costs for Alternative SV3 using an ELCR of 10-6, and Table D-18B presents the costs for Alternative SV3 using an ELCR of 10-5 and 10-4.

Property Analysis

Properties within the soil vapor plume are evaluated to determine appropriate actions for each residential and commercial/industrial property. Appendix D, Tables D-10 and D-11 present the residential and commercial/industrial property analyses, respectively. Properties are listed in the tables by property identification number if they were sampled or located within a soil vapor plume, as discussed in the subsequent paragraphs.

Residential properties are compared to the soil vapor plume where PCE or TCE concentrations exceeded the residential PRG. Figure 2-3 depicts the residential properties that are within or partly within the soil vapor plume. The residential properties within the soil vapor plume are noted in Table D-10. Parking lots, which were not sampled, are also noted in Table D-10 and depicted on Figure 2-3. A subset of the properties in Martinsville allowed access and were sampled during the RI. The results of these samples are summarized in Section 1.

Appendix D, Table D-10 lists whether indoor air, crawlspace air, or subslab soil vapor samples were collected at the properties during the Phase 6 or Phase 7 sampling events. For the properties that were sampled, the risk levels determined by the HHRA are listed for each property by receptor. Where risk was aggregated together for more than one receptor (for example, adult and child), the more conservative risk is listed. Actions are then assigned to each sampled property considering ELCR of 10-6, 10-5, and 10-4 and HI greater than 1, as follows:

• For properties where the HI is greater than 1, VIM would be implemented.

• For properties where the ELCR exceeds the final selected target ELCR (10-6, 10-5, or 10-4), VIM would be implemented. The number of properties that would receive VIM ultimately depends on the ELCR selected.

• For properties where the risk levels do not warrant VIM but are within the soil vapor plume, LTM would be conducted.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-12 AX0420181244MKE

• For properties where the risk levels do not warrant VIM and are not within the soil vapor plume, no action would be taken.

Because only a subset of properties near or within the soil vapor plume were sampled during the RI, the total number of properties that would receive various actions under this alternative is estimated. Percentages are calculated for the properties sampled to determine the percent of properties that would receive VIM, that would receive LTM only, and where no action would be taken. These percentages are then applied to the properties that were not sampled but are located within the soil vapor plume shown on Figure 2-3, to estimate a representative number of properties that would receive actions as part of Alternative SV3. Parking lots are excluded from the calculations. The number of properties that would receive VIM, LTM only, or no action are summed for sampled and non-sampled (estimated) properties. Table 4-4 summarizes the number of residential properties receiving each type of action for each target ELCR (10-6, 10-5, and 10-4). The ELCRs of 10-5 and 10-4 result in the same number of properties receiving each type of action because the HI of 1 is the controlling (more conservative) PRG, as shown in Table 2-3.

A similar property analysis is performed for commercial/industrial properties and is presented in Appendix D, Table D-11. Figure 2-4 depicts the commercial/industrial properties that are within or partly within the soil vapor plumes using an ELCR of 10-6 and an ELCR of 10-5 or 10-4. Both plumes consider an HI of 1, which results in the lower PRG compared to an ELCR of 10-5 and 10-4. Like Table D-10, Table D-11 indicates if the property is within the soil vapor plume. However, because different soil vapor plumes result from different ELCRs, Table D-11 indicates the soil vapor plume risk level. Table 4-4 summarizes the number of commercial/industrial properties (and the total number of properties) receiving each type of action for each ELCR. The ELCRs of 10-5 and 10-4 result in the same number of properties receiving each type of action.

The actual number of properties receiving an action would be determined based on predesign investigation sampling for vapor intrusion. An extensive vapor intrusion sampling event, including sampling subslab soil vapor and indoor air, may be warranted to assess each property within or near the soil vapor plume. Predesign sampling would be used to determine if actions are warranted at an individual property within the study area, and if so, what actions. Costs for this vapor intrusion sampling event(s) were not included as part of the cost for this alternative or other soil vapor alternatives.

Pathway Sealing

The properties where VIM would be implemented would also undergo preferential pathway sealing as proposed in this remedial alternative. A visual inspection of the entire building would be conducted to identify cracks, building joints, pipe penetrations, sumps, and other building features that could be potential soil vapor preferential entry points. Subsequent sealing of vapor entry points would be performed using elastomeric compounds and insulating foam sealants to reduce or prevent COCs from being transported through these vapor entry points. Sumps would be covered and sealed. Attempting to identify and seal every potential entry point could be impracticable, and LTM and maintenance of the seals would be required. However, this approach would address the most obvious and potentially largest points of vapor entry and thereby result in a reduction of indoor air concentrations.

Vapor Intrusion Mitigation System Types

The properties identified in Table 4-4 would undergo VIM as proposed in this remedial alternative. VIM would consist of active mitigation systems, depending on the building construction type. During Phases 6 and 7 of the RI, building surveys were conducted at sampled properties. The building surveys included subgrade construction type, building footprint size, and information pertaining to vapor intrusion pathways. Tables D-14 and D-15 in Appendix D summarize pertinent building information collected from building surveys for residential and commercial/industrial properties, respectively. Table D-16 summarizes the building construction type and average building footprint for residential and

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-13

commercial/industrial properties. The average building footprint is calculated based on the footprint recorded on the building surveys. For both residential and commercial/industrial properties, the average building footprint is approximately 1,500 square feet, which is assumed to be the representative building size of the properties. However, the actual building footprints may vary widely and accurate building footprint sizes of each building receiving VIM would be required for design.

The type of VIM for buildings that have a full basement or slab-on-grade construction would consist of active SSD system installation. For buildings with crawlspaces, active SMD systems would be installed. Buildings that have a partial crawlspace and partial slab-on-grade or basement would have a combination system consisting of SMD for the crawlspace area and SSD for the slab area. Table 4-5 summarizes the number of each VIMS type based on ELCR (10-6, 10-5, and 10-4), which is calculated using percentages of each construction type calculated in Table D-16 applied to the total number of VIM properties from Table 4-4. Alternative SV3 would include predesign evaluation and diagnostic testing to determine the appropriate type and layout of the VIM. Predesign diagnostic testing and system layout was included as part of the alternative cost. As previously discussed, predesign vapor intrusion investigations to determine if a VIMS is warranted at a property within or near the soil vapor plume may be necessary, but are not included in the alternative cost.

Vapor Intrusion Mitigation System Installation

After predesign and design activities, Alternative SV3 would include physically installing VIMS components into each building. VIM would be accomplished by employing active SSD using powered mitigation fans or blowers to create a subslab negative pressure field and extract vapors within the targeted subslab area. The extracted air would be discharged to the atmosphere outside the building, either with or without GAC treatment of the offgas, depending on the concentration of COCs in the emissions. At properties constructed with a crawlspace, active SMD would be employed. These systems are like subslab systems, but they would be applied to buildings with crawlspaces, where there is either no slab or a partial slab.

The conceptual design is developed for estimating the costs and assessing the environmental impact for VIMS. These conceptual details may vary from the final design, which would be developed during the remedial design phase and address property specific and site conditions at the time of the design. Based on the anticipated COC concentrations in the extracted vapors from the targeted subslab area and the typical SSD system flow rates, the estimated mass emissions would be low and would not require offgas treatment. Hence, the cost estimate assumes that GAC treatment would not be required.

As part of the design process, premitigation testing would be required to determine the radius of influence of the negative pressure field at a given applied negative pressure and corresponding flow rate and to determine the COC concentrations in the offgas (EPA 1993 and 2015). The negative pressure and flow rate data would then be used to select the number of extraction points, the orientation of the extraction points (that is, horizontal or vertical), and blower specifications.

As part of predesign diagnostic testing, field tests would be performed over a period of several days and using temporary equipment to determine the subslab negative pressure field extension, associated flow rates and vacuum, and estimated potential COC concentrations in the offgas. These data would be used to complete the design of the SSD or SMD system, including the fan/blower and pipe sizing, required applied vacuum, the number and configuration of SSD extraction nodes, and potential offgas treatment, if needed. Predesign diagnostic testing would be used to optimize the mitigation system design, reducing both capital and long-term O&M costs. Costs for predesign diagnostic testing were estimated as part of the alternative cost based on the assumed number of residential and commercial buildings receiving a VIMS.

For cost-estimating purposes, the following text describes the layouts and monitoring of both an SSD and an SMD system if they were to be installed under existing buildings. A different design could be

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-14 AX0420181244MKE

used if a new structure (including residential) were to be built at the Site, and vapor mitigation could be a component of construction of the structure or installed after construction, depending on potential risk to indoor air.

Subslab Depressurization System Layout

The purpose of an active SSD system is to intercept the vapor intrusion pathway by reducing pressure in the subslab environment. A secondary benefit may be to reduce COC concentrations in the building subslab environment by physically extracting the soil vapor and venting it to the atmosphere. Vertical collection nodes (that is, suction pits) would be installed beneath the building slab and connected via polyvinyl chloride (PVC) piping to an exterior vent located above the building roofline, as shown on Figure 4-3. The exhaust stack could either be installed on the exterior of the building or installed through the interior of the building and connected to an exhaust fan in the attic. Figure 4-4 presents a typical SSD system detail. For cost-estimating purposes, the following assumptions are made:

• One suction node would be installed for every 1,500 square feet of building footprint, with an assumed building footprint slightly larger than 1,500 square feet for a total of two suction nodes.

• Approximately 50 linear feet of piping would be required for each node for a total of 100 feet.

• The piping would consist of 4-inch diameter PVC.

Sub-membrane Depressurization System Layout

Like subslab systems, SMD systems create a negative pressure gradient under the building to prevent vapors from entering the building. The purpose of an active SMD system is to intercept the vapor intrusion pathway by reducing pressure in the sub-membrane environment. A secondary benefit may be to reduce COC concentrations in the building sub-membrane environment by physically extracting the soil vapor and venting it to the atmosphere.

SMD systems would be constructed for buildings with crawlspaces. A vapor barrier (i.e., membrane) that is impermeable to soil vapor would be placed directly on the soil, with a perforated PVC collection pipe placed beneath the membrane and connected to the exhaust stack. Like the SSD system, the exhaust stack is vented to the exterior as shown on Figure 4-5. Figure 4-6 presents a typical SMD system detail. For cost-estimating purposes, the following assumptions are made:

• One mitigation fan would be installed for every 1,500 square feet of building footprint, with an assumed building footprint slightly larger than 1,500 square feet for a total of two mitigation fans.

• Approximately 50 linear feet of piping would be required for each leg of an SMD system for a total of 100 feet.

• The piping would consist of 4-inch diameter PVC.

• The membrane would consist of a 20-mil reinforced vapor barrier.

• A perforated 4-inch diameter PVC pipe would be installed beneath the vapor barrier along the length of the building, which is calculated by taking the square root of the building footprint area.

• For SMD/SSD combination systems, half of the building footprint would receive an SSD system and the other half would receive components of an SMD system. The SMD and SSD would be integrated and operate as one system.

Vapor Intrusion Mitigation Startup and Commissioning

Following installation of the VIMS, startup and commissioning would be performed. It is assumed for cost-estimating purposes that startup would occur shortly after construction is complete, thus requiring only one mobilization. The startups would be performed in series for each building allowing for

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-15

one-half day per building. Vacuum and airflow measurements would be collected to confirm that the VIMS meet the performance criteria and so that adjustments could be made as necessary. After completion of startup and commissioning, a construction completion report would be prepared.

Vapor Intrusion Mitigation Operation and Monitoring

Following the implementation of the sealing and VIM component of this remedial alternative, monitoring would be necessary to confirm sealing and depressurization at the building effectively mitigates the pathway and that the VIMS are operating as intended. System monitoring would consist of measuring field parameters (vacuum, flow, and differential pressure measurements) and would be conducted annually for the life of the remedy (30 years). Because VIM is an engineered control intended to disrupt the vapor intrusion pathway and not source treatment, it is assumed that operation of the VIMS would be required for the full 30 years of O&M used for cost-estimating purposes for Alternative SV3. Operation costs3 would include annual VIMS monitoring and periodic maintenance of the VIMS. Maintenance costs assume fan replacement and minor barrier repairs every 10 years.

Long-term Monitoring

The potential for future vapor intrusion would be evaluated by conducting semiannual LTM at properties where VIM is conducted as well as properties designated as “LTM only,” as summarized in Table 4-4. The objectives of the monitoring program would be as follows:

• Verify that COCs concentrations do not increase to levels above PRGs. • Evaluate how subslab soil vapor concentrations of COCs change over time. • Monitor for possible increases in reductive degradation daughter products. • Justify termination of indoor air monitoring if subslab soil vapor concentrations attenuate over time.

For cost-estimating purposes, LTM was defined as 1 year of semiannual events. Samples would be collected in both the heating and the cooling seasons to evaluate seasonal variability. The frequency and duration of LTM would be re-evaluated during the first five-year review. If COC concentrations in indoor air do not increase to greater than the PRG in that time period, sampling could be discontinued, unless building use changes or construction occurs in a manner that would increase the amount of vapor intrusion into the building. If indoor air concentrations at “LTM only” properties are observed to increase above the PRGs, then additional rounds of sampling would be performed. If warranted by the results of this additional sampling, a contingency remedy (such as the depressurization system described in Alternative SV3) could be implemented.

LTM would consist of sampling indoor and outdoor air and subslab soil vapor at buildings with slab construction. For buildings with crawlspaces, crawlspace air would be sampled in lieu of subslab soil vapor. The details of the monitoring program, such as the number of samples to be collected and the types of analyses to be performed, would be provided in the remedial design. For cost-estimating purposes, the following assumptions are made for 1 year of sampling:

• Subslab soil vapor samples would be collected from new subslab soil vapor probes. Soil vapor pins would be installed during the first sampling event.

• Two soil vapor pins would be installed at each building receiving an SSD system, and one soil vapor pin would be installed at each building receiving an SMD/SSD combination system.

• The first sampling event would include utility location using a private utility locator prior to installation of soil vapor pins.

3 Electricity cost to operate the VIMS is the responsibility of the homeowner and is estimated to be $36.50 per month.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-16 AX0420181244MKE

• Two indoor air samples, two subslab (or crawlspace) samples, and one outdoor air sample would be collected at each building per event. Ten percent duplicate samples would be collected.

• Samples would be analyzed for COCs and daughter products (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and vinyl chloride).

• Each property would require 24 hours of effort to conduct a building survey, locate utilities, and collect samples. The effort would be divided between four, 2-person field crews.

• Each event would also include equipment rental, consumables, data validation, and preparation of a data evaluation technical memorandum.

Five-year Reviews

The NCP requires five-year reviews as long as hazardous substances with the potential to cause unacceptable risk to human health and the environment remain at the site. As part of the five-year review, EPA would reevaluate the vapor intrusion pathway, including potential sources of soil vapor contamination (that is, COCs in soil and/or groundwater) and notify property owners of potential risks. In addition to evaluating the vapor intrusion pathway, sampling could be conducted as part of the five-year review, if desired. Sampling may support discontinuation of five-year reviews if it can be demonstrated that the remedy has met the RAO. For cost-estimating purposes, it is assumed that five-year reviews would be conducted for the duration of the O&M period (30 years for Alternative SV3). Sampling is not included as part of the five-year reviews.

Institutional Controls

Institutional controls would include both deed restrictions and LUCs to restrict land use, building use, or activities to protect human health. The institutional controls would target or be required for:

• Buildings with VIMS to allow continued O&M of the systems as well as access.

• Buildings where LTM would be conducted

• Buildings within or partly within the soil vapor plumes, including empty lots where future buildings could be constructed.

Property deed restrictions could require evaluation of the vapor intrusion pathway and implementation of VIM for newly constructed buildings.

During each five-year review, the institutional controls would be revisited to determine effectiveness and potentially revised. Institutional controls would be developed based upon guidance provided in Institutional Controls: A Guide to Planning, Implementing, Maintaining, and Enforcing Institutional Controls at Contaminated Sites (EPA 2012b) and Section 8.6 (Use of Institutional Controls) in Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (EPA 2015).

4.2.2.3 Alternative SV4—Soil Vapor Source Removal, Long-term Monitoring, and Institutional Controls

The main objective of Alternative SV4 is to remove the soil vapor source rather than disconnecting the vapor intrusion pathway. For purposes of costing in this FS, soil vapor source removal would consist of limited soil excavation and installation of an SVE system within the area near the former Master Wear facility. However, based on the results of predesign sampling, the SVE system could be thermally enhanced or additional SVE systems could be implemented at other soil vapor HCAs that were discussed in Section 1. Figure 4-7 depicts the components of soil vapor source removal assumed for cost purposes for Alternative SV4.

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-17

Like Alternative SV3, Alternative SV4 consists of routine collection of samples at existing buildings. Institutional controls would be implemented to limit exposure by restricting use of land impacted by contaminated soil vapor. Five-year reviews would also be performed to reevaluate the vapor intrusion pathway, including potential sources to soil vapor (that is, COCs in soil and/or groundwater) and notify property owners of potential risks.

The following subsections describe the main remedial components of Alternative SV4. Costs, additional details, and cost assumptions are presented in Appendix D. Table D-25A presents the costs for Alternative SV4 using an ELCR of 10-6, and Table D-25B presents the costs for Alternative SV4 using an ELCR of 10-5 and 10-4.

Property Analysis

The same property analysis is used for Alternative SV4 as is used for Alternative SV3. However, unlike Alternative SV3, Alternative SV4 does not include pathway sealing or VIM at specific properties to actively reduce unacceptable risk to occupants of the buildings. Instead of VIM, only LTM would be implemented at these properties. Appendix D, Table D-13 summarizes the number of residential and commercial/industrial properties receiving each type of action for each ELCR (10-6, 10-5, and 10-4) as part of Alternative SV4. As previously discussed, predesign vapor intrusion investigations to determine whether actions are warranted at a property within or near the soil vapor plume may be necessary, but are not included in the alternative cost.

Soil Vapor Source Removal Area

Figure 1-8 shows VOC concentrations in soil collected during Phase 2 of the RI. The most elevated concentrations are located nearest to the former Master Wear facility. The highest concentrations of PCE and TCE are observed in SG-1 within the 1- to 2-foot depth interval. Additionally, limited samples were collected beneath the Facility and soil samples were not evaluated from beneath the Facility as part of the PCAs, so it is unknown if residual contamination exists beneath the building. It is possible that elevated soil concentrations are a contributing source of impacted soil vapor. Figures 1-12 and 1-13 show TCE and PCE concentrations, respectively, that were measured in soil vapor. For these reasons, source removal focuses on impacted soil and soil vapor near the former Master Wear facility.

Excavation of Soil and Offsite Disposal

Because elevated PCE and TCE concentrations were observed in soil at SG-1 at a shallow depth, Alternative SV4 would include excavation and offsite disposal of the soil surrounding SG-1. Soil surrounding MW-1S would also be removed. The soil excavation area assumed for cost purposes is shown on Figure 4-7, but the actual excavation area and depth would be refined based on the results of predesign sampling (not included in alternative costs). The goal of excavation would be to remove contaminated soil acting as a source of soil vapor contamination that is readily accessible and easily excavated. For cost-estimating purposes, the following assumptions were made:

• An area of 60 feet by 40 feet of concrete/asphalt would be saw cut and removed in the parking lot area behind the Master Wear facility.

• Soil would be excavated from the same saw cut area to a depth of 4 feet.

• Soil would be directly loaded into trucks and disposed offsite at a landfill.

• One waste characterization sample would be collected and analyzed. Given the concentrations of PCE and TCE observed in soil from SG-1, it is assumed that soil would be disposed as nonhazardous waste.

• The excavation would be filled with structural fill in 6-inch lifts, which would be compacted to 95 percent of maximum density.

• Asphalt and/or concrete would be used to restore the surface to match pre-existing conditions.

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-18 AX0420181244MKE

Soil Vapor Extraction System

A new SVE system would be installed as part of Alternative SV4 to remove and treat impacted soil vapor from the subsurface. COCs in soil vapor would be removed (and then treated) to reduce the contaminant mass that is the potential source of vapors to subslab vapor and subsequently to indoor air. Soil vapor treatment would shorten the remediation timeframe and need for extended LTM, maintenance, and reviews. The SVE system would also have the added benefit of removing residual COC concentrations in soil, including from beneath the Facility, if warranted by predesign investigation. Predesign investigation costs are not included as part of the alternative cost.

For cost-estimating purposes, SVE would focus on the area shown on Figure 4-7. Other technologies or enhancements to the SVE system could also be considered during the remedial design or predesign phases, as necessary, to address sources of soil vapor contamination. For example, the SVE system could be thermally enhanced, if required for effective remediation. Although the SVE system layout assumed for cost purposes does not include extraction wells beneath the Facility, the well configuration could be modified based on predesign investigation results. If necessary, extraction wells could be installed through the floor of the existing building to treat residual soil contamination beneath the facility.

SVE applies a vacuum in the subsurface to remove soil vapors and COCs sorbed to vadose zone soil. Air is pulled through the vadose zone using vertical or horizontal wells, volatilizing the contamination, which is then removed from the subsurface. An offgas system would initially be used to treat vapors before they are emitted to the atmosphere. Considering the tight spacing of the buildings in the area where the SVE system would be installed and the potential for subsurface utilities, vertical soil vapor extraction wells are assumed for cost-estimating purposes. However, horizontal soil vapor extraction wells (installed using directional drilling methods) could be evaluated during the design phase.

A key design parameter for SVE systems is the radius of influence. The radius of influence for the SVE extraction wells would be dependent on vertical leakage at the surface, the depth to water, and the ability to draw soil vapor through the vadose zone without excessive water table lift. When the previous SVE system was installed at the site, a pilot test was performed. Based on the pilot test results, a design radius of 50 feet was used (AEE 2004). For cost-estimating purposes, the following assumptions are made:

• The previous SVE/AS system was decommissioned and removed or abandoned in-place. No piping, extraction wells, or system components are reusable. An evaluation during the predesign or design phases could be conducted to determine if components are reusable. If so, capital cost savings could be realized.

• The target treatment area for the SVE system would be as shown on Figure 4-7.

• The extraction well radius of influence would be 50 feet based on the pilot test previously conducted by AEE.

• Nine SVE extraction wells would be required given the assumed target treatment area and the extraction well radius of influence.

• The depth to groundwater is approximately 13 feet bgs. The SVE wells would be installed to a depth of 12 feet and screened between 5 to 12 feet bgs.

• The north-south alley between Main and Mulberry Streets would be accessible for extraction well installation. Extraction wells could also be installed through the floor of the Facility to target residual contamination remaining beneath the building, if necessary.

• A nearby building would house the treatment system components. An enclosed trailer or new concrete slab would not be required. The SVE system components would include:

− 540 standard cubic feet per minute (at 5 inches of mercury) blower

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-19

− Two 2,000-pound vapor-phase GAC vessels

− 800 linear feet of 4-inch high-density polyethylene SDR 13 pipe

− 3 vapor monitoring points

− 120-gallon knockout drum

• Offgas from the SVE system would be treated using vapor-phase GAC at a rate of 130 pounds per year. During the performance monitoring period, the continued need for offgas treatment would be reevaluated.

• The soil excavation area and trenches excavated for system piping would be resurfaced with asphalt to prevent short-circuiting of the SVE extraction wells and to provide for a good surface seal in areas disturbed by excavation activities.

Soil Vapor Extraction Startup and Commissioning

Following installation of the SVE system, startup and commissioning would be performed. It is assumed for cost-estimating purposes that a field team of four and their associated travel expenses, per diem, and miscellaneous field expenses would be required for the startup and commissioning of the SVE system. After completion of startup and commissioning, a construction completion report would be prepared.

Soil Vapor Extraction System Operation and Monitoring

SVE O&M and periodic monitoring would be required as part of Alternative SV4. System monitoring would consist of measuring field parameters (wellhead vacuum readings from SVE wells and vapor monitoring points, differential pressure readings, and inlet and outlet PID readings) and would be conducted annually for the duration of the system operation. Based on the duration of the previous SVE system operation at the site, it is assumed for cost-estimating purposes that the SVE system would operate for 5 years. Operation would include electricity to operate the SVE system, offgas monitoring, condensate handling and disposal, and carbon change-out and disposal. Annual system monitoring would include offgas air monitoring and field labor and associated travel expenses, per diem, and miscellaneous field equipment rental costs. A technical memorandum would be prepared annually after the completion of the monitoring event.

Long-term Monitoring

Alternative SV4 includes LTM, as previously described for Alternative SV3, except that the properties proposed for VIMS would only receive LTM.

Institutional Controls

Institutional controls would be implemented as described for Alternative SV3.

4.2.2.4 Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, Vapor Intrusion Mitigation, Long-term Monitoring, and Institutional Controls

The objectives of Alternative SV5 duplicate those presented in Alternative SV3 but also include removal of the soil vapor source as presented in Alternative SV4, thereby enhancing remediation as an additive impact to the use of active VIM. Alternative SV5 includes the following components that are previously described for Alternative SV3:

• Pathway sealing • VIMS and associated O&M, including system monitoring • Long-term monitoring • Institutional controls

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-20 AX0420181244MKE

In addition to these components, Alternative SV5 includes soil vapor source removal, as is previously described for Alternative SV4. Costs, additional details, and cost assumptions are presented in Appendix D. Table D-26A presents the costs for Alternative SV5 using an ELCR of 10-6, and Table D-26B presents the costs for Alternative SV5 using an ELCR of 10-5 and 10-4. For cost-estimating4 purposes, it is assumed that the O&M timeframe of the alternative would be 5 years. Tabled D-27 summarizes soil vapor alternative costs. As previously discussed, predesign vapor intrusion investigations to determine whether actions are warranted at a property within or near the soil vapor plume may be necessary, but are not included in the alternative cost.

4.3 Detailed Evaluation Tables 4-7A (Alternatives GW1, GW3, GW5, and GW6), 4-7B (Alternatives GW2A, GW2B, and GW2C), and 4-8 (soil vapor alternatives) present the detailed analysis of the remedial alternatives against the NCP criteria and include net present-worth costs for comparison purposes. The two modifying criteria (state and community acceptance) will subsequently be evaluated based on comments received on the proposed plan. Appendix D presents the detailed cost estimates.

4.4 Comparative Evaluation The following subsections explain the relative performance of alternatives against the five balancing criteria as described in the NCP for groundwater and soil vapor.

4.4.1 Groundwater For the purposes of this comparative evaluation, it is assumed that Alternative GW2A (existing operations at the WTP) would be selected as part of the site remedy in addition to one of the other groundwater alternatives (Alternatives GW3, GW5, or GW6). However, Alternatives GW2B or GW2C could also be selected in lieu of Alternative GW2A. Table 4-9 presents a comparative evaluation summary for groundwater. The GW2 alternatives are not included in the comparative analysis with the other groundwater alternatives because it is assumed that one of the GW2 alternatives would be implemented with Alternative GW3, GW5, or GW6.

4.4.1.1 Overall Protection of Human Health and the Environment The following RAOs are proposed to address groundwater contamination:

• GW RAO 1—Protect human health by reducing or eliminating exposure (via ingestion, inhalation, or direct contact) to groundwater COCs at concentrations that could pose an unacceptable risk to human health for current and future groundwater use.

• GW RAO 2—Reduce COC concentrations in groundwater to restore the aquifer to its beneficial use as a drinking water aquifer within a reasonable timeframe.

• GW RAO 3—Protect human health by reducing or eliminating the potential for COCs in groundwater to volatilize and migrate into buildings through the vapor intrusion pathway.

The Alternative GW1 (No Action) is not protective because it allows for groundwater COC concentrations exceeding PRGs to remain in place and potentially expose current and future receptors and does not prevent or minimize plume migration. Alternative GW3 is protective of human health and the environment, even though no active treatment process is used, because it prevents access to contaminated groundwater. In addition, REMChlor modeling as part of Alternative GW3 estimates that PCE concentrations would decrease below the PRG in about 34 years. Alternatives GW5 and GW6 4 Electricity costs to operate the VIMS is the responsibility of the homeowner and is estimated to be $36.50 per month.

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-21

include active in situ groundwater treatment. As such, these alternatives offer greater protection than the other alternatives considered. A summary of the overall protectiveness of the alternatives is provided as follows.

Overall Protection of Human Health and the Environment Does Not Meet Criteria Meets Threshold Criteria

Alternative GW1 Alternatives GW3, GW5, and GW6

4.4.1.2 Compliance with ARARs Alternative GW1 (No Action) does not comply with ARARs. Alternative GW3 would only meet chemical-specific ARARs once natural attenuation processes have reduced PCE concentrations within the plume to below the PRG. Alternatives GW5 and GW6 would be expected to comply with ARARs. The primary ARARs to be met relate to reducing PCE concentrations in groundwater to below their PRGs, treating offgas if required, and proper management and disposal of waste generated during the remedial action. Specific ARARs are listed in Table 2-1. A summary of the compliance with ARARs is provided as follows.

Compliance with ARARs Does Not Meet Criteria Meets Threshold Criteria

Alternative GW1 Alternatives GW3a, GW5 and GW6 a ARARs for Alternative GW3 would be met once natural attenuation processes have reduced COC concentrations in groundwater to below the PRGs. Due to the passive nature of this alternative, it is likely to take longer to meet ARARs than Alternatives GW5 and GW6.

4.4.1.3 Long-term Effectiveness and Permanence The long-term effectiveness and permanence of the alternatives are evaluated in terms of the magnitude of residual risk, adequacy and reliability of controls, and potential environmental impacts of the remedial actions. The residual risk of Alternative GW1 (No Action) would remain unchanged. Residual risks are associated with Alternative GW3 because no in situ treatment processes would be used to reduce COC concentrations in groundwater. The REMChlor modeling estimates that natural attenuation processes would reduce PCE concentrations to below the PRG in approximately 34 years (Appendix E). No residual risks would be anticipated with Alternatives GW5 and GW6 because both active treatment methods would be expected to reduce COC concentrations to below the performance standard, and then, natural attenuation processes would eventually reduce COC concentrations to below their respective PRGs. However, if any COC adsorbed on the aquifer matrix was to back-diffuse into the groundwater over time, it is anticipated that the more persistent carbon substrate would make Alternative GW5 better able to address this newly released PCE. Treatment chemicals used for Alternative GW5 and GW6 are not expected to result in residual risks because of their short lifespan ranging from 2 to 5 years, and exposures not addressed by institutional controls are not expected to occur over this period. Methane generation is also a residual risk associated with GW5 but can be carefully managed with methane-inhibiting supplements.

Alternatives GW3, GW5, and GW6 include institutional controls that would be adequate and reliable in preventing direct contact with and ingestion of untreated contaminated groundwater. Alternatives GW3, GW5 and GW6 would also require LTM of COC concentrations and natural attenuation parameters to monitor the progress of natural attenuation processes. Alternatives GW5 and GW6 would also include monitoring to evaluate performance of the remedy. A summary of the long-term effectiveness and permanence is provided as follows.

Long-term Effectiveness and Permanence Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative GW5 Alternative GW6 Alternative GW3 Alternative GW1

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-22 AX0420181244MKE

4.4.1.4 Reduction of Toxicity, Mobility, or Volume through Treatment No treatment processes are used for Alternative GW1 and GW3; therefore, no reduction of toxicity, mobility, or volume through treatment is anticipated. However, natural attenuation processes would be expected to reduce concentrations of PCE to below its PRG in approximately 34 years. Alternatives GW5 and GW6 include in situ treatment via injection of a chemical reductant and chemical oxidant, respectively; therefore, both alternatives would meet the NCP preference for treatment. Alternative GW6 would be expected to treat more contaminant mass than Alternative GW5 over the shorter timeframe, accelerating a decrease in toxicity, mobility, and volume of PCE during the initial phase of implementation. The overall reduction in toxicity, mobility, and volume for GW5 and GW6 should be the same. A summary of the relative ranking of alternatives is provided as follows.

Reduction of Toxicity, Mobility, and Volume through Treatment Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative GW6 Alternative GW5 Alternative GW3 Alternative GW1

4.4.1.5 Short-term Effectiveness No additional risks are associated with Alternative GW1 because no remedial action would be taken, and no construction would be performed. The remedial option, other than No Action, that would pose the least amount of risk in the short-term is Alternative GW3 because this option contains the least amount of construction and work required as it is ongoing. Alternatives GW5 and GW6 would pose the most risk in the short-term because of the number of surface penetrations required, the timeframe for injections, and the use of chemicals and potential exposure to the community during implementation of the remedy. The overall difference in risk between Alternatives GW5 and GW6 would be nominal, except for the type and quantity of chemical used and the timeframe required for injection. The potential exposures would be controlled through standard best management practices, such as appropriate decontamination protocols, careful dosing, air monitoring, and appropriate traffic control measures.

Short-term Effectiveness Relative Ranking from Highest to Lowest

Highest Ranking 1

2

3

Lowest 4

Alternative GW1 Alternative GW3 Alternative GW5 Alternative GW6

4.4.1.6 Implementability Alternative GW1 requires no construction or treatment and would be the easiest to implement. For costing purposes, Alternative GW3 assumes installation of three monitoring wells with materials that are readily available. Alternatives GW5 and GW6 would have the greatest implementability challenges because both alternatives are active treatment options requiring the use of chemicals and DPT injections. Alternative GW5 would be more difficult to implement than Alternative GW6 because Alternative GW5 would involve injection of a viscous slurry into the aquifer.

Implementability Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative GW1 Alternative GW3 Alternative GW6 Alternative GW5

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-23

4.4.1.7 Cost An overview of the cost analysis performed for this evaluation and the detailed breakdowns for each of the alternatives are presented in Appendix D. Total costs are summarized below assuming the City WTP would continue operate in its current configuration (Alternative GW2A).

Cost Relative Ranking from Lowest to Highest

Lowest Cost/ Highest Ranking

1

2

3

Highest Cost/ Lowest Ranking

4 Alternative GW1

$0 Alternatives GW3

$3.29 million Alternative GW6

$4.27 million Alternative GW5

$4.38 million

4.4.2 Soil Vapor A comparative evaluation summary for soil vapor is provided in Table 4-10.

4.4.2.1 Overall Protection of Human Health and the Environment The following RAO is proposed to address soil vapor:

• Soil Vapor RAO 1—Protect human health by reducing or eliminating exposure (via inhalation) to COCs in indoor air, resulting from the intrusion of soil vapors, at concentrations that could pose an unacceptable risk to human health for current and future use of affected properties.

Alternative SV1 (No Action) would not be protective because there would be no remediation of soil vapor, and exposures to current and future receptors would continue. Alternatives SV3 and SV5 would be protective of human health because subslab soil vapors would be mitigated through active SSD or SMD. Alternative SV4 would not be protective of human health in the short-term because no VIMS are installed to address risk to current receptors. However, Alternative SV4 would become protective of human health once soil vapor source removal occurs and concentrations in soil vapor and indoor air are confirmed to be below remedial goals. A summary of the overall protectiveness of the alternatives is provided as follows.

Overall Protection of Human Health and the Environment Does Not Meet Criteria Meets Threshold Criteria

Alternatives SV1 and SV4 Alternatives SV3 and SV5

4.4.2.2 Compliance with ARARs Alternative SV1 (No Action) would not comply with ARARs because no remedial actions would be taken to address unacceptable risk. Alternatives SV3 and SV5 would comply with ARARs because VIMSs would remove unacceptable risk to current and future receptors. Alternative SV4 would not comply with chemical-specific ARARs despite remedial actions being taken because no VIMS would be installed to address risk to current receptors. Specific ARARs are listed in Table 2-1, and a summary of the compliance with ARARs is provided as follows.

Compliance with ARARs Does Not Meet Criteria Meets Threshold Criteria

Alternatives SV1 and SV4 Alternatives SV3 and SV5

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

4-24 AX0420181244MKE

4.4.2.3 Long-term Effectiveness and Permanence The residual risk of Alternative SV1 (No Action) would remain unchanged. Alternative SV3 would address exposures leading to residual risks by implementation of VIMS, pathway sealing, and institutional controls. However, because no soil vapor source removal would occur, residual risk would remain until natural attenuation processes reduce concentrations in soil vapor to below PRGs. VIMS monitoring would be required to verify that COC concentrations in indoor air do not exceed target levels.

Alternative SV4 would address soil vapor source material but would not provide protection from residual risks if all source material is not removed, which could continue to provide a source for soil vapor migrating into indoor air at concentrations greater than PRGs. Offgas treatment would be included, if required to reduce the rate of COCs venting to the atmosphere.

Alternative SV5 would address residual risk by implementing VIMSs after soil vapor source removal occurs. Residual COC concentrations remaining in the subsurface would be addressed by natural attenuation. VIMS monitoring would be required to verify that COC concentrations do not exceed target levels. Offgas treatment from SVE would be included, if required to reduce environmental impacts of COCs venting to the atmosphere. A summary of the relative ranking of alternatives is provided as follows.

Long-term Effectiveness and Permanence Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative SV5 Alternative SV3 Alternative SV4 Alternative SV1

4.4.2.4 Reduction of Toxicity, Mobility, or Volume through Treatment No active treatment processes would be used for Alternative SV1 and SV3; therefore, no reduction of toxicity, mobility, or volume through treatment is anticipated. However, natural attenuation processes and extraction from VIMSs are expected to reduce COC concentrations.

Alternatives SV4 and SV5 would include physical treatment using an SVE system to remove contaminated soil vapors from the subsurface, potentially with offgas treatment, and soil excavation to remove contaminated soil. Therefore, both alternatives would meet the NCP preference for treatment.

Alternatives SV4 and SV5 would both increase mobility of soil vapors during SVE and would decrease mobility once SVE treatment is discontinued. There would be the potential for residual contamination to remain in the subsurface in areas where the radius of influence of vapor extraction wells is insufficient to remove all contaminated soil vapors.

Reduction of Toxicity, Mobility, and Volume through Treatment Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative SV4 and SV5 Alternative SV3 Alternative 1

4.4.2.5 Short-term Effectiveness There are no additional risks associated with Alternative SV1 because no remedial action would be taken, and no construction would be performed. The remedial option with the greatest short-term effectiveness is Alternative SV3. This option would have the least amount of construction and work required. Alternatives SV4 and SV5 would provide the least degree of short-term effectiveness because of the installation of the SVE system (vertical or horizontal extraction points and potentially offgas treatment) and soil excavation and offsite disposal activities. The overall difference between Alternatives SV4 and SV5 would be that only Alternative SV5 would require the installation of individual VIMS in multiple buildings so Alternative SV5 would be more effective in controlling exposures in the

SECTION 4—DETAILED ANALYSIS OF ALTERNATIVES

AX0420181244MKE 4-25

short term. Exposure to contaminated soil and soil vapor during construction would be controlled through standard best management practices such as appropriate decontamination protocols, air monitoring, and appropriate traffic control measures.

Short-term Effectiveness Relative Ranking from Highest to Lowest

Highest Ranking 1

2

3

Lowest 4

Alternative SV1 Alternative SV3 Alternative SV4 Alternative SV5

4.4.2.6 Implementability Alternative SV1 would require no construction or treatment and would be the easiest to implement. Alternative SV3 would only require the installation of VIMS with materials that are readily available. Alternative SV4 would require the installation of an SVE system, soil excavation, and offsite disposal of contaminated soil. Alternative SV5 would have the greatest implementability challenges as it requires the most activities, including VIM and SVE system installation, soil excavation, and offsite disposal of contaminated soils.

Implementability Relative Ranking from Highest to Lowest

Highest 1

2

3

Lowest 4

Alternative SV1 Alternative SV3 Alternative SV4 Alternative SV5

4.4.2.7 Cost An overview of the cost analysis performed for this evaluation and the detailed breakdowns for each of the alternatives are presented in Appendix D. Although the initial capital cost for Alternative SV5 is greater than Alternative SV3, Alternative SV3 has a higher overall present-value cost than Alternative SV5 due to the timeframe required for O&M (30 years for Alternative SV3 versus 5 years for Alternative SV5). Total costs are summarized as follows.

Cost Relative Ranking from Lowest to Highest

Lowest Cost/ Highest Ranking

1

(10-6/10-5 or 10-4 cost) 2

(10-6/10-5 or 10-4 cost) 3

Highest Cost/ Lowest Ranking

(10-6/10-5 or 10-4 cost) 4

Alternative SV1 $0

Alternative SV4 $3.5/3.3 million

Alternative SV5 $8.8/$7.5 million

Alternative SV3 $8.9/$7.4 million

SECTION 5

AX0420181244MKE 5-1

Summary and Conclusions The objective of the FS is to develop and evaluate remedial alternatives that will address human health risks from COCs associated with site groundwater and soil vapor. Remedial technologies and process options are screened to identify preliminary remedial alternatives. The alternatives are evaluated separately for groundwater and soil vapor to allow for greater flexibility in selecting the remedial actions for the two media. Eight alternatives for groundwater and five alternatives for soil vapor are developed and evaluated. After preliminary screening, five groundwater alternatives and four soil vapor alternatives are retained for detailed evaluation. The groundwater alternatives evaluated in detail include the following:

• Alternative GW1—No Action • Alternative GW2—Water Treatment Plant Alternatives • Alternative GW3—Monitored Natural Attenuation and Institutional Controls • Alternative GW5—In Situ Chemical Reduction, LTM, and Institutional Controls • Alternative GW6—In Situ Chemical Oxidation, LTM, and Institutional Controls

Soil vapor alternatives evaluated in detail include the following:

• Alternative SV1—No Action • Alternative SV3—Pathway Sealing, VIM, LTM, and Institutional Controls • Alternative SV4—Soil Vapor Source Removal, LTM, and Institutional Controls • Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

The comparative analysis of the alternatives includes evaluating the effectiveness, implementability, and cost of each alternative retained in the detailed analysis. The evaluation of effectiveness includes reviewing the protectiveness of the alternative; compliance with ARARs; long-term effectiveness and permanence; reduction in toxicity, mobility, or volume; short-term effectiveness; and ability to meet the RAO. Implementability includes the evaluation of the technical feasibility, availability, and administrative feasibility of the alternatives. The evaluation of cost includes a review of capital costs and the total net present values of each alternative.

The no-action alternatives for groundwater and soil vapor are not protective of human health and the environment and do not meet ARARs.

For the purposes of the groundwater comparative evaluation and costing, Alternative GW2A is assumed to represent the WTP operations that would be implemented concurrently with Alternatives GW3, GW5, or GW6. The implementation of GW2A (or the other GW2 subalternatives) provides protection of the drinking water pathway to City residents while Alternatives GW3, GW5, and GW6 address treatment of the PCE plume. Groundwater Alternatives GW5 and GW6 would provide the greatest long-term effectiveness and ability to reduce toxicity, mobility, and volume of PCE contamination compared to the other groundwater alternatives. These alternatives would have a greater cost than Alternative GW3. However, Alternatives GW5 and GW6 would achieve RAOs in half the time required by Alternative GW3. Alternative GW3 would also reduce PCE concentrations to below PRGs, but it would take approximately 34 years based on REMChlor modeling. Alternatives GW5 and GW6 would have lower short-term effectiveness and would be more difficult to implement compared to the other alternatives; however, the ability to treat high-concentration PCE areas in situ would provide an active treatment method to reduce concentrations more quickly than natural attenuation processes (that would be required for Alternative GW3). Overall, Alternatives GW5 and GW6 have similar rankings and costs.

Alternative SV5, which has the second-highest present-value cost, includes addressing the source of soil vapor contamination and would provide the highest level of protection to current and future receptors. Alternative SV4 would include addressing the source vapor contamination but would not provide protection

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

5-2 AX0420181244MKE

to current receptors. Alternative SV3, which has the highest present value cost, would provide protection to current and future receptors but would not address the source of soil vapor contamination. VIMs would be required to operate indefinitely until COCs in the subsurface are reduced to insignificant levels.

SECTION 6

AX0420181244MKE 6-1

References Agency for Toxic Substances (ATSDR). 2016. Letter from Environmental Health Scientist Motria Caudill to U.S. EPA On-Scene Coordinator Mr. Mike Beslow, Pike & Mulberry Streets PCE Plume Superfund Site, Martinsville, IN, March 8, 2016.

Alt & Witzig Consulting Services. 2015. Vapor Intrusion Investigation Martinsville – 3 Sites: Former Sanitarium (Site 1), Former Morgan County Sheriff’s House and Jail (Site 2), Kivett’s Building, Martinsville, Indiana. August 28.

Astbury Environmental Engineering, Inc. (AEE). 2004. Masterwear Workplan. June.

Astbury Environmental Engineering, Inc. (AEE). 2008. Closure Report. December.

Census.gov. 2010. Interactive Population Map. United States Census 2010. http://www.census.gov/2010census/popmap/. Accessed July 21, 2016.

CH2M HILL, Inc. (CH2M). 2017. Vapor Intrusion Data Evaluation Technical Memorandum. November.

CH2M HILL, Inc. (CH2M). 2018. Final Remedial Investigation Report for Pike and Mulberry Streets PCE Plume Site, Martinsville, Morgan County, Indiana. April.

Indiana Department of Environmental Management (IDEM). 2004. Preliminary Assessment/Site Inspection Report, Master Wear. September.

Indiana Department of Environmental Management (IDEM). 2011. Office of Land Quality, Site Investigation Section. Reassessment Report. January.

Indiana Department of Environmental Management (IDEM). 2012. Hazard Ranking System Documentation Record, Pike and Mulberry Streets PCE Plume, INN000508678. September.

Interstate Technology Regulatory Council (ITRC). 2007. Technical and Regulatory Guidance, Vapor Intrusion Pathway: A Practical Guideline. January.

The Parsons Corporation. 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. August.

U.S. Environmental Protection Agency (EPA). 1988a. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final. EPA/540/G-89/004. OSWER Directive No. 9355.3-01. October.

U.S. Environmental Protection Agency (EPA). 1988b. CERCLA Compliance with Other Laws Manual. EPA/540/G-89/006. August.

U.S. Environmental Protection Agency (EPA). 1992. Framework for Ecological Risk Assessment. EPA/630/R-92/001.

U.S. Environmental Protection Agency (USEPA). 1993. Radon Reduction Techniques for Existing Detached Houses: Technical Guidance (Third Edition) for Active Soil Depressurization Systems. EPA-625-R-93-011. October.

U.S. Environmental Protection Agency (EPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. EPA/540/R-97/006.

U.S. Environmental Protection Agency (EPA). 1998a. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.

6-2 AX0420181244MKE

FINAL FEASIBILITY STUDY PIKE AND MULBERRY STREETS PCE PLUME SITE, MARTINSVILLE, MORGAN COUNTY, INDIANA

U.S. Environmental Protection Agency (EPA). 1998b. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128. September.

U.S. Environmental Protection Agency (EPA). 1999. Monitored Natural Attenuation of Chlorinated Solvents, U.S. EPA Remedial Technology Fact Sheet. EPA/600/F-98/022. May.

U.S. Environmental Protection Agency (EPA). 2008. Engineering Issue: Indoor Air Vapor Intrusion Mitigation Approaches. EPA/600/R-08-115. October.

U.S. Environmental Protection Agency (EPA). 2012a. HRS Documentation Record Pike and Mulberry Streets PCE Plume, INN000508678. September.

U.S. Environmental Protection Agency (EPA). 2012b. Institutional Controls: A Guide to Planning, Implementing, Maintaining, and Enforcing Institutional Controls at Contaminated Sites. OSWER Publication 9355.0-89. December.

U.S. Environmental Protection Agency (EPA). 2013. Superfund Remedy Report, Fourteenth Edition. EPA/542/R-13/016. November.

U.S. Environmental Protection Agency (EPA). 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. June.

U.S. Geological Survey. 1994. Hydrogeologic Atlas of Aquifers in Indiana, Water-Resources Investigations Report 92-4142.

Tables

Table 1‐1. Summary of Dry‐Cleaning Facilities in MartinsvillePike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Company Name

Timeframe of 

Operation Location

Central Dry Cleaners 1954 – 1976 1,000 ft upgradient of the facility.Manitorium Cleaners 1954 – 1962 Adjacent to (west of) the facility.Kent Cleaners/Richard Deering 1962 – 1978 Adjacent to (north of) the facility.Artesian City Cleaners 1954 – 1999 800 ft cross‐gradient (northeast) of the facility.Martinsville Cleaners 1989 ½ mile to the east of the facility.O’Neal’s Clothes Depot (currently Vista Cleaners) 1983 – present ½ mile to the east of the facility.

Table 1‐2. Summary of Remedial Investigation ActivitiesPike & Mulberry Streets PCE Plume Site Martinsville, IndianaRI Phase No. Timeframe Media Sampled Key Tasks Performed

Sampled existing monitoring wells. Sampled the three City municipal wells. Sampled existing monitoring wells, newly installed monitoring wells, residential wells, and municipal wells. Sampled newly installed permanent SVPs. Collected soil samples from the new monitoring well and soil vapor locations. Conducted slug tests at selected wells.

3 Oct 2015 Groundwater and soil vapor

Repeated Phase 2 sampling tasks.

Installed temporary SVPs in three concentric rings around the permanent SVPs. Sampled temporary SVPs and analyzed the samples using HAPSITE portable onsite gas GC/MS.

Installed temporary SVPs in three concentric rings around Phase 4 rings. Sampled temporary SVPs and analyzed the samples using HAPSITE portable onsite GC/MS.

Jul 2016 Conducted building surveys.Sep 2016 Collected samples from residential and commercial properties.

7 Jan 2017 (planned to be completed)

Subslab soil vapor, crawlspace air, indoor air, and outdoor air

Repeat originally planned Phase 6 sampling regime during home‐heating months.

Notes:

GC/MS = gas chromatograph/mass spectrometer

SVPs = soil vapor points

May 2016 Soil vapor

Subslab soil vapor, crawlspace air, indoor air, and outdoor air

Apr 2015 Groundwater

Jul/Aug 2015 Groundwater, soil, and soil vapor

Dec 2015 Soil vapor

1

2

4

5

6

Table 1‐3. Summary of Hydrogeological Conditions of Water‐Bearing ZonesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Characteristic Shallow Intermediate Deep

Average depth to groundwater (ft bgs) 12.8 13 11.8

Groundwater flow direction northwest northwest northwest Average horizontal gradient (ft/ft) 0.002 0.0036 0.0042

Average hydraulic conductivity (cm/s) 6.5 x 10‐3 1.0 x 10‐2 4.1 x 10‐2

Effective porosity  (ne) 0.22 0.22 0.22

Average groundwater seepage velocity (ft/year) 62.4 173 808

Notes:

Velocity was calculated using (K x i)/neft = feetbgs = below ground surfacecm/s = centimeters per secondft/ft = feet per feetft/year = feet per year

Table 1‐4. Statistical Summary of Groundwater Quality Parameters and Field MeasurementsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Statistical 

Parameter

Conductivity 

(mS/cm)

Dissolved Oxygen 

(mg/L)

ORP

(mV)pH

Temperature 

(deg C)

Turbidity 

(NTU)

Depth to Water 

(ft btoc)

Ferrous Iron 

(mg/L)

Flow Rate 

(mL/min)

Number 92 92 92 92 92 91 93 7 92

Minimum 0.36 0.11 ‐128.4 6.72 9.83 0.49 5.26 0 120

Maximum 2.21 10.02 221.1 7.49 21.1 83 23.42 0 500

Average 1.07 5.23 102.1 7.09 16.18 10.36 12.68 0 296

Median 1.03 5.36 113.0 7.08 16.85 6.68 12.84 0 300

Number 47 43 47 47 47 46 47 4 47

Minimum 0.43 0.01 ‐174.9 6.91 12.61 3.15 5.21 0 120

Maximum 1.57 3.89 207.7 7.54 19.4 71.7 23.62 0.75 450

Average 0.77 0.70 ‐3.64 7.16 15.69 19.84 12.84 0.19 286

Median 0.74 0.25 ‐20.8 7.14 15.6 15.9 12.80 0 300

Number 16 15 16 16 16 16 16 6 16

Minimum 0.42 0.06 ‐131.00 7.06 11.70 6.22 7.25 0.5 150

Maximum 1.07 2.38 57.40 7.59 17.80 159.00 17.07 2.0 450

Average 0.53 0.55 ‐69.79 7.39 14.88 47.67 12.45 0.83 289

Median 0.49 0.28 ‐90.85 7.41 15.02 39.90 12.80 0.5 305

Number 155 150 155 155 155 153 156 17 155

Minimum 0.36 0.01 ‐174.9 6.72 9.83 0.49 5.21 0 120

Maximum 2.21 10.02 221.1 7.59 21.1 159 23.62 2 500

Average 0.92 3.47 52.28 7.14 15.90 17.11 12.70 0.34 292

Median 0.89 3.17 78.20 7.13 16.00 8.23 12.82 0 300

Notes:

Units are as shown in the heading row, except for "number" row, which indicates the number of samples measured for the field parameter.

deg C = degrees Celsiusft btoc = feet below top of casingmg/L = milligrams per litermL/min = milliliters per minute

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = Nephelometric Turbidity UnitORP = Oxidation Reduction Potential

Shallow Aquifer Zone

Intermediate Aquifer Zone

Deep Aquifer Zone

All Aquifer Zones

Table 1‐5. Statistical Summary of Groundwater General ChemistryPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Statistical 

Parameter

Alkalinity, Total 

(as CaCO3) 

mg/L

Chloride (Cl)

mg/L

Total Organic 

Carbon

mg/L

Nitrate (as N)

mg/L

Nitrite (as N)

mg/L

Sulfate

mg/L

Sulfide

mg/L

Minimum 237 21.5 1.0 U 2.2 0.5 U 17.3 2.0 UMaximum 323 295 1.6 9.6 0.5 U 65.5 2.0 UAverage 295.2 105.2 0.8 5.5 0.5 U 31.5 2.0 UMedian 296 78.65 1.1 5.3 0.5 U 27.45 2.0 U

Minimum 288 34.5 1.0 U 0.49 0.5 U 14.7 2.0 UMaximum 327 78.5 1.1 4.5 0.5 U 34.4 2.0 UAverage 308.3 58.7 0.4 2.3 0.5 U 26.5 2.0 UMedian 310 64 1.0 U 1.5 0.5 U 28.3 2.0 U

Minimum 227 5.6 1.0 U 0.5 U 0.5 U 3.7 2.0 UMaximum 254 16 0.76 0.5 U 0.5 U 6.9 2.0 UAverage 239 9.2 0.3 0.5 U 0.5 U 5.4 2.0 UMedian 242 6.8 1.0 U 0.5 U 0.5 U 6.1 2.0 U

Minimum 227 5.6 1.0 U 0.5 U 0.5 U 3.7 2.0 UMaximum 327 295 1.6 9.6 0.5 U 65.5 2.0 UAverage 284 84 0.6 4.2 0.5 U 26.9 2.0 UMedian 295 69.1 0.76 4.75 0.5 U 25.5 2.0 U

Notes:

Units are milligrams per liter (mg/L)

Concentrations flagged as estimated were includedResults not detected were included as a zero value when calculating averages and median valuesU  = Result not detected

Shallow Aquifer Zone

Intermediate Aquifer Zone

Deep Aquifer Zone

All Aquifer Zones

Table 1‐6. Summary of Phase 6 and Phase 7 Vapor Intrusion Sampling ProgramPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property Type Property ID

Subslab Soil 

Vapor Crawlspace Indoor Air Outdoor Air

Subslab Soil 

Vapor Crawlspace Indoor Air Outdoor Air

Residential RP‐004 < RSL DetectedResidential RP‐005 < RSL < RSL < RSL TCE ND

Residential RP‐021 PCE, TCE PCE PCE PCE

Residential RP‐022 PCE TCE PCE TCE

Residential RP‐028 < RSL < RSL Detected ND TCE

Residential RP‐031 TCE < RSL ND ND NDResidential RP‐038 PCE < RSL ND PCE < RSL ND

Residential RP‐047 < VISL < RSL PCE TCE

Residential RP‐083 < VISL < RSL TCE Detected < RSL TCE < RSLResidential RP‐095 PCE PCE < RSLResidential RP‐121 < VISL < RSL < RSL PCE < RSL < RSLResidential RP‐131 < VISL TCE < RSL < RSLResidential RP‐133 PCE < RSL < RSL ND PCE PCE PCE

Residential RP‐135 < VISL < RSL < RSL < RSL < RSL TCE

Residential RP‐157 PCE, TCE PCE ND PCE < RSLResidential RP‐160 PCE TCE TCE PCE PCE, TCE < RSLResidential RP‐162 PCE < RSLResidential RP‐189 < VISL PCE < RSL < RSL < RSL TCE

Residential RP‐193 < VISL PCE < RSL < RSL PCE PCE DetectedResidential RP‐200 PCE < RSLResidential RP‐201 PCE < RSL PCE PCE < RSL PCE ND

Residential RP‐205 < RSL < RSL Detected < RSL < RSL ND

Residential RP‐210 < RSL ND TCE < RSLResidential RP‐223 PCE < RSL < RSL Detected PCE TCE < RSL DetectedResidential RP‐224 PCE < RSL PCE < RSLResidential RP‐229 PCE PCE < RSL TCE ND

Residential RP‐232 < RSL < RSL < RSL < RSLCommercial CP‐023 PCE < RSL < RSL PCE < RSL <RSL Detected

Commercial CP‐046 PCE < RSL ND PCE PCE

Commercial CP‐072 < VISL < RSL ND < RSL <RSL NDCommercial CP‐073 < VISL < RSL Detected < RSL <RSL

Commercial CP‐074 TCE < RSL TCE <RSL ND

Commercial CP‐098 < VISL < RSL ND < RSL <RSL

Commercial CP‐099 PCE, TCE PCE, TCE PCE PCE, TCE

Commercial CP‐103 < VISL < RSL < RSL <RSL

Commercial CP‐110 PCE PCE PCE PCE Detected

Commercial CP‐112 < RSL < RSL < RSL <RSL

Commercial CP‐116 < VISL < RSL < RSL < RSL < RSL <RSLCommercial CP‐119 PCE < RSL < RSL Detected PCE < RSL <RSL

Commercial CP‐140 PCE < RSL ND PCE <RSL ND

Commercial CP‐146 TCE TCE < RSL <RSL

Commercial CP‐150 PCE < RSL < RSL PCE PCE <RSL

Commercial CP‐153 < VISL < RSL <RSL

Commercial CP‐155 < RSL < RSL < RSL PCE <RSLCommercial CP‐157 < RSL <RSL Detected

Commercial CP‐168 PCE, TCE < RSL PCE PCE

Commercial CP‐169 PCE < RSL < RSL PCE ND

Total no. properties sampled 47 34 24 45 15 28 24 43 14

Total no. properties with detections 34 24 44 7 13 14 26 5

Total no. properties exceeding VISL or RSL 21 7 11 ‐‐ 21 8 16 ‐‐Total no. properties exceeding RML 10 0 1 ‐‐ 7 1 7 ‐‐Notes:

PCE = tetrachloroethene

TCE = trichloroethene

ND = Analytes were not detected.

< VISL = Concentrations of detected analytes were less than the VISL.VISL = vapor intrusion screening level

RML = removal management levelRSL = regional screening level< RSL = Concentrations of detected analytes were less than the RSL.

Outdoor air samples were not compared to the VISL, RSL, or RML; results are indicated as detected or ND (not detected).

Shaded text ‐ Listed analyte concentrations exceeded the VISL or RSL, as applicable, in one or more samples at the property.Boxed text ‐ Listed analyte concentrations exceeded the VISL or RSL, as applicable, in one or more samples at the property; one or more listed analyte also exceeded the RML in one or more samples at the property.

Phase 6 Phase 7

Blank cells indicate that samples were not collected at the property for the specific sample media.

Unique property IDs are listed, as well as the total number of properties sampled and the type of sampling conducted at each property. More than one sample may be collected for a given medium at each property.Both subslab soil vapor and crawlspace air samples were collected at some properties, depending on the building construction.

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property ID

Lines of Evidence Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7

Comparison to Screening Levels

SS VOC concentrations > VISL and/or RML? ‐‐ ‐‐ ‐‐

PCE > RML (in 1 of 3 samples, other 2 samples > VISL),

TCE > VISL (in 1 of 3 samples)

PCE > RML (in 1 of 3 samples, 1 sample > 

VISL)

PCE > RML (in 1 of 4 samples, other 3 samples < VISL)

PCE > RML (in 1 of 4 samples, other 3 samples < VISL)

‐‐ ‐‐ ‐‐ ‐‐PCE > VISL (in all 3 

samples)

PCE > VISL (in all 3 samples)

< VISLs PCE > VISL < VISLs (TCE ND) < VISLs (TCE ND)

CS VOC concentrations > VISL and/or RML? ‐‐ < VISLs (TCE ND) < VISLs ‐‐ ‐‐ ‐‐ ‐‐ < VISLs (TCE ND) NDTCE > VISL (0.216J compared 

to VISL of 0.21 µg/m3)ND ‐‐ ‐‐ ‐‐ ‐‐ < VISLs

TCE > VISL (in 1 of 2 samples)

IA (basement) VOC concentrations > VISL and/or RML? ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ TCE > RML ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

IA (ground floor) VOC concentrations > VISL and/or RML? < VISLs < VISLs (TCE ND)

TCE > VISL (in 1 of 2 samples slightly above RL, ND in other sample)

PCE > VISL (in 1 of 3 IA samples, other 2 

samples < VISL) (TCE ND)

PCE > RML (in 1 of 3 IA samples, other 2 samples > VISL) (TCE 

ND)

TCE > VISL (in 1 of 4 

samples, other 3 

ND)

TCE > VISL (in 2 of 4 samples, other 2 ND)

< VISLs ND ND ND < VISLs < VISLs < VISLsTCE > RML (in 1 of 3 

samples, other 2 

ND)

TCE > VISL (in 1 of 2 samples)

< VISLs (TCE ND)

IA (2nd floor) VOC concentrations > VISL and/or RML? ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

Lines of Evidence Used to Evaluate IA Data

Building located within the soil vapor plume area?

Nearby soil vapor results indicate sufficient source strength for potential VI if preferential pathways (such as utility conduits) are present?

OA (sitewide) similar or greater than IA concentrations, indicating background VOCs?

Yes ‐‐ Yes No No No Yes No Yes No NA NA Yes No Yes No Yes Yes 

Potential indoor VOC sources identified during building survey?

Yes ‐‐Yes (including air 

fresheners)No

Building construction/conditions that could increase or decrease likelihood of VI?

IA ≥ CS or SS concentration? NA ‐‐ NoYes (both PCE and 

TCE)No No No

TCE detections same order of magnitude 

in IA and SS

Yes for TCE, no for PCE

Yes No No No No NA Yes for TCE Yes (TCE) No

Mismatched ratios between SS, CS, and IA concentrations for different VOCs?

NA ‐‐ No No No No Yes (PCE and TCE) Yes (PCE and TCE) No No NA NA No No NA Yes (PCE and TCE) Yes Yes 

Discrepancy between Phase 6 and 7 results?

VI CSM Category

Property likely currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty possibly currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty unlikely currently has complete VI pathway that is causing IA and/or CS > VISLs, but has potential for this in the future Property unlikely currently has complete VI pathway causing IA and/or CS > VISLs, and unlikely has potential for this in the future

Current Scenario: Site‐related COPCs 

Future Scenario: Site‐related COPCs

RP‐083

No (near PCE plume)

Large residential building with partial basement and partial crawlspace.

Phases 6 and 7 CS and SS similar, Phase 6 TCE in IA > VISL but Phase 7 TCE in IA ND.

None

None

PCE < VISL in SS in Phase 6 but PCE > VISL in SS in Phase 7. TCE < VISL in IA in Phase 6 

but TCE > RML in Phase 7.

None

PCE

RP‐038

PCE

Multiple single units, slab‐on‐grade.

Phases 6 and 7 SS results similar, Phase 7 IA results approximately 3 times greater 

than Phase 6.

None

PCE

TCE > VISL in Phase 6 CS, but ND in Phase 7 CS.

None

NonePCE None PCE, TCE PCE

RP‐028

PCE

Small residential building with crawlspace, old building (100+ years).

Phase 7 basement IA TCE > RML, but basement IA not sampled in Phase 6.

None

None

RP‐021

PCE and TCE

Multiple single room units, partial basement, cracks noted in basement floor, and a sump 

present.

SS similar between Phases 6 and 7, IA PCE order of magnitude higher in Phase 7.

PCE

RP‐022

PCE

Multiple single units, slab‐on‐grade.

SS similar between Phases 6 and 7.

None

NA

None

No access

RP‐005

PCE and TCE

Small residential building with crawlspace, cracks noted in crawlspace walls, old 

building (150+ years).

TCE ND in Phase 6 IA but TCE > VISL (slightly above RL) in Phase 7 IA.

None

RP‐004

PCE

Small residential building with full basement, some cracks in slab, old building 

(100+ years).

Yes, located within the 1,400 µg/m3 PCE isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

X

X

RP‐031

PCE

Small residential building with crawlspace (racks noted in crawlspace walls), old building (100+ 

years).

RP‐047

PCE

Large, new building.

Yes (including air fresheners)Yes (smoking)Yes (smoking)Yes Yes Yes No

Yes, located within the 25,000 µg/m3 PCE isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour.

Yes, located within the 360 µg/m3 PCE isocontour.

Yes, located within the 360 µg/m3 PCE isocontour.Yes, located within the 1,400 µg/m3 PCE 

isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour.

No, outside of plume boundary (but near the 360 µg/m3 PCE isocontour).

X

X

X X

X X

X

Page 1 of 6

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property ID

Lines of Evidence

Comparison to Screening Levels

SS VOC concentrations > VISL and/or RML?

CS VOC concentrations > VISL and/or RML?

IA (basement) VOC concentrations > VISL and/or RML?

IA (ground floor) VOC concentrations > VISL and/or RML?

IA (2nd floor) VOC concentrations > VISL and/or RML?

Lines of Evidence Used to Evaluate IA Data

Building located within the soil vapor plume area?

Nearby soil vapor results indicate sufficient source strength for potential VI if preferential pathways (such as utility conduits) are present?

OA (sitewide) similar or greater than IA concentrations, indicating background VOCs?

Potential indoor VOC sources identified during building survey?

Building construction/conditions that could increase or decrease likelihood of VI?

IA ≥ CS or SS concentration?

Mismatched ratios between SS, CS, and IA concentrations for different VOCs?

Discrepancy between Phase 6 and 7 results?

VI CSM Category

Property likely currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty possibly currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty unlikely currently has complete VI pathway that is causing IA and/or CS > VISLs, but has potential for this in the future Property unlikely currently has complete VI pathway causing IA and/or CS > VISLs, and unlikely has potential for this in the future

Current Scenario: Site‐related COPCs 

Future Scenario: Site‐related COPCs

Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7

PCE > VISL PCE > VISL < VISLs PCE > VISL < VISLs (TCE ND) < VISLs (TCE ND)PCE > VISL (in 1 of 2 

samples)

PCE > VISL (in 1 of 2 samples)

< VISLs < VISLsPCE > VISL (both 

samples)

PCE > VISL (both samples)

PCE > RML (in 1 of 2 samples, other sample > VISL)

< VISLs (TCE ND) < VISLs (TCE ND) < VISLs < VISLs ‐‐

‐‐ < VISLs < VISLs < VISLs ‐‐ ‐‐ < VISLsPCE > VISL (in both 

samples)< VISLs < VISLs TCE > VISL PCE and TCE > VISL ‐‐ PCE > VISL (TCE ND) < VISLs (TCE ND)

PCE > VISL (1 of 2 samples, other sample <VISL)

PCE > VISL (both samples)

PCE > VISL

‐‐ ‐‐ < VISLs < VISLs ‐‐ ‐‐ < VISLs PCE > VISL ‐‐ < VISLs ‐‐ ‐‐ < VISLs ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

‐‐ ‐‐ < VISLs < VISLs ND ND < VISLs PCE > RML < VISLs PCE > VISL TCE > VISL < VISLs (TCE ND) < VISLs < VISLs (TCE ND) TCE > VISL < VISLs PCE > VISL < VISLs

‐‐ ‐‐ ‐‐ ‐‐ TCE > VISL < VISLs (TCE ND) ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

NA NA Yes No No Yes Yes No Yes Yes No No Yes (PCE) ‐‐ Yes (PCE) No No No Yes ‐‐

Yes No Yes No YesYes (smoking inside new 

in Phase 7)Yes ‐‐

Yes (including air fresheners and vapor cigarettes)

Yes (including air fresheners, vapor cigarettes, burning 

candles)

Yes (smoking) ‐‐

NA NA No No Yes (TCE) No No

PCE IA > CS, but SS > IA (IA is same order of magnitude as SS)

IA > CS, but SS > IA IA > CS, but SS > IA No No No ‐‐ No No No

IA similar to CS, both 1 order of 

magnitude greater than SS

No ‐‐

NA No No No Yes No No No No No No ‐‐ No

Yes, TCE ND in Phases 6 and 7 SS and CS, but IA TCE > VISL in Phase 7

No No No ‐‐

Yes (including air fresheners) Yes Yes (including air fresheners)

PCE PCE PCE

Small residential building with partial crawlspace and partial basement.

Small residential building with partial crawlspace.

Small residential building with crawlspace.

Yes, IA TCE ND in Phase 6, > VISL in Phase 7. CS PCE > VISL in Phase 6, < VISL in 

Phase 7.

Yes, IA PCE < VISL in Phase 6 but > VISL in Phase 7 (IA PCE 7 times greater in Phase 7, and CS PCE 3 times greater in Phase 7). 

Phase 6 and 7 SS PCE similar.

NA

X X X

Yes, IA PCE > VISL in Phase 7, but IA PCE < VISL in Phase 6.

Yes, IA TCE > VISL in Phase 6 and ND in Phase 7.

NA

None PCE, TCE None

None PCE, TCE PCE

X

PCE PCE PCE

RP‐135 RP‐160 RP‐162

PCE PCE and TCE PCE

Small residential building with partial basement and partial crawlspaces, floor 

drain in basement.

Large residential building with partial basement and partial crawlspace, sump 

present.

Large residential building with full basement, some cracks and floor drain in basement.

RP‐133

PCE

Small residential building with partial basement and sump present. Basement floors and/or walls treated with waterproof paint or epoxy.

Yes, IA PCE > RML in Phase 7, but IA PCE < VISL in Phase 6.  PCE IA concentrations increased by 3 orders of magnitude from Phase 6 to Phase 7.

PCE

PCE

Yes, PCE 3 orders of magnitude higher than TCE is SS, but only 1 order of magnitude higher in IA and CS

No access

Yes, TCE ND in Phase 7 IA, but TCE > VISL in Phase 6 second floor IA.

None

None

RP‐121

PCE

Large residential building with partial basement and partial crawlspace, old 

building (100+ years).

Phase 7 SS and CS PCE approximately 2 times higher than Phase 6. Phase 7 IA PCE approximately 10 times higher than Phase 

6.

None

PCE

RP‐131

PCE

Small residential building with main floor sitting partially below grade. Radon fan 

installed in approximately 2012.

Yes, located within the 360 µg/m3 PCE isocontour. 

X

X

No

None

PCE

RP‐095

PCE and TCE

Old building (100+ years) with basement (partially exposed dirt) being converted to apartments, significant cracks in basement 

floor and walls.

RP‐189 RP‐193 RP‐200

PCE PCE PCE

No access

Yes, located within the 360 µg/m3 PCE isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 360 µg/m3 PCE isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour.

Yes, located within the 15,000 µg/m3 PCE isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour.

Yes (including air fresheners)

Yes, located within the 15,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour, and nearby the 16 µg/m3 TCE 

isocontour.

X

X

X

X

Page 2 of 6

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property ID

Lines of Evidence

Comparison to Screening Levels

SS VOC concentrations > VISL and/or RML?

CS VOC concentrations > VISL and/or RML?

IA (basement) VOC concentrations > VISL and/or RML?

IA (ground floor) VOC concentrations > VISL and/or RML?

IA (2nd floor) VOC concentrations > VISL and/or RML?

Lines of Evidence Used to Evaluate IA Data

Building located within the soil vapor plume area?

Nearby soil vapor results indicate sufficient source strength for potential VI if preferential pathways (such as utility conduits) are present?

OA (sitewide) similar or greater than IA concentrations, indicating background VOCs?

Potential indoor VOC sources identified during building survey?

Building construction/conditions that could increase or decrease likelihood of VI?

IA ≥ CS or SS concentration?

Mismatched ratios between SS, CS, and IA concentrations for different VOCs?

Discrepancy between Phase 6 and 7 results?

VI CSM Category

Property likely currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty possibly currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty unlikely currently has complete VI pathway that is causing IA and/or CS > VISLs, but has potential for this in the future Property unlikely currently has complete VI pathway causing IA and/or CS > VISLs, and unlikely has potential for this in the future

Current Scenario: Site‐related COPCs 

Future Scenario: Site‐related COPCs

Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7

PCE > RML PCE > VISL ‐‐ ‐‐ ‐‐ ‐‐ PCE > VISL PCE > VISL (TCE ND) PCE > VISL PCE > VISL ‐‐ ‐‐ ‐‐ ‐‐PCE > VISL, TCE > 

RMLPCE > VISL (TCE ND) PCE > VISL PCE > VISL

PCE > RML (in 1 of 3 samples, other 2 

samples PCE > VISL)

PCE > RML (in 1 of 3 samples, other 2 

samples PCE < VISL)

< VISLs < VISLs < VISLs < VISLs < VISLs (TCE ND) TCE > VISL < VISLs (TCE ND) TCE > VISL ‐‐ ‐‐ PCE > VISL (TCE ND) < VISLs (TCE ND) < VISLs < VISLs ‐‐ ‐‐ < VISLs < VISLs ‐‐ ‐‐

< VISLs < VISLs ‐‐ ‐‐ ‐‐ ‐‐ < VISLs (TCE ND) < VISLs (TCE ND) ‐‐ < VISLs PCE > VISL (TCE ND) TCE > RML < VISLs < VISLs < VISLs < VISLs < VISLs < VISLs ‐‐ ‐‐

PCE > VISL PCE > VISL < VISLs < VISLs ND < VISLs (TCE ND) < VISLs (TCE ND) < VISLs (TCE ND) < VISLs < VISLs PCE > VISL (TCE ND) < VISLs ‐‐ < VISLs < VISLs < VISLs < VISLs < VISLs < VISLs PCE > VISL

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ PCE > VISL < VISLs ‐‐ ‐‐ ‐‐ ‐‐

No No Yes Yes Yes Yes No No Yes No No No No No No No No No No No

Yes (smoking) Yes (smoking) Yes (smoking) Yes (smoking) No No No No Yes Yes No No Yes Yes

IA > CS, but IA < SS IA > CS, but IA < SS No No No No No No No No IA and CS PCE similar IA TCE > CS No No No No No IA > CS, but SS > IA No No

No No No No No No NoYes, TCE ND in SS but 

> VISL in CSNo No No

Yes, basement IA TCE > CS

No No No No No No No No

Yes, located within the 5,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour, and next to the 16 µg/m3 TCE 

isocontour.

Yes (smoking) Yes (including air fresheners)Yes (dry‐cleaned clothes and paints)

Yes, located within the 1,400 µg/m3 PCE isocontour.

Yes, located within the 15,000 µg/m3 PCE isocontour.

Medium sized commercial building, slab‐on‐grade, significant cracks in slab, old 

building (75+ years).

None PCE, TCE PCE

Commercial building with second floor apartment. Basement with stone 

foundation walls, and significant cracks noted in walls (100+ years old).

Small commercial building with partial basement and partial crawlspace, sump present, significant cracks in slab and 

basement walls, old building (100+ years).

No

SS TCE > RML Phase 6 but ND Phase 7, second floor IA PCE > VISL in Phase 6 but 

not Phase 7.

Both Phase 6 and 7 IA and CS VOCs < VISLs, but Phase 7 IA PCE 3 times greater than Phase 6.

None PCE None

X

X

PCE None None

RP‐232 RP/CP‐157 CP‐023

PCE PCE PCE

Small residential building with partial basement and crawl space. Cinderblock 

foundation walls (50+ years old).

None None PCE

Large residential building with crawl space and basement. Brick foundation walls. Significant cracks present in basement 

floor and walls. Sump present in basement (100+ years old).

Large residential building with basement and sump. Brick foundation walls with significant cracks present in basement floor and foundation walls. Old building 

(100+ years old).

Small residential building with partial basement and crawl space. Cinderblock and stone foundation walls and sump present in basement (100+ years old).

CS TCE ND in Phase 6, but > VISL in Phase 7.

NoBasement IA TCE > RML Phase 7, ND Phase 

6.

RP‐223 RP‐224 RP‐229

PCE PCE

PCE PCE PCE

RP‐201 RP‐205 RP‐210

PCE PCE PCE

Small residential building, partial basement and partial crawlspace.

PCE None None

Small residential building with crawl space and brick foundation walls (170+ years 

old).

Small residential building with crawl space and brick foundation walls (100+ years 

old).

IA, CS, and SS PCE approximately 2 times higher in Phase 6.

No CS TCE ND in Phase 6, > VISL in Phase 7.

PCE

Yes, located within the 5,000 µg/m3 PCE isocontour.

No, located outside of the PCE and TCE isocontours, but near the 360 µg/m3 PCE 

isocontour and the 16 µg/m3 TCE isocontour.

Yes, located within the 360 µg/m3 PCE isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour.

PCE

CP‐046

PCE

Yes, Phase 7 IA PCE 4 times greater than Phase 6. Phase 6 IA PCE < VISL, Phase 7 IA 

PCE > VISL.

PCE

X

X X

X X

X

X

X

Page 3 of 6

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property ID

Lines of Evidence

Comparison to Screening Levels

SS VOC concentrations > VISL and/or RML?

CS VOC concentrations > VISL and/or RML?

IA (basement) VOC concentrations > VISL and/or RML?

IA (ground floor) VOC concentrations > VISL and/or RML?

IA (2nd floor) VOC concentrations > VISL and/or RML?

Lines of Evidence Used to Evaluate IA Data

Building located within the soil vapor plume area?

Nearby soil vapor results indicate sufficient source strength for potential VI if preferential pathways (such as utility conduits) are present?

OA (sitewide) similar or greater than IA concentrations, indicating background VOCs?

Potential indoor VOC sources identified during building survey?

Building construction/conditions that could increase or decrease likelihood of VI?

IA ≥ CS or SS concentration?

Mismatched ratios between SS, CS, and IA concentrations for different VOCs?

Discrepancy between Phase 6 and 7 results?

VI CSM Category

Property likely currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty possibly currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty unlikely currently has complete VI pathway that is causing IA and/or CS > VISLs, but has potential for this in the future Property unlikely currently has complete VI pathway causing IA and/or CS > VISLs, and unlikely has potential for this in the future

Current Scenario: Site‐related COPCs 

Future Scenario: Site‐related COPCs

Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7

< VISLs <VISLs

< VISLs, however, the neighboring building CP‐074 

(shared wall) that is slab‐on‐grade had 

TCE > RML

< VISLs, however, the neighboring building CP‐074 

(shared wall) that is slab‐on‐grade had 

TCE > RML

TCE > RML (in 1 of 3 samples, 1 sample < VISL, other ND)

TCE > RML (in 1 of 3 samples, 1 sample < VISL, other ND)

<VISLs <VISLs

PCE > RML (in both samples); TCE > RML 

(in 1 sample, other > VISL)

PCE > RML (in 2 of 3 samples, other < VISL) (TCE ND in 2 samples with elevated RL)

<VISLs <VISLs

PCE > RML (in 1 of 4 samples, other 3 samples > VISL)

PCE > RML (in 1 of 4 samples, 3 samples > 

VISL)

‐‐ ‐‐ <VISLs <VISLs

PCE > VISL (in 1 of 3 samples, other 2 samples < VISL)

PCE > VISL (in 1 of 3 samples, other 2 samples < VISL)

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ <VISLs <VISLs <VISLs <VISLs <VISLs <VISLs

< VISLs <VISLs < VISLs TCE > VISL ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐PCE > VISL (both 

samples)

PCE > VISL (both samples)

‐‐ ‐‐ ‐‐ ‐‐ <VISLs <VISLs

< VISLs <VISLs ND < VISLs < VISLs < VISLs <VISLs <VISLs

PCE > VISL (in all 3 samples); TCE > RML 

(in 1 sample, other 2 samples > VISL)

PCE > VISL (in all 4 samples); TCE > RML 

(in 1 of 4 samples, 2 samples > VISL)

<VISLs <VISLs <VISLsPCE > VISL (all 3 

samples)<VISLs <VISLs <VISLs <VISLs <VISLs <VISLs

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

No No Yes (PCE) Yes (PCE) Yes (PCE/TCE) No No No No No Yes (PCE and TCE) Yes (PCE)  Yes (TCE), No (PCE)Yes (cis‐1,2‐DCE), No 

(PCE and TCE)Yes (PCE and TCE)  No Yes (PCE and TCE)  No Yes (PCE and TCE) Yes (cis‐1,2‐DCE)

No No No No No No No No No No No No No No No IA and CS similar No No No Yes

No No No Yes (PCE vs. TCE) No No No No No No No No No No No No No No

Yes (including air fresheners) No Yes (including air fresheners)

PCE 2 orders of magnitude > TCE in SS but only 1 in IA

Yes (including air fresheners)Yes (including many hair products and air 

fresheners)

Yes (furniture repair and cleaning products)

Yes (cleaning products and art supplies) Yes (furniture repair products)

Yes, located within the 16 µg/m3 TCE isocontour.

Large commercial building with a basement, partially small interior rooms.

Medium commercial building with basement, significant cracks in slab and 

basement walls, old building (100+ years).

Medium commercial building, slab‐on‐grade, old building (100+ years).

Small commercial building, slab‐on‐grade.Strip of 3 small commercial units, slab‐on‐

grade.

TCE TCE and PCE TCE and PCE PCE and TCE PCE and TCE PCE and TCE PCE and TCE PCE and TCE PCE PCE 

CP‐073 CP‐074 CP‐098 CP‐099 CP‐103 CP‐110 CP‐112 CP‐116 CP‐119CP‐072

Small commercial building, slab‐on‐grade with area with exposed soil (slab 

removed), old building (150+ years).

Large commercial building with basement, sump and some cracks, old building (100+ 

years).

Small commercial building with crawlspace (dirt floor), old building (100+ years).

Small commercial building.Large commercial building with basement and crawlspace, old section of the building 

is 100+ years old.

Yes, located within the 360 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 360 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 25,000 µg/m3 PCE isocontour, and the 1,000 µg/m3 TCE 

isocontour.

Yes, located within the 25,000 µg/m3 PCE isocontour, and the 1,000 µg/m3 TCE 

isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes; located within the 5,000 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 1,400 µg/m3 PCE isocontour, and the 16 µg/m3 TCE 

isocontour.

Yes, located within the 5,000 µg/m3 PCE isocontour.

Yes (including air fresheners) Yes

NoIA PCE 4 times higher in Phase 7, CS and SS 

similar.

None TCE   None None PCE, TCE None PCE None None None

No

Yes, Phase 7 basement IA TCE 4 times greater than Phase 6. Phase 6 IA TCE < 

VISL, Phase 7 IA TCE > VISL.No No

SS PCE 4 times greater in Phase 6 in SS‐03. Uncertainty with Phase 7 SS TCE due to 

elevated RL.No

Yes, Phase 6 ground floor IA TCE < VISL, but Phase 7 ground floor IA TCE > VISL.

No

None PCENone TCE TCE None PCE, TCE None PCE None

X

X

X X X X X

X

X X

Page 4 of 6

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Property ID

Lines of Evidence

Comparison to Screening Levels

SS VOC concentrations > VISL and/or RML?

CS VOC concentrations > VISL and/or RML?

IA (basement) VOC concentrations > VISL and/or RML?

IA (ground floor) VOC concentrations > VISL and/or RML?

IA (2nd floor) VOC concentrations > VISL and/or RML?

Lines of Evidence Used to Evaluate IA Data

Building located within the soil vapor plume area?

Nearby soil vapor results indicate sufficient source strength for potential VI if preferential pathways (such as utility conduits) are present?

OA (sitewide) similar or greater than IA concentrations, indicating background VOCs?

Potential indoor VOC sources identified during building survey?

Building construction/conditions that could increase or decrease likelihood of VI?

IA ≥ CS or SS concentration?

Mismatched ratios between SS, CS, and IA concentrations for different VOCs?

Discrepancy between Phase 6 and 7 results?

VI CSM Category

Property likely currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty possibly currently has complete VI pathway that is causing IA and/or CS > VISLs, and has potential for this in the futureProperty unlikely currently has complete VI pathway that is causing IA and/or CS > VISLs, but has potential for this in the future Property unlikely currently has complete VI pathway causing IA and/or CS > VISLs, and unlikely has potential for this in the future

Current Scenario: Site‐related COPCs 

Future Scenario: Site‐related COPCs

Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7 Phase 6 Phase 7

PCE > RML (in 1 of 3 samples, other 2 samples < VISL)

PCE > VISL (in 1 of 3 samples, other 2 samples < VISL)

‐‐ ‐‐ PCE > VISL  PCE > VISL  <VISLs <VISLs ‐‐ <VISLs

PCE > VISL (both samples); 

TCE > VISL (1 of 2 samples, other < VISL)

PCE > RML (in 1 of 2 samples, other > VISL)

PCE > VISL <VISLs

‐‐ ‐‐TCE > VISL (in 2 of 4 samples, other 2 samples < VISL)

<VISLs (TCE ND) <VISLs PCE > VISL ‐‐ ‐‐ <VISLs PCE > VISL ‐‐ ‐‐ ‐‐ ‐‐

<VISLs <VISLs

TCE > VISL (in 1 of 2 samples, 1 sample < 

VISL)

<VISLs (TCE ND) <VISLs <VISLs ‐‐ ‐‐ <VISLs <VISLs ‐‐ ‐‐ ‐‐ ‐‐

<VISLs <VISLs ‐‐ <VISLs (TCE ND) <VISLs <VISLs ‐‐ <VISLs <VISLs <VISLs <VISLs PCE > VISL <VISLs PCE > VISL

‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ <VISLs PCE > VISL <VISLs PCE > VISL

Yes (PCE) No Yes (PCE) Yes (PCE) No No N/A No No No No No No No

No No IA and CS similar IA and CS similar No No N/A No IA and CS similar No No No No No

No No No No No No N/A No No No No No No No

CP‐140

PCE 

Large commercial building with basement, sump, and some significant cracks.

Yes

Yes, located within the 360 µg/m3 PCE isocontour.

No (even though Phase 6 SS PCE > RML, and Phase 6 SS PCE > VISL, still within a 

factor of 2).

None

PCE

CP‐146

PCE

Yes, located within the 1,400 µg/m3 PCE isocontour.

Large commercial building with partial basement (dirt floor, floods regularly) and partial crawlspace, old building (100+ 

years).

Yes, basement IA and CS PCE and TCE 10 times more in Phase 6.

None

None

CP‐150

PCE 

Yes, located within the 1,400 µg/m3 PCE isocontour.

Large commercial building with partial crawlspace and partial basement, old 

building (100+ years).

Yes, CS PCE 4 times more in Phase 7.

PCE

PCE

Yes (including air fresheners)Yes (including many art supplies and air 

fresheners)

X

CP‐153

PCE 

Yes, located within the 15,000 µg/m3 PCE isocontour.

Small commercial building, slab‐on‐grade.

No

None

None

CP‐155

PCE 

Yes, located within the 15,000 µg/m3 PCE isocontour.

Small commercial building with partial crawlspace and partial basement with some cracks, old 

building (+75 years old).

Yes, IA PCE 4 times more in Phase 7, CS PCE 7 times more in Phase 7.

PCE 

PCE 

Yes (including air fresheners) Yes (including air fresheners)

CP‐168

PCE 

Yes, located within the 360 µg/m3 PCE isocontour.

Large commercial building, old building (100+ years), CP‐169 is an addition to this building.

Yes, PCE 7 times greater in Phase 7 SS‐02, IA PCE 22 times greater in Phase 7 IA.

PCE

PCE, TCE

CP‐169

PCE 

Yes, located within the 360 µg/m3 PCE isocontour.

Large commercial building, addition to CP‐168 building.

Yes, SS PCE 3 times less in Phase 7, IA PCE 13 times greater in Phase 7.

PCE

PCE

Yes (including air fresheners) Yes (including air fresheners)

X X

X

X

X

X

Page 5 of 6

Table 1‐7. Phases 6 and 7 Vapor Intrusion Multiple Lines of Evidence EvaluationPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

1 Phase 6 OA results ‐ PCE detected in 6 of 16 OA samples, ranging from 0.17J to 0.428J µg/m3. TCE detected in 4 of 16 OA samples, ranging from 0.109J to 0.23J µg/m3.

 Phase 7 OA results ‐ PCE detected in 5 of 14 IA samples, ranging from 0.137J to 0.273J µg/m3. TCE ND. IA results were considered to be similar to OA results if they were within a factor of 3.The bolded text and shaded cells as applied to the rows under the “Comparison to  Screening Levels” section of the table, indicate that one or more sample results exceed the indicated screening level.

The colored cells as applied to the four VI CSM Category rows of the table, indicate VI pathway completeness and future potential as defined in the first column.

Notes:

< = less than< = more than≥ = greater than or equal toµg/m3 = microgram(s) per cubic meter

cis‐1,2‐DCE = cis‐1,2‐DichloroethyleneCS = crawlspace airIA = indoor airJ = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

NA = not applicableND = not detected

OA = outdoor air

PCE = perchloroethene

RL = reporting limit

RML = Removal Management Level

SS = subslab soil vapor

SVP = soil vapor probe

TCE = trichloroethylene

VI = vapor intrusion

VISL = Vapor Intrusion Screening Level

VOC = volatile organic compound

vs. = versus

Page  6 of 6

Table 1‐8. Pathway and Receptor ScreeningPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Medium

Current 

Industrial/Commercial 

Workers

Current 

Residents

Future 

Industrial/Commercial 

Workers

Future 

Residents

Future 

Construction 

Workers

Indoor Air X X

Crawl Space Air X X

Subslab Soil Vapor X X

Exterior Soil Vapor X

Surface Soil X X X X

Total Soil X

Groundwater (Potable Use) X X X X

Groundwater (Excavation Trench) X

Notes:

Screened for potential excess lifetime cancer risks and noncancer hazard indices

Table 1‐9. Summary of Media/Receptor Contaminants of ConcernPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Location ELCR COCs

Adult Target‐Organ Specific HI 

COCs

Child Target‐Organ Specific HI 

COCs

Current Industrial/Commercial Worker ‐ Indoor Air Exposures

CP‐099 None TCE (HIs = 2) NA

Current Residential ‐ Indoor Air Exposures

RP‐021 None PCE (HIs = 4) PCE (HIs = 4)

RP‐133 None PCE (HIs = 6) PCE (HIs = 6)

Current/Future Residential ‐ Groundwater Exposures

Sitewide Groundwater None PCE (HIs = 3) PCE (HIs = 3)

Future Industrial/Commercial Worker ‐ Indoor Air Exposures (from Subslab Soil Vapor)

CP‐046 None PCE (HIs = 5) NA

CP‐074 None TCE (HIs = 2) NA

CP‐099 PCE (3x10‐4) PCE (HIs = 70); TCE (HIs = 7) NA

CP‐110 None PCE (HIs = 7) NA

CP‐140 None PCE (HIs = 4) NA

CP‐150 None PCE (HIs = 3) NA

CP‐168 None PCE (HIs = 6) NA

Future Resident ‐ Indoor Air Exposures (from Subslab Soil Vapor)

RP‐021 None PCE (HIs = 5) PCE (HIs = 5)

RP‐022 None PCE (HIs = 8) PCE (HIs = 8)

RP‐038 None PCE (HIs = 3) PCE (HIs = 3)

RP‐047 None PCE (HIs = 3) PCE (HIs = 3)

RP‐095 None PCE (HIs = 2) PCE (HIs = 2)

RP‐157 None PCE (HIs = 3); TCE (HIS = 2) PCE (HIs = 3); TCE (HIS = 2)

RP‐160 None PCE (HIs = 2) PCE (HIs = 2)

RP‐162 None PCE (HIs = 5) PCE (HIs = 5)

RP‐201 None PCE (HIs = 5) PCE (HIs = 5)

Notes:

COC = Contaminants of concernELCR = Estimated Lifetime Cancer RiskHI = Hazard IndexPCE = TetrachloroetheneTCE = Trichloroethene

Table 2‐1. Applicable or Relevant and Appropriate RequirementsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Act/Authority Criteria/Issues Citation Requirement Alternative ARAR Status Analysis Ability to Meet the ARAR

Federal Safe Drinking Water Act (SDWA)

National primary drinking water standards ‐ maximum contaminant levels (MCLs)

40 CFR 141.62Establishes health‐based standards for public drinking water systems by setting maximum concentrations allowable for contaminants in sources of drinking water.

GW2, GW3, GW5, GW6 

Applicable

Applicable to all groundwater alternatives; the aquifer is used for a drinking water source for Martinsville. The MCLs were considered when determining the PRGs. The ARAR will be limited to Site‐related COCs and daughter products, specifically: PCE, TCE, cis‐1,2‐DCE, trans‐1,2‐DCE, 1,1‐DCE, and vinyl chloride. The Federal MCL for PCE and TCE is 5 µg/L.

Alternatives GW2, GW3, GW5, and GW6 can comply. Alternatives GW4, GW7, and GW8 did not pass the screening. 

Indiana Water Quality Standards

Numeric criteria for inorganic and organic contaminants in drinking water class groundwater

327 IAC 2‐11‐2 (e)327 IAC‐2‐11‐6, Tables 6(a)(1) and 6(a)(2)

Requires that groundwater in a drinking water supply well cannot have contaminant concentrations exceeding the numeric criteria established for drinking water class groundwater in Tables 6(a)(1) and 6(a)(2).

GW2, GW3, GW5, GW6 

Applicable

Applicable to all groundwater alternatives; the aquifer is used for a drinking water source for Martinsville. The standards contained within the referenced tables will be limited to Site‐related COCs and daughter products, specifically: PCE, TCE, cis‐1,2‐DCE, trans‐1,2‐DCE, 1,1‐DCE, and vinyl chloride. 

Based on the alternatives considered, will likely be able to omit 327 IAC 2‐22‐2(e)(3) (regarding concentrations of chloride, sulfate, TDS, and coliform bacteria) because these are not relevant to the Site constituents.  

Alternatives GW2, GW3, GW5, and GW6 can comply. Alternatives GW4, GW7, and GW8 did not pass the screening. 

EPA residential and commercial regional screening levels (RSLs) ‐ May 2016

RSLs for chemical contaminants at superfund sites

‐‐

The EPA has developed generic screening level tables with a target cancer risk of 10‐6. The RSL tables provide comparison values for residential and commercial/industrial exposures to soil, air, and tap water (drinking water). The unified use of the RSLs to screen chemicals at Superfund sites promotes national consistency.

SV2, SV3, SV4, SV5

TBC

RLSs are not promulgated, but are a reference for use in determining COPCs, delineating the nature and extent of contamination, and developing PRGs.

SV3 and SV5 would comply.  SV4 does not comply despite remedial actions being taken because no VIM systems are installed to address risk to current receptors. SV2 did not pass the screening.  

Vapor Intrusion Screening Level (VISL) Calculator

VISLs ‐‐

The EPA developed a spreadsheet calculator that lists chemicals considered to be volatile and sufficiently toxic through the inhalation pathway; and provides VISLs for indoor air, which are generally recommended, media‐specific, risk‐based screening‐level concentrations. 

SV2, SV3, SV4, SV5

TBC

VISLs are not promulgated, but are a reference for use in determining COPCs, delineating the nature and extent of contamination, and developing PRGs.

SV3 and SV5 would comply.  SV4 does not comply despite remedial actions being taken because no VIM systems are installed to address risk to current receptors. SV2 did not pass the screening.  

Indiana Hazardous Waste Management Permit Program and Related Hazardous Waste Management

Management of hazardous wastes ‐ identification and listing

329 IAC 3.1‐6 

Requires that a hazardous waste determination be properly made on all wastes generated from remedial actions, and that a small quantity and large quantity generators of hazardous waste obtain an EPA identification number before treatment, storage, disposal or offering for transport.

SV4, SV5 Applicable

Hazardous waste regulations are ARARs only if characteristic hazardous waste is generated as part of the remedial action at the Site.  The site does not contain listed hazardous waste.  The site has an existing EPA ID Number:  INN000508678.

SV4 and SV5 are not expected to generate hazardous waste.

Wastes streams that will be profiled based on generator knowledge, or tested to determine whether they are characteristically hazardous include wastes from decontamination, contaminated containment components, contaminated soils, and structures and equipment contaminated with waste. 

SV4 and SV5 would comply.

Indiana Hazardous Waste Management Permit Program and Related Hazardous Waste Management

Management of hazardous wastes ‐ standards applicable to generators and standards applicable to transporters

329 IAC 3.1‐7 (40 CFR 262)  329 IAC 3.1‐8  (40 CFR 263)

Requires that all hazardous waste be properly packaged, including labels, markings and placards, prior to transport. 

Requires that hazardous waste must be manifested for transport to a TSDF in accordance with 40 CFR 262, Subpart B.

SV4, SV5Potentially Applicable

Hazardous waste regulations are ARARs only if characteristic hazardous waste is generated as part of the remedial action at the Site. 

Transport vehicles would require proper markings onsite prior to offsite transport of characteristically hazardous waste.  Full substantive and administrative compliance, such as manifesting, is required when waste moves offsite.  

SV4 and SV5 would comply.

Onsite Waste Management

Chemical‐Specific

Action‐Specific

Groundwater

Air

Page 1 of 3

Table 2‐1. Applicable or Relevant and Appropriate RequirementsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Act/Authority Criteria/Issues Citation Requirement Alternative ARAR Status Analysis Ability to Meet the ARAR

Indiana Hazardous Waste Management Permit Program and Related Hazardous Waste Management

Management of hazardous wastes

329 IAC 3.1‐7‐1329 IAC 3.1‐7‐240 CFR 262 is incorporated by reference

329 IAC 3.1‐9 and 3.1‐10

Generator requirements for onsite hazardous waste management.  40 CFR 262 references applicable parts of 40 CFR 265, Subpart I (for waste stored for 90 days or less) and 40 CFR 264, Subpart I (for waste stored greater than 90 days).

Under the generator standards, hazardous waste including hazardous excavated soil or cuttings must not be placed back on the ground so as to create a waste pile as defined in 40 CFR 264, Subpart L.  Drums, covered roll‐offs, containers, tanks, containment buildings, and drip pads may be used for storage or onsite treatment in accordance with these regulations.

SV4, SV5Potentially Applicable

Hazardous waste regulations are ARARs only if characteristic hazardous waste is generated as part of the remedial action at the Site. 

SV4 and SV5 would comply.

Indiana Hazardous Waste Management Permit Program and Related Hazardous Waste Management

Management of hazardous wastes ‐ treatment requirements for characteristically hazardous waste

40 CFR 268.9, which is incorporated by reference in 329 IAC 3.1‐12‐1 

Requires that hazardous waste destined for land disposal (as defined in 40 CFR 268.2) must meet the applicable Land Disposal Restrictions of 40 CFR 268.

SV4, SV5 Other

 This FS does not consider onsite treatment of waste to meet LDRs. If waste is not exempt and is treated offsite, this citation would not constitute an ARAR, but would be considered "Other" as full compliance would be required.

SV4 and SV5 would comply. 

Air Pollution Control, Particulate Rules

Fugitive dust emissions326 IAC 6‐4‐2(4)326 IAC 6‐4‐4 

Requires that visible fugitive dust remain on the property if remedial activities cause contaminant dust to form.  Requires that any vehicle driven on any public right of way must not allow its contents to escape and form fugitive dust.

SV4, SV5 Applicable Excavation of contaminated soil may result in fugitive dust emissions that would need to be managed appropriately.

SV4 and SV5 would comply.

Air Pollution Control, Prevention of Significant Deterioration (PSD) Requirements

Air pollution control 326 IAC 2Air emissions are calculated and limited to prevent air quality deterioration.

SV4, SV5 Potential ARAR

Any treatment systems implemented onsite are highly unlikely to trigger this regulation; treatment systems are likely to be exempt based on 326 IAC 2‐1.1‐3(d) and 326 IAC 2‐1.1‐3(d)(5), which exempts systems that emit less than 10 tons/year of a single HAP and less than 25 tons/year of combined HAPs.  This will be further evaluated as the remedial decision making process progresses. 

If determined to be triggered, SV4 and SV5 would comply

Underground Injection Control (CWA)

Injection of fluids into subsurface

40 CFR 144, 146, and 147Regulates the subsurface emplacement of fluids (including air) with standards for the design and operation of five classes of injection wells.

 GW4, GW5, GW6, GW7, GW8

Applicable

Triggered by delivering a fluid, including air, into the subsurface via a well or trench, which would be considered Class V wells. Requirements include inventory of the wells and a prohibition on adversely moving contaminants into underground sources of drinking water if that would cause a violation of the primary drinking water standard.  Requires proper construction and abandonment. 

GW5 and GW6 would comply. GW4, GW7, and GW8 did not pass the screening.

Environment Recording of ERC IC 13‐25‐4‐24

Requires the recording of an ERC for the property if the remedial action will result in leaving contamination in place such that unrestricted land use is not permitted (i.e. residential land use remediation objectives are not achieved), per Indiana Code.

GW1, GW2, GW3, GW4, GW5, GW6, GW7, GW8, SV1, SV2, SV3, SV4, 

SV5

Other

Assumes that IDEM will desire full compliance, including administrative requirements of recording ERCs. If only substantive requirements are desired, then can be considered "Applicable" as an ARAR.

All alternatives can comply in full.

Injection to the Subsurface

Contamination Left In‐Place

Page 2 of 3

Table 2‐1. Applicable or Relevant and Appropriate RequirementsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Act/Authority Criteria/Issues Citation Requirement Alternative ARAR Status Analysis Ability to Meet the ARAR

Migratory Bird Treaty ActRegulation of interactions with migratory birds

16 USC 703‐712Establishes federal responsibility for the protection of the international migratory bird resources. Taking, killing, or possessing migratory birds is unlawful without approval.

GW2, GW3, GW4, GW5, GW6, GW7, GW8, SV2, SV3, 

SV4, SV5

Applicable

Indiana is located within the Mississippi flyway. The FS, RD, and RA will include measures to identify and protect migratory birds, their nests, or eggs, and coordination with US Fish and Wildfire Service would occur. 

GW2, GW3, GW5, and GW6 would comply. GW4, GW7, and GW8 did not pass the screening.

Endangered Species ActProtection of threatened and endangered species and habitat

50 CFR 402

Requires that federal agencies ensure that any action authorized, funded, or carried out by the agency is not likely to jeopardize the continued existence of any threatened or endangered species or destroy or adversely modify critical habitat.

GW2, GW3, GW4, GW5, GW6, GW7, GW8, SV2, SV3, 

SV4, SV5

Potentially Applicable

Threatened or endangered species were not identified onsite. Habitat in the surrounding area within the city is likely to be very limited.  However, several species of concern were identified for Morgan County.  If protected species are encountered or later identified onsite, this ARAR would be applicable. This will be further evaluated as the remedial decision‐making progresses. 

If determined to be an ARAR, all alternatives that passed the screening are expected to be able to comply

National Historic Preservation Act Protection of historic places

16 USC 470 Section 106 et. seq.

Requires federal agencies to take into account the effect of any federally‐assisted undertaking or licensing on any district, site, building, structure, or object that is included in or is eligible for inclusion in the National Register of Historic Places. Establishes procedures to provide for preservation of scientific, historical, and archaeological data that might be destroyed through alteration of terrain as a result of a federal construction project or a federally licensed activity or program. 

GW2, GW3, GW4, GW5, GW6, GW7, GW8, SV2, SV3, 

SV4, SV5

Applicable

Several buildings and historic districts are located onsite; applicable if the remedial action will affect any historic or cultural resources.  If so, a finding of either adverse effect or no adverse effect must be made. 

Preliminary search indicates that state historic resources may be present within the county.

The State Historic Preservation Office will be consulted.

It is anticipated that the RD would be able to adequately address any NHPA and SHPO requirements and therefore that all alternatives that passed the screening would comply with this ARAR.

Notes:

Citations listed as "Other" under ARAR Status are not considered ARARs, but are potentially applicable regulations that require full compliance, including administrative components.

µg/L = microgram per liter LDRs = land disposal restrictions1,1‐DCE = 1,1‐dichloroethene MCL = maximum contaminant levelARARs = applicable or relevant and appropriate requirements NFHL = National Flood Hazard LayerCFR = Code of Federal Regulations NPDES = National Pollutant Discharge Elimination Systemcis‐1,2‐DCE = cis‐1,2‐dichloroethene PCE = tetrachloroetheneCOC = contaminant of concern PRG = preliminary remediation goalCOPC = contaminant of potential concern RCRA = Resource Conservation and Recovery ActCWA = Clean Water Act RSL = regional screening levelDNR = Indiana Department of Natural Resources SDWA = Safe Drinking Water ActERC = environmental restrictive covenant TBC = to be consideredEO = executive order TCE = trichloroetheneEPA = U.S. Environmental Protection Agency trans‐1,2‐DCE = trans‐1,2‐dichloroetheneFEMA = Federal Emergency Management Agency TSDF = treatment, storage, or disposal facilityIAC = Indiana Administrative Code USC = U.S. CodeIDEM = Indiana Department of Environmental Management VISL = Vapor Intrusion Screening Level

Flood Control Act, IC 14‐28‐1 and the Floodplain Management rules, 312 IAC 10

Location‐Specific

"Onsite" is defined as: the extent of contamination in soil, groundwater, or soil vapor where COCs exceed their respective PRGs and all suitable areas in very close proximity to the contamination necessary for implementation of the response action.

Page 3 of 3

Table 2‐2. Preliminary Identification of Historic Resources in Martinsville, IndianaPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Historic Resource Name Resource Type Location

Within or Adjacent 

to Groundwater 

Plume

Within or 

Adjacent to Soil 

Vapor Plume

Blackstone House and Martinsville Telephone Company Building

Building 127 S Main Street YES YES

Bradford Estate District 5040 IN 67 North NO NO

Crawford‐Gilpin House Building 339 S. Ohio St NO NO

Cross School Building Voiles and Townsend Rds. NO NO

East Washington Street Historic District District E. Washington St. from Sycamore to Crawford St. YES YES

Elm Spring Farm Building 1 mi. N of Bain Rd. on Goose Creek Rd. NO NO

Grassyfork Fisheries Farm No. 1 District 2902 E. Morgan St. NO NO

Lamb's Creek Bridge Structure Jct. of Lamb's Creek and Old IN 67 W NO NO

Long Schoolhouse Building 0.5 NW of junction of Jordan Rd. and Hinson Rd. NO NO

Martinsville Commercial Historic District District Roughly bounded by Pike, Mulberry, Jackson, and Sycamore Streets YES YES

Martinsville High School Gymnasium Building 759 S. Main St. NO NO

Martinsville Northside Historic District District Roughly bounded Cunningham, Mulberry, Pike, and Graham Streets YES YES

Martinsville Sanitarium Building 239 W. Harrison St. YES YES

Martinsville Vandalia Depot Building 210 N. Marion St. YES YES

Morgan County Courthouse Building Courthouse Sq. YES YES

Morgan County Sheriff's House and Jail Building 110 W. Washington St. YES YES

Neely House Building 739 W. Washington St. NO NO

Notes:Source is the National Register of Historic Places: http://npgallery.nps.gov/nrhp.A preliminary search indicates that state historic resources may be present within the county (not identified above) and should be further evaluatedAll locations are in Martinsville, Indiana.

Table 2‐3. Preliminary Remediation GoalsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Exposure Scenario >>

Soil Vapor PRG ‐ Residential

(µg/m3)

ELCR = 1x10-6 ELCR = 1x10-5 ELCR = 1x10-4 HI = 1a HI = 1a

PCE 1,572 15,723 157,230 5,840 1,390

TCE NA NA NA 292 70

Exposure Scenario >>

Chemical of Concern

PCE 5

TCE NA

Notes:a A target HQ of 0.1 is not needed since the two COCs have different target organs for inhalation non‐cancer toxicity values.

c Based on MCLs from EPA National Primary Drinking Water Regulations, May 2009.µg/L = micrograms per literµg/m

3 = micrograms per cubic meter

COC = contaminant of concernELCR = excess lifetime cancer riskEPC = exposure point concentrationHHRA = human health risk assessment

HI = hazard indexHQ = hazard quotientMCL = maximum contaminant levelNA = not applicable since TCE is not a COC for the potable water scenario or the cancer endpoint for the vapor intrusion pathway.PCE = tetrachloroethenePRG = preliminary remediation goalTCE = trichloroethene

b Values are calculated using the groundwater EPC and HQ from the HHRA using a HQ = 1.

Proposed Groundwater PRGc

µg/L

Soil Vapor PRG ‐ Industrial/Commercial

(µg/m3)

Indoor Air Vapor Intrusion

Chemical of Concern

Potable Water

NA NA

Calculated Groundwater PRG (µg/L) Based on Target HQ = 1

Adultb

Childb

4646

Table 2‐4. Estimate of Groundwater Area and Volume Exceeding PRGsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Area

Estimated 

Surface Area 

(SF)

Estimated Top 

Elev.

(ft amsl)

Estimated 

Bottom Elev.

(ft amsl)

Estimated 

Average 

Thickness 

(ft)

Estimated 

Volume 

(yd3)

Shallow 2,410,000 583 570 13 1,160,000Intermediate 284,000 570 555 15 160,000Total 1,320,000Notes:Based on groundwater measurements obtained during Phases 1 through 3 of the RI, the average depth to groundwater is approximately 13 ft bgs, which is approximately 583 ft amsl.The groundwater PRG for PCE is 5 µg/L, which is based on the MCL.amsl = above mean sea levelbgs = below ground surfaceyd3 = cubic yardft = feetMCL = maximum contaminant levelPCE = tetrachloroethenePRG = preliminary remediation goalRI = remedial investigationSF = square feet

Table 2‐5. Estimate of Soil Vapor Area and Volume Exceeding PRGsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Area

PRG 

(µg/m3)

Estimated Surface 

Area 

(SF)

Estimated 

Top Elev.

(ft amsl)

Estimated Bottom 

Elev.

(ft amsl)

Estimated 

thickness 

(ft)

Estimated Volume 

(yd3)

PCE exceeding the Residential PRG (HQ=1) 1,390 1,239,670 600 583 17 781,000

TCE exceeding the Residential PRG (HQ=1) 70 30,345 600 583 17 19,000

PCE exceeding the Industrial/Commercial PRG (HQ=1 and ELCR=1x10‐6) 1,572 1,239,844 600 583 17 781,000

PCE exceeding the Industrial/Commercial PRG (HQ=1 and ELCR=1x10‐5 or ELCR=1x10‐4)

5,840 359,428 600 583 17 226,000

TCE exceeding the Industrial/Commercial PRG (HQ=1 and ELCR=1x10‐6) 292 10,192 600 583 17 6,000

Total ‐ PCE or TCE exceeding the Residential PRG (HQ=1) ‐‐ 1,239,670 600 583 17 781,000

Total ‐ PCE or TCE exceeding the Industrial/Commercial PRG (HQ=1 and ELCR=1x10

‐6)

‐‐ 1,239,844 600 583 17 781,000

Total ‐ PCE or TCE exceeding the Industrial/Commercial PRG (HQ=1 and ELCR=1x10

‐5 or ELCR=1x10‐4)‐‐ 359,428 600 583 17 226,000

Notes:

Based on groundwater measurements obtained during Phases 1 through 3 of the RI, the average depth to groundwater is approximately 13 ft bgs, which is approximately 583 ft amsl.

Based on well construction details, the average ground surface elevation is approximately 600 ft amsl.

amsl = above mean sea levelbgs = below ground surfaceyd3 = cubic yardELCR = excess lifetime cancer riskft = feetHQ = hazard quotientPCE = tetrachloroethenePRG = preliminary remediation goalSF = square feetTCE = trichloroethene

Table 2‐6. Identification and Screening of Groundwater Remedial Technology and Process OptionsPike & Mulberry Streets PCE Plume Site Martinsville, IndianaGeneral Response 

Action

Remedial Technology 

Type

Technology Process 

Option Description Screening Result

No Action No additional action No Action No Action required by CERCLA for comparison purposes. Retained for baseline comparison purposes in accordance with the NCP.

MonitoringLong‐term groundwater monitoring

Regular sampling of monitoring wells to monitor contaminant migration or effectiveness of remedial efforts.Potentially applicable to monitor effectiveness of a remedy; retained for further evaluation.

Deed restrictionsGroundwater use restrictions

Legal use restrictions prohibiting groundwater use where COC concentrations exceed remediation goals. Potentially applicable; retained for further evaluation.

New municipal well fieldAnother municipal source of water would be developed for the community and provided to current and potential groundwater users.

Potentially applicable; retained for further evaluation.

Bottled water Bottled water would be supplied to the community. Potentially applicable; retained for further evaluation.

Slurry wallSoil, cement, bentonite, and/or other additives are mixed to form a slurry and placed into a vertically excavated trench to create a low‐permeability wall, which controls the flow of contaminated groundwater.

Eliminated; not practical to implement given site‐specific constraints. More applicable for onsite containment; COCs have already migrated offsite. Containment technologies do not meet the groundwater RAOs.

Sheet pilingSteel sheets installed vertically that prevents or slows groundwater migration Sealable sheet piling includes interlocking joints that are sealed with a grout to form a watertight seal between piles to prevent leaking at the joints.

Eliminated; not practical to implement given site‐specific constraints. More applicable for onsite containment; COCs have already migrated offsite. Containment technologies do not meet the groundwater RAOs.

Grout curtain Low‐permeability grout injected via closely spaced boreholes to create a barrier that prevents groundwater migration.

Eliminated; not practical to implement given site‐specific constraints. More applicable for onsite containment; COCs have already migrated offsite. Containment technologies do not meet the groundwater RAOs.

Geomembrane cutoff wallGeomembrane sheets are seamed together and inserted vertically into the subsurface between two metal sheets, which are extracted, leaving the geomembrane in place. The geomembrane creates an impermeable barrier to control groundwater migration.

Eliminated; not practical to implement given site‐specific constraints. More applicable for onsite containment; COCs have already migrated offsite. Containment technologies do not meet the groundwater RAOs.

Horizontal barriers Grout injectionGrout is injected below an area of contamination through boreholes drilled to a predetermined depth over a grid pattern. The low‐permeability horizontal barrier created by the grout injection minimizes vertical migration of contaminants in groundwater.

Eliminated; vertical migration of COCs is not the main concern at the Site. Containment technologies do not meet the groundwater RAOs.

Pumping well systemExtraction wells are installed to capture and withdraw contaminated groundwater from the plume. Extraction wells can also be used as a hydraulic barrier to protect municipal or residential wells. Extracted groundwater typically requires ex situ treatment and prior to discharge.

Potentially applicable; retained for further evaluation.

Funnel‐and‐gateLow‐permeability vertical cutoff walls (e.g., sheet pile, slurry wall) are used to capture and direct groundwater flow to an area without the cutoff wall (i.e., the gate). As groundwater passes through the gate, it could be further collected by extraction wells or treated in situ.

Eliminated; not practical to implement given only the shallow portion of an extensive aquifer is targeted for treatment.

Trench collection system Subsurface trenches intercept and collect contaminated groundwater for subsequent treatment. Eliminated; not practical to implement given site‐specific constraints.

Horizontal well systemAdvanced drilling techniques used to drill horizontal extraction wells, which are used to extract and collect groundwater for subsequent treatment.

Potentially applicable; retained for further evaluation if access is restricted by buildings or other infrastructure where extraction is targeted.

Chemical oxidationChemical mixtures of oxidants that react with and destroy a variety of contaminants are injected into the subsurface. Oxidizing agents most commonly used include ozone, hydrogen peroxide, permanganate, and persulfate. The oxidation rates are dictated by chemical properties and matrix conditions.

Potentially applicable; retained for further evaluation.

Chemical reduction

Chemical reducing agents are injected or placed into the subsurface to react with and change contaminants into less toxic or less mobile forms. Uses both chemical and biological mechanisms to treat contaminants. Most commonly, zero‐valent iron (ZVI) is used. Reagents can be injected, emplaced through fracturing, or placed into a trench to create a permeable reactive barrier (PRB).

Potentially applicable; retained for further evaluation.

Liquid sorptive‐reactive media

Consists of a fine powder of sorptive media suspended in liquid or slurry form, such as a colloidal solution of activated carbon. Reduces back‐diffusion of contaminants and contaminant rebound by sorbing contaminants. It also provides a high surface area matrix favorable for microbial colonization and growth. Can be combined with other reactive chemicals, nutrients, or bioaugmentation products. Effective for a range of COCs.

Potentially applicable; retained for further evaluation.

In situ precipitation

Chemical or biological processes are used to precipitate dissolved inorganic compounds out of solution in groundwater. Often, chemicals (e.g., ZVI) are injected to form a metal precipitate or nutrients are injected to stimulate sulfate‐reducing bacteria. The sulfate‐reducing bacteria reduce sulfate to sulfide, which then forms a precipitate with the inorganic compounds dissolved in groundwater.

Eliminated; not applicable to site contaminants, which are VOCs.

Permeable reactive barrier (PRB)

A permeable barrier consisting of treatment media is installed within a trench across the flow path of a contaminant plume. The contaminated groundwater is treated as it passively flows through permeable barrier. PRB agents used include as zero‐valent metals, chelators, sorbents, or microbes. The contaminants are either degraded or retained in a concentrated form by the barrier material.

Eliminated; not practical to implement given site‐specific constraints of a large diffuse plume that is over 1/2 mile long through a residential/commercial area.

Multi‐phase extraction

A high‐powered vacuum system is used to remove combinations of contaminated groundwater, NAPL, and vapor‐phase contaminants from the subsurface. The vacuum extraction well includes a screened section in the zone of contaminated soils and groundwater, which removes contaminants from above and below the water table. The system lowers the water table around the well, exposing more of the formation to vapor extraction. Once above ground, the extracted vapors or liquid‐phase organics and groundwater are separated and treated ex situ and/or collected for disposal.

Eliminated; most commonly used for sites with NAPL, which was not observed at the Site.

Air sparging

Air is injected into a contaminated aquifer below the groundwater table. The injected air traverses horizontally and vertically in channels through the soil column, creating an subsurface stripper that removes contaminants by volatilization. The volatilized contaminants move into the unsaturated zone where a vapor extraction system is usually installed to remove the  vapor‐phase contamination.

Potentially applicable; retained for further evaluation.

In‐Well Air Stripping

Air is injected into a double‐screened well, lifting the water in the well and forcing it out the upper screen. Simultaneously, additional water is drawn in the lower screen. Once in the well, some of the VOCs in the contaminated ground water are transferred from the dissolved phase to the vapor phase by air bubbles. The contaminated air rises in the well to the water surface where vapors are drawn off and treated by a soil vapor extraction system.

Potentially applicable; retained for further evaluation.

Steam injectionSteam is forced into an aquifer through injection wells (or other methods) to vaporize volatile and semivolatile contaminants. Vaporized components rise to the unsaturated (vadose) zone where they are removed by vacuum extraction and then treated. This technology process option can also be an enhancement of dual phase extraction.

Potentially applicable; retained for further evaluation.

Thermal conductive heating

Electrically powered heater wells are installed into the subsurface and are heated to high temperatures. Heat flows out from the heater wells through the subsurface by conduction. Volatilized contaminants are captured by extraction wells and subsequently treated ex situ in the vapor phase.

Potentially applicable; retained for further evaluation.

Electrical resistance heating (ERH)

Electrodes are installed into the subsurface and an electrical current is passed between the electrodes through the soil, which creates a resistance in the soil. This process heats the aquifer to steaming temperatures, which volatilizes the contaminants. The contaminants are collected in vapor phase by a vacuum extraction system for subsequent ex situ treatment. This technology is particularly effective in less permeable soils such as clays and fine‐grained sediments.

Potentially applicable; retained for further evaluation.

Enhanced biodegradationNatural microorganisms are provided with supplemental nutrients, such as nitrate, oxygen, or other co‐metabolic treatments to encourage natural breakdown of contamination.

Potentially applicable; retained for further evaluation.

Phytoremediation Processes that uses plants to clean contamination in groundwater and surface water.Eliminated; not practical to implement given site‐specific constraints. This technology process option is not implemented often at Sites.

Air strippingRemoves VOCs from extracted groundwater by forcing high‐pressure air through liquid (tray stripper) or by allowing for extended air‐water contact time (packed tower stripper). Contaminants are transferred from the liquid phase to gaseous phase and are then vented to the atmosphere or further treated in vapor phase.

Potentially applicable; retained for further evaluation.

Steam strippingSimilar to air stripping, except that steam is used instead of air, making it more energy intensive than air stripping; primarily used to treat higher concentrations of contaminants or those with lower volatility.

Potentially applicable; retained for further evaluation.

Cascade aeratorLateral sequence of basins (masonry, concrete or timber) at various levels that allows water to spill over from one basin to the next lower one. Volatilization occurs during surface aeration within the trays.

Eliminated; not practical to implement given site‐specific constraints. 

Chemical oxidation/ reduction

Oxidizing or reducing chemicals are added to contaminated groundwater to react with and change the state of the contaminants present.

Potentially applicable; retained for further evaluation.

Advanced oxidation

Destruction process that oxidizes organic constituents in water by the addition of strong oxidizers (ozone, and/or hydrogen peroxide) and irradiation with UV radiation light; primarily used for organic compounds, particularly chlorinated hydrocarbons. pretreatment may be needed to lower turbidity. Some VOCs may volatilize rather than being destroyed, requiring potential emission controls.

Potentially applicable; retained for further evaluation.

Liquid‐phase carbon adsorption

Groundwater is passed through a reaction tank containing activated carbon where dissolved contaminants are bonded onto the carbon surface. As the carbon media becomes saturated, it is replaced and the spent carbon is re‐generated for reuse or incinerated.

Potentially applicable; retained for further evaluation.

Resin adsorptionGroundwater is passed through a reaction tank containing a resin where dissolved contaminants are bonded onto the resin surface. The resin used must be customized for specific contaminants. Polymeric adsorbents require pretreatment of feed streams to remove suspended solids, oils and greases, and to adjust pH and temperatures.

Potentially applicable; retained for further evaluation.

Membrane microfiltration

Groundwater is passed through a microporous membrane that filters suspended solids such as heavy metals, cyanide, uranium, and organic particles from liquids. The resulting residuals (“cake”) may require additional treatment prior to disposal. This technology process option does not treat VOCs/SVOCs.

Eliminated; not applicable to site contaminants.

Ion exchange

Groundwater is passed through a reaction tank containing resin. In the process, ions are removed from the water and are replaced with sodium ions and chloride ions. Extensive pretreatment (i.e., filtering) may be required prior to ion exchange; suspended solids must be removed to prevent fouling and plugging of the resin bed. This technology process option is for the removal of inorganic compounds only.

Eliminated; not applicable to site contaminants.

Reverse osmosis

Groundwater is passed through a membrane that is semi‐permeable, allowing the fluid that is being purified to pass through it, while rejecting the contaminants that remain. This process can reduce concentrations of dissolved organic and inorganic solids in groundwater.

Eliminated; not applicable to site contaminants.

Precipitation

Dissolved contaminants are transformed into an insoluble solid, facilitating their subsequent removal from the liquid phase by sedimentation or filtration. This technology process option may be used as pretreatment to other technologies or as a polishing treatment to meet discharge standards. Influent inorganic compounds may require pretreatment for some technology process options; post‐treatment for inorganic compounds may be needed to meet discharge criteria. Co‐precipitation is the removal of dissolved compounds normally soluble under the given conditions by another precipitate.

Eliminated; not applicable to site contaminants.

Filtration Suspended solids or precipitated metals are eliminated by passing groundwater through a filter medium, such as sand. Eliminated; not applicable to site contaminants.

Offsite treatment Groundwater could be collected, tested, and sent to an offsite facility for treatment.Eliminated; not practical to implement given site‐specific constraints. Would require regular disposal of large volumes of water.

Bioreactors

Contaminants are degraded in water with microorganisms through attached or suspended biological systems. This technology process option requires close monitoring and process control as well as the treatment and disposal of sludges. This technology process option is primarily used to treat SVOCs and fuel hydrocarbons.

Eliminated; site constraints of a large, diffuse groundwater plume in a residential/commercial area would make it difficult to construct bioreactors.

Constructed wetlandsNatural geochemical and biological processes inherent in an artificial wetland ecosystem are used to accumulate and remove inorganic constituents, explosives, and other contaminants from influent waters. Filtration or degradation processes can be used. This technology process option requires an expansive land area.

Eliminated; not practical to implement given site‐specific constraints. This technology process option is not implemented often at Sites.

Horizontal extraction systems

Collection

Institutional controls

Vertical barriers

Containment

Vertical extraction systems

Alternate water supply

Physical/ chemical processes

Thermal treatment

In situ treatment

Physical/ chemical processes

Bioremediation

Ex situ treatment

Bioremediation

Page 1 of 2

Table 2‐6. Identification and Screening of Groundwater Remedial Technology and Process OptionsPike & Mulberry Streets PCE Plume Site Martinsville, IndianaGeneral Response 

Action

Remedial Technology 

Type

Technology Process 

Option Description Screening Result

InjectionUntreated groundwater is injected into a deep aquifer, or treated groundwater is injected into the upper portion of the aquifer through wells.

Potentially applicable; retained for further evaluation.

Infiltration galleryLong lengths of perforated pipes are installed in the subsurface in closely‐spaced, shallow trenches for the distribution of treated water. The perforated pipes have a tendency toward fowling and plugging. Difficult for high‐volume applications.

Eliminated; not practical to implement given site‐specific constraints. 

Surface irrigationA surface irrigation system consists of a network of evenly spaced, high‐volume spray guns to distribute treated groundwater over the ground surface.

Eliminated; not practical to implement given site‐specific constraints. 

Discharge to surface water body

Treated groundwater is discharged directly to surface water. Post‐treatment may be required to meet discharge requirements.

Potentially applicable; retained for further evaluation.

Discharge to sanitary sewer

Treated groundwater is discharged directly to the sanitary sewer. Post‐treatment may be required to meet discharge requirements. Sampling may be required to meet POTW requirements.

Potentially applicable; retained for further evaluation.

Offsite disposal Offsite facilityGroundwater is containerized and shipped to an approved facility. Volume of groundwater requiring disposal may be large. Pretreatment may be also be required.

Eliminated; not practical given large volumes of water that would be generated that would require disposal.

Natural attenuation Natural attenuation Natural attenuationNatural subsurface processes are allowed to reduce contaminant concentrations to acceptable levels. Requires case‐by‐case approval from the EPA. Lines of evidence supporting attenuation are needed.

Potentially applicable; retained for further evaluation.

Notes:

CERCLA = Comprehensive Environmental Response, Compensation, and Liability ActCOC = contaminant of concernERH = electrical resistance heatingGAC = granular activated carbonNAPL = non‐aqueous phase liquidNCP = National Oil and Hazardous Substances Pollution Contingency PlanO&M = operation and maintenance

PRB = permeable‐reactive barrierRAO = remedial action objectiveSVOC = semivolatile organic compound

UV = ultravioletVOC = volatile organic compound

ZVI = zero‐valent iron

Onsite disposal (treated/ untreated)

Disposal

Page 2 of 2

Table 2‐7. Identification and Screening of Soil Vapor Remedial Technology and Process OptionsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

General Response 

Action Remedial Technology Type

Technology Process 

Option Description Screening Result

No Action No additional action No Action No Action required by CERCLA for comparison purposes.Retained for baseline comparison purposes in accordance with the NCP.

Mitigation system monitoring

Monitoring may be required to make sure that any mitigation system implemented is properly operated and maintained.

Potentially applicable as part of a remedy; retained for further evaluation.

Long‐term monitoring

Periodic sampling of soil vapor, subslab soil vapor, or indoor air to assess COC concentrations, monitor contaminant migration, or evaluate effectiveness of remedial efforts.

Potentially applicable as part of a remedy; retained for further evaluation.

Property controls Property use restrictions

Restrictions to enforce remediation decisions to ensure that active systems remain operational and passive membranes are maintained and remain in‐tact. Also includes maintaining future access to properties and mitigation systems for monitoring and O&M,  If necessary, may include restrictions on the construction of new buildings.

Potentially applicable as part of a remedy; retained for further evaluation.

RelocationTemporary relocation or evacuation

Applicable for buildings with vapor contaminant concentrations that are immediately dangerous to human health; particularly applicable for buildings and contaminant types that present a potential explosion or fire hazard.  Implemented for buildings where conditions warrant prompt response actions and cannot be addressed by other means.

Eliminated; COCs are not flammable and not at concentrations to warrant evacuation or relocation.

Targeted sealing of vapor entry points

Vapor entrances into buildings are sealed using a variety of sealant types, such as synthetic rubbers, acrylics, oil‐based sealants, asphalt/bituminous products, swelling cement, silicone, epoxy, or elastomeric polymers.  Vapor entry points that may require sealing include foundation cracks, holes in concrete floors, small gaps around pipes and utility lines, around sumps, and around other floor penetrations.

Potentially applicable as part of a remedy; retained for further evaluation.

Spray applications

Water‐based or rubberized asphalt membrane that is installed under slab and on below‐grade vertical walls.  The liquid can be sprayed over penetrations, footings, grade beams, pile caps, and other irregular surfaces to create a seamless, monolithic vapor barrier once cured.

Retained; not practical to implement for existing buildings, but would be applicable to new construction.

Liquid applicationsLiquid paint application of a vapor intrusion coating system consisting of chemically‐resistant materials that cure to a high‐gloss surface resistant to vapor and moisture transmission.

Potentially applicable; retained for further evaluation.

Liners Geomembrane linerInstallation of a low‐permeability geomembrane liner or liner composite system between the building foundation and the soil during construction.

Retained; not practical to implement for existing buildings, but would be applicable to new construction.

Passive ventingPassive SSD system that does not rely on a fan to create a pressure gradient beneath the slab; pipes are vented to the outside, relying on air currents, wind‐driven turbines, and the "stack effect" to draw vapors up from below the structure.

Potentially applicable; retained for further evaluation.

Crawl space venting

Venting system consists of a series of collection pipes installed beneath building and relies on convective flow of warmed air upward in the vent to draw air from beneath the slab.  Can also be achieved through opening or installing vents.  Usually done in conjunction with a vapor barrier.

Potentially applicable; retained for further evaluation.

Venting layerHigh‐permeability layer (e.g., gravel) installed between the building foundation and soil subgrade during construction to allow for air flow and passive venting. 

Retained; not practical to implement for existing buildings, but would be applicable to new construction.

Aerated floor systemModular, plastic concrete form system installed over subgrade; Concrete is poured over the forms to create floating or structural slabs with an under slab void that can be ventilated (actively or passively) to remove vapors.

Retained; not practical to implement for existing buildings, but would be applicable to new construction.

Subslab depressurization (SSD)

Extraction system applying negative pressure beneath the building slab to draw contaminants from beneath and venting the vapors to building exterior, usually above the roof line.  The system creates an area of negative pressure beneath the building floor slab, thereby preventing vapors from entering the building. 

Potentially applicable; retained for further evaluation.

Sub‐membrane depressurization (SMD)

Similar to SSD; most applicable to residential basements and crawl spaces with earthen floors. An impermeable membrane is applied to cover and seal the exposed soil surface, then negative pressure is applied to depressurize the area below the membrane and vapors drawn through the system are vented to the atmosphere.

Potentially applicable; retained for further evaluation.

Sub‐slab ventilation

Alternate design to SSD when soil permeability of the sub‐slab region is too high to maintain a pressure gradient under the building sufficient to maintain negative pressure.  A fan is used to pull large amounts of air (mostly from the atmosphere) down through the soil to dilute vapor contaminants.  Alternatively, the fan can be reversed to blow air beneath the slab to dilute vapors.

Potentially applicable; retained for further evaluation.

Building ventilation

Increase building ventilation (i.e., increasing the rate at which indoor air is replaced with outdoor air) using fans or natural ventilation to reduce the buildup of contaminants within indoor air.  Can be implemented as an interim "prompt response action."

Most applicable to commercial buildings; retained for further evaluation.

Building pressurizationModification of HVAC system to pressurize the building, which reduces or eliminates negative pressure differentials within the building that can allow for intrusion of contaminated vapors.

Most applicable to commercial buildings; retained for further evaluation.

Excavation and Offsite Disposal

Soil excavationExcavation of contaminated soils for offsite disposal to reduce the source of soil vapor contaminants. Excavation of soils containing VOCs may require measures to prevent exposure to workers and residents.  

Potentially applicable; retained for further evaluation.

Soil vapor extraction (SVE) SVEA vacuum system is applied to remove vapors from the vadose zone of the subsurface formation, which are subsequently treated ex situ; primarily used to treat VOCs.

Potentially applicable; retained for further evaluation.

Indoor air treatment Air treatment unit

Directs indoor air through air pollution control equipment to remove toxic air contaminants, rather than by preventing their entry into the building. Types include zeolite or GAC filters or photocatalytic oxidation units. Systems can be either in‐duct models or portable air cleaners.

Potentially applicable; retained for further evaluation.

Vapor‐phase carbon adsorption

Can be used in conjunction with active depressurization or SVE systems to treat collected soil vapor, if necessary; NESHAPs and MACTs should be reviewed.

Potentially applicable; retained for further evaluation.

Zeolite/ polymer adsorption

Can be used in conjunction with active depressurization or SVE systems to treat collected soil vapor, if necessary; NESHAPs and MACTs should be reviewed.

Potentially applicable; retained for further evaluation.

Thermal oxidationCan be used in conjunction with active depressurization or SVE systems to treat collected soil vapor, if necessary; NESHAPs and MACTs should be reviewed.

Potentially applicable; retained for further evaluation.

Notes:

ADT = active depressurization technologyCERCLA = Comprehensive Environmental Response, Compensation, and Liability ActCOC = contaminant of concernGAC = granular activated carbonHVAC = heating, ventilation, and air‐conditioningMACT = maximum achievable control technologyNCP = National Oil and Hazardous Substances Pollution Contingency PlanNESHAP = National Emissions Standards for Hazardous Air PollutantsO&M = operation and maintenance

SMD = Sub‐membrane depressurizationSSD = subslab depressurizationSVE = soil vapor extractionVOC = volatile organic compound

Treatment

Institutional controls

Vapor Intrusion Mitigation

Soil Vapor Source Removal

Building HVAC Adjustments

Monitoring

Active Depressurization Technology (ADT)

Offgas treatment

Sealants

Passive venting

Table 2‐8. Evaluation of Retained Groundwater Technologies and Process OptionsPike & Mulberry Streets PCE Plume Site Martinsville, IndianaGeneral Response 

Action

Remedial Technology 

Type

Technology Process 

Option Effectiveness Implementability Cost Screening Result

No Action No additional action No ActionWill not result in the attainment of the remedial action objectives (RAOs) in the foreseeable future

Can be easily implemented.No cost, other than 5‐year reviews

Retained as required by NCP for comparison purposes

Monitoring

Long‐term groundwater monitoring

Will not attain RAOs alone; however, can be used to monitor the effectiveness or completion of a remedy.

Can be easily implemented. Low Retained

Deed restrictionsGroundwater use restrictions

Effective in reducing ingestion of contaminated groundwater or exposure due to volatilization of contaminants. No reduction in toxicity, mobility, or volume of contaminants.

Can be easily implemented; some administrative requirements will apply.

Low Retained

New municipal well field

May not be effective; a new well field was previously evaluated for the community and rejected due to concerns of multiple other sources of groundwater contamination within the municipality that could be within the capture zone of a new well field.

Moderately difficult to implement; would require siting new pumping wells and constructing new infrastructure.

High Eliminated

Bottled waterWould be effective at reducing exposure via ingestion; may be more difficult to reduce exposure to contaminants from inhalation and dermal contact from washing. 

Moderately difficult to implement; would require distribution of bottled water to entire community.  Appropriate for short‐term action only.

High Eliminated

Vertical extraction systems

Pumping well system

May be effective at containing the migration of the groundwater plume and limiting exposure, but would not be as effective at reducing contaminant mass or volume within the aquifer.  Groundwater extraction wells would have to counter influence of municipal pumping wells.

Moderately easy to implement; common technology. High Eliminated

Horizontal extraction systems

Horizontal well system

May be effective at containing the migration of the groundwater plume and limiting exposure, but would not be as effective at reducing contaminant mass or volume within the aquifer.  Groundwater extraction wells would have to counter influence of municipal pumping wells.

Moderately difficult to implement; horizontal wells would require advanced drilling techniques and are only used in certain conditions.

High Eliminated

Chemical oxidation

Effective at reducing volume and toxicity of organic contaminants through treatment, although technology may not be as efficient for lower contaminant concentrations; may require multiple injections to achieve the PRGs.

Can be implemented; vendors that specialize in this technology are readily available.  Injection and distribution of oxidants may be more challenging given building infrastructure present within residential/commercial areas where the plume is located.

Moderate Retained

Chemical reductionEffective at reducing volume and toxicity of organic contaminants through treatment over time; may require bioaugmentation.

Can be implemented; vendors that specialize in this technology are readily available.  Injection and distribution of oxidants may be more challenging given building infrastructure present within residential/commercial areas where the plume is located.

Moderate Retained

Liquid sorptive‐reactive media

Effective at reducing contaminant mobility and preventing back‐diffusion, which allows natural attenuation to occur; can be an effective when combined as an enhancement to treatment technologies.

Can be implemented; although this technology is relatively new, several vendors are available that offer the technology and have successfully performed full‐scale applications, showing reductions of chlorinated COCs to below MCLs.

High Retained

Air spargingEffective at treating PCE and removing mass/volume of Site COCs from groundwater in areas where it can be effectively implemented.

Would require installation of significant infrastructure, including SVE system to collect vapors.  Would be difficult to implement over the extent of the plume having elevated concentrations of PCE due to the affected area, off‐site migration, and infrastructure present.

High, due to area of plume and infrastructure present.

Eliminated

In‐Well Air StrippingWould be effective at reducing contaminant toxicity and volume; PCE is volatile and can be stripped. 

Would be moderately easily implemented; treatment would be focused to a more limited network of stripping wells with vapor removal co‐located within the well.

Moderate Retained

Steam injection Would be effective at reducing contaminant toxicity and volume.

Would require installation of significant infrastructure, including extraction wells to collect vapors. Would be difficult to implement over the extent of the plume having elevated concentrations of PCE due to the affected area, off‐site migration, and infrastructure present.

High Eliminated

Thermal conductive heating

Would be effective at reducing contaminant toxicity and volume.

Would require installation of significant infrastructure, including heater wells, heating elements, and extraction wells to collect vapors. Would be difficult to implement over the extent of the plume having elevated concentrations of PCE due to the affected area, off‐site migration, and infrastructure present.

High Eliminated

Electrical resistance heating (ERH)

Would be less effective for sandy soil conditions; treatment is most effective for clay lenses and fine‐grained soils.

Would require installation of significant infrastructure, including electrodes and extraction wells to collect vapors. Would be difficult to implement over the extent of the plume having elevated concentrations of PCE due to the affected area, off‐site migration, and infrastructure present.

High Eliminated

BioremediationEnhanced biodegradation

Effective at reducing volume and toxicity of organic contaminants through treatment, although aerobic aquifer conditions are more challenging; may require bioaugmentation.

Can be implemented; vendors that specialize in this technology are readily available.  Injection and distribution of oxidants may be more challenging given building infrastructure present within residential/commercial areas where the plume is located.

Moderate Retained

Air strippingWould be effective at reducing contaminant mass/volume from extracted groundwater

Can be implemented; vendors that specialize in this technology are readily available. Installation of new process equipment may be challenging due to space constraints within the City water treatment plant.

High; extended time of treatment may be required

Retained

Steam strippingWould be effective at reducing contaminant mass/volume from extracted groundwater

Would be readily implemented for extracted groundwater; this technology is not applicable if groundwater extraction system is not implemented.

High; extended time of treatment may be required

Eliminated

Chemical oxidation/ reduction

Would be effective at reducing contaminant mass/volume and reducing contaminant toxicity for extracted groundwater

Would be readily implemented for extracted groundwater; this technology is not applicable if groundwater extraction system is not implemented.

High; extended time of treatment may be required

Eliminated

Advanced oxidationWould be effective at reducing contaminant mass/volume from extracted groundwater

Can be implemented; vendors that specialize in this technology are readily available. Installation of new process equipment may be challenging due to space constraints within the City water treatment plant.

High; extended time of treatment may be required

Retained

Liquid‐phase carbon adsorption

Has been proven to reduce PCE concentration from extracted groundwater at the City water treatment plant

Has already been implemented at the City water treatment plant

High; extended time of treatment may be required

Retained

Resin adsorptionWould be effective at reducing contaminant mass/volume from extracted groundwater

Would be readily implemented for extracted groundwater; this technology is not applicable if groundwater extraction system is not implemented.

High; extended time of treatment may be required

Eliminated

Injection

By itself, would not reduce contaminant volume, mobility, or toxicity or meet the RAOs; this technology would be used with groundwater extraction and ex situ treatment.

May be difficult to implement administratively due to permit requirements for injection of groundwater; other disposal options would be more easily implemented.

Low Eliminated

Discharge to surface water body

By itself, would not reduce contaminant volume, mobility, or toxicity or meet the RAOs; this technology would be used with groundwater extraction and ex situ treatment.

Moderately easy to implement; would likely be discharge to Nutter Creek, which would require NPDES permit.  Not applicable if groundwater extraction system is not implemented.

Low Eliminated

Discharge to sanitary sewer

By itself, would not reduce contaminant volume, mobility, or toxicity or meet the RAOs; this technology would be used with groundwater extraction and ex situ treatment.

Can be implemented if necessary. Not applicable if groundwater extraction system is not implemented. 

Low Eliminated

Natural attenuation Natural attenuation Natural attenuation

May not be effective via biological degradation due to aerobic conditions of the aquifer, but may be effective at reducing contaminant volume and toxicity through physical processes; further analysis is required.  May also be considered in combination with other technologies.

Easily implementable. Low Retained

Notes:

COC = contaminant of concernERH = electrical resistance heatingNCP = National Oil and Hazardous Substances Pollution Contingency PlanPCE = tetrachloroetheneRAO = remedial action objective

Institutional controls

Collection

DisposalOn‐site disposal (treated/ un‐treated)

In situ treatment

Physical/ chemical processes

Thermal treatment

Ex situ treatmentPhysical/ chemical processes

Alternate water supply

Table 2‐9. Evaluation of Retained Soil Vapor Technologies and Process OptionsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

General Response 

Action Remedial Technology Type Technology Process Option Effectiveness Implementability Cost Screening Result

No Action No additional action No ActionWill not result in the attainment of the remedial action objectives (RAOs) in the foreseeable future

Easily implementableNo cost, other than 5‐year reviews

Retained as required by NCP for comparison 

Mitigation system monitoring

Will not attain RAOs alone; however, can be used to monitor the effectiveness or completion of a remedy. Effective for assessing the operation of remediation system.

Moderately easy to implement; may require access agreements from building owners

Low Retained

Long‐term monitoring

Will not attain RAOs alone; however, can be used to monitor the effectiveness or completion of a remedy.  Effective for assessing if risk to receptors is reduced.

Moderately easy to implement; may require access agreements from building owners

Moderate Retained

Administrative restrictions Property use restrictionsModerate. Can be effective in reducing exposure to contaminants. No reduction in toxicity, mobility, or volume of contaminants.  Effective to ensure continued O&M of remedy.

Moderate; requires the current owner to implement many of the controls. Also requires working with the regulators. Legal aspects could require extended timeframe.

Low Retained

Targeted sealing of vapor entry points

Effective as an enhancement to venting technologies; minimally effective as a stand‐alone remedy.  Maintenance is required to maintain effectiveness.

Generally a simple technology; it is relatively easy to apply sealants.  However, it can be difficult to find and seal all of the openings. In addition, requires cooperation from building owners and may cause some disruption during installation.

Low Retained

Spray applicationsEffective for new construction; usually can take the place of a liner. May still require a venting layer.

Commonly used technology for new buildings; easy to moderate to implement.  Generally requires specialty equipment and vendors to install and must be within acceptable ambient temperature range.  Not implementable for existing buildings.

Moderate Retained

Liquid applicationsEffective at sealing vapor intrusion pathways on the building floor or slab.

Can be difficult to implement in occupied spaces in existing buildings; requires grinding the concrete slab prior to application.  Most applicable for commercial/industrial spaces.  Requires removal of all furniture and floor coverings for installation. Access to the building must be restricted during installation. Requires maintenance in high‐traffic areas.

High Retained

Liners Geomembrane linerEffective for new construction; usually constructed in conjunction with a passive venting layer. May need to consider chemical compatibility.

Commonly used technology for new buildings; easy to implement.  Does not require specialty equipment or vendors to install.  Not implementable for existing buildings.

Low to Moderate Retained

Passive venting

Less effective than active measures (EPA estimates 30 to 90 percent as efficient); can be subject to seasonal variations and can be unpredictable.  May not be effective in warmer months. Most applicable when vapor intrusion is minor concern.

Vertical vent pipes would be moderately easy to implement; horizontal pipe network in existing buildings would be more difficult.  If a membrane is also necessary, it would be difficult to implement in an existing building.

Moderate

Retained; may be applicable in some cases

Crawl space venting

Less effective than active measures; can be subject to seasonal variations and can be unpredictable.  May not be effective in warmer months. Most applicable when vapor intrusion is minor concern.  Requires maintenance to maintain effectiveness.

Moderately easy to implement, depending on the crawl space. Moderate

Retained; may be applicable in some cases

Venting layerEffective for new construction; usually constructed in conjunction with a geomembrane liner or spray‐applied liner.

Commonly used technology for new buildings; easy to implement.  Does not require specialty equipment or vendors to install.  Not implementable for existing buildings.

Moderate Retained

Aerated floor systemWould be effective for new construction as a passive venting layer; can also be actively ventilated.

Moderately easy to implement for new construction; requires form work and design from specialty vendors. Not implementable for existing buildings. 

Moderate to high Retained

Sub‐slab depressurization (SSD)

Generally highly effective; commonly‐used and well‐established technology to address indoor air concerns.  Requires constant operation to maintain effectiveness.

Can be moderately difficult to implement due to the need to install an active system, which require significant stakeholder communication due to long‐term O&M requirements.  May not be applicable to large commercial buildings.

HighRetained due to high effectiveness

Sub‐membrane depressurization (SMD)

Can be effective to address vapor intrusion from crawl spaces into residential buildings.  Membrane must be sealed gas tight to the foundation wall and additional care must be taken to maintain the integrity of the membrane.

Moderately difficult to implement active system.   High

Retained; may be applicable to certain building types

Sub‐slab ventilation or pressurization

May not be as effective as SSD, but may be more efficient for high‐permeability soils.  However, it can exacerbate vapor intrusion if there are preferential pathways in the slab.

Can be moderately difficult to implement due to the need to install an active system, which require significant stakeholder communication due to long‐term O&M requirements.

High

Eliminated; SSD is the preferred technology.

Building ventilation

Moderately effective for commercial spaces; Increase of ventilation must be done without reducing the pressure of the interior space, which could actually exacerbate vapor intrusion, and fresh air must be drawn into building (not recirculated).

Easily implemented for commercial spaces

Moderate; can result in increased O&M costs for energy to heat or cool/condition more outside air

Retained

Building pressurization

Can be effective for relatively new, "tight" commercial buildings; not recommended for residential buildings.  Regular maintenance and testing is required; can be difficult to maintain effectiveness due to required maintenance,  monitoring, and adjustments by building staff.

Can be implemented assuming current HVAC system is capable of providing positive pressure.  

Moderate can result in increased O&M costs for increased energy, maintenance, and pressure testing

Eliminated; building ventilation is the preferred HVAC adjustment technology.

Excavation and Offsite Disposal

Soil excavation

Effective in removing soil to reduce the source of COCs in soil vapor; not effective in reducing contaminant toxicity. Short‐term impacts to humans and the environment can be mitigated through environmental controls.

Can be implemented in part; contaminated soil acting as a source of COCs in soil vapor may be present underneath buildings and not readily accessible.  Other areas would require removal and replacement of portions of a parking lot.  

Moderate Retained

Soil vapor extraction (SVE) SVE

Would be effective at reducing contaminant volume and toxicity; SVE has already been implemented at the Site and shown to be effective.  Would be effective at controlling the migration of soil vapor into indoor air.

Can be implemented, but may require horizontal or directional drilling to install extraction wells beneath existing buildings.

Moderate Retained

Indoor air treatment Air treatment unitLess effective than other control measures; may be difficult to capture air contaminants.  Not appropriate for widespread application; for specialized cases only.

Moderately easy to implement; self‐contained units are available commercially.  However, the building occupants may have a heightened concerned of indoor air contamination. 

Low initial costs; can result in increased utility costs and filtration material O&M costs.

Eliminated; more effective and cost‐efficient measures available.

Vapor‐phase carbon adsorption

Highly effective; proven technology for offgas treatment.Readily implemented, but may require space for installation of vessel containing treatment media.

Moderate Retained

Zeolite/ polymer adsorption Highly effective; proven technology for offgas treatment.Readily implemented, but may require space for installation of vessel containing treatment media.

High

Eliminated; more cost‐efficient measures available

Thermal oxidation Highly effective; proven technology for offgas treatment.Readily implemented, but may require space for installation of oxidation system.

High

Eliminated; more cost‐efficient measures available

Notes:

ADT = active depressurization technologyCERCLA = Comprehensive Environmental Response, Compensation, and Liability ActCOC = contaminant of concernGAC = granular activated carbonHVAC = heating, ventilation, and air‐conditioningMACT = maximum achievable control technologyNCP = National Oil and Hazardous Substances Pollution Contingency PlanNESHAP = National Emissions Standards for Hazardous Air PollutantsO&M = operation and maintenance

SMD = Sub‐membrane depressurizationSSD = subslab depressurizationSVE = soil vapor extractionVOC = volatile organic compound

Treatment

Monitoring

Sealants

Active Depressurization Technology (ADT)

offgas treatment

Institutional controls

Building HVAC Adjustments

Soil Vapor Source Removal

Vapor Intrusion Mitigation

Passive venting

Table 2‐10. Technologies and Process Options Retained for Assembly into Groundwater AlternativesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

General Response Action Remedial Technology Type Technology Process Option

No Action No additional action No ActionMonitoring Long‐term groundwater monitoring

Deed restrictions Groundwater use restrictionsChemical oxidationChemical reductionLiquid sorptive‐reactive media

In‐well air strippingBioremediation Enhanced biodegradation

Air strippingAdvanced oxidationLiquid‐phase carbon adsorption

Natural attenuation Natural attenuation Natural attenuation

Institutional controls

In situ treatmentPhysical/ chemical processes

Physical/ chemical processesEx situ treatment

Table 2‐11. Technologies and Process Options Retained for Assembly into Soil Vapor AlternativesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

General Response Action Remedial Technology Type Technology Process Option

No Action No additional action No ActionMitigation system monitoring

Long‐term monitoring

Administrative restrictions Property use restrictionsTargeted sealing of vapor entry pointsSpray applicationsLiquid applications

Liners Geomembrane linerPassive ventingCrawl space ventingVenting layerAerated floor systemSubslab depressurization (SSD)Sub‐membrane depressurization (SMD)

Building HVAC Adjustments Building ventilationExcavation and Offsite Disposal Soil excavationSoil vapor extraction (SVE) SVE

Treatment Off‐gas treatment Vapor‐phase carbon adsorptionNotes:

ADT = active depressurization technologyHVAC = heating, ventilation, and air‐conditioningSMD = Sub‐membrane depressurizationSSD = subslab depressurizationSVE = soil vapor extraction

Soil Vapor Source Removal

Institutional controlsMonitoring

Vapor Intrusion Mitigation

Sealants

Passive venting

Active Depressurization Technology (ADT)

Table 3‐1. Preliminary Screening of Groundwater Alternatives Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Effectiveness Implementability Costa Screening Resultb

GW1 No Action LowEasily implemented; no actions would be taken.

No cost, other than 5‐year reviews

Retained

GW2 WTP and Institutional Controls

A ‐ Treatment at the City WTP with GAC  HighEasily implemented; currently in place at WTP

Moderate Retained

B ‐ Treatment at the City WTP using Air Stripping High Moderate to Difficult Moderate RetainedC ‐ Treatment at the City WTP using AOP Treatment High Moderate to Difficult High Retained

GW3 MNA and ICs Moderate Easily implemented Low to moderate Retained

GW4Enhanced In Situ Bioremediation, LTM, and InstitutionalControls

Moderate Moderate Moderate to high Eliminated

GW5 ISCR, LTM, and Institutional Controls High Moderate Moderate to high RetainedGW6 ISCO, LTM, and Institutional Controls  Moderate Moderate Moderate Retained

GW7 In Situ SRM, LTM, and Institutional Controls  Moderate Moderate High Eliminated

GW8 In‐Well Air Stripping, LTM, and Institutional Controls  Moderate Moderate to Difficult Moderate to high Eliminated

Notes:

AOP = advanced oxidation processCOC = contaminant of concernGAC = granular activated carbonISCO = in situ chemical oxidation ISCR = in situ chemical reductionLTM = long‐term monitoring

MNA = monitored natural attenuationSRM = sorptive‐reactive media

WTP = water treatment plant

Alternative

a The cost criterion is evaluated based on relative costs between alternatives depending on the process options included for each alternative. The costs are evaluated based on engineering judgement and assuming that soil and groundwater concentrations exceeding remediation goals are addressed.b Shaded alternatives are eliminated from further consideration for the detailed analysis based on effectiveness, implementability, and cost.

Table 3‐2. Preliminary Screening of Soil Vapor AlternativesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Effectiveness Implementability Costa

Screening Resultb

SV1 No Action LowEasily implemented; no actions would be taken.

No cost, other than 5‐year reviews

Retained

SV2 Pathway Sealing, LTM, and Institutional Controls Low Moderate Low Eliminated

SV3 Pathway Sealing, VIM, LTM, and Institutional Controls Moderate to High Moderate High Retained

SV4 Pathway Sealing, Source Removal, LTM, and Institutional Controls Moderate to High Moderate to Difficult Moderate to High Retained

SV5 Pathway Sealing, Source Removal, VIM, LTM, and Institutional Controls High Difficult High Retained

Notes:

COC = contaminant of concernLTM = long‐term monitoring

RAO = remedial action objectiveVIM = vapor intrusion mitigation

Alternative

a The cost criterion is evaluated based on relative costs between alternatives depending on the process options included for each alternative. The costs are evaluated based on engineering judgement and assuming that soil and groundwater concentrations exceeding remediation goals are addressed.b Shaded alternatives are eliminated from further consideration for the detailed analysis based on effectiveness, implementability, and cost.

Table 3‐3. Summary of PCE Concentration Trends in Shallow Groundwater for Select Monitoring Wells

Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Well ID

Well 

Depth

(ft bgs)

Screen 

Depth

(ft bgs)

Post SVE/AS 

Operation 

Sample Dates

Within 

SVE/AS 

Treatment 

Area

Adjacent to 

SVE/AS 

Treatment 

Area

Approximate 

Distance from 

Master Wear 

Facility (ft)

Direction from 

Master Wear 

Facility

GW Trend During 

SVE/AS Operationa 

(Jan 2005 ‐ April 2008)

GW Trend After 

SVE/AS Operation  Discussion of GW trends

MW‐1S 21 11‐2104/16/2015, 08/03/2015, 10/10/2015

Yes No 0 N/A Decreased Increased

Concentrations decreased by two orders of magnitude following start of system operation, then leveled off; concentrations increased after system operation following initial decrease.

MW‐2S 17 7‐1704/16/2015, 07/30/2015, 10/10/2015

Yes No 220NW ‐ 

DowngradientDecreased Increased

Concentrations decreased by two orders of magnitude following start of system operation. Concentrations have doubled (66 to 130 µg/L) since 2010.

MW‐3S 20 10‐2004/16/2015, 07/30/2015, 10/11/2015

Yes No 260North ‐ cross‐

gradientDecreased Stable

Concentrations decreased by one order of magnitude following start of system operation. Concentrations are generally stable (9.8 to 15 µg/L) since 2010.

MW‐4S 18 8‐1804/15/2015, 08/01/2015, 10/10/2015

No No 990 SE ‐ Upgradient Increased Decreased

Concentrations increased from non‐detect levels to 380 µg/L following start of system operation; an upgradient release is possible.  Concentrations have generally decreased since 2010.

MW‐5S 17 7‐1704/15/2015, 07/31/2015, 10/10/2015

No No 700WSW ‐ cross‐gradient

Variable Stable

Concentrations usually non‐detect during system operation; occasionally detected slightly above the MCL.  Concentrations have been below the MCL since 2010.

MW‐6S 20 10‐2004/17/2015, 07/31/2015, 10/09/2015

No No 490WNW ‐ cross‐

gradientVariable Variable

Concentrations varied between non‐detect and 53 µg/L during system operation.  Concentrations have varied between 1.6 and 23 µg/L since 2010.

MW‐9S 15 5‐1504/15/2015, 07/28/2015, 10/09/2015

No No 1510WSW ‐ cross‐gradient

Increased Increased

Concentrations increased from non‐detect to 26 µg/L during system operation.  Concentrations initially decreased following system operation, but then increased again from 4.6 to 23 µg/L.  Overall, concentrations seem stable.

MW‐13S 18 8‐1804/14/2015, 07/27/2015, 10/07/2015

No No 2040WSW ‐ cross‐gradient

Variable Stable

Concentrations varied from non‐detect to 12 µg/L during system operation.  Concentrations have been stable (range of 1.3 to 1.6 µg/L) after system operation.

MW‐15S 18 8‐1804/15/2015, 07/28/2015, 10/08/2015

No No 1760NW ‐ 

DowngradientVariable Increased

Concentrations increased from 9.8 to 40 µg/L during operation of SVE/AS system, then decreased at the end of system operation.  Concentrations have increased since 2010 from 4.5 to 22 µg/L.

MW‐16S 21 11‐2107/31/2015, 10/09/2015

No No 510NW ‐ 

DowngradientDecreased Stable

Concentrations decreased by an order of magnitude during SVE/AS system operation from 2,300 to 540 µg/L. Two concentrations after system operation are identical at 140 µg/L.  Overall, the concentrations have decreased.

MW‐17S 21 11‐2104/17/2015, 07/29/2015, 10/09/2015

No Yes 290WNW ‐ 

DowngradientDecreased Stable

Concentrations generally decreased during SVE/AS system operation (range of 55 to 25 µg/L).  Concentrations have been relatively stable since 2010.

Page 1 of 2

Table 3‐3. Summary of PCE Concentration Trends in Shallow Groundwater for Select Monitoring Wells

Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Well ID

Well 

Depth

(ft bgs)

Screen 

Depth

(ft bgs)

Post SVE/AS 

Operation 

Sample Dates

Within 

SVE/AS 

Treatment 

Area

Adjacent to 

SVE/AS 

Treatment 

Area

Approximate 

Distance from 

Master Wear 

Facility (ft)

Direction from 

Master Wear 

Facility

GW Trend During 

SVE/AS Operationa 

(Jan 2005 ‐ April 2008)

GW Trend After 

SVE/AS Operation  Discussion of GW trends

MW‐18S 20 10‐2004/17/2015, 07/29/2015, 10/11/2015

No Yes 150West ‐ cross‐gradient

Variable Stable

Concentrations varied from non‐detect to 8 µg/L during system operation.  Concentrations have been stable (range of 1.7 to 1.9 µg/L) and below the MCL after system operation.

MW‐19S 20 10‐2004/17/2015, 07/30/2015, 10/11/2015

No Yes 60SSW ‐ cross‐gradient

Stable (ND) Increased

Concentrations were non‐detect during system operation. Concentrations have increased since 2010 from 0.66 to 5 µg/L. 

MW‐20S 21 11‐2104/16/2015, 08/03/2015, 10/11/2015

No Yes 120 SE ‐ Upgradient Stable (ND) Variable

Concentrations were non‐detect during system operation. Concentrations have varied between 5.1 and 20 µg/L since 2010.

MW‐22S 22 12‐2204/17/2015, 08/03/2015, 10/11/2015

No Yes 270NNE ‐ cross‐gradient

Variable Variable

Concentrations varied from non‐detect to 34 µg/L during system operation.  Concentrations have varied between 3.6 and 25 µg/L after the system operation with three consecutive increasing concentrations.

Notes:

AS = air spargebgs = below ground surfaceft = feetNA = Not AvailableND = Not DetectedPCE = tetrachloroetheneTOC = Total Organic CarbonVOC = Volatile Organic Compound

Screen length is 10 ft for all wellsSVE = soil vapor extractionaConcentrations within monitoring wells that were not within or adjacent to the SVE/AS treatment area were analyzed for natural attenuation trends and not for the impact of the remediation system.

Page 2 of 2

Table 3‐4. Total Oxidant Demand ResultsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Sample Soil Groundwater

Permanganate 

Dosage (g/kg)

TOD48 

(g/kg)

TOD96 

(g/kg)

2.0 0.6 1.0

5.0 1.5 1.5

8.0 1.8 1.9

2.0 0.8 1.0

5.0 1.6 1.8

8.0 1.9 2.0

2.0 1.1 1.4

5.0 2.2 2.6

8.0 2.4 2.9

2.0 0.8 1.0

5.0 1.6 1.8

8.0 2.1 2.5

Notes:

TOD48 = total oxidant demand at 48 hoursTOD96 = total oxidant demand at 96 hours

TOD = total oxidant demand

g/kg = grams per kilogram

MW‐15 Slurry

MW‐16 Slurry

MW‐20 Slurry

MW‐22 Slurry

Analysis conducted during Phase 2 of the Remedial Investigation activities

MW‐15M

MW‐16M

MW‐20M

MW‐22M

MW‐15M

MW‐16M

MW‐20S

MW‐22S

Table 4‐1. Air Stripper Design ParametersPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Avg. Design Flow (mgd) 1

Peak Design Flow (mgd) 2

Type of Air Stripper Low Profile Packed Tower with Plastic Media or TraysHeight of air stripper (ft) 9

Packing or Tray Height (ft) 5

Materials of Construction 304 SS for unit, carbon steel blowerTarget Contaminant PCE Influent PCE 32 ppb Effluent PCE < 5 ppb

Air flow rate (scfm) 80

Air to Water Ratio 30:1 to 75:1Air Treatment vapor phase carbon adsorberExpected Removal of PCE > 0.85 Log ( < 5ppb)Feed Pump from air stripper to GAC columns Magnetic Drive Centrifugal Pump

Size of the blower motor (HP) TBD

Notes:

ft ‐ feetSS ‐ stainless steelmgd ‐ million gallons per dayscfm ‐ standard cubic feet per minute

PCE ‐ tetrachloroetheneHP ‐ horsepowerppb ‐ parts per billionTBD ‐ to be determined

Effluent Standards

Table 4‐2. AOP Design ParametersPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Avg. Design Flow (mgd) 1

Peak Design Flow (mgd) 2

Reactor Type Low Pressure High Output, Closed VesselNumber of Duty Reactors 1

Number of Redundant Reactors 1

Number of Total Reactors Two Closed Vessel Reactors (316L SS) in parallel Target Contaminant PCE Influent PCE 32 ppb Effluent PCE < 5 ppb

Design UVT (%) 90

Design UV Dose for Disinfection (mJ/cm2) 40

Design UV Dose for AOP (mJ/cm2) 500 ‐ 1,000Number of Lamps per UV reactor  96

Total Number of Lamps 192

Power consumption per UV configuration (kW) 96

Design Lamp Aging factor 0.7

Design Fouling Factor 0.95

Design EOLL Factor 0.67

Design H2O2 Dose (mg/L) 5

H2O2 Quenching Method Bisulfite

Notes:

ft ‐ feet

SS ‐ stainless steel

mgd ‐ million gallons per day

ppb ‐ parts per billion

PCE ‐ tetrachloroethylene

mJ/cm2 ‐ milliJoules per square centimeter

PCE ‐ tetrachloroethene

UV ‐ ultraviolet

EOLL ‐ end of lamp life

H2O2 ‐ hydrogen peroxide

mg/L ‐ milligrams per liter

kW ‐ kilowatt

UVT ‐ ultraviolet transmitting

UV Effluent Standards

Table 4‐3. Groundwater Alternative Sampling Frequency and Analytical ListPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Baseline Year 1 Year 2 Baseline Year 1 Year 2 Year 3 Baseline Year 1  Year 2Frequency Annual Annual Quarterly Semiannual Semiannual Quarterly Semiannual

Laboratory Analytical Parameters

VOCd X X X X X X X X X X

Metalse X X X X X X X

TOC X X X X X X X

Alkalinity X X X X X X X

Nitrate/Nitrite X X X X

Sulfate/Sulfite X X X X

MEEf X X X X

Microbial (qPCR)f X X X X

Field/Natural Attenuation Parameters

Dissolved Oxygen X X X X X X X X X X

ORP X X X X X X X X X X

Turbidity X X X X X X X X X X

pH X X X X X X X X X X

Conductivity X X X X X X X X X X

Oxidant Field Test X X X

Manganese Field Test X X X

Notesa After year 2, sampling will occur once every two years and the same analytes and field/natural attenuation parameters will be analyzed. Sampling is planned for 34 years.b After year 3, sampling will occur once every two years and the same analytes and field/natural attenuation parameters as Groundwater Alternative 2 will be analyzed. Sampling is planned for 17 years.c After year 2, sampling will occur once every two years and the same analytes and field/natural attenuation parameters as Groundwater Alternative 2 will be analyzed. Sampling is planned for 15 years.d GW3 and GW5 ‐ PCE, TCE, cis‐DCE, and VC only

      GW6 ‐ PCE, TCE, cis‐DCE, VC, acetone, and 2,4‐butanonee GW5 ‐ Iron(II) and Total Iron

      GW6 ‐ Cadmium, Chromium, and Copperf Will only be sampled during the last event of the year

MEE ‐ methane, ethane, ethene

ORP ‐ oxidation‐reduction potential

qPCR ‐ quantitative polymerase chain reaction

Alternative GW5bAlternative GW3a Alternative GW6c

Table 4‐4. Summary of Actions by Property ‐ Alternatives SV3 and SV5Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E‐06 1E‐05 1E‐04

VIM properties (percent sampled) 52% 37% 37%

LTM only properties (percent sampled) 26% 41% 41%

No Action properties (percent sampled) 22% 22% 22%

Total VIM properties 47 34 34

Total LTM only properties 24 37 37

Total No Action properties 20 20 20

Subtotal 91 91 91

VIM properties (percent sampled) 47% 37% 37%

LTM only properties (percent sampled) 42% 26% 26%

No Action properties (percent sampled) 11% 37% 37%

Total VIM properties 27 21 21

Total LTM only properties 24 15 15

Total No Action properties 6 21 21

Subtotal 57 57 57

Total VIM properties 74 55 55

Total LTM only properties 48 52 52

Total No Action properties 26 41 41

TOTAL 148 148 148

Notes:

LTM will also be conducted at VIM properties

ELCR ‐ excess lifetime cancer risk

LTM ‐ long‐term monitoring

VIM ‐ vapor intrusion mitigation

SUMMARY:

ELCR

Residential

Commercial/Industrial

All Properties

Table 4‐5. VIM Summary ‐ Alternatives SV3 and SV5Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E‐06 1E‐05 1E‐04

Total VIMs 100% 47 34 34

SSD systems 30% 14 10 10

SMD systems 22% 10 8 8

SSD/SMD combination 48% 23 16 16

Total VIMs 100% 27 21 21

SSD systems 75% 20 16 16

SMD systems 0% 0 0 0

SSD/SMD combination 25% 7 5 5

Total VIMs 100% 74 55 55

SSD systems 46% 34 26 26

SMD systems 14% 10 8 8

SSD/SMD combination 40% 29 22 22

Notes:

ELCR ‐ excess lifetime cancer risk

SMD ‐ submembrane depressurization

SSD ‐ subslab depressurization

SSD systems will be installed for buildings with full basements and slab‐on‐grade construction.

Percentages of each type of VIM were determined based on building construction recorded in building surveys.

SUMMARY:

ELCR

Residential

Commercial/Industrial

All Properties

SMD systems will be installed for buildings with crawlspaces.

SSD/SMD combination systems will be installed in buildings with partial crawlspaces. It is assumed that SMD will be installed over approximately half of the floor space area of the building.

Table 4‐6. Summary of Actions by Property ‐ Alternative SV4Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E‐06 1E‐05 1E‐04

VIM properties (percent sampled) 0% 0% 0%

LTM only properties (percent sampled) 78% 78% 78%

No Action properties (percent sampled) 22% 22% 22%

Total VIM properties 0 0 0

Total LTM only properties 71 71 71

Total No Action properties 20 20 20

Subtotal 91 91 91

VIM properties (percent sampled) 0% 0% 0%

LTM only properties (percent sampled) 89% 63% 63%

No Action properties (percent sampled) 11% 37% 37%

Total VIM properties 0 0 0

Total LTM only properties 51 36 36

Total No Action properties 6 21 21

Subtotal 57 57 57

Total VIM properties 0 0 0

Total LTM only properties 122 107 107

Total No Action properties 26 41 41

TOTAL 148 148 148

Notes:

LTM will also be conducted at VIM properties

ELCR ‐ excess lifetime cancer risk

LTM ‐ long‐term monitoring

VIM ‐ vapor intrusion mitigation

SUMMARY:

ELCR

Residential

Commercial/Industrial

All Properties

 

     PAGE 1 OF 3 

Table 4‐7a. Detailed Evaluation of Remedial Alternatives – Groundwater Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative 1—No Action 

Alternative 3—Monitored Natural Attenuation and Institutional Controls 

Alternative 5—In Situ Chemical Reduction, Long‐Term Monitoring, and Institutional Controls 

Alternative 6—In Situ Chemical Oxidation, Long‐Term Monitoring, and Institutional Controls 

1. Overall protection of human health and the environment 

Alternative would not provide protection of human health and the environment.  Groundwater exceeding PRGs remain in 

place and exposure to current and future residents and workers is possible. 

Does not prevent or minimize plume migration from the site. 

RAOs would not be met for current residents because COCs would remain in groundwater. 

Alternative would provide protection of human health and the environment. 

Natural attenuation would reduce PCE concentrations to the PRG after 34 years based on modeling. 

Institutional controls would prevent exposure of current and future residents and workers to COCs in groundwater. 

Alternative would provide protection of human health and the environment. 

An appropriately designed ISCR injection program would result in the removal of PCE within the groundwater plume where PCE concentrations are greater than 46 µg/L to achieve PRGs. 

Natural attenuation will reduce PCE concentrations to PRGs in the plume where concentration is less than 46 µg/L. 

Institutional controls would prevent exposure to groundwater to current and future residents and workers while the remedial action is implemented. 

Alternative would provide protection of human health and the environment. 

An appropriately designed ISCO injection program would result in the removal of PCE within the groundwater plume where PCE concentrations are greater than 46 µg/L to achieve PRGs. 

Natural attenuation would reduce PCE concentrations to PRGs in the plume where concentration is less than 46 µg/L. 

Institutional controls would prevent exposure to groundwater to current and future residents and workers while the remedial action is implemented. 

If sorbed soil contamination persists following completion of ISCO injections, rebound of PCE concentration could occur in the aquifer and this alternative may no longer effectively achieve RAOs. Rebound could be counteracted by effective monitoring and additional injection events. 

2. Compliance with ARARs  ARARs not met because no remedial action is taken to address unacceptable risk. 

Monitoring is not conducted, so remedial timeframe would remain unknown.  

Would not trigger location‐specific or action‐specific ARARs. 

ARARs would be met once natural attenuation reduces PCE concentration below the PRG. 

ARARs would be met once natural attenuation reduces PCE concentration below the PRG. 

ARARs would be met once natural attenuation reduces PCE concentration below the PRG. 

3.  Long‐term effectiveness and permanence 

       

(a)  Magnitude of residual risks 

Not applicable.  No active treatment is a part of this alternative. Residual risk would remain until natural attenuation processes reduced PCE concentrations to below its PRG. 

ISCR treatment would be designed to remove PCE across the plume where concentrations are greater than 46 µg/L and would meet long term remedial goals and RAOs. Residual risks due to PCE would be addressed by natural attenuation processes. 

Relocating wellfield after implementation of ISCR treatment would potentially increase the residual risk if groundwater flow direction changes as current design accounts for groundwater flow with wellfield in its current location. Overall effectiveness of ISCR treatment to remove PCE across the plume would decrease and timeframe required to achieve RAOs would increase. 

Treatment chemicals are expected to have a lifespan of approximately five years so no residual risks would exist due to these chemicals. 

ISCO treatment would be designed to remove PCE across the plume where concentrations are greater than 46 µg/L and would meet long‐term remedial goals and RAOs. Because the lifespan of permanganate would be shorter than that of an ISCR reagent, there is the possibility that only partial plume treatment would occur. However, residual risks due to PCE would be addressed by natural attenuation processes. 

Relocating wellfield after implementation of ISCO treatment would increase the residual risk if groundwater flow direction changes as current design accounts for groundwater flow with wellfield in its current location. Overall effectiveness of ISCO treatment to remove PCE across the plume would decrease and timeframe required to achieve RAOs would increase. 

Treatment chemicals are expected to have a lifespan  of approximately 2 years so little residual risks would exist due to these chemicals. 

(b)  Adequacy and reliability of controls 

Not applicable.  Institutional controls are adequate and reliable in preventing direct contact  

Expected to require long term monitoring of contaminants and natural attenuation parameters across the site. 

A five‐year review would be required to assess performance of this alternative and evaluate whether RAOS are being met. 

Institutional controls are adequate and reliable in preventing direct contact while PCE concentration is above its PRG. 

Expected to require long term monitoring of contaminants, natural attenuation parameters, and overall performance of the remedy. 

A five‐year review would be required to assess performance of this alternative and evaluate whether RAOs are being met. 

Same as Alternative 5. 

4.  Reduction of TMV through treatment       

(a)  Treatment process used  No treatment processes used.  No treatment processes used. Natural attenuation only. 

ISCR application results in reductive dechlorination of PCE to ethene.  ISCO application results in destructive oxidation of PCE to carbon dioxide, water, and chloride. 

(b)  Degree and quantity of TMV reduction 

None.  None.  Complete removal of PCE through reductive dechlorination processes is possible. No change in mobility.  

Complete removal of PCE through destructive oxidation processes where contact with contaminant is made. No change in mobility. 

(c)  Irreversibility of TMV reduction 

Not applicable.  Not applicable.  Chemical reduction is irreversible.   Chemical oxidation is irreversible.  

 

PAGE 2 OF 3     

Table 4‐7a. Detailed Evaluation of Remedial Alternatives – Groundwater Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative 1—No Action 

Alternative 3—Monitored Natural Attenuation and Institutional Controls 

Alternative 5—In Situ Chemical Reduction, Long‐Term Monitoring, and Institutional Controls 

Alternative 6—In Situ Chemical Oxidation, Long‐Term Monitoring, and Institutional Controls 

(d)  Type and quantity of treatment residuals 

Not applicable.  Not applicable.  Residual PCE with concentrations less than 46 µg/L would be addressed by natural attenuation processes. 

No treatment chemical residuals are expected long‐term. 

Same as Alternative 5. 

(e)  Statutory preference for treatment as a principal element  

Preference not met because no treatment included. 

Preference not met because no treatment included. 

Preference met because PCE is treated.   Same as Alternative 5. 

5.  Short‐term effectiveness         

(a)  Protection of workers during remedial action 

No remedial construction, so no risks to workers. 

Low to moderate risk to workers during installation of new monitoring wells due to drill rig. Proper health and safety procedures must be followed during well installation. 

 

Low to moderate risk to workers during installation of new monitoring wells due to drill rig. Proper health and safety procedures must be followed during well installation. 

Low to moderate risk to workers during mixing and direct push injection of chemicals into the target treatment interval due to mixing equipment and drill rig, respectively. Proper health and safety procedures must be followed during handling and chemical placement. 

Same as Alternative 5.  Moderate risk to workers during injection due to exposure to concentrated sodium 

permanganate. Proper health and safety procedures must be followed during handling of a strong oxidant and chemical placement. 

 

(b)  Protection of community during remedial action 

No remedial construction, so no short‐term risks to community. 

Limited risk to community during well installation due to the drill rig. 

Minimal risks to the community during drilling and direct push injection. All areas where work would be performed in the community would be blocked off to public access.  

Same as Alternative 5.  Increased risk during injections due to the transport of a strong oxidant into the 

injection areas around the community. 

(c)  Environmental impacts of remedial action 

No remedial construction, so no environmental impacts from remedial action. 

Nominal environmental impacts from drilling activity at the site would be expected compared to other alternatives.  

ISCR reagents added to the subsurface are non‐hazardous and are not expected to negatively impact the environment. 

Multiple surface penetrations would be required for injections across the site.  Environmental impacts would also include increased greenhouse gas emissions due 

to the operation of drill rigs during injections and well installation. 

Permanganates added to the subsurface are not expected to negatively impact the environment. 

Multiple surface penetrations would be required for injections across the site.  Environmental impacts would also include increased greenhouse gas emissions due to 

the operation of drill rigs during injections and well installation. 

(d)  Time until RAOs are achieved 

Not met.  Evaluation of long‐term monitoring results would be required to evaluate if RAOs were achieved. Modeling indicates RAOs would be achieved in 34 years. 

If the current wellfield were relocated, the timeframe to achieve RAOs would need to be remodeled since the groundwater flow direction may be affected by the location of the new wellfield. 

Evaluation of long‐term monitoring results would be required to evaluate if RAOs were achieved. Modeling indicates RAOs would be achieved in 17 years. 

Evaluation of long‐term monitoring results would be required to evaluate if RAOs were achieved. Modeling indicates RAOs would be achieved in 15 years.  

6. Implementability         

(a)  Technical feasibility  No impediments.  No impediments.  ISCR is a reliable technology and moderately easy to implement.   ISCR can have limitations with how rapidly it can be injected into the subsurface 

due to its viscosity and larger particle size for ZVI and how well the amendment is distributed during and after injection. 

Monitoring for reducing conditions within groundwater is easy to implement as part of LTM. 

The designed ISCR approach accounts for the groundwater flow direction influenced by the wellfield in its current location. Current approach may require modification if the wellfield were relocated as this could potentially affect the groundwater flow direction. 

ISCO is a reliable technology and easy to implement.  ISCO can be injected rapidly into the subsurface since ISCO reagents are typically 

dissolved in water.  ISCO can have limitations with how well the amendment is distributed during and after 

injection.  Monitoring for oxidizing conditions within groundwater and permanganate is easy to 

implement as part of LTM.  The designed ISCO approach accounts for the groundwater flow direction influenced by 

the wellfield in its current location. Current approach may require modification if the wellfield were relocated as this could potentially affect the groundwater flow direction. 

(b)  Administrative feasibility  No impediments.  Requires coordination with local, state, and federal entities to implement institutional controls (defining groundwater use and well drilling restrictions) and monitoring. 

Same as Alternative 3.  Coordination with the city would be required to re‐route and close roads as 

needed during injection activities. 

Same as Alternative 5. 

(c)  Availability of services and materials 

None needed  Services and materials are available.  Services and materials are available.  Same as Alternative 5. 

 

     PAGE 3 OF 3 

Table 4‐7a. Detailed Evaluation of Remedial Alternatives – Groundwater Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative 1—No Action 

Alternative 3—Monitored Natural Attenuation and Institutional Controls 

Alternative 5—In Situ Chemical Reduction, Long‐Term Monitoring, and Institutional Controls 

Alternative 6—In Situ Chemical Oxidation, Long‐Term Monitoring, and Institutional Controls 

7. Total Cost 

Direct Capital Cost Initial O&M Cost 

Total Periodic Cost Total Present Value 

  $0  $0  $0  $0 

  $0.16 million  $2.95 million  $0.18 million  $3.29 million 

  $0.97 million  $3.32 million  $0.10 million  $4.38 million 

     $1.33 million  $2.84 million  $0.10 million  $4.27 million 

 

Notes: 

µg/L = micrograms per liter       ARAR = applicable, relevant, and appropriate requirement     

ISCO = in situ chemical oxidation     ISCR = in situ chemical reduction 

LTM = long‐term monitoring      O&M = operation and maintenance  

PCE = tetrachloroethene      PRG = preliminary remediation goal 

RAO = remedial action objective    TMV = toxicity, mobility, or volume 

 

 PAGE 1 OF 2 

Table 4‐7b. Detailed Evaluation of Remedial Alternatives – Groundwater Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion Alternative 2A—Treatment at the City WTP with GAC and Institutional 

Controls Alternative 2B—Treatment at the City WTP using Air Stripping and 

Institutional Controls Alternative 2C—Treatment at the City WTP using AOP Treatment and 

Institutional Controls 

1. Overall protection of human health and theenvironment

Alternative would provide protection of human health and the environment.  Groundwater exceeding PRGs would continue to be extracted and would be 

treated through the existing GAC system, which would reduce PCE concentrations to below MCLs. 

Institutional controls would prevent exposure to groundwater to current andfuture residents and workers while the remedial action is implemented. 

Alternative would provide protection of human health and the environment.  Groundwater exceeding PRGs would continue to be extracted and 

would be treated through a newly installed air stripper, which wouldreduce PCE concentrations to below MCLs.

Institutional controls would prevent exposure to groundwater to current and future residents and workers while the remedial action isimplemented. 

Alternative would provide protection of human health and the environment.  Groundwater exceeding PRGs would continue be extracted and would be 

treated through a newly‐installed AOP treatment system, which would reduce PCE concentrations to below MCLs. 

Institutional controls would prevent exposure to groundwater to current andfuture residents and workers while the remedial action is implemented. 

2. Compliance with ARARs  ARARs would be met once natural attenuation reduces PCE concentration below the PRG. 

ARARs would be met once natural attenuation reduces PCE concentration below the PRG. 

ARARs would be met once natural attenuation reduces PCE concentration below the PRG.

3. Long‐term effectiveness and permanence

(a) Magnitude of residual risks Only water extracted would be treated. Same as Alternative 2A. Same as Alternative 2A.

(b) Adequacy and reliability of controls Institutional controls are adequate and reliable in preventing direct contact with and ingestion of untreated groundwater while PCE concentration is above its PRG. 

Same as Alternative 2A. Same as Alternative 2A.

4. Reduction of TMV through treatment 

(a) Treatment process used Extracted groundwater is passed through a reaction vessel containing GACwhere PCE adsorbs onto the carbon surface.

Removes PCE from extracted groundwater by forced high‐pressure air through either a tray or packed tower stripper. PCE is transferred from the liquid phase to gaseous phase and then vented to the atmosphereor treated in vapor phase, if necessary.

Destruction process that oxidizes PCE in water by the addition of a strongoxidizer and irradiation with UV light. 

(b) Degree and quantity of TMV reduction  All extracted water with PCE contamination can be removed by GAC. No change in mobility. 

All extracted water with PCE contamination can be removed through air stripping. No change in mobility. 

Complete removal of PCE through destructive oxidation processes where contact with contaminant is made. No change in mobility. 

(c) Irreversibility of TMV reduction PCE captured on GAC is irreversible. PCE transfer from the liquid phase to a gaseous phase is irreversible. Oxidation is irreversible.

(d) Type and quantity of treatment residuals 

Only extracted water is treated at approximately 700 gallons per minute.

The majority of the in situ PCE mass would be addressed by naturalattenuation processes. 

Same as Alternative 2A. Same as Alternative 2A.

(e) Statutory preference for treatment as a principal element

Preference not met because PCE high concentration areas are not treated. Same as Alternative 2A. Same as Alternative 2A.

5. Short‐term effectiveness

(a) Protection of workers during remedialaction 

No remedial construction required. No risk to workers. Low to moderate risk to workers during installation of new air stripper inside City WTP. 

Low to moderate risk to workers during installation of new AOP treatmentsystem inside City WTP. 

Moderate risk to workers during handling of strong oxidants. Proper health andsafety procedures must be followed. 

(b) Protection of community duringremedial action 

Existing operations are continued, and there is no remedial construction.Therefore, there is no short‐term risks to community. 

No short‐term risks to community from installation of new process treatment unit. 

Same as Alternative 2B.

(c) Environmental impacts of remedialaction 

Environmental impacts would include the disposal or regeneration of GAC. PCE would likely be vented to the atmosphere without treatment butconcentrations are low and not expected to negatively impact the environment. If necessary, offgas treatment could be implemented. 

Environmental impacts would include replacement and disposal of UV lights.

(d) Time until RAOs are achieved Long‐term monitoring would be required to evaluate if RAOs were achieved.With existing municipal well pumping, but without treatment of the high concentration areas and plume, modeling indicates that natural attenuation process would achieve RAOs in 34 years. 

Long‐term monitoring would be required to evaluate if RAOs wereachieved. With existing municipal well pumping, but without treatment of the high concentration areas and plume, modeling indicates that natural attenuation process would achieve RAOs in 34 years. 

Long‐term monitoring would be required to evaluate if RAOs were achieved.With existing municipal well pumping, but without treatment of the highconcentration areas and plume, modeling indicates that natural attenuation process would achieve RAOs in 34 years. 

 

PAGE 2 OF 2     

Table 4‐7b. Detailed Evaluation of Remedial Alternatives – Groundwater Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion Alternative 2A—Treatment at the City WTP with GAC and Institutional 

Controls Alternative 2B—Treatment at the City WTP using Air Stripping and 

Institutional Controls Alternative 2C—Treatment at the City WTP using AOP Treatment and 

Institutional Controls 

6. Implementability       

(a)  Technical feasibility  This alternative has already been implemented at the City WTP.  GAC replacement will need to occur every two to three years at its current 

usage rate.  More limited ability to expand treatment capacity within current City WTP if 

the demand for drinking water increases due to the size of the GAC vessels. Treatment capacity may be expanded up to approximately 25 percent using existing vessels. The size of the existing treatment building would not allow addition of another GAC vessel. 

Change to the location of the wellfield may affect groundwater flow direction and groundwater quality which may necessitate additional treatment other than GAC. 

Air stripping is a reliable technology and moderately easy to implement.  Air stripping can have limitations if bacterial growth fouls packing 

media.  Restrictions on venting of VOCs to the atmosphere may preclude the 

use of air stripping or require treatment of offgas.  Ability to expand treatment capacity within current City WTP if the 

demand for drinking water increases due to smaller system footprint compared to GAC vessels. 

Change to the location of the wellfield may affect groundwater flow direction and groundwater quality which may necessitate additional treatment other than air stripping. 

AOP is a reliable technology and moderately easy to implement.  AOP can be limited by water hardness. Buildup of iron and other materials can 

reduce the effectiveness of the UV lights.  Operators would need specialized training to operate UV equipment.  Ability to expand treatment capacity within current City WTP if the demand for 

drinking water increases due to smaller system footprint compared to GAC vessels. 

Change to the location of the wellfield may affect groundwater flow direction and groundwater quality which may necessitate additional treatment other than AOP. 

(b)  Administrative feasibility  Requires coordination with local, state, and federal entities to implement institutional controls (defining groundwater use and well drilling restrictions) and monitoring. 

Same as Alternative 2A. In addition, air permitting for VOC discharge may be required. 

Same as Alternative 2A. 

(c)  Availability of services and materials  Services and materials are available.  Same as Alternative 2A.  Same as Alternative 2A. 

7. Total Cost 

  

Cost of Alternative GW2A is provided as a part of Alternatives GW3, GW5, and GW6 (see Appendix D) 

  Cost of Alternative GW2B is provided as a part of Alternatives GW3, 

GW5, and GW6 (see Appendix D)  

  Cost of Alternative GW2C is provided as a part of Alternatives GW3, GW5, and 

GW6 (see Appendix D) 

Notes: 

AOP = advanced oxidation process    ARAR = applicable, relevant, and appropriate requirement     

GAC = granular activated carbon     ISCO = in situ chemical oxidation      

ISCR = in situ chemical reduction     LTM = long‐term monitoring   

MCL = maximum contaminant level    O&M = operation and maintenance  

PCE = tetrachloroethene      PRG = preliminary remediation goal 

RAO = remedial action objective    TMV = toxicity, mobility, or volume     

UV = ultraviolet        VOC = volatile organic compound 

WTP = water treatment plant 

 

 

 

     PAGE 1 OF 3 

Table 4‐8. Detailed Evaluation of Remedial Alternatives – Soil Vapor Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative SV1—No Action Alternative SV3—Pathway Sealing, VIM, LTM, and 

Institutional Controls Alternative SV4—Soil Vapor Source Removal, LTM, and 

Institutional Controls 

Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls   

1. Overall protection of human health and the environment 

Alternative would not provide protection of human health and the environment.  Not preventative of exposure to current or future 

receptors to contaminated soil vapor.   Adequate protection would not be provided from risks 

that may results from elevated PCE and TCE concentrations that could potentially migrate under current residential and/or commercial buildings.  

Alternative would provide protection of human health and the environment.  Mitigating subslab soil vapors through potential entry 

points and through active SSD or SMD to address risk to current receptors 

Without the implementation of soil vapor source removal, the mitigation just serves to interrupt the vapor intrusion pathway and does not remediate the source of soil vapor contamination.   

Technologies (SSD and/or SMD) would require maintenance over time and monitoring would be required to assure RAOs continue to be met. 

Alternative would not provide protection of human health and the environment. 

No VIM system to address current receptor risk associated with soil vapor. 

Soil vapor source removal addresses future receptor risk associated with soil vapor. 

Alternative would provide protection of human health and the environment.  Mitigating subslab soil vapors through potential entry points and through 

active SSD or SMD to address risk to current receptors.  Soil vapor source removal addresses future receptor risk associated with soil 

vapor.  Technologies (SSD and/or SMD) would require maintenance over time and 

monitoring would be required to assure RAOs continue to be met. 

 

2. Compliance with ARARs  ARARs not met because no remedial action is taken to address unacceptable risk. 

Monitoring of soil vapor is not conducted so remedial time frame would remain unknown. 

Would not involve activities that would trigger location‐specific or action‐specific ARARs. 

All ARARs are met. 

May require proper protection for air emissions from VIM systems. 

Chemical‐specific ARARs likely are not met until soil vapor source removal because residual material could continue to provide a source of soil vapor contamination. 

May require proper protection for air emissions from SVE system. 

All ARARs are met. 

May require proper protection for air emissions from SVE and VIM systems. 

 

3.  Long‐term effectiveness and permanence 

         

(a)  Magnitude of residual risks  Not applicable.  Exposure to contaminants in soil vapor would be prevented through sealing, VIM, and institutional controls. 

VIMs would address any potential future risk from subslab soil vapor to indoor air.  

Risks may also reduce through extraction and natural attenuation of COCs in subslab soil vapor; however, mass remains that could act as a continuing source of soil vapor contamination.  

VIM systems would require maintenance over time and would require periodic O&M until sampling indicates concentrations are below PRGs. 

Without VIM system in place, residual risk to current receptors would exist if soil vapor source removal is incomplete which would cause continued exposure to COCs remaining in soil vapor. 

Removal of soil vapor source material would reduce concentrations of COCs contributing to soil vapor and reduce residual risk. 

Any remaining material contributing to soil vapor contamination would be addressed by VIM. 

Risks would also be reduced through extraction and natural attenuation of COCs in subslab soil vapor. 

VIM systems would require maintenance over time and would require continuous O&M until sampling indicates concentrations are below PRGs. 

 

(b)  Adequacy and reliability of controls 

Not applicable.  Sealing technology with VIM is reliable.  

VIM monitoring would verify that site‐related VOC concentrations in indoor air do not exceed target levels.  

Five‐year reviews would be needed until subslab soil vapor concentrations do not pose potential risk to human health. 

Five‐year reviews would be needed until subslab soil vapor concentrations do not pose potential risk to human health. 

Sealing technology with VIM is reliable.  

VIM monitoring would verify that site‐related VOC concentrations in indoor air do not exceed target levels.  

Five‐year reviews would be needed until subslab soil vapor concentrations do not pose potential risk to human health. 

 

(c)  Potential environmental impacts of remedial action 

Not applicable.  Small amount of concrete debris and/or soil cuttings generated during drilling would be managed in accordance with state and federal requirements.  

Soil cuttings and excavated soil would be generated during SVE installation and soil vapor source soil removal activities, respectively, and would be managed in accordance with state and federal requirements. Offsite disposal of soil cuttings and excavated soil would result in loss of landfill space. 

SVE offgas treatment would be required to reduce environmental impact of COC venting to the atmosphere. 

Combined impacts from Alternative SV3 and SV4 are expected.   

 

PAGE 2 OF 3     

Table 4‐8. Detailed Evaluation of Remedial Alternatives – Soil Vapor Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative SV1—No Action Alternative SV3—Pathway Sealing, VIM, LTM, and 

Institutional Controls Alternative SV4—Soil Vapor Source Removal, LTM, and 

Institutional Controls 

Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls   

4.  Reduction of Toxicity, Mobility, or Volume through treatment         

(a)  Treatment process used and materials treated 

No treatment process used  No active treatment process used. Natural attenuation only and engineering controls to disrupt the vapor intrusion pathway from contaminated soil vapor in the subsurface. 

Soil vapor extraction removes COC through physical treatment process. 

Same as Alternative SV4.   

(b)  Degree and quantity of TMV reduction 

None.  None.   Any soil vapor contamination removed in‐situ using SVE would be adsorbed or destroyed using offgas treatment. 

Soil containing COCs would be removed during excavation and SVE treatment system installation. 

The previous SVE/AS system that operated during the TCRA was able to reduce PCE concentrations in soil near the Facility by 99 percent. 

Mobility of soil vapors would be increased during SVE due to the applied vacuum pressure to the subsurface. 

Toxicity of COCs would be reduced from offgas treatment. 

Same as Alternative SV4.   

(c)  Irreversibility of toxicity, mobility, or volume reduction 

Not applicable.  None.  Treatment would be irreversible due to physical removal of COCs in soil and soil vapor. However, residual COCs bound in soil or in groundwater could cause soil vapor concentrations to increase after SVE is stopped (i.e., rebound). 

Mobility would be reduced after SVE treatment is stopped  Offgas treatment of COCs is irreversible.  

Same as Alternative SV4.   

(d)  Type and quantity of treatment residuals that will remain following treatment 

Not applicable.  None.  Any residuals not within the radius of influence of extraction wells would remain in soil. However, natural attenuation processes would reduce residual COC concentrations over time. 

Any residuals not within the radius of influence of extraction wells would remain in soil. However, natural attenuation processes would reduce COC concentrations over time. 

Risk due to residual COCs would be addressed by VIM. 

 

(e)  Statutory preference for treatment as a principal element  

Preference not met because no treatment included.  Preference not met because no treatment included.  Preference met because COCs are removed through physical treatment by SVE.  

Same as Alternative SV4.   

5.  Short‐term effectiveness           

(a)  Protection of workers during remedial action 

No remedial construction, so no risks to workers.  Low risk during VIM system installation due to potential COC exposure in soil vapor. Proper health and safety procedures must be followed during VIM installation.  

Low to moderate risk to workers during installation of soil vapor extraction points or directional drilling due to equipment and potential COC exposure in soil vapor. Proper health and safety procedures must be followed during the construction phase. 

Same as Alternative SV3 and SV4.   

(b)  Protection of community during remedial action 

No remedial construction, so no short‐term risks to community. 

Limited risk to community during VIM system construction. 

Increased risks to the community during SVE system construction due to the increased transport of materials on and off the site and drilling activities.

Same as Alternative SV3 and SV4.   

(c)  Environmental impacts of remedial action 

No remedial construction, so no environmental impacts from remedial action. 

Relatively high potential impacts. Long‐term system monitoring and maintenance require years of trips to the site, and operation of active depressurization system requires significant energy, resulting in high greenhouse gases, total energy, and air emissions. Because soil vapor source removal does not occur, the VIM systems would operate perpetually until natural attenuation processes diminish COC concentrations to below PRGs. 

Drilling activities, SVE treatment system installation, and excavation activities are not expected to negatively impact the environment. 

Removal of some contaminated soil during SVE system installation and excavation activities would potentially impact the environment if soil cuttings and excavated soil were not managed properly. 

Improper offgas treatment implementation and management of the SVE system would potentially impact the environment by releasing COC vapors into the air 

Operation of the SVE system would require significant energy during its five‐year operation period, resulting in high greenhouse gases and total energy use. 

Same as Alternative SV3 and SV4.   

(d)  Time until RAOs are achieved 

Not met.  The RAO is achieved once VIM systems are installed and operational.  

RAOs are assumed to be achieved after SVE operations reduce soil vapor concentration of COCs to below their respective PRGs. Monitoring would be required to confirm indoor air concentrations are below appropriate risk levels. 

Same as Alternative SV4. 

 

     PAGE 3 OF 3 

Table 4‐8. Detailed Evaluation of Remedial Alternatives – Soil Vapor Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana 

Alternative Description: Criterion  Alternative SV1—No Action Alternative SV3—Pathway Sealing, VIM, LTM, and 

Institutional Controls Alternative SV4—Soil Vapor Source Removal, LTM, and 

Institutional Controls 

Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls   

6. Implementability         

(a)  Technical feasibility  No impediments.  The alternative is implementable and maintainable.  The main technical challenges come from installing SVE wells within city limits around active buildings and potentially obtaining access to inside the former Master Wear facility in order to target the proper treatment areas. 

Same as Alternative SV4. 

(b)  Administrative feasibility  No impediments.  Would be difficult to coordinate installation of VIM systems with all property owners and receive access agreement to perpetually operate, monitor, and maintain the VIM systems. 

Requires coordination with local, state, and federal entities to implement institutional controls (such as defining buildings that would require LTM, deed restrictions, and future implementation of VIM systems) and monitoring. 

Would be less difficult than Alternative SV3 to coordinate monitoring of properties versus operating a VIM system. 

Requires coordination with local, state, and federal entities to implement institutional controls (such as defining buildings that would require LTM and deed restrictions) and monitoring. 

Same as Alternative SV3. 

(c)  Availability of equipment, services, and materials 

None needed.  Services and materials are available.  Services and materials are available.  Services and materials are available. 

7. Total Costa 

Direct Capital Cost Initial O&M Cost 

Total Periodic Cost Total Present Value 

  $0  $0  $0  $0 

 

  $6.22/$4.96 million  $1.84/$1.84 million  $0.82/$0.63 million  $8.9/$7.4 million 

  $2.44/$2.27 million  $1.03/$1.03 million  $0.03/$0.03 million  $3.5/$3.3 million 

     $7.3/$6.08 million  $1.46/$1.40 million  $0.06/$0.06 million  $8.8/$7.5 million 

 

Notes: a Costs are provided for ELCR = 10‐6/10‐5 or 10‐4 

ARAR = applicable, relevant, and appropriate requirement 

COC = contaminants of concern 

LTM = long term monitoring 

O&M = operation and maintenance 

PCE = tetrachloroethene 

RAO = remedial action objective 

SSD = subslab depressurization 

SMD = submembrane depressurization 

SVE = soil vapor extraction 

TCE = trichloroethene 

TMV = toxicity, mobility, or volume 

VIM = vapor intrusion mitigation 

Table 4‐9. Comparative Evaluation Summary of Groundwater Remedial AlternativesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Alternative 1 Alternative 3 Alternative 5 Alternative 6

No ActionMonitored Natural Attenuation 

and Institutional ControlsIn Situ Chemical Reduction and 

Institutional ControlsIn Situ Chemical Oxidation and 

Institutional ControlsOverall protectiveness of human health and the environment Does Not Meet Criteria Meets Threshold Criteria Meets Threshold Criteria Meets Threshold CriteriaCompliance with ARARs Does Not Meet Criteria Meets Threshold Criteria Meets Threshold Criteria Meets Threshold CriteriaLong‐term effectiveness and permanence 4 3 1 2

Reduction of toxicity, mobility, or volume through treatment 4 3 2 1

Short‐term effectiveness 1 2 3 4

Implementability 1 2 4 3

Cost 1 ($0) 2 ($3.29 million) 4 ($4.38 million) 3 ($4.27 million)

Notes:  The numbers 1 through 4 represent relative rankings within each evaluation criteria and not a score, with 1 being high and 4 being low.

Evaluation Criteria

Groundwater Alternatives

Table 4‐10. Comparative Evaluation Summary of Soil Vapor Remedial AlternativesPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Alternative 1 Alternative 3 Alternative 4 Alternative 5

No ActionPathway Sealing, VIM, LTM, and 

Institutional ControlsPathway Sealing, Soil Vapor Source 

Removal, LTM, and Institutional ControlsPathway Sealing, Soil Vapor Source Removal, 

VIM, LTM, and Institutional ControlsOverall protectiveness of human health and the environment Does Not Meet Criteria Meets Threshold Criteria Does Not Meet Criteria Meets Threshold CriteriaCompliance with ARARs Does Not Meet Criteria Meets Threshold Criteria Does Not Meet Criteria Meets Threshold CriteriaLong‐term effectiveness and permanence 1 3 2 4

Reduction of toxicity, mobility, or volume through treatment 4 3 1 1

Short‐term effectiveness 4 3 2 1

Implementability 4 3 2 1

Costb

1 ($0) 4 ($8.9/$7.4 million) 2 ($3.5/$3.3 million) 3 ($8.8/$7.5 million)

Notes:  a The numbers 1 through 4 represent relative rankings within each evaluation criteria and not a scoreb Costs are provided for ELCR = 10 ‐6

/10‐5 or 10‐4

LTM = long‐term monitoring

VIM = vapor intrusion mitigation

Soil Vapor Alternatives

Evaluation Criteriaa

Figures

FIGURE 1-1Site Location MapFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

¬«37

¬«67¬«39

Martinsville, IN

Site Location

Morton Ave

W C ol lege Av e

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-1_Site_Location.mxd User Name: AESPEJO Date: 3/27/2018

Martinsville, IN

0 0.50.25

Miles

$

White

River

$1!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!(!(

!(

!(!(!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!.

!.

!.

MW-8

MW-7

MW-6

MW-5

MW-4

MW-3

MW-2

MW-1

MW-36

MW-35

MW-34

MW-33

MW-32

MW-31

MW-29

MW-28

MW-27

MW-26

MW-22

MW-21

MW-20MW-19MW-18

MW-17

MW-16

MW-15

MW-11

MW-10

Master Wear

Junkyard

Kent Cleaners

Semi-truck repair

Black Lumber Company

Central Dry Cleaners

Artesian City Cleaners

W Columbus St E Columbus St

W Washington St E Washington St

E Jackson StW Jackson St

E Morgan StW Morgan St

E Pike StW Pike St

E Harrison StW Harrison St

W Highland St

N J

effe

rson S

t

N S

ycam

ore

St

N W

ayn

e S

t

N O

hio

St

N M

ain

St

N M

ulb

err

y S

t

N M

ari

on S

t

N C

herr

y S

t

N C

herr

y S

t

S C

herr

y S

t

S M

ari

on S

t

S M

ulb

err

y S

t

S M

ain

St

S J

effe

rson S

t

S S

yca

mo

re S

t

S W

ayne S

t

The Manitorium Cleaners

WaterTreatment Plant

Nutte

r Ditc

h

MW-30

MW-9

MW-25

MW-24

MW-23

MW-14

MW-13

MW-12

PW1

PW2

PW3

SG-16

SG-17

SG-10

SG-18

SG-09

SG-07SG-08

SG-11

SG-13

SG-12

SG-15

SG-14

SG-02

SG-01SG-04

SG-06

SG-05

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

!U Monitoring Well

!. Municipal Well

!( Permanent Soil Vapor Probe Location

Residential

Commercial/Industrial

Municipal Wellfield

Water Treatment Plant

FIGURE 1-2Site Features and Land UseFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-2_Site_Features_and_Land_Use.mxd User Name: AESPEJO Date: 3/27/2018

Note:Location of Nutter Ditch is approximate.

$1Master Wear

Junkyard

Kent Cleaners

Semi-truckrepair

Black LumberCompany

Central Dry Cleaners

ArtesianCity Cleaners

The ManitoriumCleaners

Twigg Corp.

FormerHarman-Motive

Martinsville Cleaners

O'Neal's Clothes Depot

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

FIGURE 1-3Possible PCE Plume SourcesFeasibility Study ReporPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 600300

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-3_Possible_PCE_Plume_Sources.mxd User Name: AESPEJO Date: 3/27/2018

Note:Possible sources were identified by the Indiana Department

of Environmental Management (IDEM) in the Hazard RankingSystem (HRS) evaluation for the Site.

FIGURE 3-3A - A' Cross Section LocationPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

$1!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!(!(

!(

!(!(!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!.

!.!.

!

W Columbus St E Columbus St

W Washington St E Washington St

E Jackson StW Jackson St

E Morgan StW Morgan St

E Pike StW Pike St

E Harrison StW Harrison St

W Highland St

N J

effe

rson

St

N S

ycam

ore

St

N W

ayne

St

N O

hio

St

N M

ain

St

N M

ulbe

rry

St

N M

ario

n S

t

N C

herr

y S

t

N C

herr

y S

t

S C

herr

yS

t

SM

ario

nS

t

S M

ulbe

rry

St

S M

ain

St

S J

effe

rson

St

S S

ycam

ore

St

S W

ayne

St

BlackLumber Company

Semi-truck repairJunkyard

Central Dry Cleaners

Kent Cleaners

The ManitoriumCleaners

Master Wear Site

Artesian City Cleaners

Nut

ter D

itch

WaterTreatment Plant

A

A'

SG-16

SG-17

SG-10

SG-18

SG-09

SG-07SG-08

SG-11

SG-13

SG-12

SG-15

SG-14

SG-02SG-01

SG-04

SG-03

SG-06SG-05

MW-8

MW-7

MW-6

MW-5

MW-4

MW-3

MW-2

MW-1

MW-36

MW-35

MW-34

MW-33

MW-32

MW-31

MW-30

MW-29

MW-28

MW-27MW-26

MW-21

MW-19

MW-18

MW-17

MW-16

MW-15

MW-11

MW-10

MW-9S

MW-25S

MW-24S

MW-23S

MW-14S

MW-13S

MW-12S

PW1PW2

PW3

MW-22

MW-20

LEGENDPossible Source

$1 Master Wear Site

!U Monitoring Well

!. Municipal Well

!. Residential Well

!( Permanent Soil Vapor Probe Location

A-A' Cross Section

Water Treatment Plant

MKE - \\MKEFPP01\PROJ\GIS\PIKE_MULBERRY\MAPFILES\2015_GWMONITORINGREPORT\PHASE2\RI\FIG3-3_CROSSSECTION_LOCATION.MXD AESPEJO 9/8/2016 1:33:09 PM

0 187.5 375

Feet

$

Notes:

Groundwater data from 10/7/2015

Boring log from 7/12/2004 shows silt/sandy loam/sandy clay lenses between 49 ft bgs and 56 ft bgs

Well Screen Interval

Residual soil contamination in vicinity of MW-1 and under adjacent buildings.

SVE/AS system operated from January 7, 2005 through November 9, 2006; then from August 9, 2007 through March 31, 2008.

TD = Total Depth

P = Tetrachloroethene

T = Trichloroethene

ft = feet

amsl = above mean sea level

U = analyte not detected above detection limit

µg/L = micrograms per liter

Former Master Wear Facility

5 µg/L5 µg/L50 µg/L

100 µg/L50 µg/L

100 µg/L

Dept

h (ft

am

sl)

Bedrock

Sand and Gravel Aquifer

Fill, Lean Clays, and Silts

PW-1 M

W-1

5 S,

M

MW

-11B

MW

-16

S, M

, B

MW

-2 S

, M, B

MW

-18S

MW

-19S

MW

-34S

MW

-4 S

, M, B

MW

-35S

MW

-33S

VICINITY MAP

600

590

580

570

560

550

540

530

520

510

500

490

480

PW-2

PW-3

MW

-7 S

, M, B

MW

-1 S

, M, B

ANW

A'SE

A'A'

AA

MW

-26

S

EN1003161124MKE Figure_1-4_V4.ai 04.06.2018 tdaus

Figure 1-4Geologic Cross SectionFeasibility Study ReportPike and Mulberry Streets PCE Plume Site Martinsville, Indiana

TD=83 ftP=0.2JT=0.1J

TD=82 ftP=18T=0.4J

TD=18 ftP=22T=0.5U

TD=18 ftP=0.5T=0.5U

TD=21 ftP=140T=0.2J

TD=17 ftP=120T=0.23 TD=21 ft

P=240T=1.6

TD=23 ftP=95T=0.5U

TD=21 ftP=1.4T=0.5U

TD=21 ftP=0.2JT=0.5U

TD=18 ftP=150T=0.5U

TD=43 ftP=19T=0.5U

TD=42 ftP=0.2JT=0.5U

TD=45 ftP=0.6T=0.5U

TD=45 ftP=0.5JT=0.5U

TD=64 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U TD=67 ft

P=0.35T=0.5U

TD=60 ftP=0.6T=0.5U

TD=99 ftP=0.5UT=0.5U

TD=18 ftP=11T=0.1J

TD=51 ftP=0.5UT=0.5U

TD=83 ftP=0.2JT=0.1J

TD=82 ftP=18T=0.4J

TD=18 ftP=22T=0.5U

TD=18 ftP=0.5T=0.5U

TD=21 ftP=140T=0.2J

TD=17 ftP=120T=0.23 TD=21 ft

P=240T=1.6

TD=23 ftP=95T=0.5U

TD=21 ftP=1.4T=0.5U

TD=21 ftP=0.2JT=0.5U

TD=18 ftP=150T=0.5U

TD=43 ftP=19T=0.5U

TD=42 ftP=0.2JT=0.5U

TD=45 ftP=0.6T=0.5U

TD=45 ftP=0.5JT=0.5U

TD=64 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U TD=67 ft

P=0.35T=0.5U

TD=60 ftP=0.6T=0.5U

TD=99 ftP=0.5UT=0.5U

TD=18 ftP=11T=0.1J

TD=51 ftP=0.5UT=0.5U

Notes:1. S = Monitoring wells screened in Shallow water

bearing zone2. Water level measurements used to develop the

potentiometric surface for the Pike and Mulberry RI

monitoring wells were collected on October 7, 20153. Elevation in feet above mean sea level (NGVD)

$1&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&< &<

&<

&<

&<

&<

&<

&<&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

!.

!.

!.

MW-9S584.11

MW-8S584.84

MW-7S584.86

MW-6S585.07

MW-5S584.95

MW-4S590.85

MW-3S585.45

MW-36S588.57

MW-34S587.71

MW-33S593.35

MW-32S590.22

MW-31S585.34

MW-30S584.35

MW-29S587.61

MW-28S590.32

MW-27S585.43

MW-26S584.29

MW-25S583.00

MW-24S582.90

MW-23S583.58

MW-22S585.54

MW-20S585.93

MW-16S584.95

MW-15S583.20

MW-14S583.23

MW-13S583.31

MW-12S583.69

MW-11S585.02

MW-10S583.80

MW-2S585.37

MW-1S586.18

MW-35S591.45

MW-21S585.77

MW-19S585.70

MW-18S585.55

MW-17S585.35

Kent Cleaners

TheManitorium

Cleaners

BlackLumberCompany

Junkyard Semi-truckrepair

Artesian CityCleaners

Central DryCleaners

Master Wear

WTP

585

584

585

583

586

588

589

590

587

591 592

593

PW1

PW2

PW3LEGEND

&<Well Screened in ShallowWater Bearing Zone

!. Municipal Well

Potential Past PCE User

$1 Former Master Wear Facility

Shallow Potentiometric SurfaceContours (dashed where inferred)

Groundwater Flow Direction

FIGURE 1-5Potentiometric Surface -Shallow Water Bearing ZoneFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-5_PotentiometricSurface_Shallow.mxd User Name: AESPEJO Date: 4/6/2018

Notes:1. M = Monitoring wells screened in Intermediate

water bearing zone2. Water level measurements used to develop the

potentiometric surface were collected on October 7, 2015

3. Elevation in feet above mean sea level (NGVD)

$1&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

!.

!.

!.

Master Wear

Junkyard

KentCleaners

Semi-truckrepair

Black LumberCompany

CentralDry Cleaners

Artesian CityCleaners

The ManitoriumCleaners

WTPWTP

584

583

585586

587588

589 590591

592

593

594

MW-20MNA

MW-9M584.12

MW-8M584.81

MW-7M584.85

MW-6M585.03

MW-5M584.96

MW-4M594.27

MW-3M585.42

MW-2M585.28

MW-1M585.68

MW-36M588.66

MW-27M585.04

MW-22M587.04

MW-16M584.97

MW-15M583.23

MW-12M583.23

MW-11M584.00

MW-10M583.74

PW1

PW2

PW3

LEGEND

&<Wells Screened in Intermediate WaterBearing Zone

!. Municipal Well

Potential Past PCE User

$1 Former Master Wear Facility

Intermediate Potentiometric SurfaceContours (dashed where inferred)

Groundwater Flow Direction

FIGURE 1-6Potentiometric Surface -Intermediate Water Bearing ZoneFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 300150

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-6_PotentiometricSurface_Intermediate.mxd User Name: AESPEJO Date: 4/6/2018

Notes:1. B = Monitoring wells screened at top of bedrock

2. Water level measurements used to develop thepotentiometric surface were collected on October 7, 2015

3. * Water table elevation for MW-7B not used for

depicting equipotential metric contours as it is consideredanomolous

4. Elevation in feet above mean sea level (NGVD)

$1&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

&<

!.

!.

!.

&<

MW-9B584.13

MW-7B*583.84

MW-6B585.02

MW-5B584.98

MW-4B594.38

MW-3B585.39

MW-2B585.26

MW-1B585.71

MW-11B584.00

MW-10B583.78

MW-16BAbandoned

584

585

586

587

588

589

590

591

592

593

594

Master Wear

Junkyard

KentCleaners

Semi-truckrepair

Black LumberCompany

CentralDry Cleaners

Artesian CityCleaners

WTP

The ManitoriumCleaners

PW1

PW2

PW3

LEGEND

&< Abandoned Well

&< Wells Screened at Top of Bedrock

!. Municipal Well

Potential Past PCE User

$1 Former Master Wear Facility

Bedrock Potentiometric SurfaceContours (dashed where inferred)

Groundwater Flow Direction

FIGURE 1-7Potentiometric Surface -Top of Bedrock Water Bearing ZoneFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 300150

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-7_PotentiometricSurface_Bedrock.mxd User Name: AESPEJO Date: 4/6/2018

!!.!!.

!!.

!!.!!.!!.

!!.

!!.

!!.

!!.

!!.

!!.

!!.

!!.

!!.

WTP

MW-25S

MW-24S

MW-14S

MW-13S

MW-23S

MW-30S

MW-31S

MW-19S

MW-17S MW-21S

B

MW-26S

MW-18S

SG-05

Junkyard

Kent Cleaners

Semi-truckrepair

Black LumberCompany

CentralDry Cleaners

Artesian City Cleaners

The Manitorium CleanersMaster Wear

W Cunningham St

N M

aple

St

N E

llio

tt A

ve

N C

he

rry S

t

N M

ario

n S

t

W Highland St

N M

ai n

St

N J

ef fe

rso

n S

t

N S

ycam

ore

St

Eslin

ge

r A

ve

N M

ulb

err

y S

t

W Harrison St

N R

eid

St

S W

est

St

Shir

ley D

r

W Washington

E Morgan St

E Columbus St

E Jackson St

E Pike St

W Morgan St

MW-6S, M, B

MW-22S, M

MW-15S, M

MW-11S, M, B

MW-7S, M, B

MW-9S, M, B

MW-8S, M

MW-5S, M, B

MW-3S, M, B

MW-1S, M, B

MW-36S, M

MW-27S, M

MW-20S, M

MW-16S, M,

MW-12S, M

MW-10S, M, B

MW-4S, M, B

MW-2S, M, B

MW-35S

MW-34S

MW-33S

MW-32S

MW-29S

MW-28S

SG-16

SG-17SG-18

SG-07

SG-13

SG-12

SG-15

SG-14

SG-02

SG-01

SG-04

SG-03

SG-06

SG-11

SG-08

SG-09

SG-10

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

!U Monitoring Well

!. Soil Vapor Probe

!! Detected Below SL

!! Detected Above SL

!! Not Detected

MW-023S

0-1 ft

5-6 ft

MW-024S

0-1 ft

7-8 ft

MW-025S

0-1 ft

8-9 ft

MW-027M

2-3 ft

13-14 ft

MW-028S

0-1 ft

10-11 ft

MW-030S

0-1 ft

4-5 ftMW-031S

0-1 ft

8-9 ft

MW-032S

0-1 ft

10-11 ft

MW-033S

0-1 ft

10-11 ft

MW-036M

2-3 ft

18-19 ft

SG-6

1-2 ft

9-10 ft

SG-13

0-1 ft

5-6 ft

SG-17

0-1 ft

8-9 ft

ANALYTESCREENING

LEVEL

Trichloroethene 410

Te trachloroethe ne 8,100

Analyte 2-3 ft 5-6 ft

PCE 4 UJ 6 J

TCE 4 UJ 4 UJ

MW-015M

7/18/2015

Analyte 2-3 ft 12-13 ft

PCE 3 U 49 J

TCE 3 U 4 UJ

7/17/2015

MW-016M

Analyte 2-3 ft 11-12 ft

PCE 2 J 2 J

TCE 4 UJ 4 UJ

MW-020M

7/19/2015

Analyte 2-3 ft 13-14 ft

PCE 2 J 3 J

TCE 3 UJ 4 UJ

MW-022M

7/18/2015

Analyte 0-1 ft 8-9 ft

PCE 4 U 0.9 J

TCE 4 U 4 UJ

MW-026S

7/21/2015

Analyte 0-1 ft 13-14 ft

PCE 4 U 14

TCE 4 U 4 U

MW-029S

7/22/2015

Analyte 3-4 ft 12-13 ft

PCE 2 J 160 J

TCE 4 UJ 4 UJ

MW-034S

7/27/2015

Analyte 0-1 ft 10-11 ft

PCE 1 J 12 J

TCE 4 UJ 4 UJ

MW-035S

7/27/2015

Analyte 1-2 ft 9-10 ft

PCE 24 85

TCE 2 J 0.9 J

SG-2

7/31/2015

Analyte 1-2 ft 9-10 ft

PCE 7 80

TCE 4 U 5 U

SG-3

7/31/2015

Analyte 1-2 ft 9-10 ft

PCE 0.7 J 17

TCE 3 U 4 U

7/31/2015

SG-4

Analyte 1-2 ft 9-10 ft

PCE 21 J 25 J

TCE 4 UJ 4 UJ

SG-5

8/1/2015

Analyte 1-2 ft 9-10 ft

PCE 5 U 3 J

TCE 5 U 6 U

SG-8

7/31/2015

Analyte 1-2 ft 10-11 ft

PCE 5 U 1 J

TCE 5 U 5 UJ

SG-9

7/30/2015

Analyte 0-1 ft 8-9 ft

PCE 4 UJ 0.7 J

TCE 4 UJ 3 UJ

SG-10

7/30/2015

Analyte 0-1 ft 8-9 ft

PCE 4 UJ 3 J

TCE 4 UJ 4 UJ

7/30/2015

SG-12

Analyte 1-2 ft 8-9 ft

PCE 5 UJ 1 J

TCE 5 U 3 UJ

SG-15

7/27/2015

Analyte 0-1 ft 9-10 ft

PCE 4 UJ 11

TCE 4 UJ 5 U

SG-16

7/30/2015

Analyte 1-2 ft 9-10 ft

PCE 6 U 69

TCE 6 U 6 U

SG-18

7/31/2015

Analyte 1-2 ft 9-10 ft

PCE 7,400 2,200

TCE 3,600 28

cis-DCE 1300 13

t-DCE 150J 4U

SG-1

7/31/2015

MW-25S

MW-24S

MW-23S

MW-31S

MW-27M

MW-36M

MW-28S

MW-33S

MW-32S

MW-30S

MW-16M

MW-15M

MW-26S

MW-20M

MW-34S MW-29S

MW-35S

MW-22M

Notes:1. Shaded cells indicate result exceeds screening level2. Bold indicates the analyte was detected3. Units are micrograms per kilogram (µg/Kg)4. Screening Level is the EPA residential Regional Screening Level, updated May 2016. 5. = Abandoned6. PCE = Tetrachloroethene7. TCE = Trichloroethene8. cis-DCE = cis-1,2-dichloroethene9. t-DCE = trans-1,2-dichloroethene10. J = Estimated detection

11. U = Result not detected12. UJ = Estimated result not detected

B

FIGURE 1-8VOC Concentrations in Soil -

Phase 2 (July/August 2015)

Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-8_VOC_Conc_in_Soil.mxd User Name: AESPEJO Date: 3/27/2018

$1

!

!.

!.

!.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U !U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

Ma

ple

St

N E

llio

tt A

ve

N C

he

rry S

t

N M

ari

on

St

W Highland St

N M

ain

St

N J

ef fe

rso

n S

t

N S

yca

mo

r e S

t

Eslin

ge

r A

ve

N M

ulb

err

y S

t

W Harrison St

N R

eid

St

S W

est S

t

Sh

irle

y D

r

W Washington

E Morgan St

E Columbus St

E Jackson St

E Pike St

W Morgan St

PW-2

PW-3

Master Wear

Junkyard

Kent Cleaners

Semi-truckrepair

Black LumberCompany

CentralDry Cleaners

Artesian City Cleaners

TheManitorium

Cleaners

WTP

MW-25S

MW-12S

MW-15S

MW-11S

MW-8S

MW-27S

MW-36S

MW-28S

MW-34S

MW-20S

MW-19S

MW-1S

MW-21S

MW-22S

MW-2S

MW-3S

MW-7S

MW-26S

MW-14S

MW-13S

MW-23S

MW-9S

MW-10S

MW-5S

MW-6S

MW-17S

MW-24S

18S

MW-16S

MW-30S

MW-31S

MW-29S

MW-32S

MW-33S

MW-4S

MW-35S

PW-1

St .

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

!U Monitoring Well

!. Municipal Well

!! Detected Below SL

!! Detected Above SL

!! Not Detected

Notes:1. PCE screening level (SL) = 5 μg/L2. Concentrations shown are PCE from the shallow aquifer zone3. All concentrations are in units of μg/L4. Bold indicates the analyte was detected5. Shading = Exceeds screening levels6. J = Estimated detection7. PCE = tetrachloroethene8. U = Result not detected9. μg/L = micrograms per liter

8/3/2010 4/16/2015 7/31/2015 10/9/2015

11 22 21 18

PW-1

7/28/2010 4/16/2015 8/3/2015 10/10/2015

130 170 110 240

MW-1S

7/27/2010 4/16/2015 7/30/2015 10/10/2015

66 110 89 130

MW-2S

7/28/2010 4/16/2015 7/30/2015 10/11/2015

15 11 9.8 14

MW-3S

7/27/2010 4/15/2015 8/1/2015 10/10/2015

180 120 110 150

MW-4S

7/26/2010 4/15/2015 7/31/2015 10/10/2015

2.3 2.5 2.8 3.5

MW-5S

7/26/2010 4/17/2015 7/31/2015 10/9/2015

1.9 1.6 21 23

MW-6S

7/28/2010 4/16/2015 7/29/2015 10/8/2015

0.29 J 0.7 0.5 J 0.5

MW-7S

7/27/2010 4/15/2015 7/28/2015 10/8/2015

0.22 J 0.3 J 0.2 J 0.3 J

MW-8S

7/27/2010 4/15/2015 7/28/2015 10/9/2015

4.6 10 12 23

MW-9S

7/26/2010 4/14/2015 7/28/2015 10/8/2015

0.5 U 0.2 J 0.4 J 0.3 J

MW-10S

7/27/2010 4/15/2015 7/30/2015 10/8/2015

1.6 3.5 2.7 3.3

MW-11S

7/28/2010 4/15/2015 7/28/2015 10/8/2015

0.5 U 0.5 U 0.5 U 0.5 U

MW-12S

7/28/2010 4/14/2015 7/27/2015 10/7/2015

1.6 1.3 1.6 1.5

MW-13S

4/15/2015 7/27/2015 10/7/2015

0.5 U 0.5 U 0.1 J

MW-14S

7/28/2010 4/15/2015 7/28/2015 10/8/2015

4.5 7.5 9.9 22

MW-15S

7/13/2015 10/9/2015

140 140

MW-16S

4/17/2015 7/29/2015 10/9/2015

15 12 11

MW-17S

4/17/2015 7/29/2015 10/11/2015

1.8 1.7 1.9

MW-18S

7/28/2010 4/17/2015 7/30/2015 10/11/2015

0.66 2.3 1.3 5.0

MW-19S

7/28/2010 4/16/2015 8/3/2015 10/11/2015

5.1 20 5.5 7.9

MW-20S

4/17/2015 7/30/2015 10/10/2015

0.5 J 0.5 J 0.6

MW-21S

7/28/2010 4/17/2015 8/3/2015 10/11/2015

11 3.6 6.3 25

MW-22S7/31/2015 7/31/2015 10/9/2015

8 7.8 12

MW-23S

8/1/2015 10/7/2015

0.2 J 0.3 J

MW-24S

7/31/2015 10/8/2015

0.5 U 0.5 U

MW-25S

7/29/2015 10/10/2015

13 J 11

MW-26S

8/1/2015 10/10/2015

0.1 J 0.2 J

MW-27S

8/1/2015 10/9/2015

6.6 8.4

MW-28S

8/3/2015 10/9/2015

17 19

MW-29S

8/1/2015 10/9/2015

0.5 U 0.2 J

MW-30S

8/1/2015 10/9/2015

0.3 J 0.3 J

MW-31S

8/1/2015 10/12/2015

0.5 J 0.2 J

MW-32S

8/2/2015 10/11/2015

0.1 J 0.2 J

MW-33S

8/1/2015 10/12/2015

110 95

MW-34S

8/2/2015 10/12/2015

6.7 1.4

MW-35S

8/2/2015 10/12/2015

4.7 5.3

MW-36S

FIGURE 1-9PCE Concentrations in Shallow

Groundwater (2010-2015)

Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-9_PCE_All_Results.mxd User Name: AESPEJO Date: 3/27/2018

$1

!.

!.

!.

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

Kent Cleaners

The ManitoriumCleaners

BlackLumberComp any

Junky ardSemi-truckrep air

ArtesianCityCleaners

Central DryCleaners

PW-118

PW-2

PW-3

MW-23S12

MW-9S23

MW-6S23

MW-2S130

MW-29S19

MW-17S11

MW-5S3.5

MW-4S150

MW-3S14

MW-1S240

MW-36S5.3

MW-35S1.4

MW-34S95

MW-28S8.4

MW-22S25

MW-20S7.9MW-19S

5.0

MW-18S1.9

MW-16S140

MW-15S22

MW-13S1.5

MW-11S0.5

MW-26S11

MW-8S0.3 J

MW-7S0.5 J

MW-33S0.2 J

MW-32S0.2 J

MW-31S0.3 J

MW-30S0.2 J

MW-27S0.2 J

MW-25S0.5 U

MW-24S0.3 J

MW-14S0.1 J

MW-12S0.5 U

MW-10S0.3 J

MW-21S0.6

Master Wear

WTP

5

5

5

5

46

100

100

46

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

Monitoring Well!U Detected Above MCL

!U Detected Below MCL

!U Not Detected

Municip al Wells (PW)!. Detected Above MCL

!. Detected Below MCL

!. Not Detected

Groundw ater Contour Concentrations (μg /L)100

46

5

FIGURE 1-10PCE Exceedances inShallow Groundw ater - Phase 3Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-10_PCE_GW_Exceedances_Ph3.mxd User Name: AESPEJO Date: 3/27/2018

Notes:1. EPA = U.S. Environmental Protection Agency

2. G = indicates groundwater grab sample collected from soil boring at approximately 10 ft. below ground surface3. J = Estimated detection

4. MCL = Maximum Contaminant Level5. PCE = tetrachloroethene6. U = Result not detected

7. UJ = Estimated result not detected8. µg/L = micrograms per liter9. Dashed lines indicate where plume is inferred or estimated

10. PCE screening level (SL) = 5 µg/L11. PCE in intermediate well MW-7M was 24 µg/L

$1

!.

!.

!.

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U !U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

WTP

MW-25S0.5 U

MW-24S0.3

MW-14S0.5

MW-13S1.6

MW-23S12

MW-30S0.5

MW-31S0.3

MW-19S5

MW-17S15

MW-21S0.6

MW-26S

13

MW-18S1.9

MW-6S23

E Morgan St

MW-4S, M, B

MW-34S

MW-1S

MW-2S

Junkyard

Kent Cleaners

Semi-truck

repair

Black Lumber

Company

Central

Dry Cleaners

Artesian City

Cleaners

The Manitorium CleanersMaster Wear

W Cunningham St

N M

ap

le S

t

N E

llio

tt A

ve

N C

he

rry S

t

N M

ari

on

St

W Highland St

N M

ai n

St

N J

ef fe

rso

n S

t

N S

yca

mo

re S

tEslin

ge

r A

ve

N M

ulb

err

y S

t

W Harrison St

N R

eid

St

S W

est

St

Sh

irle

y D

r

W Washington

E Columbus St

W Jackson St

E Pike St

W Morgan St

MW-22S

MW-15S22

MW-11S3.5

MW-7S

0.7

MW-9S23

MW-8S0.3

MW-5S3.5

MW-3S14 MW-36S

5.3

MW-27S0.2

MW-20S20

MW-12S0.5 U

MW-10S

0.4

PW-1PW-2

PW-3

MW-35S6.7 MW-33S

0.2

MW-32S

0.5

MW-29S19

MW-28S8.4

MW-16S

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

Monitoring Well

!U Detected Above VISL

!U Detected Below VISL

!U Not Detected

Municipal Wells (PW)

!. Detected Below VISL

!. Not Detected

Maximum PCE Concentrations inShallow Groundwater that Exceededthe Residential VISL of 25 µg/L

Notes:1. Shaded cells indicate that the result exceeded screening level (VISL).2. Bold indicates that the analyte was detected.3. VISLs are based on EPA calculator, Version 3.5.1, updated with May 2016 RSLs, a residential exposure scenario, a target Excess Lifetime Cancer Risk of 10-6, a Hazard Index of 1, and an average groundwater temperature for Phases 1 through 3 of 15.9 degrees C.4. Only shallow groundater results were screened.5. Only PCE groundwater concentrations exceeded the VISL.6. The maximum PCE concentration in shallow wells during Phases

1 through 3 (shown on the figure) was used to determine the area exceeding the VISL.7. All units are in micrograms per liter (μg/l).8. EPA = U.S. Environmental Protection Agency9. J = estimated detection10. PCE = tetrachloroethene11. RSL = regional screening level12. U = result not detected13. VISL = Vapor Intrusion Screening Level

FIGURE 1-11PCE Exceedances of VISL in Shallow

Groundwater (Phases 1 through 3)

Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-11_GW_VISL_PCE.mxd User Name: AESPEJO Date: 3/27/2018

PCE 25 µg/l

Analyte VISL

PCE 170 110 240

Analyte

(µg/l)

MW-1S

4/16/2015 8/3/2015 10/10/2015

PCE 110 89 130

Analyte

(µg/l)

MW-2S

4/16/2015 7/30/2015 10/10/2015

PCE 120 110 150

Analyte

(µg/l)

MW-4S

4/15/2015 8/1/2015 10/10/2015

PCE 3.6 6.3 25

Analyte

(µg/l)

MW-22S

4/17/2015 8/3/2015 10/11/2015

PCE 140 140

Analyte

(µg/l)

MW-16S

7/31/2015 10/9/2015

PCE 110 95

Analyte

(µg/l)

MW-34S

8/1/2015 10/12/2015

$1

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!( !(

!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!( !(

!(!(

!(

!(

!(

!(

!(

!(

!( !(

!(!(

!(

!( !(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

#I#I

#I

#I#I#I

#I

#I

#I

#I

#I

#I #I

#I

#I

#I

#I

#I

!.

!.!.

!(!(!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

HAP-076TCE 27.5

HAP-075TCE 65.6

HAP-012TCE 127.9

HAP-044TCE 32.2 U

HAP-041TCE 32.2 U

HAP-043TCE 16.1 U

HAP-023TCE 80.6 U

HAP-011TCE 32.2 U

HAP-002TCE 13.4 U

SG-07TCE 54 U

SG-02TCE 1100SG-04

TCE 36 J

SG-18TCE 110 U

SG-03TCE 25 J

SG-01TCE 16000

W Columbus StE Columbus St

W Washington St E Washington St

E Jackson StW Jackson St

E Morgan StW Morgan St

E Pike StW Pike St

E Harrison StW Harrison St

W Highland St

N J

effe

rson S

t

N S

yca

more

St

N W

ayne S

t

N O

hio

St

N M

ain

St

N C

herr

y S

t

N M

ari

on S

t

S C

he

rry S

t

S M

arion S

t

S M

ulb

err

y S

t

S M

ain

St

S J

effers

on S

t

S S

ycam

ore

St S

Wayn

e S

t

HAP-85TCE 32.2 U

Master WearHAP-161

TCE 32.2 U

N G

rah

am

St

S L

incoln

St

N G

ran

t S

t

S C

olfax S

tN

Colfax S

t

S G

rant S

t

N L

inco

ln S

t

S G

raham

St

Black Lumber Company

Junkyard Central Dry Cleaners

Martinsville Cleaners

O'Neal's Clothes Depot

Artesian City Cleaners

The Manitorium Cleaners

Semi-truck repair

Kent Cleaners

16

16

16

16

16

70

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

!. Municipal Well

Residential (129.5)

Commercial/Industrial (90.5)

No Sampling (park or parking lot) (18)

TCE Isocontours16

70

1000

TCE Concentrations

#IPermanent Soil Vapor Probe withresults of TCE greater than the VISL

#IPermanent Soil Vapor Probe withDetection Limit greater than the VISL

#IPermanent Soil Vapor Probe withresults of TCE below the VISL

!(Temporary Soil Vapor Point with HAPSITEresults of TCE greater than the VISL

!(Temporary Soil Vapor Probe withDetection Limit greater than the VISL

!(Temporary Soil Vapor Point withHAPSITE results of TCE below the VISL

Notes: 1. All units are in µg/m³2. TCE VISL is 16 µg/m³3. VISLs are based on EPA VISL Calculator Version 3.5.1 (EPA 2016) with May 2016 RSLs, a residential exposure scenario, target Excess Lifetime Cancer Risk (ELCR) of 1x10-6, and a Hazard Index of 14. The 70 contour line represents the ELCR of 1x10-55. U = HAPSITE result is non-detect6. E = HAPSITE result exceeds calibration range and result is Estimated7. TCE = trichloroethene8. VISL = Vapor Intrusion Screening Level

All permanent soil vapor probe locations had soil vapor resultsthat exceeded the TCE VISLs in August and October 2015except for SG-6, SG-13, and SG-17.

FIGURE 1-12TCE Soil Vapor Results (Phases 2 through 5)and Property Type DesignationsFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 400200

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig1-12_PH2-5_TCE_Isocontour_Exceed.mxd User Name: AESPEJO Date: 3/27/2018

$1

#I#I

#I

#I#I#I

#I

#I

#I

#I

#I

#I #I

#I

#I

#I

#I

#I

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!( !(

!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!( !(

!(!(

!(

!(

!(

!(

!(

!(

!( !(

!(!(

!(

!( !(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!.

!.!.

!(!(!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

HAP-148PCE 692

HAP-110PCE 518

HAP-96PCE 2774

HAP-85PCE 4604

HAP-161PCE 8693

HAP-147PCE 2238

HAP-142PCE 2428

HAP-84PCE 23870

HAP-88PCE 1844.48

HAP-137PCE 4319.62

HAP-121PCE 1898.73

HAP-076PCE 463

HAP-054PCE 685

HAP-050PCE 773 HAP-049

PCE 675HAP-048PCE 492

HAP-035PCE 547

HAP-042PCE 902

HAP-006PCE 848

HAP-032PCE 875

HAP-009PCE 739

HAP-044PCE 6449 HAP-073

PCE 2224

HAP-072PCE 1261

HAP-071PCE 1160

HAP-045PCE 2095

HAP-053PCE 2807

HAP-041PCE 7391

HAP-043PCE 3608

HAP-021PCE 1295

HAP-028PCE 1783

HAP-022PCE 3519

HAP-024PCE 1729

HAP-007PCE 1044 HAP-008

PCE 1255

HAP-010PCE 1492

HAP-012PCE 5961

HAP-017PCE 1661

HAP-023PCE 30380

HAP-011PCE 21089 E

HAP-003PCE 1200.27

HAP-002PCE 1254.52

SG-10PCE 900

SG-14PCE 410

SG-16PCE 2000

SG-09PCE 1300

SG-08PCE 1000

SG-11PCE 1400

SG-12PCE 1500

SG-15PCE 1300

SG-18PCE 35000

SG-02PCE 38000SG-04

PCE 42000

SG-05PCE 13000

SG-03PCE 29000

SG-07PCE 5600 D

W Colum b us St

E Washin gton St

E Ja c kson StW Ja c kson St

E Morga n St

N Jefferson St

N Sycamore St

N Wayne St

N Ohio St

N Main St

N Mulberry St

N Cherry St

N Marion St

S Cherry St

S Marion St

S Mulberry St

S Main St

S Jefferson St

S Sycamore St S W

ayne St

SG-01PCE 180000

Master Wear

W Morga n St

W Pike St

W Ha rrison St

W Highla n d St

Bla c k L um b er Compa n y

Jun kya rdSem i-truc k repa ir

W Washin gton St T he Ma n itorium Clea n ers

Ken t Clea n ersArtesia n City Clea n ers

O'Nea l's Clothes Depot

Ma rtin sville Clea n ers

E Pike St

E Ha rrison St

N Graham St

N Grant St

N Colfax St

N Lincoln St

E Colum b us St

E Washin gton St

S Lincoln St

S Colfax St

S Grant St

S Graham St

Cen tra l Dry Clea n ers

360

1400

5000

15000

25000

360

5000

360

1400

5000

5000

15000

1400

L EGENDPoten tia l Pa st PCE U ser

$1 Form er Ma ster Wea r Fa c ility!. Mun ic ipa l Well

Residen tia l (129.5)Com m erc ia l/In dustria l (90.5)No Sa m plin g (pa rk or pa rkin g lot) (18)

PCE IsocontoursValue

360140050001500025000

PCE Concentrations#I

Perm a n en t Soil V apor Prob e withresults of PCE grea ter tha n the V ISL

#IPerm a n en t Soil V apor Prob e withresults of PCE b elow the V ISL

!(T em pora ry Soil V a por Poin t with HAPSIT Eresults of PCE grea ter tha n the V ISL

!(T em pora ry Soil V a por Poin t withHAPSIT E results of PCE b elow the V ISL

Notes: 1. All un its a re in µg/m ³2. PCE V ISL is 360 μg/m ³3. V ISL s a re b a sed on EPA V ISL Ca lculator V ersion 3.5.1 (EPA 2016) with Ma y 2016 RSL s, a residen tia l exposure sc en a rio, ta rget Exc ess L ifetim e Ca n c er Risk (EL CR) of 1x10-6, a n d a Ha za rd In dex of 14. T he 1400 con tour lin e represen ts the EL CR of 1x10-55. U = HAPSIT E result is n on -detec t6. E = HAPSIT E result exc eeds c a lib ra tion ra n ge a n d result is Estim ated7. PCE = tetra c hloroethen e8. V ISL = V apor In trusion Sc reen in g L evelAll perm a n en t soil va por prob e loc a tion s ha d soil vapor resultsthat exc eeded the PCE V ISL s in August a n d Oc tob er 2015exc ept for SG-6, SG-13, a n d SG-17.

FIGURE 1-13PCE Soil Vapor Results (Phases 2 through 5)and Property Type DesignationsFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 400200Feet

$

MKE - R:\ENBG\00_ Proj\E\EPA\Pike_ Mulb erry\MapFiles\FS\Fig1-13_ PH2-5_ PCE_ Isocon tour_ Exc eed.m xd U ser Na m e: AESPEJO Date: 3/27/2018

Figure 1-14 has been removed entirely from this redacted version of the document to protect personally identifiable information. For questions, please contact the EPA Work Assignment Manager, Erik Hardin, at (312) 886-2402.

!. PW3

PW2PW1

PW3

!. PW2!. PW1

JunkyardJunkyardSemi-truck RepairSemi-truck Repair

Central Dry CleanersCentral Dry CleanersMW-4MW-4

MW-35MW-35

Artesian City CleanersArtesian City CleanersKent CleanersKent Cleaners

Black Lumber CompanyBlack Lumber Company

!U!U

!U

!U

!U

!U

!U !U

!U!U

!U!U

!U

!U!U!U

!U!U

!U

!U

!U!U

!U

!U

!U

#0

#0

#0#0

#0

#0

#0#0

#0

#0#0

#0

#0 #0#0

#0

#0#0$1

WTPWTP

MW-24MW-24

MW-23MW-23

MW-25MW-25

MW-15MW-15

!UMW-14MW-14

MW-9MW-9

!UMW-10MW-10

!UMW-13MW-13

MW-8MW-8

MW-22MW-22

MW-21MW-21 MW-20MW-20

MW-19MW-19

MW-36MW-36

MW-34MW-34

MW-28MW-28

MW-36MW-36

!UMW-7MW-7 MW-3MW-3

SG-15SG-15

SG-06SG-06 SG-05SG-05

SG-12SG-12SG-10SG-10

SG-04SG-04

SG-03SG-03

SG-13SG-13

SG-09SG-09

SG-07SG-07

SG-08SG-08

SG-02SG-02SG-01SG-01 SG-16SG-16

SG-17SG-17SG-18SG-18

SG-11SG-11

SG-14SG-14

MW-11MW-11

!UMW-12MW-12

MW-26MW-26MW-16MW-16

MW-6MW-6

!UMW-5MW-5

!UMW-31MW-31

!UMW-30MW-30

The Manitorium CleanersThe Manitorium Cleaners

Master WearMaster WearMW-1MW-1

MW-2MW-2

MW-18MW-18

MW-17MW-17

Washington St.Washington St.

Jackson St.Jackson St.

Columbus St.Columbus St.

Morgan St.Morgan St.

Pike St.Pike St.

Harrison St.Harrison St.

Highland St.Highland St.

Main St.Mulberry St.

Marion St.

West St.

Reid St.

Main St.Mulberry St.

Marion St.

West St.

Reid St.

Sycamore St.

Sycamore St.

Dept

h (ft

am

sl)

600590580570560550540530520510500490480

N

Possible Source

Former Master Wear Facility

Monitoring Well

Soil Gas Sample

Municipal Well

LEGEND

5

50

100

360

1,400

5,000

15,000

25,000

Groundwater Contour Concentrations (μg/L)

Soil Vapor Contour Concentrations (μg/L)

$1!U

#0

!.

Fill, Lean Clays, and Silts

Sand and Gravel Aquifer

Silt, Sandy Loam, and Sandy Clay

Bedrock

Groundwater Level

EN1003161124MKE Figure_1-15_CSM_V1.ai 12.30.2016 tdaus

Figure 1-15Conceptual Site Model - PCE in Groundwater and Soil VaporFeasibility Study ReportPike and Mulberry Streets PCE Plume Site

Martinsville, Indiana

!. PW3

PW2PW1

PW3

!. PW2!. PW1

JunkyardJunkyardSemi-truck RepairSemi-truck Repair

Central Dry CleanersCentral Dry CleanersMW-4MW-4

MW-35MW-35

Artesian City CleanersArtesian City CleanersKent CleanersKent Cleaners

Black Lumber CompanyBlack Lumber Company

!U!U

!U

!U

!U

!U

!U !U

!U!U

!U!U

!U

!U!U!U

!U!U

!U

!U

!U!U

!U

!U

!U

#0

#0

#0#0

#0

#0

#0#0

#0

#0#0

#0

#0 #0#0

#0

#0#0$1

WTPWTP

MW-24MW-24

MW-23MW-23

MW-25MW-25

MW-15MW-15

!UMW-14MW-14

MW-9MW-9

!UMW-10MW-10

!UMW-13MW-13

MW-8MW-8

MW-22MW-22

MW-21MW-21 MW-20MW-20

MW-19MW-19

MW-36MW-36

MW-34MW-34

MW-28MW-28

MW-36MW-36

!UMW-7MW-7 MW-3MW-3

SG-15SG-15

SG-06SG-06 SG-05SG-05

SG-12SG-12SG-10SG-10

SG-04SG-04

SG-03SG-03

SG-13SG-13

SG-09SG-09

SG-07SG-07

SG-08SG-08

SG-02SG-02SG-01SG-01 SG-16SG-16

SG-17SG-17SG-18SG-18

SG-11SG-11

SG-14SG-14

MW-11MW-11

!UMW-12MW-12

MW-26MW-26MW-16MW-16

MW-6MW-6

!UMW-5MW-5

!UMW-31MW-31

!UMW-30MW-30

The Manitorium CleanersThe Manitorium Cleaners

MW-1MW-1

MW-2MW-2

MW-18MW-18

MW-17MW-17

Washington St.Washington St.

Jackson St.Jackson St.

Columbus St.Columbus St.

Morgan St.Morgan St.

Pike St.Pike St.

Harrison St.Harrison St.

Highland St.Highland St.

Main St.Mulberry St.

Marion St.

West St.

Reid St.

Main St.Mulberry St.

Marion St.

West St.

Reid St.

Sycamore St.

Sycamore St.

Dept

h (ft

am

sl)

600590580570560550540530520510500490480

Master WearMaster Wear

N

16

70

1000

Soil Vapor Contour Concentrations (μg/L)

Possible Source

Former Master Wear Facility

Monitoring Well

Soil Gas Sample

Municipal Well

LEGEND

$1!U

#0

!.

Fill, Lean Clays, and Silts

Sand and Gravel Aquifer

Silt, Sandy Loam, and Sandy Clay

Bedrock

Groundwater Level

EN1003161124MKE Figure_1-16_CSM_V1.ai 12.30.2016 tdaus

Figure 1-16Conceptual Site Model - TCE in Groundwater and Soil VaporFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

Dept

h (ft

am

sl)

600590580570560550540530520510500490480

!. PW3

PW2PW1

PW3

!. PW2!. PW1

WTPWTP

!UMW-25MW-25

!U !UMW-24MW-24MW-15MW-15

!UMW-14MW-14

!UMW-10MW-10

Washington St.Washington St.

Morgan St.Morgan St.

Pike St.Pike St.

Harrison St.Harrison St.

Highland St.Highland St.

Wes

t St.

Wes

t St.

!UMW-9MW-9

Kent CleanersKent Cleaners

!U

!U

!U

!U!U

!U

!U

!U

!U!U

!U!U

!U

#0

#0

#0 #0#0

#0

#0

#0

#0

#0

#0#0

#0

$1

MW-8MW-8

!UMW-27MW-27

MW-22MW-22

MW-21MW-21

MW-19MW-19

!UMW-7MW-7

MW-3MW-3

SG-15SG-15

SG-06SG-06SG-05SG-05

SG-12SG-12

SG-10SG-10

SG-04SG-04

SG-03SG-03

SG-13SG-13

SG-09SG-09SG-02SG-02SG-01SG-01

SG-11SG-11

SG-14SG-14

MW-11MW-11

!UMW-12MW-12

MW-26MW-26

MW-16MW-16

MW-6MW-6

!UMW-5MW-5The Manitorium CleanersThe Manitorium Cleaners MW-1MW-1

MW-2MW-2

MW-18MW-18

MW-17MW-17

Artesian City CleanersArtesian City Cleaners!U

!U

!U

MW-36MW-36

MW-34MW-34

MW-28MW-28

Main St.

Mul

berr

y St

.

Mar

ion

St.

Main St.

Mul

berr

y St

.

Mar

ion

St.

Sycamore St.

Sycamore St.

Utility CorridorUtility CorridorMaster WearMaster Wear

5

50

100

360

1,400

5,000

15,000

25,000

PCE Groundwater Contour Concentrations (μg/L)

PCE Soil Vapor Contour Concentrations (μg/L)

16

70

1000

TCE Groundwater Contour Concentrations (μg/L)

N

Possible Source

Former Master Wear Facility

Monitoring Well

Soil Gas Sample

Municipal Well

LEGEND

$1!U

#0

!.

Fill, Lean Clays, and Silts

Sand and Gravel Aquifer

Silt, Sandy Loam, and Sandy Clay

Bedrock

Groundwater Level

EN1003161124MKE Figure_1-17_CSM_V1.ai 12.30.2016 tdaus

Figure 1-17Conceptual Site Model - PCE and TCE in Soil Feasibility Study ReportPike and Mulberry Streets PCE Plume Site

Martinsville, Indiana

Figure 1-18 has been removed entirely from this redacted version of the document to protect personally identifiable information. For questions, please contact the EPA Work Assignment Manager, Erik Hardin, at (312) 886-2402.

Notes:1. PRG = preliminary remediation goal2. PCE = tetrachloroethene3. SF = square feet4. Groundwater area exceeding PRGs was determined by overlaying PCE plumes from Phases 1 through 3 and taking the maximum extent of area where PCE concentrations exceeded the MCL.5. Total area of groundwater exceeding the PRGs = 2,412,293 SF6. Total area of groundwater exceeding non-cancer risk = 385,943 SF

$1

!.

!.

!.

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

PW-1PW-2

PW-3

MW-23S

MW-9S

MW-6S

MW-2S

MW-29S

MW-17S

MW-5S

MW-4S

MW-3S

MW-1S

MW-36S

MW-35S

MW-34S

MW-28S

MW-22S

MW-20S

MW-19S

MW-18S

MW-16S

MW-15S

MW-13S

MW-11S

MW-26S

MW-8S

MW-7S

MW-33S

MW-32S

MW-31S

MW-30S

MW-27S

MW-25S

MW-24S

MW-14S

MW-12S

MW-10S

MW-21S

W Cunningham St

N M

ap

le S

t

N E

llio

tt A

ve

N C

he

rry S

t

N M

ari

on S

t

W Highland St

N M

ain

St

N J

effe

rson S

t

N S

yca

mo

re S

t

S W

ayne

St.

Eslin

ger

Ave

N M

ulb

err

y S

t

W Harrison St

N R

eid

St

S W

est S

t

Sh

irle

y D

r

W Washington

E Morgan St

W Columbus St

E Jackson St

E Pike St

W Morgan St

Master Wear

WTP

Nutter

Ditch

BlackLumberCompany

JunkyardSemi-truckrepair

The ManitoriumCleaners

ArtesianCityCleaners

Central DryCleaners

Kent Cleaners

LEGEND

Potential Past PCE User

$1 Former Master Wear Facility

Monitoring Well!U Detected Above PRG

!U Detected Below PRG

!U Not Detected

Municipal Wells (PW)!. Detected Above PRG

!. Detected Below PRG

!. Not Detected

Groundwater Area Exceeding Non-Cancer Risk

Groundwater Area Exceeding PRGs

FIGURE 2-1Shallow Groundwater Area Exceeding PRGsFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 325162.5

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig2-1_GW_PRG_Exceedances_Shallow.mxd User Name: AESPEJO Date: 3/27/2018

$1!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!.

!.

!.

Master Wear

Junkyard

KentCleaners

Semi-truckrepair

Black LumberCompany

CentralDry Cleaners

Artesian CityCleaners

The ManitoriumCleaners

WTPWTP

MW-7M24

MW-6M0.7

MW-4M0.6

MW-2M0.6

MW-22M2.1

MW-15M0.6

MW-11M1.4

MW-9M0.5 U

MW-8M0.5 U

MW-5M0.2 J

MW-1M0.5 J

MW-36M0.1 J

MW-27M0.1 J

MW-20M0.5 U

MW-16M0.5 J

MW-12M0.5 U

MW-10M0.5 U

PW1

PW2

PW3

MW-3M0.2 J

LEGEND

!. Municipal Well

Potential Past PCE User

$1 Former Master Wear Facility

Monitoring Well!U Detected Above PRG

!U Detected Below PRG

!U Not Detected

Groundwater Area Exceeding PRGs

FIGURE 2-2Intermediate Groundwater Area Exceeding PRGsFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 300150

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig2-2_GW_PRG_Exceedances_Intermed.mxd User Name: AESPEJO Date: 3/27/2018

Notes:1. PRG = preliminary remediation goal2. SF = square feet3. Groundwater area exceeding PRGs was determined based on the maximum concentrations detected at each intermediate well from Phase 1 through 3.4. Total area of groundwater exceeding the PRGs = 284,323 SF

Figure 2-3 has been removed entirely from this redacted version of the document to protect personally identifiable information. For questions, please contact the EPA Work Assignment Manager, Erik Hardin, at (312) 886-2402.

Figure 2-4 has been removed entirely from this redacted version of the document to protect personally identifiable information. For questions, please contact the EPA Work Assignment Manager, Erik Hardin, at (312) 886-2402.

$1

!.

!.

!.

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

PW-118

PW-2

PW-3

MW-23S12

MW-9S23

MW-6S23

MW-2S130

MW-29S19

MW-17S11

MW-5S3.5

MW-4S150

MW-3S14

MW-1S240

MW-36S5.3

MW-35S1.4

MW-34S95

MW-28S8.4

MW-22S25

MW-20S7.9MW-19S

5.0

MW-18S1.9

MW-16S140

MW-15S22

MW-13S1.5

MW-11S0.5

MW-26S11

MW-8S0.3 J

MW-7S0.5 J

MW-33S0.2 J

MW-32S0.2 J

MW-31S0.3 J

MW-30S0.2 J

MW-27S0.2 J

MW-25S0.5 U

MW-24S0.3 J

MW-14S0.1 J

MW-12S0.5 U

MW-10S0.3 J

MW-21S0.6

Master Wear

5

5

5

5

46

100

100

46

Injection Zone 5

Injection Zone 2

Injection Zone 4

Injection Zone 3

Injection Zone 1

LEGEND$1 Former Master Wear FacilityMonitoring Well!U Detected Above MCL!U Detected Below MCL!U Not DetectedMunicipal Wells (PW)!. Detected Above MCL!. Detected Below MCL!. Not DetectedInjection Leng th (in feet)Zone N-S / E-W

153 233 180 188 / 83 167 / 261

Groundw ater Contour Concentrations (μ g /L)100465Grid Array Injection Zone

0 325162.5Feet

$FIGURE 4-1Alternatives GW5 and GW6 – Conceptual Injection Zone LayoutFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

Notes:1. EPA = U.S. Environmental Protection Agency2. G = indicates groundwater grab sample collected from soil

boring at approximately 10 ft. below ground surface3. J = Estimated detection4. MCL = Maximum Contaminant Level5. PCE = tetrachloroethene6. U = Result not detected7. UJ = Estimated result not detected8. µg/L = micrograms per liter9. Dashed lines indicate where plume is inferred or estimated10. PCE screening level (SL) = 5 µg/L11. PCE in intermediate well MW-7M was 24 µg/L12. Grid array is approximately 3,584 square feet.

12345

R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig4-1_GW_Alternatives_5_and_6.mxd User Name: AESPEJO Date: 2/14/2019

FIGURE 3-3A - A' Cross Section LocationPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

$1!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!U!U !U

!U

!U

!U

!U

!U

!U!U

!U

!U

!U

!U

!U

!U

!U

!U

!U

!(!(

!(

!(!(!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(

!(

!(

!.

!.!.

!

W Columbus St E Columbus St

W Washington St E Washington St

E Jackson StW Jackson St

E Morgan StW Morgan St

E Pike StW Pike St

E Harrison StW Harrison St

W Highland St

N J

effe

rson

St

N S

ycam

ore

St

N W

ayne

St

N O

hio

St

N M

ain

St

N M

ulbe

rry

St

N M

ario

n S

t

N C

herr

y S

t

N C

herr

y S

t

SC

herr

yS

t

SM

ario

nS

t

SM

ulbe

rry

St

SM

ain

St

SJe

ffers

onS

t

SS

ycam

ore

St

SW

ayne

St

BlackLumber Company

Semi-truck repairJunkyard

Central Dry Cleaners

Kent Cleaners

The ManitoriumCleaners

Master Wear Site

Artesian City Cleaners

Nut

ter D

itch

WaterTreatment Plant

A

A'

SG-16

SG-17

SG-10

SG-18

SG-09

SG-07SG-08

SG-11

SG-13

SG-12

SG-15

SG-14

SG-02SG-01

SG-04

SG-03

SG-06SG-05

MW-8

MW-7

MW-6

MW-5

MW-4

MW-3

MW-2

MW-1

MW-36

MW-35

MW-34

MW-33

MW-32

MW-31

MW-30

MW-29

MW-28

MW-27MW-26

MW-21

MW-19

MW-18

MW-17

MW-16

MW-15

MW-11

MW-10

MW-9S

MW-25S

MW-24S

MW-23S

MW-14S

MW-13S

MW-12S

PW1PW2

PW3

MW-22

MW-20

LEGENDPossible Source

$1 Master Wear Site

!U Monitoring Well

!. Municipal Well

!. Residential Well

!( Permanent Soil Vapor Probe Location

A-A' Cross Section

Water Treatment Plant

MKE - \\MKEFPP01\PROJ\GIS\PIKE_MULBERRY\MAPFILES\2015_GWMONITORINGREPORT\PHASE2\RI\FIG3-3_CROSSSECTION_LOCATION.MXD AESPEJO 9/8/2016 1:33:09 PM

0 187.5 375

Feet

$

Notes:

Groundwater data from 10/7/2015

Boring log from 7/12/2004 shows silt/sandy loam/sandy clay lenses between 49 ft bgs and 56 ft bgs

Well Screen Interval

Residual soil contamination in vicinity of MW-1 and under adjacent buildings.

Target treatment zone in subsurface

Grid array injection zone

TD = Total DepthP = TetrachloroetheneT = Trichloroetheneft = feetamsl = above mean sea levelU = analyte not detected above detection limitµg/L = micrograms per liter

SVE/AS system operated from January 7, 2005 through November 9, 2006; then from August 9, 2007 through March 31, 2008.

Former Master Wear Facility

5 µg/L50 µg/L

100 µg/L

5 µg/L50 µg/L

100 µg/L

Dept

h (ft

am

sl)

Bedrock

Sand and Gravel Aquifer

Fill, Lean Clays, and Silts

PW-1 M

W-1

5 S,

M

MW

-11B

MW

-16

S, M

, B

MW

-2 S

, M, B

MW

-18S

MW

-19S

MW

-34S

MW

-4 S

, M, B

MW

-35S

MW

-33S

VICINITY MAP

600

590

580

570

560

550

540

530

520

510

500

490

480

PW-2

PW-3

MW

-7 S

, M, B

MW

-1 S

, M, B

ANW

A'SE

A'A'

AA

MW

-26

S

EN1003161124MKE Figure_4-2_V1.ai 03.13.2018 tdaus

Figure 4-2Alternatives GW5 and GW6 Cross Section Feasibility Study ReportPike and Mulberry Streets PCE Plume Site

Martinsville, Indiana

TD=83 ftP=0.2JT=0.1J

TD=82 ftP=18T=0.4J

TD=18 ftP=22T=0.5U

TD=18 ftP=0.5T=0.5U

TD=21 ftP=140T=0.2J

TD=17 ftP=120T=0.23 TD=21 ft

P=240T=1.6

TD=23 ftP=95T=0.5U

TD=21 ftP=1.4T=0.5U

TD=21 ftP=0.2JT=0.5U

TD=18 ftP=150T=0.5U

TD=43 ftP=19T=0.5U

TD=42 ftP=0.2JT=0.5U

TD=45 ftP=0.6T=0.5U

TD=45 ftP=0.5JT=0.5U

TD=64 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U TD=67 ft

P=0.35T=0.5U

TD=60 ftP=0.6T=0.5U

TD=99 ftP=0.5UT=0.5U

TD=18 ftP=11T=0.1J

TD=51 ftP=0.5UT=0.5U

TD=83 ftP=0.2JT=0.1J

TD=82 ftP=18T=0.4J

TD=18 ftP=22T=0.5U

TD=18 ftP=0.5T=0.5U

TD=21 ftP=140T=0.2J

TD=17 ftP=120T=0.23 TD=21 ft

P=240T=1.6

TD=23 ftP=95T=0.5U

TD=21 ftP=1.4T=0.5U

TD=21 ftP=0.2JT=0.5U

TD=18 ftP=150T=0.5U

TD=43 ftP=19T=0.5U

TD=42 ftP=0.2JT=0.5U

TD=45 ftP=0.6T=0.5U

TD=45 ftP=0.5JT=0.5U

TD=64 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U

TD=68 ftP=0.5UT=0.5U TD=67 ft

P=0.35T=0.5U

TD=60 ftP=0.6T=0.5U

TD=99 ftP=0.5UT=0.5U

TD=18 ftP=11T=0.1J

TD=51 ftP=0.5UT=0.5U

!!.

!!.

!!.

!!.

!!.

!!.

!!.

!U

!U

!U

!U

!U

!U

!U

!U

!U

#0

#0

#0

The ManitoriumCleaners

SG-07

SG-11

MW-22S, M

MW-3S, M, B

MW-1S, M, B

MW-20S, M

MW-2S, M, B

Master Wear

Kent

Cleaners

MW-19S

MW-17S

MW-21S

MW-18S

N M

ulb

erry

N M

ain

E Morgan

LEGEND

!U Proposed SVE Well (with 50' ROI)

#0 Proposed VMP

Potential Past PCE User

$1 Former Master Wear Facility

!U Monitoring Well

!. Soil Vapor Probe

!! Detected Below SL

!! Detected Above SL

!! Not Detected

Proposed SVE Trench Piping

Proposed SVE Treatment System Enclosure

Target Treatment Area

Excavation Area (35'x60')

Area Where PCE or TCE Concentrations in SoilVapor Exceed the Commercial/Industrial PRGUsing ELCR of 10-6 and HQ = 1

Area Where PCE or TCE Concentrations in SoilVapor Exceed the Commercial/Industrial PRGUsing ELCR of 10-5 or 10-4 and HQ = 1

Area Where TCE Concentrations in Soil VaporExceed the Industrial/Commercial PRG Using HQ = 1Note: Cancer Risk is NA for TCE

Area Where PCE Concentrations in Soil VaporExceed the Industrial/Commercial PRG UsingELCR of 10-5 or 10-4 and HQ = 1

Area Where PCE Concentrations in Soil VaporExceed the Industrial/Commercial PRG UsingELCR of 10-6 and HQ = 1

Notes:

1. Shaded cells indicate result exceeds screening level2. Bold indicates the analyte was detected

3. Units are micrograms per kilogram (µg/Kg)4. Screening Level is the EPA residential Regional Screening

Level, updated May 2016.

5. PCE = Tetrachloroethene6. TCE = Trichloroethene

7. cis-DCE = cis-1,2-dichloroethene8. t-DCE = trans-1,2-dichloroethene

9. J = Estimated detection

10. ROI = radius of influence11. SVE = Soil Vapor Extraction

12. U = Result not detected13. UJ = Estimated result not detected

14. VMP = vapor monitoring point

15. The proposed SVE system, well, and piping are conceptual.

FIGURE 4-7Alternatives SV4 and SV5 – Soil VaporSource Removal Conceptual DesignFeasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

0 5025

Feet

$

MKE - R:\ENBG\00_Proj\E\EPA\Pike_Mulberry\MapFiles\FS\Fig4-7_Source Removal.mxd User Name: AESPEJO Date: 3/27/2018

Analyte 2-3 ft 11-12 ft

PCE 2 J 2 J

TCE 4 UJ 4 UJ

MW-020M

7/19/2015

Analyte 2-3 ft 13-14 ft

PCE 2 J 3 J

TCE 3 UJ 4 UJ

MW-022M

7/18/2015

Analyte 1-2 ft 9-10 ft

PCE 24 85

TCE 2 J 0.9 J

SG-2

7/31/2015

Analyte 1-2 ft 9-10 ft

PCE 0.7 J 17

TCE 3 U 4 U

7/31/2015

SG-4

Analyte 1-2 ft 9-10 ft

PCE 5 U 3 J

TCE 5 U 6 U

SG-8

7/31/2015

Analyte 1-2 ft 10-11 ft

PCE 5 U 1 J

TCE 5 U 5 UJ

SG-9

7/30/2015

Analyte 0-1 ft 8-9 ft

PCE 4 UJ 0.7 J

TCE 4 UJ 3 UJ

SG-10

7/30/2015

Analyte 1-2 ft 9-10 ft

PCE 7,400 2,200

TCE 3,600 28

cis-DCE 1300 13

t-DCE 150J 4U

SG-1

7/31/2015

Analyte 1-2 ft 9-10 ft

PCE 7 80

TCE 4 U 5 U

SG-3

7/31/2015

Appendix A Closure Report for the Former

Masterwear Facility Removal Action

EMANZON
*353222*

Project Number

191.04

Scale

1”= 24,000”

Project Manager

D. Neeley

Date

12/23/2008

SITE LOCATION MAP

Former Masterwear, Inc.28 ½ North Main Street

Martinsville, Indiana

Source: USGS MartinsvilleQuadrangle (1980)

File No.

-

Figure No.

1

Location of Site

Appendix B City of Martinsville Utility Maps

Appendix C PCE Concentrations in Shallow

Groundwater over Time for Select Monitoring Wells

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

5,000

10,000

15,000

20,000

25,000

30,000

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐1S

Period of Operation for SVE/AS System

Concentrations less than 600 µg/L from 2004 to 2015 are depicted on the subsequent figure.

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

100

200

300

400

500

600

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time (May 2006 ‐ Oct 2015): MW‐1S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐2S

Period of Operation for SVE/AS System

Concentrations less than 250 µg/L from 2006 to 2015 are depicted on the subsequent figure.

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

50

100

150

200

250

5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time (May 2005 ‐ Oct 2015): MW‐2S

MCL of PCE (5 µg/L)

End of SVE/AS System Operation

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

20

40

60

80

100

120

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Samlping Date

PCE Groundwater Concentrations Over Time: MW‐3S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

50

100

150

200

250

300

350

400

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐4S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

1

2

3

4

5

6

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐5S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

10

20

30

40

50

60

9/1/2002 1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐6S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

20

40

60

80

100

120

140

160

180

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐9S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

2

4

6

8

10

12

14

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐13S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

5

10

15

20

25

30

35

40

45

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐15S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

500

1,000

1,500

2,000

2,500

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐16S

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

10

20

30

40

50

60

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐17S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

1

2

3

4

5

6

7

8

9

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐18S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

1

2

3

4

5

6

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐19S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

5

10

15

20

25

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐20S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

*All results reported as “ND” are shown as zeroPCE = tetrachloroethylene µg/L = micrograms/liter

0

5

10

15

20

25

30

35

40

1/14/2004 5/28/2005 10/10/2006 2/22/2008 7/6/2009 11/18/2010 4/1/2012 8/14/2013 12/27/2014 5/10/2016

PCE Co

ncen

tration (µg/L)

Sampling Date

PCE Groundwater Concentrations Over Time: MW‐22S

MCL of PCE (5 µg/L)

Period of Operation for SVE/AS System

Appendix D Cost Estimates for Alternatives

NG0615170043MKE D-1

APPENDIX D

Cost Estimate This appendix presents the detailed cost estimates for the groundwater and soil vapor alternatives developed for the Pike and Mulberry Streets PCE Plume Site Feasibility Study (CH2M 2019).

Introduction The cost summary tables presented herein were developed as Association for the Advancement of Cost Engineering Class IV cost estimates that provide an accuracy of +50 percent to -30 percent. The estimates are based on the assumptions outlined in Section 4 – Detailed Analysis of Alternatives of the feasibility study (specifically, Tables 4-7 and 4-8) and were prepared using the U.S. Environmental Protection Agency’s (EPA’s) A Guide to Developing and Documenting Cost Estimates During the Feasibility Study (EPA 2002). The present-worth values are based on real discount rates from Appendix C of the Office of Management and Budget Circular A-94, Appendix C (revised November 2017). The 30-year value of 2.6 percent was selected since operations and maintenance (O&M) durations are typically assumed to be 30 years. This estimate is limited to the conditions existing at its issuance and is not a guaranty of actual price or cost. Uncertain market conditions including, but not limited to, local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions, may affect the accuracy of this estimate.

The cost summary tables include capital costs and O&M costs. Capital costs consist of direct and indirect costs. Direct costs include the cost of construction, equipment, land and site development, treatment, transportation, and disposal. Indirect costs include engineering expenses, license or permit costs, and contingency allowances. Annual O&M costs are the post-construction costs required for the continued effectiveness of the remedy. Components of annual O&M costs include the cost of maintenance materials and labor, monitoring, and periodic site reviews.

Expenditures that occur over different periods were analyzed using present-worth, which discounts future costs to a base year. Present-worth analysis allows the cost of the alternatives to be compared on the basis of a single figure representing the amount of money that, if invested in the base year and disbursed as needed, would be sufficient to cover costs associated with the life of the remedial project. Assumptions associated with the present-worth calculations include a discount rate of 2.6 percent before taxes and after inflation, cost estimates in the planning and implementation years in constant dollars, and various period for O&M based on the alternative.

The cost estimates are in 2018 dollars and were prepared on the basis of the site information available at the time of preparation of this report and the components of the conceptual remedial alternatives presented herein. Additional investigation activities and evaluations will likely be performed during the remedial design to refine the volume of groundwater and soil vapor requiring treatment. Emerging technologies may also be evaluated during the remedial design and may be incorporated if they are determined to be effective and implementable at this site.

The cost estimates were prepared using R.S. Means cost data, vendor quotes, technology reference documents, project experience, and actual costs from other remediation projects available at the time of preparation of this report. Level of effort for the work elements was developed by using level of effort from similar projects and project team experience.

APPENDIX D: COST ESTIMATE

D-2 NG0615170043MKE

Estimate Overview Separate estimates were prepared for groundwater and soil vapor remediation alternatives. Costs were estimated for the following five groundwater alternatives:

• Alternative GW1—No Action

• Alternative GW2—WTP Alternatives

• Alternative GW3—MNA and Institutional Controls

• Alternative GW5—ISCR, LTM, and Institutional Controls

• Alternative GW6—ISCO, LTM, and Institutional Controls

Cost estimates were prepared for the following four soil vapor remediation alternatives:

• Alternative SV1—No Action

• Alternative SV3—Pathway Sealing, VIM, LTM, and Institutional Controls

• Alternative SV4—Soil Vapor Source Removal, LTM, and Institutional Controls

• Alternative SV5—Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

Estimate add-ons to direct costs include the following:

• Contingency—15 percent

• Performance/Payment Bonds and Insurance—2 percent

• Prime Contractor Markup—8 percent

• Project Management and Field Oversight—25 percent

Design costs are estimated at 6 percent of remediation costs.

Key Assumptions Tables D-1 through D-9 provide costing details for the groundwater alternatives while Tables D-10 through D-27 provide costing details for the soil vapor alternatives. Key components and descriptions of the alternatives are also presented in Section 4 of this feasibility study. The unit rates and quantities used are provided in the estimate tables for each alternative.

Summary of Contents This appendix contains the following tables:

D-1 Cost Detail for Monitoring Well Installation

D-2 Cost Detail for Monitoring Well Sampling

D-3 Costs for Alternative GW2A – GAC Treatment

D-4 Costs for Alternative GW2B – Air Stripping

D-5 Costs for Alternative GW2C – AOP Treatment

D-6 Costs for Alternative GW3 – MNA and Institutional Controls

D-7 Costs for Alternative GW5 – ISCR, LTM, and Institutional Controls

D-8 Costs for Alternative GW6 – ISCO, LTM, and Institutional Controls

APPENDIX D: COST ESTIMATE

NG0615170043MKE D-3

D-9 Summary of Groundwater Alternatives Cost Estimates

D-10 Residential Property Analysis for VIM

D-11 Commercial Property Analysis for VIM

D-12 Summary of Actions by Property – Alternatives SV3 and SV5

D-13 Summary of Actions by Property – Alternative SV4

D-14 Building Survey Summary for Residential Properties

D-15 Building Survey Summary for Commercial/Industrial Properties

D-16 Building Survey Summary for All Properties

D-17 VIM Summary – Alternative SV3 and SV5

D-18A Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-6)

D-18B Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)

D-19 Cost Detail for Sealing Vapor Intrusion Pathways for Each Building – Residential and Commercial

D-20 Cost Detail for VIM System Diagnostic Testing for Each Building – Residential and Commercial

D-21 Cost Detail for VIM Installation – Subslab Depressurization System

D-22 Cost Detail for VIM Installation – Submembrane Depressurization System

D-23 Cost Detail for VIM Installation – Partial Crawlspace (SSD and SMD)

D-24 Cost Detail for Laboratory Analysis per Building (Indoor Air and Subslab)

D-25A Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-6)

D-25B Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)

D-26A Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-6)

D-26B Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)

D-27 Summary of Soil Vapor Alternatives Cost Estimates

References CH2M HILL, Inc. (CH2M). 2019. Feasibility Study for the Pike and Mulberry Streets PCE Plume Site. February.

Executive Office of the President, Office of Management and Budget. 2017. Memorandum for the Heads of Departments and Agencies: 2018 Discount Rates for Circular No. A-94.

U.S. Environmental Protection Agency (EPA). 2002. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA 540-R-00-002/OSWER 9344.0-75. July.

Table D-1. Cost Detail for Monitoring Well InstallationPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Monitoring Well Installation 12,801$ Mobilization/Demobilization 1 LS 1,460$ 1,460$ Decontamination of Equipment 1 LS 870$ 870$ Pavement Coring 3 Ea 235$ 705$ HSA Drilling 2" Well 85 LF 47$ 3,995$ Well Development 3 Ea 915$ 2,745$ IDW Management 1 LS 1,000$ 1,000$ Crew Daily Rate (per diem) 3 Day 462$ 1,386$ 55 gallon drums for IDW 16 Ea 40$ 640$

Utility Locate 2,125$ Mobilization/Demobilization 1 LS 375$ 375$ Utility Surveying 1 Day 1,600$ 1,600$ Per Diem 1 Ea 150$ 150$

IDW for MW Installation 2,520$ Transportation of non-hazardous drilling waste 8 EA 75$ 600$ Disposal of non-hazardous drilling waste 8 EA 28$ 224$ Transportation of non-hazardous liquid waste 6 EA 145$ 870$ Disposal of non-hazardous liquid waste 6 EA 27$ 159$ TCLP VOCs (soil) 1 EA 87$ 87$ TCLP SVOCs (soil) 1 EA 120$ 120$ TCLP RCRA 8 Metals (soil) 1 EA 39$ 39$ Corrosivity (pH) (soil) 1 EA 12$ 12$ Total PCBs (soil) 1 EA 43$ 43$ Ignitability (soil) 1 EA 14$ 14$ TCLP Pesticides (soil) 1 EA 74$ 74$ VOCs (25-ml purge) 1 EA 53$ 53$ SVOCs 1 EA 97$ 97$ Pesticides 1 EA 77$ 77$ RCRA 8 Metals 1 EA 39$ 39$ Corrosivity (includes pH) 1 EA 12$ 12$

Survey 1,200$ Mobilization 2 Ea -$ -$ Well Survey 3 Ea 150$ 450$ Report 1 LS 750$ 750$

COST ELEMENT SUBTOTAL 18,646$

Vendor quoteVendor quoteVendor quote

Used waste estimator to determine # of drums

Used waste estimator to determine # of drums

1 sample per 20 drums

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

Vendor quote

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

3 wells down to 25 feet, 2" diameter well. Drilling OnlyIncludes 10' PVC well screen, 1/2hp pump. 915 per well to develop

3 man crew with pickup, 144 per day per man, 30/day for pickup8 drums estimated for soil, 6 for water; 2 extra just in case

Vendor quoteVendor quote

Standby of Crew for 1.5 hoursAssume 1 HR/2 cores, 6 inch depth. Patching required.

Cost Item Basis

Table D-2. Cost Detail for Monitoring Well SamplingPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Monitoring Well Sampling 37,554$ Labor - Sample Technician 120 Hr 100$ 12,000$ Labor - Scribe Manager 40 Hr 100$ 4,000$ Cooler Shipping 4 LS 100$ 400$ Equipment Rental 1 LS 3,150$ 3,150$ Travel 4 EA 3,876$ 15,504$ Expenses/Other 1 LS 2,500$ 2,500$

Data Evaluation Memo 16,875$ Report Writing 90 Hr 125$ 11,250$ SDG Management 25 Hr 125$ 3,125$ DV Management 20 Hr 125$ 2,500$

COST ELEMENT SUBTOTAL 54,429$

3 peripumps, 1100 ft tubing, YSI's, water level meters, gloves, silicone tube, PID$173 per diem rate per day

Cost Item Basis

3 samplers, 10 hour days, 4 days, 39 wells

1 cooler per day1 manager, 10 hour days, 4 days

Table D-3. Costs for Alternative GW2A - GAC TreatmentPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Existing GAC Treatment System -$

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) -$

O&M COSTS (EVERY 2 YEARS)Quantity Units Unit Cost Subtotal Total

GAC REPLACEMENT 123,000$ Carbon Replacement Services 1 LS $123,000 $123,000

PERIODIC COST ANNUAL SUBTOTAL 123,000$

Contingency (15%) 18,450$

PERIODIC COST ANNUAL TOTAL 141,450$

Payment/Performance Bonds and Insurance (2%) 2,460$

Contractor Professional/Technical Services 31,119$ Engineering/Design (4%) 1 LS 5,658$ $5,658Prime Contractor Markup (8%) 1 LS 11,316$ $11,316Project Management and Field Oversight (10%) 1 LS 14,145$ $14,145

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - EVERY 2 YEARS 175,029$

PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type O&M Costs Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $0 1.000 $0 $0 $01 Annual Cost - None $0 $0 $0 0.975 $0 $0 $02 Annual Cost - O&M $175,029 $0 $175,029 0.950 $166,271 $0 $166,2713 Annual Cost - None $0 $0 $0 0.926 $0 $0 $04 Annual Cost - O&M $175,029 $0 $175,029 0.902 $157,950 $0 $157,9505 Annual Cost - None $0 $0 $0 0.880 $0 $0 $06 Annual Cost - O&M $175,029 $0 $175,029 0.857 $150,046 $0 $150,0467 Annual Cost - None $0 $0 $0 0.836 $0 $0 $08 Annual Cost - O&M $175,029 $0 $175,029 0.814 $142,538 $0 $142,5389 Annual Cost - None $0 $0 $0 0.794 $0 $0 $0

10 Annual Cost - O&M $175,029 $0 $175,029 0.774 $135,406 $0 $135,40611 Annual Cost - None $0 $0 $0 0.754 $0 $0 $012 Annual Cost - O&M $175,029 $0 $175,029 0.735 $128,630 $0 $128,63013 Annual Cost - None $0 $0 $0 0.716 $0 $0 $014 Annual Cost - O&M $175,029 $0 $175,029 0.698 $122,193 $0 $122,19315 Annual Cost - None $0 $0 $0 0.680 $0 $0 $016 Annual Cost - O&M $175,029 $0 $175,029 0.663 $116,079 $0 $116,07917 Annual Cost - None $0 $0 $0 0.646 $0 $0 $018 Annual Cost - O&M $175,029 $0 $175,029 0.630 $110,270 $0 $110,27019 Annual Cost - None $0 $0 $0 0.614 $0 $0 $020 Annual Cost - O&M $175,029 $0 $175,029 0.598 $104,752 $0 $104,75221 Annual Cost - None $0 $0 $0 0.583 $0 $0 $022 Annual Cost - O&M $175,029 $0 $175,029 0.569 $99,510 $0 $99,51023 Annual Cost - None $0 $0 $0 0.554 $0 $0 $024 Annual Cost - O&M $175,029 $0 $175,029 0.540 $94,531 $0 $94,53125 Annual Cost - None $0 $0 $0 0.526 $0 $0 $026 Annual Cost - O&M $175,029 $0 $175,029 0.513 $89,800 $0 $89,80027 Annual Cost - None $0 $0 $0 0.500 $0 $0 $028 Annual Cost - O&M $175,029 $0 $175,029 0.487 $85,307 $0 $85,30729 Annual Cost - None $0 $0 $0 0.475 $0 $0 $030 Annual Cost - O&M $175,029 $0 $175,029 0.463 $81,038 $0 $81,03831 Annual Cost - None $0 $0 $0 0.451 $0 $0 $032 Annual Cost - O&M $175,029 $0 $175,029 0.440 $76,983 $0 $76,98333 Annual Cost - None $0 $0 $0 0.429 $0 $0 $034 Annual Cost - O&M $175,029 $0 $175,029 0.418 $73,131 $0 $73,13135 Annual Cost - None $0 $0 $0 0.407 $0 $0 $0

TOTAL ALTERNATIVE COSTS $2,975,493 $0 $2,975,493 $1,934,435 $0 $1,934,435

PV OF ALTERNATIVE FOR 15 YEARS (FY 2018 Dollars) $1,003,034PV OF ALTERNATIVE FOR 17 YEARS (FY 2018 Dollars) $1,119,113PV OF ALTERNATIVE FOR 35 YEARS (FY 2018 Dollars) $1,934,435

Capital Item Basis

Cost from City Plant Operator; includes replacing and disposal costs

BasisPeriodic Cost Item

Non-Discounted Costs Discounted Costs

Table D-4. Costs for Alternative GW2B - Air StrippingPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Air Stripper 387,695$ Low Profile Air Stripper System 1 LS 345,631$ 345,631$ O&M Manual 1 LS 4,500$ 4,500$ Tray Lifters 1 LS 15,714$ 15,714$ Freight 1 LS 11,250$ 11,250$ Installation 1 LS 10,600$ 10,600$

SUBCONTRACT SUBTOTAL 387,695$

Contingency (15%) 58,154$

SUBCONTRACT TOTAL 445,849$

Payment/Performance Bonds and Insurance (2%) 7,754$

Contractor Professional/Technical Services 173,881$ Engineering/Design (6%) 1 LS 26,751$ $26,751Prime Contractor Markup (8%) 1 LS 35,668$ $35,668Project Management and Field Oversight (25%) 1 LS 111,462$ $111,462

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 627,484$

O&M CostsUnits Unit Cost Subtotal Total

Air Stripper O&M 41,332$ Electricity Costs 313320 kWh 0.10$ 31,332$ Other Maintenance Items and Chemicals 1 LS 10,000$ 10,000$

O&M ANNUAL SUBTOTAL 41,332$

Contingency (15%) 6,200$

O&M ANNUAL TOTAL 47,532$

Payment/Performance Bonds and Insurance (2%) 827$

Contractor Professional/Technical Services 13,784$ Engineering/Design (6%) 1 LS 2,852$ $2,852Prime Contractor Markup (8%) 1 LS 3,803$ $3,803Project Management and Field Oversight (15%) 1 LS 7,130$ $7,130

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 62,143$

PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $627,484 1.000 $0 $0 $627,4841 Annual Cost - O&M $62,143 $0 $62,143 0.975 $60,568 $0 $60,5682 Annual Cost - O&M $62,143 $0 $62,143 0.950 $59,033 $0 $59,0333 Annual Cost - O&M $62,143 $0 $62,143 0.926 $57,537 $0 $57,5374 Annual Cost - O&M $62,143 $0 $62,143 0.902 $56,079 $0 $56,0795 Annual Cost - O&M $62,143 $0 $62,143 0.880 $54,658 $0 $54,6586 Annual Cost - O&M $62,143 $0 $62,143 0.857 $53,273 $0 $53,2737 Annual Cost - O&M $62,143 $0 $62,143 0.836 $51,923 $0 $51,9238 Annual Cost - O&M $62,143 $0 $62,143 0.814 $50,607 $0 $50,6079 Annual Cost - O&M $62,143 $0 $62,143 0.794 $49,325 $0 $49,325

10 Annual Cost - O&M $62,143 $0 $62,143 0.774 $48,075 $0 $48,07511 Annual Cost - O&M $62,143 $0 $62,143 0.754 $46,856 $0 $46,85612 Annual Cost - O&M $62,143 $0 $62,143 0.735 $45,669 $0 $45,66913 Annual Cost - O&M $62,143 $0 $62,143 0.716 $44,512 $0 $44,51214 Annual Cost - O&M $62,143 $0 $62,143 0.698 $43,384 $0 $43,38415 Annual Cost - O&M $62,143 $0 $62,143 0.680 $42,284 $0 $42,28416 Annual Cost - O&M $62,143 $0 $62,143 0.663 $41,213 $0 $41,21317 Annual Cost - O&M $62,143 $0 $62,143 0.646 $40,168 $0 $40,16818 Annual Cost - O&M $62,143 $0 $62,143 0.630 $39,151 $0 $39,15119 Annual Cost - O&M $62,143 $0 $62,143 0.614 $38,158 $0 $38,15820 Annual Cost - O&M $62,143 $0 $62,143 0.598 $37,191 $0 $37,19121 Annual Cost - O&M $62,143 $0 $62,143 0.583 $36,249 $0 $36,24922 Annual Cost - O&M $62,143 $0 $62,143 0.569 $35,330 $0 $35,33023 Annual Cost - O&M $62,143 $0 $62,143 0.554 $34,435 $0 $34,43524 Annual Cost - O&M $62,143 $0 $62,143 0.540 $33,562 $0 $33,56225 Annual Cost - O&M $62,143 $0 $62,143 0.526 $32,712 $0 $32,71226 Annual Cost - O&M $62,143 $0 $62,143 0.513 $31,883 $0 $31,88327 Annual Cost - O&M $62,143 $0 $62,143 0.500 $31,075 $0 $31,07528 Annual Cost - O&M $62,143 $0 $62,143 0.487 $30,288 $0 $30,28829 Annual Cost - O&M $62,143 $0 $62,143 0.475 $29,520 $0 $29,52030 Annual Cost - O&M $62,143 $0 $62,143 0.463 $28,772 $0 $28,77231 Annual Cost - O&M $62,143 $0 $62,143 0.451 $28,043 $0 $28,04332 Annual Cost - O&M $62,143 $0 $62,143 0.440 $27,332 $0 $27,33233 Annual Cost - O&M $62,143 $0 $62,143 0.429 $26,640 $0 $26,64034 Annual Cost - O&M $62,143 $0 $62,143 0.418 $25,964 $0 $25,96435 Annual Cost - O&M $62,143 $0 $62,143 0.407 $25,307 $0 $25,307

TOTAL ALTERNATIVE COSTS $2,174,993 $0 $2,802,478 $1,416,775 $0 $2,044,260

PV OF ALTERNATIVE FOR 15 YEARS (FY 2018 Dollars) $1,391,266PV OF ALTERNATIVE FOR 17 YEARS (FY 2018 Dollars) $1,472,648PV OF ALTERNATIVE FOR 35 YEARS (FY 2018 Dollars) $2,044,260

Capital Item Basis

Vendor quoteVendor quoteVendor quoteVendor quoteVendor quote

Applied to the Subcontract subtotal.

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Assumes 24 hrs a day, 350 days a year, 50HP blower

Basis

Non-Discounted Costs Discounted Costs

Table D-5. Costs for Alternative GW2C - AOP TreatmentPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

AOP Treatment System 1,473,000$ Complete System Package 1 LS 1,473,000$ 1,473,000$

SUBCONTRACT SUBTOTAL 1,473,000$

Contingency (15%) 220,950$

SUBCONTRACT TOTAL 1,693,950$

Payment/Performance Bonds and Insurance (2%) 29,460$

Contractor Professional/Technical Services 660,641$ Engineering/Design (6%) 1 LS 101,637$ $101,637Prime Contractor Markup (8%) 1 LS 135,516$ $135,516Project Management and Field Oversight (25%) 1 LS 423,488$ $423,488

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 2,384,051$

O&M CostsUnits Unit Cost Subtotal Total

AOP O&M 181,141$ Peroxide Chemical Cost 4160 GAL 4$ 17,056$ Electricity Costs 781810 kWh 0.10$ 78,181$ Lamp Replacement 112 EA 767$ 85,904$

O&M ANNUAL SUBTOTAL 181,141$

Contingency (15%) 27,171$

O&M ANNUAL TOTAL 208,312$

Payment/Performance Bonds and Insurance (2%) 3,623$

Contractor Professional/Technical Services 60,411$ Engineering/Design (6%) 1 LS 12,499$ $12,499Prime Contractor Markup (8%) 1 LS 16,665$ $16,665Project Management and Field Oversight (15%) 1 LS 31,247$ $31,247

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 272,345$

PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $2,384,051 1.000 $0 $0 $2,384,0511 Annual Cost - O&M $272,345 $0 $272,345 0.975 $265,444 $0 $265,4442 Annual Cost - O&M $272,345 $0 $272,345 0.950 $258,717 $0 $258,7173 Annual Cost - O&M $272,345 $0 $272,345 0.926 $252,161 $0 $252,1614 Annual Cost - O&M $272,345 $0 $272,345 0.902 $245,771 $0 $245,7715 Annual Cost - O&M $272,345 $0 $272,345 0.880 $239,543 $0 $239,5436 Annual Cost - O&M $272,345 $0 $272,345 0.857 $233,473 $0 $233,4737 Annual Cost - O&M $272,345 $0 $272,345 0.836 $227,556 $0 $227,5568 Annual Cost - O&M $272,345 $0 $272,345 0.814 $221,790 $0 $221,7909 Annual Cost - O&M $272,345 $0 $272,345 0.794 $216,169 $0 $216,169

10 Annual Cost - O&M $272,345 $0 $272,345 0.774 $210,691 $0 $210,69111 Annual Cost - O&M $272,345 $0 $272,345 0.754 $205,352 $0 $205,35212 Annual Cost - O&M $272,345 $0 $272,345 0.735 $200,148 $0 $200,14813 Annual Cost - O&M $272,345 $0 $272,345 0.716 $195,076 $0 $195,07614 Annual Cost - O&M $272,345 $0 $272,345 0.698 $190,133 $0 $190,13315 Annual Cost - O&M $272,345 $0 $272,345 0.680 $185,315 $0 $185,31516 Annual Cost - O&M $272,345 $0 $272,345 0.663 $180,619 $0 $180,61917 Annual Cost - O&M $272,345 $0 $272,345 0.646 $176,041 $0 $176,04118 Annual Cost - O&M $272,345 $0 $272,345 0.630 $171,580 $0 $171,58019 Annual Cost - O&M $272,345 $0 $272,345 0.614 $167,232 $0 $167,23220 Annual Cost - O&M $272,345 $0 $272,345 0.598 $162,995 $0 $162,99521 Annual Cost - O&M $272,345 $0 $272,345 0.583 $158,864 $0 $158,86422 Annual Cost - O&M $272,345 $0 $272,345 0.569 $154,838 $0 $154,83823 Annual Cost - O&M $272,345 $0 $272,345 0.554 $150,914 $0 $150,91424 Annual Cost - O&M $272,345 $0 $272,345 0.540 $147,090 $0 $147,09025 Annual Cost - O&M $272,345 $0 $272,345 0.526 $143,363 $0 $143,36326 Annual Cost - O&M $272,345 $0 $272,345 0.513 $139,730 $0 $139,73027 Annual Cost - O&M $272,345 $0 $272,345 0.500 $136,189 $0 $136,18928 Annual Cost - O&M $272,345 $0 $272,345 0.487 $132,738 $0 $132,73829 Annual Cost - O&M $272,345 $0 $272,345 0.475 $129,374 $0 $129,37430 Annual Cost - O&M $272,345 $0 $272,345 0.463 $126,095 $0 $126,09531 Annual Cost - O&M $272,345 $0 $272,345 0.451 $122,900 $0 $122,90032 Annual Cost - O&M $272,345 $0 $272,345 0.440 $119,786 $0 $119,78633 Annual Cost - O&M $272,345 $0 $272,345 0.429 $116,750 $0 $116,75034 Annual Cost - O&M $272,345 $0 $272,345 0.418 $113,792 $0 $113,79235 Annual Cost - O&M $272,345 $0 $272,345 0.407 $110,908 $0 $110,908

TOTAL ALTERNATIVE COSTS $9,532,092 $0 $11,916,143 $6,209,137 $0 $8,593,188

PV OF ALTERNATIVE FOR 15 YEARS (FY 2018 Dollars) $5,731,390PV OF ALTERNATIVE FOR 17 YEARS (FY 2018 Dollars) $6,088,050PV OF ALTERNATIVE FOR 35 YEARS (FY 2018 Dollars) $8,593,188

Capital Item Basis

Vendor quote

Applied to the Subcontract subtotal.

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Basis

Non-Discounted Costs Discounted Costs

Table D-6. Costs for Alternative GW3 - MNA and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Monitoring Well Installation 18,646$

Labor for MW Installation 5,996$ Drilling Oversight Labor 40 Hr 100$ 4,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 996$ 996$

Monitoring Well Sampling 37,554$

Data Evaluation Memo 16,875$

Analytical Cost (Baseline) 3,127$ VOC (8260) 59 EA 53$ 3,127$

Institutional Controls 16,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 10 DAY $1,000 $10,000

SUBCONTRACT SUBTOTAL 98,198$

Contingency (15%) 14,730$

SUBCONTRACT TOTAL 112,928$

Payment/Performance Bonds and Insurance (2%) 1,964$

Contractor Professional/Technical Services 44,042$ Engineering/Design (6%) 1 LS 6,776$ $6,776Prime Contractor Markup (8%) 1 LS 9,034$ $9,034Project Management and Field Oversight (25%) 1 LS 28,232$ $28,232

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 158,933$

Annual Sampling CostsUnits Unit Cost Subtotal Total

Monitoring Well Sampling 37,554$

Data Evaluation Memo 11,250$ Report Writing 45 Hr 125$ 5,625$ SDG Management 25 Hr 125$ 3,125$ DV Management 20 Hr 125$ 2,500$

Analytical Cost 3,127$ VOCs (8260) 59 EA 53$ $3,127

O&M ANNUAL SUBTOTAL 51,931$

Contingency (15%) 7,790$

O&M ANNUAL TOTAL 59,721$

Payment/Performance Bonds and Insurance (2%) 1,039$

Contractor Professional/Technical Services 23,291$ Engineering/Design (6%) 1 LS 3,583$ $3,583Prime Contractor Markup (8%) 1 LS 4,778$ $4,778Project Management and Field Oversight (25%) 1 LS 14,930$ $14,930

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 84,050$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 11,661$ Engineering/Design (6%) 1 LS 1,794$ $1,794Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (25%) 1 LS 7,475$ $7,475

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 42,081$

PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type Annual

Sampling Cost Annual

PeriodicTotal Cost Per

YearDiscount

FactorDiscounted

Sampling CostDiscounted

Periodic CostAnnual Present

Value0 Capital Cost $0 $0 $158,933 1.000 $0 $0 $158,9331 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.975 $81,920 $0 $81,9202 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.950 $79,844 $0 $79,8443 Annual Cost - None $0 $0 $0 0.926 $0 $0 $04 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.902 $75,849 $0 $75,8495 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.880 $0 $37,013 $37,0136 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.857 $72,054 $0 $72,0547 Annual Cost - None $0 $0 $0 0.836 $0 $0 $08 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.814 $68,448 $0 $68,4489 Annual Cost - None $0 $0 $0 0.794 $0 $0 $0

10 Annual Cost - Annual Sampling, Periodic Costs $84,050 $42,081 $126,131 0.774 $65,023 $32,555 $97,57711 Annual Cost - None $0 $0 $0 0.754 $0 $0 $012 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.735 $61,769 $0 $61,76913 Annual Cost - None $0 $0 $0 0.716 $0 $0 $014 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.698 $58,678 $0 $58,67815 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.680 $0 $28,634 $28,63416 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.663 $55,742 $0 $55,74217 Annual Cost - None $0 $0 $0 0.646 $0 $0 $018 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.630 $52,953 $0 $52,95319 Annual Cost - None $0 $0 $0 0.614 $0 $0 $020 Annual Cost - Annual Sampling, Periodic Costs $84,050 $42,081 $126,131 0.598 $50,303 $25,185 $75,48821 Annual Cost - None $0 $0 $0 0.583 $0 $0 $022 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.569 $47,786 $0 $47,78623 Annual Cost - None $0 $0 $0 0.554 $0 $0 $024 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.540 $45,394 $0 $45,39425 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.526 $0 $22,151 $22,15126 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.513 $43,123 $0 $43,12327 Annual Cost - None $0 $0 $0 0.500 $0 $0 $0

Periodic Cost Item

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Capital Item

Sampling Item

Applied to the Subcontract subtotal.

Applied to the Subcontract total, including contingency.

Previous sampling event (including QA/QC samples)

Discounted CostsNon-Discounted Costs

Basis

Basis

Basis

Table D-6. Costs for Alternative GW3 - MNA and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

28 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.487 $40,965 $0 $40,96529 Annual Cost - None $0 $0 $0 0.475 $0 $0 $030 Annual Cost - Annual Sampling, Periodic Costs $84,050 $42,081 $126,131 0.463 $38,915 $19,483 $58,39931 Annual Cost - None $0 $0 $0 0.451 $0 $0 $032 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.440 $36,968 $0 $36,96833 Annual Cost - None $0 $0 $0 0.429 $0 $0 $034 Annual Cost - Annual Sampling $84,050 $0 $84,050 0.418 $35,118 $0 $35,11835 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.407 $0 $17,137 $17,137

TOTAL ALTERNATIVE COSTS $1,512,906 $294,567 $1,966,406 $1,010,852 $182,157 $1,351,942

PV OF ALTERNATIVE (FY 2018 Dollars) $1,351,942

Table D-7. Costs for Alternative GW5 - ISCR, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Monitoring Well Installation 18,646$

Labor for MW Installation 5,996$ Drilling Oversight Labor 40 Hr 100$ 4,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 996$ 996$

Monitoring Well Sampling 37,554$

Data Evaluation Memo 16,875$

Analytical Cost (Baseline) 33,652$ VOC 59 EA 53$ 3,127$ Metals (Iron(II) and Total Iron) 55 EA 11$ 605$ TOC 55 EA 14$ 770$ Alkalinity 55 EA 14$ 770$ Nitrate/Nitrite 55 EA 28$ 1,540$ Sulfate/Sulfite 55 EA 28$ 1,540$ Methane, Ethane, and Ethene 55 EA 75$ 4,125$ Microbial (qPCR) 55 EA 385$ 21,175$

Chemical Costs 331,290$ EHC Reagent for 5 injection zones 206,000 LB 1.50$ 309,000$ Optional DHC Inoculum 66 LB 90$ 5,940$ EHC reagent for grid array injections 10,000 LB 1.50$ 15,000$ Optional DHC inoculum for grid array injections 15 LB 90$ 1,350$

Chemical Application/Injection Costs 86,970$ Mob/Demob: Geoprobe & Injection Equipment 1 DAY 600$ 600$ Geoprobe operator: 1-person crew 18 DAY 1,600$ 28,800$ Injection Equipment: chemgrout plant, hoses, air compressor, etc.: 2-person crew 18 DAY 1,500$ 27,000$ Overtime for each crew (after 8-hrs onsite per day) 30 HR 175$ 5,250$ Per-diem: 3-person crew 18 DAY 500$ 9,000$ Decon equipment/soap, brush, water 18 DAY 50$ 900$ Bentonite chips 30 EA 17$ 510$ Asphalt or concrete patch 50 EA 3$ 150$ Fork lift 18 DAY 150$ 2,700$ Fork lift mob/demob 1 LS 600$ 600$ Chemical storage: C-container 18 DAY 75$ 1,350$ Storage container mob/demob 1 LS 950$ 950$ Frac tank for water storage 18 DAY 45$ 810$ Frac tank mob/demob 1 LS 1,200$ 1,200$ Water supply 1 LS 5,000$ 5,000$ Permits/Licenses 1 LS 650$ 650$ Private locator 1 LS 1,500$ 1,500$

Labor for Injection Oversight 24,712$ Injection Oversight Labor 18 DAY 1,000$ 18,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 5,712$ 5,712$

Construction Completion Reporting 1 LS 25,000$ 25,000$ 25,000$

IDW for Injections 1,419$ Transportation of non-hazardous drilling waste 10 EA 75$ 750$ Disposal of non-hazardous drilling waste 10 EA 28$ 280$ TCLP VOCs (soil) 1 EA 87$ 87$ TCLP SVOCs (soil) 1 EA 120$ 120$ TCLP RCRA 8 Metals (soil) 1 EA 39$ 39$ Corrosivity (pH) (soil) 1 EA 12$ 12$ Total PCBs (soil) 1 EA 43$ 43$ Ignitability (soil) 1 EA 14$ 14$ TCLP Pesticides (soil) 1 EA 74$ 74$

Institutional Controls 16,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 10 DAY $1,000 $10,000

SUBCONTRACT SUBTOTAL 598,114$

Contingency (15%) 89,717$

SUBCONTRACT TOTAL 687,831$

Payment/Performance Bonds and Insurance (2%) 11,962$

Contractor Professional/Technical Services 268,254$ Engineering/Design (6%) 1 LS 41,270$ $41,270Prime Contractor Markup (8%) 1 LS 55,026$ $55,026Project Management and Field Oversight (25%) 1 LS 171,958$ $171,958

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 968,048$

SAMPLING COST YEAR 1 AND 4 (QUARTERLY SAMPLING)Units Unit Cost Subtotal Total

Monitoring Well Sampling 4 EA 37,554$ 150,216$ 150,216$

Data Evaluation Memo 41,250$ Report Writing 150 Hr 125$ 18,750$ SDG Management 100 Hr 125$ 12,500$ DV Management 80 Hr 125$ 10,000$

Analytical Cost 58,708$ VOC 236 EA 53$ $12,508Metals (Iron(II) and Total Iron) 220 EA 11$ $2,420TOC 220 EA 14$ $3,080Alkalinity 220 EA 14$ $3,080Nitrate/Nitrite 220 EA 28$ $6,160Sulfate/Sulfite 220 EA 28$ $6,160Methane, Ethane, and Ethene 55 EA 75$ $4,125Microbial (qPCR) 55 EA 385$ $21,175

O&M ANNUAL SUBTOTAL 250,174$

Contingency (15%) 37,526$

O&M ANNUAL TOTAL 287,700$

Payment/Performance Bonds and Insurance (2%) 5,003$

Contractor Professional/Technical Services 112,203$ Engineering/Design (6%) 1 LS 17,262$ $17,262Prime Contractor Markup (8%) 1 LS 23,016$ $23,016Project Management and Field Oversight (25%) 1 LS 71,925$ $71,925

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 404,907$

1 sample per 20 drums

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

Capital Item Basis

Vendor quote plus engineering factor of 1.5Vendor quoteVendor quoteVendor quote

39 Samples plus QA/QC39 Samples plus QA/QC

Vendor quote

Vendor quote

Vendor quoteVendor quote

Applied to the Subcontract subtotal.

Vendor quote x 1.5Vendor quote x 1.5Vendor quote x 1.5Vendor quote x 1.5Vendor quote x 1.5Vendor quoteVendor quoteVendor quote x 1.5Vendor quoteVendor quote x 1.5Vendor quoteVendor quote x 1.5Vendor quote

Used waste estimator to determine # of drums

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

O&M Item Basis

Applied to the Subcontract total, including contingency.

Table D-7. Costs for Alternative GW5 - ISCR, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

SAMPLING COST YEAR 2, 3, 5, AND 6 (SEMI-ANNUAL SAMPLING)Units Unit Cost Subtotal Total

Monitoring Well Sampling 2 EA 37,554$ 75,108$ 75,108$

Data Evaluation Memo 20,000$ Report Writing 70 Hr 125$ 8,750$ SDG Management 50 Hr 125$ 6,250$ DV Management 40 Hr 125$ 5,000$

Analytical Cost 42,004$ VOC 118 EA 53$ $6,254Metals (Iron(II) and Total Iron) 110 EA 11$ $1,210TOC 110 EA 14$ $1,540Alkalinity 110 EA 14$ $1,540Nitrate/Nitrite 110 EA 28$ $3,080Sulfate/Sulfite 110 EA 28$ $3,080Methane, Ethane, and Ethene 55 EA 75$ $4,125Microbial (qPCR) 55 EA 385$ $21,175

O&M ANNUAL SUBTOTAL 137,112$

Contingency (15%) 20,567$

O&M ANNUAL TOTAL 157,679$

Payment/Performance Bonds and Insurance (2%) 2,742$

61,495$ Engineering/Design (6%) 1 LS 9,461$ $9,461Prime Contractor Markup (8%) 1 LS 12,614$ $12,614Project Management and Field Oversight (25%) 1 LS 39,420$ $39,420

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 221,916$ SAMPLING COST YEAR 8 AND BEYOND

Units Unit Cost Subtotal Total

Monitoring Well Sampling 1 EA 37,554$ 37,554$ 37,554$

Data Evaluation Memo 10,000$ Report Writing 35 Hr 125$ 4,375$ SDG Management 25 Hr 125$ 3,125$ DV Management 20 Hr 125$ 2,500$

Analytical Cost 3,127$ VOC 59 LS 53$ $3,127

O&M ANNUAL SUBTOTAL 50,681$

Contingency (15%) 7,602$

O&M ANNUAL TOTAL 58,283$

Payment/Performance Bonds and Insurance (2%) 1,014$

22,730$ Engineering/Design (6%) 1 LS 3,497$ $3,497Prime Contractor Markup (8%) 1 LS 4,663$ $4,663Project Management and Field Oversight (25%) 1 LS 14,571$ $14,571

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 82,027$ 2ND CHEMICAL INJECTION

Chemical Costs 165,870$ EHC Reagent for 5 injection zones 103,000 LB 2$ 154,500$ Optional DHC Inoculum 33 L 90$ 2,970$ EHC reagent for grid array injections 5,000 LB 2$ 7,500$ Optional DHC inoculum for grid array injections 10 L 90$ 900$

Chemical Application/Injection Costs 48,135$ Mob/Demob: Geoprobe & Injection Equipment 1 DAY 600$ 600$ Geoprobe operator: 1-person crew 9 DAY 1,600$ 14,400$ Injection Equipment: chemgrout plant, hoses, air compressor, etc.: 2-person crew 9 DAY 1,500$ 13,500$ Overtime for each crew (after 8-hrs onsite per day) 15 HR 175$ 2,625$ Per-diem: 3-person crew 9 DAY 500$ 4,500$ Decon equipment/soap, brush, water 9 DAY 50$ 450$ Bentonite chips 15 EA 17$ 255$ Asphalt or concrete patch 25 EA 3$ 75$ Fork lift 5 DAY 150$ 750$ Fork lift mob/demob 1 LS 600$ 600$ Chemical storage: C-container 9 DAY 75$ 675$ Storage container mob/demob 1 LS 950$ 950$ Frac tank for water storage 9 DAY 45$ 405$ Frac tank mob/demob 1 LS 1,200$ 1,200$ Water supply 1 LS 5,000$ 5,000$ Permits/Licenses 1 LS 650$ 650$ Private locator 1 LS 1,500$ 1,500$

Labor for Injection Oversight 13,480$ Injection Oversight Labor 9 DAY 1,000$ 9,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 3,480$ 3,480$

IDW for Injection 904$ Transportation of non-hazardous drilling waste 5 EA 75$ 375$ Disposal of non-hazardous drilling waste 5 EA 28$ 140$ TCLP VOCs (soil) 1 EA 87$ 87$ TCLP SVOCs (soil) 1 EA 120$ 120$ TCLP RCRA 8 Metals (soil) 1 EA 39$ 39$ Corrosivity (pH) (soil) 1 EA 12$ 12$ Total PCBs (soil) 1 EA 43$ 43$ Ignitability (soil) 1 EA 14$ 14$ TCLP Pesticides (soil) 1 EA 74$ 74$

SUBCONTRACT SUBTOTAL 228,389$

Contingency (15%) 34,258$

SUBCONTRACT TOTAL 262,647$

Payment/Performance Bonds and Insurance (2%) 4,568$

Contractor Professional/Technical Services 102,432$ Engineering/Design (6%) 1 LS 15,759$ $15,759Prime Contractor Markup (8%) 1 LS 21,012$ $21,012Project Management and Field Oversight (25%) 1 LS 65,662$ $65,662

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 369,648$

Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injectionSame unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection

Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection

Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)

Same unit costs as 1st injectionSame unit costs as 1st injectionSame unit costs as 1st injection

Used waste estimator to determine # of drums

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

Applied to the Subcontract subtotal.

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

1/2 the amount of the 1st injection1/2 the amount of the 1st injection1/2 the amount of the 1st injection1/2 the amount of the 1st injection

Same unit costs as 1st injection

O&M Item

O&M Item

Table D-7. Costs for Alternative GW5 - ISCR, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 11,661$ Engineering/Design (6%) 1 LS 1,794$ $1,794Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (25%) 1 LS 7,475$ $7,475

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 42,081$

PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type

Annual Sampling and

O&M Cost Annual Periodic Total Cost Per Year

Discount Factor

Discounted Sampling and

O&M CostDiscounted

Periodic CostAnnual Present

Value0 Capital Cost $0 $0 $968,048 1.000 $0 $0 $968,0481 Annual Cost - SCY 1/4 $404,907 $0 $404,907 0.975 $394,646 $0 $394,6462 Annual Cost - SCY 2/3/5/6 $221,916 $0 $221,916 0.950 $210,811 $0 $210,8113 Annual Cost - SCY 2/3/5/6 $221,916 $0 $221,916 0.926 $205,469 $0 $205,4694 Annual Cost - SCY 1/4, 2ND INJECTION $774,554 $0 $774,554 0.902 $698,976 $0 $698,9765 Annual Cost - SCY 2/3/5/6, Periodic Costs $221,916 $42,081 $263,997 0.880 $195,187 $37,013 $232,2006 Annual Cost - SCY 2/3/5/6 $221,916 $0 $221,916 0.857 $190,241 $0 $190,2417 Annual Cost - None $0 $0 $0 0.836 $0 $0 $08 Annual Cost - SCY 8 $82,027 $0 $82,027 0.814 $66,800 $0 $66,8009 Annual Cost - None $0 $0 $0 0.794 $0 $0 $0

10 Annual Cost - SCY 8, Periodic Costs $82,027 $42,081 $124,108 0.774 $63,458 $32,555 $96,01211 Annual Cost - None $0 $0 $0 0.754 $0 $0 $012 Annual Cost - SCY 8 $82,027 $0 $82,027 0.735 $60,282 $0 $60,28213 Annual Cost - None $0 $0 $0 0.716 $0 $0 $014 Annual Cost - SCY 8 $82,027 $0 $82,027 0.698 $57,266 $0 $57,26615 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.680 $0 $28,634 $28,63416 Annual Cost - SCY 8 $82,027 $0 $82,027 0.663 $54,400 $0 $54,40017 Annual Cost - None $0 $0 $0 0.646 $0 $0 $0

TOTAL ALTERNATIVE COSTS $2,477,260 $126,243 $3,571,550 $2,197,536 $98,201 $3,263,785

PV OF ALTERNATIVE (FY 2018 Dollars) $3,263,785

Periodic Cost Item Basis

Non-Discounted Costs Discounted Costs

Table D-8. Costs for Alternative GW6 - ISCO, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Monitoring Well Installation 18,646$

Labor for MW Installation 5,996$ Drilling Oversight Labor 40 Hr 100$ 4,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 996$ 996$

Monitoring Well Sampling 37,554$

Data Evaluation Memo 16,875$

Analytical Cost (Baseline) 5,587$ VOC 59 EA 53$ $3,127TOC 55 EA 14$ $770Alkalinity 55 EA 14$ $770Metals (Fe[II] and Total Fe) 55 EA 11$ $605Field oxidant test 1 LS 150$ $150Field manganese test 1 LS 165$ $165

Chemical Costs 368,630$ Sodium Permanganate for 5 transects (101K gal of 8% NaMNo4 solution) 182,000 LB 1.93$ 351,260$ Sodium Permanganate for grid array injections (11K gal of 4% NaMNO4 solution) 9,000 LB 1.93$ 17,370$

Chemical Application/Injection Costs 245,860$ Mob/Demob: Geoprobe & Injection Equipment 1 DAY 600$ 600$ Geoprobe operator: 1-person crew 60 DAY 1,500$ 90,000$ Injection Equipment: chemgrout plant, hoses, air compressor, etc.: 2-person crew 60 DAY 1,300$ 78,000$ Overtime for each crew (after 8-hrs onsite per day) 40 HR 175$ 7,000$ Per-diem: 3-person crew 60 DAY 500$ 30,000$ Decon equipment/soap, brush, water 60 DAY 50$ 3,000$ Bentonite chips 30 EA 17$ 510$ Asphalt or concrete patch 50 EA 3$ 150$ Fork lift 60 DAY 150$ 9,000$ Fork lift mob/demob 1 LS 600$ 600$ Permanganate Neutralizer: sodium thiosulfate 1 LS 3,500$ 3,500$ Chemical storage: C-container 60 DAY 75$ 4,500$ Storage container mob/demob 1 LS 950$ 950$ Frac tank for water storage 60 DAY 45$ 2,700$ Frac tank mob/demob 1 LS 1,200$ 1,200$ Water supply 1 LS 12,000$ 12,000$ Permits/Licenses 1 LS 650$ 650$ Private locator 1 LS 1,500$ 1,500$

Labor for Injection Oversight 80,144$ Injection Oversight Labor 60 DAY 1,000$ 60,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 19,144$ 19,144$

Construction Completion Reporting 1 LS 25,000$ 25,000$ 25,000$

IDW for Injections 1,419$ Transportation of non-hazardous drilling waste 10 EA 75$ 750$ Disposal of non-hazardous drilling waste 10 EA 28$ 280$ TCLP VOCs (soil) 1 EA 87$ 87$ TCLP SVOCs (soil) 1 EA 120$ 120$ TCLP RCRA 8 Metals (soil) 1 EA 39$ 39$ Corrosivity (pH) (soil) 1 EA 12$ 12$ Total PCBs (soil) 1 EA 43$ 43$ Ignitability (soil) 1 EA 14$ 14$ TCLP Pesticides (soil) 1 EA 74$ 74$

Institutional Controls 16,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 10 DAY $1,000 $10,000

SUBCONTRACT SUBTOTAL 821,711$

Contingency (15%) 123,257$

SUBCONTRACT TOTAL 944,968$

Payment/Performance Bonds and Insurance (2%) 16,434$

Contractor Professional/Technical Services 368,537$ Engineering/Design (6%) 1 LS 56,698$ $56,698Prime Contractor Markup (8%) 1 LS 75,597$ $75,597Project Management and Field Oversight (25%) 1 LS 236,242$ $236,242

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 1,329,939$

SAMPLING COST YEAR 1 AND 3 (QUARTERLY SAMPLING)Units Unit Cost Subtotal Total

Monitoring Well Sampling 4 EA 37,554$ 150,216$ 150,216$

Data Evaluation Memo 41,250$ Report Writing 150 Hr 125$ 18,750$ SDG Management 100 Hr 125$ 12,500$ DV Management 80 Hr 125$ 10,000$

Analytical Cost 22,348$ VOC 236 EA 53$ $12,508TOC 220 EA 14$ $3,080Alkalinity 220 EA 14$ $3,080Metals (Fe[II] and Total Fe) 220 EA 11$ $2,420Field oxidant test 4 LS 150$ $600Field manganese test 4 LS 165$ $660

O&M ANNUAL SUBTOTAL 213,814$

Contingency (15%) 32,072$

O&M ANNUAL TOTAL 245,886$

Payment/Performance Bonds and Insurance (2%) 4,276$

Contractor Professional/Technical Services 95,896$ Engineering/Design (6%) 1 LS 14,753$ $14,753Prime Contractor Markup (8%) 1 LS 19,671$ $19,671Project Management and Field Oversight (25%) 1 LS 61,472$ $61,472

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 346,058$ ANALYTICAL COST YEAR 2 AND 4 (SEMI-ANNUAL SAMPLING)

Units Unit Cost Subtotal Total

Monitoring Well Sampling 2 EA 37,554$ 75,108$ 75,108$

1 sample per 20 drums

Used waste estimator to determine # of drums

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

Vendor quoteVendor quote with engineering cost adjustmentVendor quoteVendor quote with engineering cost adjustmentVendor quoteVendor quoteVendor quoteVendor quote

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Vendor quote with engineering cost adjustmentVendor quote with engineering cost adjustmentVendor quote with engineering cost adjustmentVendor quote with engineering cost adjustmentVendor quote with engineering cost adjustmentVendor quote with engineering cost adjustmentVendor quoteVendor quote with engineering cost adjustmentVendor quote

O&M Item

Capital Item Basis

Applied to the Subcontract subtotal.

O&M Item Basis

Amount calculated with internal calculator and price from vendorAmount calculated with internal calculator and price from vendor

Table D-8. Costs for Alternative GW6 - ISCO, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Data Evaluation Memo 20,000$ Report Writing 70 Hr 125$ 8,750$ SDG Management 50 Hr 125$ 6,250$ DV Management 40 Hr 125$ 5,000$

Analytical Cost 11,174$ VOC 118 EA 53$ $6,254TOC 110 EA 14$ $1,540Alkalinity 110 EA 14$ $1,540Metals (Fe[II] and Total Fe) 110 EA 11$ $1,210Field oxidant test 2 LS 150$ $300Field manganese test 2 LS 165$ $330

O&M ANNUAL SUBTOTAL 106,282$

Contingency (15%) 15,942$

O&M ANNUAL TOTAL 122,224$

Payment/Performance Bonds and Insurance (2%) 2,126$

47,667$ Engineering/Design (6%) 1 LS 7,333$ $7,333Prime Contractor Markup (8%) 1 LS 9,778$ $9,778Project Management and Field Oversight (25%) 1 LS 30,556$ $30,556

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 172,017$ SAMPLING COST YEAR 6 AND BEYOND

Units Unit Cost Subtotal Total

Monitoring Well Sampling 1 EA 37,554$ 37,554$ 37,554$

Data Evaluation Memo 10,000$ Report Writing 35 Hr 125$ 4,375$ SDG Management 25 Hr 125$ 3,125$ DV Management 20 Hr 125$ 2,500$

Analytical Cost 3,127$ VOC 59 EA 53$ $3,127

O&M ANNUAL SUBTOTAL 50,681$

Contingency (15%) 7,602$

O&M ANNUAL TOTAL 58,283$

Payment/Performance Bonds and Insurance (2%) 1,014$

22,730$ Engineering/Design (6%) 1 LS 3,497$ $3,497Prime Contractor Markup (8%) 1 LS 4,663$ $4,663Project Management and Field Oversight (25%) 1 LS 14,571$ $14,571

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 82,027$ 2nd Chemical Injection

Chemical Costs 184,315$ Sodium Permanganate for 5 transects (51K gal of 8% NaMNo4 solution) 91,000 LB 1.93$ 175,630$ Sodium Permanganate for grid array injections (5.5K gal of 4% NaMNO4 solution) 4,500 LB 1.93$ 8,685$

Chemical Application/Injection Costs 135,180$ Mob/Demob: Geoprobe & Injection Equipment 1 DAY 600$ 600$ Geoprobe operator: 1-person crew 30 DAY 1,500$ 45,000$ Injection Equipment: chemgrout plant, hoses, air compressor, etc.: 2-person crew 30 DAY 1,300$ 39,000$ Overtime for each crew (after 8-hrs onsite per day) 30 HR 175$ 5,250$ Per-diem: 3-person crew 30 DAY 500$ 15,000$ Decon equipment/soap, brush, water 30 DAY 50$ 1,500$ Bentonite chips 15 EA 17$ 255$ Asphalt or concrete patch 25 EA 3$ 75$ Fork lift 30 DAY 150$ 4,500$ Fork lift mob/demob 1 LS 600$ 600$ Permanganate Neutralizer: sodium thiosulfate 1 LS 3,500$ 3,500$ Chemical storage: C-container 30 DAY 75$ 2,250$ Storage container mob/demob 1 LS 950$ 950$ Frac tank for water storage 30 DAY 45$ 1,350$ Frac tank mob/demob 1 LS 1,200$ 1,200$ Water supply 1 LS 12,000$ 12,000$ Permits/Licenses 1 LS 650$ 650$ Private locator 1 LS 1,500$ 1,500$

Labor for Injection Oversight 40,448$ Injection Oversight Labor 30 DAY 1,000$ 30,000$ Expenses 1 LS 1,000$ 1,000$ Travel 1 LS 9,448$ 9,448$

IDW for Injection 904$ Transportation of non-hazardous drilling waste 5 EA 75$ 375$ Disposal of non-hazardous drilling waste 5 EA 28$ 140$ TCLP VOCs (soil) 1 EA 87$ 87$ TCLP SVOCs (soil) 1 EA 120$ 120$ TCLP RCRA 8 Metals (soil) 1 EA 39$ 39$ Corrosivity (pH) (soil) 1 EA 12$ 12$ Total PCBs (soil) 1 EA 43$ 43$ Ignitability (soil) 1 EA 14$ 14$ TCLP Pesticides (soil) 1 EA 74$ 74$

SUBCONTRACT SUBTOTAL 360,847$

Contingency (15%) 54,127$

SUBCONTRACT TOTAL 414,974$

Payment/Performance Bonds and Insurance (2%) 7,217$

Contractor Professional/Technical Services 161,840$ Engineering/Design (6%) 1 LS 24,898$ $24,898Prime Contractor Markup (8%) 1 LS 33,198$ $33,198Project Management and Field Oversight (25%) 1 LS 103,744$ $103,744

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 584,031$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Used waste estimator to determine # of drums

1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums1 sample per 20 drums

Same unit costs as 1st injectionSame unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injectionSame unit costs as 1st injectionSame unit costs as 1st injection

Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injectionSame unit costs as 1st injection but 1/2 the amount of time (or quantity)Same unit costs as 1st injection but 1/2 the amount of time (or quantity)

Applied to the Subcontract subtotal.

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

1 sample per 20 drums1 sample per 20 drums

O&M Item

Periodic Cost Item Basis

1/2 the amount of the 1st injection1/2 the amount of the 1st injection

Same unit costs as 1st injection

Same unit costs as 1st injection

Table D-8. Costs for Alternative GW6 - ISCO, LTM, and Institutional ControlsPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 11,661$ Engineering/Design (6%) 1 LS 1,794$ $1,794Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (25%) 1 LS 7,475$ $7,475

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 42,081$ PRESENT VALUE ANALYSIS Discount Rate = 2.6%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $1,329,939 1.000 $0 $0 $1,329,9391 Annual Cost - SCY 1/3 $346,058 $0 $346,058 0.975 $337,288 $0 $337,2882 Annual Cost - SCY 2/4, Carbon Replacement $172,017 $0 $172,017 0.950 $163,410 $0 $163,4103 Annual Cost - SCY 1/3, 2ND INJECTION $930,089 $0 $930,089 0.926 $861,157 $0 $861,1574 Annual Cost - SCY 2/4, Carbon Replacement $172,017 $0 $172,017 0.902 $155,233 $0 $155,2335 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.880 $0 $37,013 $37,0136 Annual Cost - SCY 6, Carbon Replacement $82,027 $0 $82,027 0.857 $70,319 $0 $70,3197 Annual Cost - None $0 $0 $0 0.836 $0 $0 $08 Annual Cost - SCY 6, Carbon Replacement $82,027 $0 $82,027 0.814 $66,800 $0 $66,8009 Annual Cost - None $0 $0 $0 0.794 $0 $0 $0

10 Annual Cost - SCY 6, Periodic Costs, Carbon Replacement $82,027 $42,081 $124,108 0.774 $63,458 $32,555 $96,01211 Annual Cost - None $0 $0 $0 0.754 $0 $0 $012 Annual Cost - SCY 6, Carbon Replacement $82,027 $0 $82,027 0.735 $60,282 $0 $60,28213 Annual Cost - None $0 $0 $0 0.716 $0 $0 $014 Annual Cost - SCY 6, Carbon Replacement $82,027 $0 $82,027 0.698 $57,266 $0 $57,26615 Annual Cost - Periodic Costs $0 $42,081 $42,081 0.680 $0 $28,634 $28,634

TOTAL ALTERNATIVE COSTS $2,030,318 $126,243 $3,486,500 $1,835,213 $98,201 $3,263,353

PV OF ALTERNATIVE (FY 2018 Dollars) $3,263,353

Non-Discounted Costs Discounted Costs

Table D-9. Summary of Groundwater Alternatives Cost EstimatesPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Alternative GW1No Action

Alternative GW3MNA and

Institutional Controls

Alternative GW5ISCR, LTM, and

Institutional Controls

Alternative GW6ISCO, LTM, and

Institutional Controls

Alternative GW3MNA and

Institutional Controls

Alternative GW5ISCR, LTM, and

Institutional Controls

Alternative GW6ISCO, LTM, and

Institutional Controls

Alternative GW3MNA and

Institutional Controls

Alternative GW5ISCR, LTM, and

Institutional Controls

Alternative GW6ISCO, LTM, and

Institutional Controls

Timeframe for Remediation (Years) 35 17 15 35 17 15 35 17 15

Non-Discounted CostsCapital Costs $0 $159,000 $968,000 $1,330,000 $786,000 $1,595,000 $1,957,000 $2,543,000 $3,352,000 $3,714,000Sampling and O&M Costs $0 $4,488,000 $3,877,000 $3,255,000 $3,688,000 $3,533,000 $2,962,000 $11,045,000 $7,107,000 $6,115,000Periodic Costs $0 $295,000 $126,000 $126,000 $295,000 $126,000 $126,000 $295,000 $126,000 $126,000Total Costs $0 $4,942,000 $4,971,000 $4,711,000 $4,769,000 $5,254,000 $5,045,000 $13,883,000 $10,585,000 $9,955,000

Discounted Costs (Discount Rate = 2.8 percent)Capital Costs $0 $159,000 $968,000 $1,330,000 $786,000 $1,595,000 $1,957,000 $2,543,000 $3,352,000 $3,714,000Sampling and O&M Costs $0 $2,945,000 $3,317,000 $2,838,000 $2,428,000 $3,043,000 $2,599,000 $7,220,000 $5,902,000 $5,182,000Periodic Costs $0 $182,000 $98,000 $98,000 $182,000 $98,000 $98,000 $182,000 $98,000 $98,000Total Present Value Costs $0 $3,286,000 $4,383,000 $4,266,000 $3,396,000 $4,736,000 $4,654,000 $9,945,000 $9,352,000 $8,994,000

Cost Ranges (Discounted)-30 percent $0 $2,300,000 $3,068,000 $2,986,000 $2,377,000 $3,315,000 $3,258,000 $6,962,000 $6,546,000 $6,296,000+50 percent $0 $4,929,000 $6,575,000 $6,399,000 $5,094,000 $7,104,000 $6,981,000 $14,918,000 $14,028,000 $13,491,000

Notes:1 - Alternative costs presented below includes Alternative GW2A costs for remediation timeframe indicated.2 - Alternative costs presented below includes Alternative GW2B costs for remediation timeframe indicated.3 - Alternative costs presented below includes Alternative GW2C costs for remediation timeframe indicated.

AOP - advanced oxidation processGW - groundwaterISCO - in situ chemical oxidationISCR - in situ chemical reductionLTM - long-term monitoringMNA - monitored natural attenuationO&M - operations and maintenance

Cost Type

Alternative GW2A1 Alternative GW2B2 Alternative GW2C3

Table D-10. Residential Property Analysis for VIMPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Location Parking Lot? Sampled?Within Plume?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1? 1E-06 1E-05 1E-04

RP-001 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-002 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-003 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-004 NO YES YES < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMRP-005 NO YES YES < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMRP-006 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-007 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-008 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-009 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-010 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-011 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-012 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-013 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-021 NO YES YES 2E-05 YES 2E-05 YES 2E-05 YES VIM VIM VIMRP-022 NO YES YES -- -- 3E-05 YES 3E-05 YES VIM VIM VIMRP-028 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionRP-031 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionRP-038 NO YES YES -- -- 1E-05 YES 1E-05 YES VIM VIM VIMRP-047 NO YES NO -- -- 1E-05 YES 1E-05 YES VIM VIM VIMRP-083 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionRP-084 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-085 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-086 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-087 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-090 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-091 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-092 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-093 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-094 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-095 NO YES YES -- -- 8E-06 YES 8E-06 YES VIM VIM VIMRP-121 NO YES YES -- -- 2E-06 NO 2E-06 NO VIM LTM LTMRP-124 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-125 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-126 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-129 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-130 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-131 NO YES YES < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMRP-132 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-133 NO YES YES 2E-05 YES 2E-06 NO 2E-05 YES VIM VIM VIMRP-134 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-135 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionRP-149 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-151 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-152 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-154 YES NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-157 NO YES NO 4E-07 NO 2E-05 YES 2E-05 YES VIM VIM VIMRP-158 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-159 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-160 NO YES YES 3E-06 NO 6E-06 YES 6E-06 YES VIM VIM VIMRP-161 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-162 NO YES YES -- -- 2E-05 YES 2E-05 YES VIM VIM VIMRP-163 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-171 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-174 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-175 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-176 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-177 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-181 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-182 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-183 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-184 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampled

Current Resident Future Resident Current/Future Resident Actions

Table D-10. Residential Property Analysis for VIMPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Location Parking Lot? Sampled?Within Plume?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1?

Adult/Child Aggregate ELCR

Target Organ-specific HIs > 1? 1E-06 1E-05 1E-04

Current Resident Future Resident Current/Future Resident Actions

RP-185 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-186 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-189 NO YES NO 6E-07 NO -- -- 6E-07 NO No Action No Action No ActionRP-190 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-191 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-192 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-193 NO YES YES 2E-06 NO -- -- 2E-06 NO VIM LTM LTMRP-194 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-195 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-196 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-199 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-200 NO YES YES 1E-06 NO -- -- 1E-06 NO LTM LTM LTMRP-201 NO YES YES 3E-06 NO 2E-05 YES 2E-05 YES VIM VIM VIMRP-203 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-205 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionRP-206 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-207 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-210 NO YES YES < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMRP-211 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-212 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-215 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-216 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-217 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-222 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-223 NO YES YES -- -- 3E-06 NO 3E-06 NO VIM LTM LTMRP-224 NO YES YES -- -- 5E-06 NO 5E-06 NO VIM LTM LTMRP-226 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-228 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-229 NO YES YES 6E-07 NO -- -- 6E-07 NO LTM LTM LTMRP-230 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-231 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-232 NO YES YES < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMRP-233 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-234 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-236 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampledRP-237 NO NO YES -- -- -- -- -- -- Not sampled Not sampled Not sampled

97 6 27 89 14 10 10 VIM properties7 11 11 LTM only properties

Notes: 6 6 6 No ActionLTM will also be conducted at VIM properties 70 70 70 Not sampledELCR - excess lifetime cancer risk 97 97 97 TotalHI - hazard indexLTM - long-term monitoring 52% 37% 37% VIM properties (percent sampled)VIM - vapor intrusion mitigation 26% 41% 41% LTM only properties (percent sampled)-- - not calculated 22% 22% 22% No Action properties (percent sampled)

64 64 64 Not sampled properties, less parking lots33 24 24 VIM properties, not sampled17 26 26 LTM only properties, not sampled14 14 14 No Action properties, not sampled

47 34 34 Total VIM properties24 37 37 Total LTM only properties20 20 20 Total No Action properties

Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Location Parking Lot? Sampled? Within Plume? ELCRTarget Organ-

specific HIs > 1?ELCR

Target Organ-specific HIs > 1?

ELCRTarget Organ-

specific HIs > 1? 1E-06 1E-05 1E-04CP-014 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-023 NO YES 1E-06 -- -- 1E-06 NO 1E-06 NO LTM No Action No ActionCP-046 NO YES 1E-05/1E-04 1E-06 NO 2E-05 YES 2E-05 YES VIM VIM VIMCP-053 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-055 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-065 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-067 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-070 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-072 NO YES NO < 1E-06 NO < 1E-06 NO < 1E-06 NO No Action No Action No ActionCP-073 NO YES NO 3E-07 NO -- -- 3E-07 NO No Action No Action No ActionCP-074 NO YES NO -- -- 7E-06 YES 7E-06 YES VIM VIM VIMCP-076 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-079 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-088 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-089 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-096 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-097 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-098 NO YES 1E-05/1E-04 < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMCP-099 NO YES 1E-05/1E-04 8E-06 YES 3E-04 YES 3E-04 YES VIM VIM VIMCP-100 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-101 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-102 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-103 NO YES 1E-05/1E-04 < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMCP-104 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-105 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-106 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-107 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-108 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-109 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-110 NO YES 1E-05/1E-04 2E-06 NO 2E-05 YES 2E-05 YES VIM VIM VIMCP-111 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-112 NO YES 1E-06 < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM No Action No ActionCP-113 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-114 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-116 NO YES 1E-06 < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM No Action No ActionCP-117 YES NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-118 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-119 NO YES 1E-05/1E-04 -- -- 3E-06 NO 3E-06 NO VIM LTM LTMCP-120 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-123 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-140 NO YES NO -- -- 2E-05 YES 2E-05 YES VIM VIM VIMCP-141 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-143 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-145 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-146 NO YES 1E-06 8E-07 NO -- -- 8E-07 NO LTM No Action No ActionCP-147 YES NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-148 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-150 NO YES 1E-06 1E-06 NO 1E-05 YES 1E-05 YES VIM VIM VIMCP-153 NO YES 1E-05/1E-04 < 1E-06 NO < 1E-06 NO < 1E-06 NO LTM LTM LTMCP-154 YES NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-155 NO YES 1E-05/1E-04 4E-07 NO -- -- 4E-07 NO LTM LTM LTMCP-168 NO YES NO 1E-06 NO 2E-05 YES 2E-05 YES VIM VIM VIMCP-169 NO YES NO 8E-07 NO 2E-06 NO 2E-06 NO VIM No Action No Action

Table D-11. Commercial Property Analysis for VIM

Current Industrial/Commercial Worker Future Industrial/Commercial Worker Current/Future Action

Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Location Parking Lot? Sampled? Within Plume? ELCRTarget Organ-

specific HIs > 1?ELCR

Target Organ-specific HIs > 1?

ELCRTarget Organ-

specific HIs > 1? 1E-06 1E-05 1E-04

Table D-11. Commercial Property Analysis for VIM

Current Industrial/Commercial Worker Future Industrial/Commercial Worker Current/Future Action

CP-178 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-179 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-180 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-197 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-198 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-202 NO NO 1E-05/1E-04 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-214 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-235 NO NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampledCP-238 YES NO 1E-06 -- -- -- -- -- -- Not sampled Not sampled Not sampled

62 4 19 9 7 7 VIM properties8 5 5 LTM only properties

Notes: 2 7 7 No ActionLTM will also be conducted at VIM properties 43 43 43 Not sampledELCR - excess lifetime cancer risk 62 62 62 TotalHI - hazard indexLTM - long-term monitoring 47% 37% 37% VIM properties (percent sampled)VIM - vapor intrusion mitigation 42% 26% 26% LTM only properties (percent sampled)-- - not calculated 11% 37% 37% No Action properties (percent sampled)

39 39 39 Not sampled properties, less parking lots18 14 14 VIM properties, not sampled16 10 10 LTM only properties, not sampled4 14 14 No Action properties, not sampled

27 21 21 Total VIM properties24 15 15 Total LTM only properties6 21 21 Total No Action properties

Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E-06 1E-05 1E-04

VIM properties (percent sampled) 52% 37% 37%

LTM only properties (percent sampled) 26% 41% 41%

No Action properties (percent sampled) 22% 22% 22%

Total VIM properties 47 34 34

Total LTM only properties 24 37 37

Total No Action properties 20 20 20

Subtotal 91 91 91

VIM properties (percent sampled) 47% 37% 37%

LTM only properties (percent sampled) 42% 26% 26%

No Action properties (percent sampled) 11% 37% 37%

Total VIM properties 27 21 21

Total LTM only properties 24 15 15

Total No Action properties 6 21 21

Subtotal 57 57 57

Total VIM properties 74 55 55

Total LTM only properties 48 52 52

Total No Action properties 26 41 41

TOTAL 148 148 148

Notes:

LTM will also be conducted at VIM properties

ELCR - excess lifetime cancer risk

LTM - long-term monitoring

VIM - vapor intrusion mitigation

All Properties

Table D-12. Summary of Actions by Property - Alternatives SV3 and SV5

SUMMARY:

ELCR

Residential

Commercial/Industrial

Table D-13. Summary of Actions by Property - Alternative SV4Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E-06 1E-05 1E-04

VIM properties (percent sampled) 0% 0% 0%

LTM only properties (percent sampled) 78% 78% 78%

No Action properties (percent sampled) 22% 22% 22%

Total VIM properties 0 0 0

Total LTM only properties 71 71 71

Total No Action properties 20 20 20

Subtotal 91 91 91

VIM properties (percent sampled) 0% 0% 0%

LTM only properties (percent sampled) 89% 63% 63%

No Action properties (percent sampled) 11% 37% 37%

Total VIM properties 0 0 0

Total LTM only properties 51 36 36

Total No Action properties 6 21 21

Subtotal 57 57 57

Total VIM properties 0 0 0

Total LTM only properties 122 107 107

Total No Action properties 26 41 41

TOTAL 148 148 148

Notes:

LTM will also be conducted at VIM properties

ELCR - excess lifetime cancer risk

LTM - long-term monitoring

VIM - vapor intrusion mitigation

SUMMARY:

ELCR

Residential

Commercial/Industrial

All Properties

Table D-14. Building Survey Summary for Residential PropertiesPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

RP-004 YES Early 1900s Full Basement 1,700 No Some Some No No NoRP-005 YES 1867 Crawlspace -- No No Yes No No NoRP-021 YES 1970s Partial 2,000 Yes Yes -- No -- NoRP-022 YES 1981 Slab on Grade -- No N/A N/A N/A No UnknownRP-028 NO 1910s Crawlspace -- No No -- No No NoRP-031 NO 1910 Crawlspace -- No N/A Yes No No NoRP-038 YES 1981 Slab on Grade -- No N/A N/A N/A No UnknownRP-047 NO 2008-2009 Slab on Grade -- No N/A N/A N/A No UnknownRP-083 NO Before 1965 Partial 500 No No No No No UnknownRP-095 YES 1890 Partial 2,000 No Yes Yes No No NoRP-121 YES 1897 Partial 1,600 No No No No No NoRP-131 YES 1890s Slab on Grade 1,700 No No No Yes No NoRP-133 YES 1900 Partial 900 Yes No No Yes No UnknownRP-135 NO 1890 Partial -- No No No No No NoRP-157 NO 1950 Slab on Grade -- No No Yes No Yes UnknownRP-160 YES 1929 Partial 300 Yes No No No Yes NoRP-162 YES 1895 Full Basement 1,800 No Some No No Yes --RP-189 NO 1800s Partial -- No Unknown Unknown Unknown No UnknownRP-193 YES 1980s Partial -- No -- -- -- No UnknownRP-200 YES 1905 Crawlspace -- No N/A N/A N/A No NoRP-201 YES Unknown Partial -- No No No -- No UnknownRP-205 NO 1830 Crawlspace -- No N/A Yes No No NoRP-210 YES 1890s Crawlspace -- No N/A N/A N/A No YesRP-223 YES 1890s Partial -- Yes Yes Yes No No NoRP-224 YES 1890s Full Basement 2,000 Yes Yes Yes No No No

or intrusion m #N/A 1890s Partial 2,500 Yes No No Yes No NoRP-232 YES 1945-1948 Partial 1,500 No No No No No No

Notes:Data collected from building survey forms during Remedial Investigation Phases 6 and 7Footprint determined by basement sizeN/A - not applicable-- - not measured or recorded on building survey

Footprint (SF) Sumps?Within Plume?Property IDYear

ConstructedSubgrade

ConstructionSignificant

wall cracks?Wall/floor

sealed?Whole

House Fan?Subslab vapor/

moisture Significant

floor cracks?

Table D-15. Building Survey Summary for Commercial/Industrial PropertiesPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CP-023 1E-06 1911 Partial -- Yes Yes Yes No No UnknownCP-046 1E-05/1E-04 1950s Slab on Grade -- No Yes N/A -- No UnknownCP-072 NO Unknown Full Basement -- No Unknown Unknown No No NoCP-073 NO Late 1800s Full Basement 1,600 No Yes Yes No No NoCP-074 NO Late 1800s Slab on Grade -- -- N/A N/A -- No NoCP-098 1E-05/1E-04 2001 Slab on Grade -- No -- N/A No No --CP-099 1E-05/1E-04 1954 Slab on Grade -- No N/A N/A N/A No UnknownCP-103 1E-05/1E-04 1865 Slab on Grade -- No N/A N/A N/A No NoCP-110 1E-05/1E-04 1915 Full Basement -- Yes No No No No NoCP-112 1.00E-06 1900s Full Basement 2,800 No N/A Yes No No --CP-116 1.00E-06 Unknown Slab on Grade -- No No No -- No NoCP-119 1E-05/1E-04 1881 Partial -- Yes No No No No UnknownCP-140 NO South (90s) North (59') Full Basement -- Yes Yes No No No NoCP-146 1.00E-06 1915 Partial 1,000 No Yes Yes No No NoCP-150 1.00E-06 1917 Partial 600 -- No No Yes No UnknownCP-153 1E-05/1E-04 Unknown Slab on Grade -- No N/A N/A No No N/ACP-155 1E-05/1E-04 1936 Partial -- No Some Yes No No NoCP-168 NO 1906 Slab on Grade -- Yes No No No No UnknownCP-169 NO 1990 Slab on Grade -- Yes No No No No UnknownCP-238 1.00E-06 Late 1800s Full Basement -- -- -- -- -- No No

Notes:Data collected from building survey forms during Remedial Investigation Phases 6 and 7Footprint determined by basement sizeN/A - not applicableVIM - vapor intrusion mitigation

Property ID Within Plume? Year ConstructedSubgrade

ConstructionWall/floor

sealed?Whole

House Fan?Subslab vapor/

moisture Footprint (SF) Sumps?Significant

floor cracks?Significant

wall cracks?

Table D-16. Building Survey Summary for All PropertiesPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Full basement 3 11%

Partial basement 13 48%Crawlspace 6 22%

Slab-on-grade 5 19%

Total 27 100%

Average footprint 1,542 SF

Full basement 6 30%

Partial basement 5 25%Crawlspace 0 0%

Slab-on-grade 9 45%

Total 20 100%

Average footprint 1,500 SF

Notes:

VIM - vapor intrusion mitigation

Residential

Commercial/Industrial

Building information is summarized from building surveys conducted during the Remedial Investigation vapor intrusion sampling.

Percentages of each building construction type will be applied to the total number of properties receiving VIMs.

Average footprint areas will be used as the cost basis for an average residential building and average commercial/industrial building.

Table D-17. VIM Summary - Alternatives SV3 and SV5Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

1E-06 1E-05 1E-04

Total VIMs 100% 47 34 34

SSD systems 30% 14 10 10SMD systems 22% 10 8 8

SSD/SMD combination 48% 23 16 16

Total VIMs 100% 27 21 21

SSD systems 75% 20 16 16SMD systems 0% 0 0 0

SSD/SMD combination 25% 7 5 5

Total VIMs 100% 74 55 55

SSD systems 46% 34 26 26SMD systems 14% 10 8 8

SSD/SMD combination 40% 29 22 22

Notes:

ELCR - excess lifetime cancer risk

SMD - sub-membrane depressurization

SSD - subslab depressurization

VIM - vapor intrusion mitigation

Percentages of each type of VIM were determined based on building construction recorded in building surveys.

SUMMARY:

ELCR

Residential

Commercial/Industrial

All Properties

SSD systems will be installed for buildings with full basements and slab-on-grade construction.

SMD systems will be installed for buildings with crawlspaces.

SSD/SMD combination systems will be installed in buildings with partial crawlspaces. It is assumed that SMD will be installed over approximately half of the floor space area of the building.

Table D-18A. Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Mitigation Work Plan, Data Evaluation, and VIM System layout 75,000$

Work Plans 1 each 75,000$ 75,000$

Access Coordination 12,200$

Access Coordination 122 Hours 100$ 12,200$

Air Permitting Equivalency 10,000$ Air Permit Requirements Evaluation 1 LS 10,000$ $10,000

Pathway Sealing 378,510$

Residential buildings 47 each 5,115$ 240,405$ Commercial buildings 27 each 5,115$ 138,105$

VIM System Diagnostic Testing 416,805$ Residential buildings 47 each 5,633$ 264,728$ Commercial buildings 27 each 5,633$ 152,078$

VIM System Installation 1,889,741$ Residential buildings - SSD systems 14 each 23,090$ 321,550$ Residential buildings - SMD systems 10 each 29,099$ 303,920$ Residential buildings - SSD/SMD combination systems 23 each 27,117$ 613,656$ Commercial buildings - SSD systems 20 each 23,090$ 467,573$ Commercial buildings - SMD systems 0 each 29,099$ -$ Commercial buildings - SSD/SMD combination systems 7 each 27,117$ 183,042$

VIM System Startup and Commissioning 309,080$

Labor Oversight - VIMS Startup and Commissioning 420 Hours 135$ 56,700$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 42 Days 140$ 5,880$ Vehicle for Oversight 42 Days 50$ 2,100$

Labor - 2-person crew 840 Hours 65$ 54,600$

Travel and Per Diem - VIMS Startup and Commissioning (field crew) 84 Days 140$ 11,760$ Vehicle for Field Team 42 Days 50$ 2,100$ PID Rental 8 week 150$ 1,260$ Mobilization and Site Setup - VIMS Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - VIMS Startup and Commissioning 420 Hours 135$ 56,700$ Construction Manager - Travel and Per Diem - VIMS Startup and Commissioning 42 Days 140$ 5,880$ Vehicle for Construction Manager 42 Days 50$ 2,100$

Construction Report preparation 1 LS 100,000$ 100,000$

Monitoring - Event 1612,582$

Field planning 90 Hours 85$ 7,650$

Private utility locator 122 Each 110$ 13,420$

Labor (divided into four, 2-person crews) 2,928 Hours 85$ 248,880$

Travel and Per Diem 305 Days 140$ 42,700$ Vehicle for Field Team 153 Days 50$ 7,625$ PID Rental 22 week 150$ 3,268$ GEM 5000 gas meter 22 week 260$ 5,664$ Hammer drill 22 week 260$ 5,664$ Sound meter 22 week 60$ 1,307$ Helium Detector 22 week 260$ 5,664$ Vacuum air pump with manifold 22 week 250$ 5,446$

VaporPin Installation 98 Each 300$ 29,319$

Consumables 122 Each 300$ 36,600$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2513,377$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,684 Hours 85$ 228,140$

Travel and Per Diem 280 Days 140$ 39,142$ Vehicle for Field Team 140 Days 50$ 6,990$ PID Rental 20 week 150$ 2,996$ GEM 5000 gas meter 20 week 260$ 5,192$ Hammer drill 20 week 260$ 5,192$ Sound meter 20 week 60$ 1,198$ Helium Detector 20 week 260$ 5,192$ Vacuum air pump with manifold 20 week 250$ 4,993$ Consumables 122 Each 60$ 7,320$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

SUBCONTRACT SUBTOTAL 4,267,295$

Contingency (15%) 640,094$

SUBCONTRACT TOTAL 4,907,389$

Payment/Performance Bonds and Insurance (2%) 85,346$

Contractor Professional/Technical Services 1,226,847$ Engineering/Design (6%) 1 LS 294,443$ $294,443Prime Contractor Markup (8%) 1 LS 392,591$ $392,591Project Management and Field Oversight (11%) 1 LS 539,813$ $539,813

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 6,219,583$

O&M COSTSUnits Unit Cost Subtotal Total

Annual System Monitoring-VIM 64,918$

Labor 316 Hours 85$ $26,860

Travel and Per Diem 32 Days 140$ 4,424$ Vehicle for Field Team 32 Days 50$ 1,580$ PID Rental 3 week 150$ 474$ Other field equipment 16 Days 100$ $1,580Reporting 300 Hours 100$ $30,000

O&M ANNUAL SUBTOTAL 64,918$

Contingency (15%) 9,738$

Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.

Basis

Assume 12-hour days

Past project costs; assume $300/property for first event.

Assume 1 PID for each 2-person crew

Subcontractor coordination, obtaining necessary sampling equipment and Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.

Assume approximately 1 cooler per property and $60/cooler.

Assume 12-hour days, add 25% for weekends.Assume 1 vehicle for each 2-person crew

Assume 2 subslab samples collected at each SSD building and 1 subslab sample collected at each SMD/SSD building per event.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Construction manager for 42 days, 10-hr days

See cost element detail for pathway sealing

See cost element detail for SSD system installation

See cost element detail for VIM system diagnostic testing

See cost element detail for SMD system installationSee cost element detail for SSD/SMD combo system installation

Past project costs; assume $110/property for first event.

Past projects. Mitigation work plan, data evaluation, and VIMS layout. Includes scoping sessions.

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

See cost element detail for VIM system diagnostic testing

See cost element detail for SSD/SMD combo system installation

Construction manager for 42 daysAssume $50/day for rental car

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

1/2 day per structure; 42-days, 10-hr days, for startup assessment; assumes 5 days of buffer

Assume $50/day for rental car1/2 day per structure; 42 days, 10-hr days, for startup assessment; assumes 5 days of buffer2-person crew for 42 days, 10-hr daysAssume $50/day for rental car for field team

Assume approximately 1 cooler per property and $60/cooler.Past project costs; assume $60/property for 2nd event.

Capital Item

O&M Item

Using offgas data from diagnostic testing

See cost element detail for pathway sealing

Assumes monitoring will be conducted for VIM properties and LTM only properties.

Similar past projects; Draft and Final Construction Completion Report, includes Data Validation and Evaluation

See cost element detail for SSD system installationSee cost element detail for SMD system installation

Assume 1 PID for each 2-person crew

Assume 1 vehicle for each 2-person crew

Prepare technical memorandum of results

Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Assumes monitoring will be conducted for VIM properties and LTM only properties.

Applied to the Subcontract total, including contingency.

Assume 10-hour days.

Assume total VIM properties @ 2 hours per structure for 2 staff, plus 10 hours buffer for 2 staff.

Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Table D-18A. Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

O&M ANNUAL TOTAL 74,656$

Payment/Performance Bonds and Insurance (2%) 1,298$

Contractor Professional/Technical Services 15,678$ Engineering/Design (2%) 1 LS 1,493$ $1,493Prime Contractor Markup (8%) 1 LS 5,972$ $5,972Project Management and Field Oversight (11%) 1 LS 8,212$ $8,212

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 91,632$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 5,681$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (11%) 1 LS 3,289$ $3,289

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 36,101$

VIM PART REPLACEMENT (YEARS 10, 20, 30)Quantity Units Unit Cost Subtotal Total

VIM Parts 263,942$

VIM System Equipment Replacement 74 each $1,500 $111,000

Replace Vapor Barrier 74 each $814 $60,218

VIM System Startup and Commissioning 1 LS $92,724 $92,724

PERIODIC COST ANNUAL SUBTOTAL 263,942$

Contingency (15%) 39,591$

PERIODIC COST ANNUAL TOTAL 303,533$

Payment/Performance Bonds and Insurance (2%) 5,279$

Contractor Professional/Technical Services 75,883$ Engineering/Design (6%) 1 LS 18,212$ $18,212Prime Contractor Markup (8%) 1 LS 24,283$ $24,283Project Management and Field Oversight (11%) 1 LS 33,389$ $33,389

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 10, 20, 30 384,695$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $6,219,583 1.000 $0 $0 $6,219,5831 Annual Cost - O&M $91,632 $0 $91,632 0.973 $89,136 $0 $89,1362 Annual Cost - O&M $91,632 $0 $91,632 0.946 $86,708 $0 $86,7083 Annual Cost - O&M $91,632 $0 $91,632 0.920 $84,346 $0 $84,3464 Annual Cost - O&M $91,632 $0 $91,632 0.895 $82,049 $0 $82,0495 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.871 $79,814 $31,445 $111,2596 Annual Cost - O&M $91,632 $0 $91,632 0.847 $77,640 $0 $77,6407 Annual Cost - O&M $91,632 $0 $91,632 0.824 $75,526 $0 $75,5268 Annual Cost - O&M $91,632 $0 $91,632 0.802 $73,468 $0 $73,4689 Annual Cost - O&M $91,632 $0 $91,632 0.780 $71,467 $0 $71,467

10 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $420,796 $512,427 0.759 $69,521 $319,257 $388,77811 Annual Cost - O&M $91,632 $0 $91,632 0.738 $67,627 $0 $67,62712 Annual Cost - O&M $91,632 $0 $91,632 0.718 $65,785 $0 $65,78513 Annual Cost - O&M $91,632 $0 $91,632 0.698 $63,993 $0 $63,99314 Annual Cost - O&M $91,632 $0 $91,632 0.679 $62,250 $0 $62,25015 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.661 $60,555 $23,857 $84,41216 Annual Cost - O&M $91,632 $0 $91,632 0.643 $58,906 $0 $58,90617 Annual Cost - O&M $91,632 $0 $91,632 0.625 $57,301 $0 $57,30118 Annual Cost - O&M $91,632 $0 $91,632 0.608 $55,740 $0 $55,74019 Annual Cost - O&M $91,632 $0 $91,632 0.592 $54,222 $0 $54,22220 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $420,796 $512,427 0.576 $52,745 $242,219 $294,96521 Annual Cost - O&M $91,632 $0 $91,632 0.560 $51,309 $0 $51,30922 Annual Cost - O&M $91,632 $0 $91,632 0.545 $49,911 $0 $49,91123 Annual Cost - O&M $91,632 $0 $91,632 0.530 $48,552 $0 $48,55224 Annual Cost - O&M $91,632 $0 $91,632 0.515 $47,229 $0 $47,22925 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.501 $45,943 $18,101 $64,04326 Annual Cost - O&M $91,632 $0 $91,632 0.488 $44,692 $0 $44,69227 Annual Cost - O&M $91,632 $0 $91,632 0.474 $43,474 $0 $43,47428 Annual Cost - O&M $91,632 $0 $91,632 0.462 $42,290 $0 $42,29029 Annual Cost - O&M $91,632 $0 $91,632 0.449 $41,138 $0 $41,13830 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $420,796 $512,427 0.437 $40,018 $183,771 $223,789

TOTAL ALTERNATIVE COSTS $2,748,953 $1,370,690 $10,339,226 $1,843,358 $818,651 $8,881,591

PV OF ALTERNATIVE (FY 2018 Dollars) $8,881,591

Replace Vapor Barrier including labor and materials (Assume 1,500 SF per building)15 days of VIMS Startup and commissioning (compared to 50 days for the initial) to assure the replacements work.

Basis

Replace VIMS Fan ($1,500 per building, including labor and materials)

BasisPeriodic Cost Item

Periodic Cost Item

Discounted CostsNon-Discounted Costs

Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Mitigation Work Plan, Data Evaluation, and VIM System layout 75,000$

Work Plans 1 each 75,000$ 75,000$

Access Coordination 10,700$

Access Coordination 107 Hours 100$ 10,700$

Air Permitting Equivalency 10,000$ Air Permit Requirements Evaluation 1 LS 10,000$ $10,000

Pathway Sealing 281,325$

Residential buildings 34 each 5,115$ 173,910$ Commercial buildings 21 each 5,115$ 107,415$

VIM System Diagnostic Testing 309,788$ Residential buildings 34 each 5,633$ 191,505$ Commercial buildings 21 each 5,633$ 118,283$

VIM System Installation 1,402,423$ Residential buildings - SSD systems 10 each 23,090$ 232,610$ Residential buildings - SMD systems 8 each 29,099$ 219,857$ Residential buildings - SSD/SMD combination systems 16 each 27,117$ 443,921$ Commercial buildings - SSD systems 16 each 23,090$ 363,668$ Commercial buildings - SMD systems 0 each 29,099$ -$ Commercial buildings - SSD/SMD combination systems 5 each 27,117$ 142,366$

VIM System Startup and Commissioning 264,050$

Labor Oversight - VIMS Startup and Commissioning 325 Hours 135$ 43,875$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 33 Days 140$ 4,550$ Vehicle for Oversight 33 Days 50$ 1,625$

Labor - 2-person crew 650 Hours 65$ 42,250$

Travel and Per Diem - VIMS Startup and Commissioning (field crew) 65 Days 140$ 9,100$ Vehicle for Field Team 33 Days 50$ 1,625$ PID Rental 7 week 150$ 975$ Mobilization and Site Setup - VIMS Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - VIMS Startup and Commissioning 325 Hours 135$ 43,875$ Construction Manager - Travel and Per Diem - VIMS Startup and Commissioning 33 Days 140$ 4,550$ Vehicle for Construction Manager 33 Days 50$ 1,625$

Construction Report preparation 1 LS 100,000$ 100,000$

Monitoring - Event 1542,191$

Field planning 90 Hours 85$ 7,650$

Private utility locator 107 Each 110$ 11,770$

Labor (divided into four, 2-person crews) 2,568 Hours 85$ 218,280$

Travel and Per Diem 268 Days 140$ 37,450$ Vehicle for Field Team 134 Days 50$ 6,688$ PID Rental 19 week 150$ 2,866$ GEM 5000 gas meter 19 week 260$ 4,968$ Hammer drill 19 week 260$ 4,968$ Sound meter 19 week 60$ 1,146$ Helium Detector 19 week 260$ 4,968$ Vacuum air pump with manifold 19 week 250$ 4,777$

VaporPin Installation 73 Each 300$ 21,981$

Consumables 107 Each 300$ 32,100$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2458,918$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,354 Hours 85$ 200,090$

Travel and Per Diem 245 Days 140$ 34,329$ Vehicle for Field Team 123 Days 50$ 6,130$ PID Rental 18 week 150$ 2,627$ GEM 5000 gas meter 18 week 260$ 4,554$ Hammer drill 18 week 260$ 4,554$ Sound meter 18 week 60$ 1,051$ Helium Detector 18 week 260$ 4,554$ Vacuum air pump with manifold 18 week 250$ 4,379$ Consumables 107 Each 60$ 6,420$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

SUBCONTRACT SUBTOTAL 3,404,394$

Contingency (15%) 510,659$

SUBCONTRACT TOTAL 3,915,053$

Payment/Performance Bonds and Insurance (2%) 68,088$

Contractor Professional/Technical Services 978,763$ Engineering/Design (6%) 1 LS 234,903$ $234,903Prime Contractor Markup (8%) 1 LS 313,204$ $313,204Project Management and Field Oversight (11%) 1 LS 430,656$ $430,656

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 4,961,904$

O&M COSTSUnits Unit Cost Subtotal Total

Annual System Monitoring-VIM 64,918$

Labor 316 Hours 85$ $26,860

Travel and Per Diem 32 Days 140$ 4,424$ Vehicle for Field Team 32 Days 50$ 1,580$ PID Rental 3 week 150$ 474$ Other field equipment 16 Days 100$ $1,580Reporting 300 Hours 100$ $30,000

O&M ANNUAL SUBTOTAL 64,918$

Contingency (15%) 9,738$

O&M ANNUAL TOTAL 74,656$

Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Prepare technical memorandum of results

Assume total VIM properties @ 2 hours per structure for 2 staff, plus 10 hours buffer for 2 staff.Assume 10-hour days.

O&M Item Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Past project costs; assume $60/property for 2nd event.Assume approximately 1 cooler per property and $60/cooler.

Subcontractor coordination, obtaining necessary sampling equipment and Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assume approximately 1 cooler per property and $60/cooler.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Assumes monitoring will be conducted for VIM properties and LTM only properties.

Assume 2 subslab samples collected at each SSD building and 1 subslab sample collected at each SMD/SSD building per event.Past project costs; assume $300/property for first event.

Past project costs; assume $110/property for first event.Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Construction manager for 42 daysAssume $50/day for rental carSimilar past projects; Draft and Final Construction Completion Report, includes Data Validation and Evaluation

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

1/2 day per structure; 42 days, 10-hr days, for startup assessment; assumes 5 days of buffer2-person crew for 42 days, 10-hr daysAssume $50/day for rental car for field team

Construction manager for 42 days, 10-hr days

1/2 day per structure; 42-days, 10-hr days, for startup assessment; assumes 5 days of buffer

Assume $50/day for rental car

See cost element detail for SSD system installationSee cost element detail for SMD system installationSee cost element detail for SSD/SMD combo system installationSee cost element detail for SSD system installationSee cost element detail for SMD system installation

See cost element detail for VIM system diagnostic testingSee cost element detail for VIM system diagnostic testing

See cost element detail for pathway sealing

See cost element detail for SSD/SMD combo system installation

Table D-18B. Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)

Capital Item Basis

See cost element detail for pathway sealing

Using offgas data from diagnostic testing

Past projects. Mitigation work plan, data evaluation, and VIMS layout. Includes scoping sessions.

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

Pike & Mulberry Streets PCE Plume Site, Martinsville, IndianaTable D-18B. Costs for Alternative SV3 – Pathway Sealing, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)

Payment/Performance Bonds and Insurance (2%) 1,298$

Contractor Professional/Technical Services 15,678$ Engineering/Design (2%) 1 LS 1,493$ $1,493Prime Contractor Markup (8%) 1 LS 5,972$ $5,972Project Management and Field Oversight (11%) 1 LS 8,212$ $8,212

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 91,632$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 5,681$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (11%) 1 LS 3,289$ $3,289

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 36,101$

VIM PART REPLACEMENT (10, 20, 30)Quantity Units Unit Cost Subtotal Total

VIM Parts 189,072$ VIM System Equipment Replacement 55 BLD $1,500 $82,500

Replace Vapor Barrier 55 BLD $814 $44,756

VIMs Startup and Commissioning 1 LS $61,816 $61,816

PERIODIC COST ANNUAL SUBTOTAL 189,072$

Contingency (15%) 28,361$

PERIODIC COST ANNUAL TOTAL 217,433$

Payment/Performance Bonds and Insurance (2%) 3,781$

Contractor Professional/Technical Services 54,358$ Engineering/Design (6%) 1 LS 13,046$ $13,046Prime Contractor Markup (8%) 1 LS 17,395$ $17,395Project Management and Field Oversight (11%) 1 LS 23,918$ $23,918

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEAR 10, 20, 30 275,573$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $4,961,904 1.000 $0 $0 $4,961,9041 Annual Cost - O&M $91,632 $0 $91,632 0.973 $89,136 $0 $89,1362 Annual Cost - O&M $91,632 $0 $91,632 0.946 $86,708 $0 $86,7083 Annual Cost - O&M $91,632 $0 $91,632 0.920 $84,346 $0 $84,3464 Annual Cost - O&M $91,632 $0 $91,632 0.895 $82,049 $0 $82,0495 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.871 $79,814 $31,445 $111,2596 Annual Cost - O&M $91,632 $0 $91,632 0.847 $77,640 $0 $77,6407 Annual Cost - O&M $91,632 $0 $91,632 0.824 $75,526 $0 $75,5268 Annual Cost - O&M $91,632 $0 $91,632 0.802 $73,468 $0 $73,4689 Annual Cost - O&M $91,632 $0 $91,632 0.780 $71,467 $0 $71,467

10 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $311,674 $403,306 0.759 $69,521 $236,466 $305,98711 Annual Cost - O&M $91,632 $0 $91,632 0.738 $67,627 $0 $67,62712 Annual Cost - O&M $91,632 $0 $91,632 0.718 $65,785 $0 $65,78513 Annual Cost - O&M $91,632 $0 $91,632 0.698 $63,993 $0 $63,99314 Annual Cost - O&M $91,632 $0 $91,632 0.679 $62,250 $0 $62,25015 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.661 $60,555 $23,857 $84,41216 Annual Cost - O&M $91,632 $0 $91,632 0.643 $58,906 $0 $58,90617 Annual Cost - O&M $91,632 $0 $91,632 0.625 $57,301 $0 $57,30118 Annual Cost - O&M $91,632 $0 $91,632 0.608 $55,740 $0 $55,74019 Annual Cost - O&M $91,632 $0 $91,632 0.592 $54,222 $0 $54,22220 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $311,674 $403,306 0.576 $52,745 $179,406 $232,15221 Annual Cost - O&M $91,632 $0 $91,632 0.560 $51,309 $0 $51,30922 Annual Cost - O&M $91,632 $0 $91,632 0.545 $49,911 $0 $49,91123 Annual Cost - O&M $91,632 $0 $91,632 0.530 $48,552 $0 $48,55224 Annual Cost - O&M $91,632 $0 $91,632 0.515 $47,229 $0 $47,22925 Annual Cost - O&M, Periodic Costs (5-year reviews) $91,632 $36,101 $127,733 0.501 $45,943 $18,101 $64,04326 Annual Cost - O&M $91,632 $0 $91,632 0.488 $44,692 $0 $44,69227 Annual Cost - O&M $91,632 $0 $91,632 0.474 $43,474 $0 $43,47428 Annual Cost - O&M $91,632 $0 $91,632 0.462 $42,290 $0 $42,29029 Annual Cost - O&M $91,632 $0 $91,632 0.449 $41,138 $0 $41,13830 Annual Cost - O&M, VIM Part Replacement, Periodic Costs (5-year reviews) $91,632 $311,674 $403,306 0.437 $40,018 $136,115 $176,133

TOTAL ALTERNATIVE COSTS $2,748,953 $1,043,324 $8,754,181 $1,843,358 $625,391 $7,430,653

PV OF ALTERNATIVE (FY 2018 Dollars) $7,430,653

Non-Discounted Costs Discounted Costs

Periodic Cost Item Basis

Replace VIMS Fan ($1,500 per building)

Replace Vapor Barrier labor and materials (Assume 1,500 SF per building)10 days of VIMS Startup and commissioning (compared to 50 days for the initial) to assure the replacements work.

Periodic Cost Item Basis

Table D-19. Cost Detail for Sealing Vapor Intrusion Pathways for Each Building – Residential and CommercialPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Sealing 5,115$ Mobilization and Site Setup 1 LS 1,500$ 1,500$

Labor - 2-person Crew 20 Hour 65$ 1,300$

Vehicle for Field Team 1 Day 50$ 50$ PID Rental 1 Day 100$ 100$ Elastomeric Polymer 20 tube 8$ 160$ Misc Materials 1 LS 200$ 200$ Travel and Per Diem for Subcontractor 2 Day 135$ 270$ Labor - Oversight 10 Hour 135$ 1,350$ Travel and Per Diem for Oversight 1 Day 135$ 135$ Vehicle for Oversight 1 Day 50$ 50$

COST ELEMENT SUBTOTAL 5,115$

Cost Item Notes and Comments

Mobilizations will be combined where practicalSealing, wall reconstructions, sealing utility penetrations; Average Labor Rate for 2 person crew at $65/hr per person; 1-day, 10-hr dayAssume $50/day for rental car for field team

Labor Rate for 1 person crew -$135/hr: 1 day, 10-hr day

Assume $50/day for rental car

Lodging and Per diem of $135/day/person

Table D-20. Cost Detail for VIM System Diagnostic Testing for Each Building – Residential and CommercialPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Diagnostic Testing 5,633$ Labor - Oversight 15 Hour 135$ 2,025$

Labor - 2-person Crew 30 Hour 65$ 1,950$

Vehicle for Field Team 1.5 Day 50$ 75$ PID Rental 1.5 Day 100$ 150$ Miscellaneous Supplies 1 LS 400$ 400$ Exhaust Sampling 1 each 350$ 350$ Travel and Per Diem for Oversight 1.5 Day 135$ 203$ Vehicle for Oversight 1.5 Day 50$ 75$ Travel and Per Diem for Subcontractor 3 Day 135$ 405$

COST ELEMENT SUBTOTAL 5,633$

Lodging and Per diem of $135/day/person, 1.5 days

2 people, 1.5 days, 10-hr day; Average labor rate $65/hr per person

Assume $50/day for rental car for field team

Exhaust sampling and analysis, including shipping

Cost Item Notes and Comments

Labor Rate for 1 person crew -$135/hr: 1.5 days, 10-hr day

Lodging and Per diem of $135/day/person, 1.5 daysAssume $50/day for rental car

Table D-21. Cost Detail for VIM Installation – Subslab Depressurization SystemPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Subslab Depressurization System Installation 23,090$ Labor - Oversight 23 Hour 135$ 3,038$ Labor - 3-person Crew 68 Hour 65$ 4,388$ Vehicle for Field Team 2.25 Day 50$ 113$ PID Rental 2.25 Day 100$ 225$ Miscellaneous Materials 1 LS 500$ 500$

Suction Node Installation 2 each 3,500$ 7,000$

Mitigation Fan 1 each 750$ 750$ Electrician 5 Hour 150$ 750$ Piping Installation [4" diameter piping] 100 LF 50$ 5,000$

Travel and Per Diem for Oversight 2.25 Day 135$ 304$ Lodging and Per diem of $135/day/person, 2.25 days

Vehicle for Oversight 2.25 Day 50$ 113$ Travel and Per Diem for Subcontractor 6.75 Day 135$ 911$ Lodging and Per diem of $135/day/person, 2.25 days

COST ELEMENT SUBTOTAL 23,090$

Cost Item Notes and Comments

Labor Rate for 1 person crew -$135/hr: 2.25 days, 10-hr dayAverage Labor Rate for 3 person crew at $65/hr per person, 2.25 days, 10-hr dayAssume $50/day for rental car for field team

Assume $50/day for rental car

Assumes 1 node per 1,500 SF and a building slightly larger than 1,500 SF

For installation of mitigation fanAssume 50 ft of piping for each node

Table D-22. Cost Detail for VIM Installation – Submembrane Depressurization SystemPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Submembrane Depressurization System Installation 29,099$ Labor - Oversight 23 Hour 135$ 3,038$ Labor - 3-person Crew 68 Hour 65$ 4,388$ Vehicle for Field Team 2.25 Day 50$ 113$ PID Rental 2.25 Day 100$ 225$ Miscellaneous Materials 1 LS 500$ 500$

Suction Node Installation 2 each 3,500$ 7,000$

Mitigation Fan 1 each 750$ 750$ Electrician 5 Hour 150$ 750$ Piping Installation [4" diameter piping] 100 LF 50$ 5,000$ Membrane cost 1,500 SF 0.355$ 533$

Perforated 4" PVC pipe 40 LF 2$ 80$

Membrane installation, sealing, and penetrations 1 LS 5,396$ 5,396$ From D-16 Sealing

Travel and Per Diem for Oversight 2.25 Day 135$ 304$ Lodging and Per diem of $135/day/person, 2.25 days

Vehicle for Oversight 2.25 Day 50$ 113$ Travel and Per Diem for Subcontractor 6.75 Day 135$ 911$ Lodging and Per diem of $135/day/person, 2.25 days

COST ELEMENT SUBTOTAL 29,099$

For installation of mitigation fan

Cost Item Notes and Comments

Labor Rate for 1 person crew -$135/hr: 2.25 days, 10-hr dayAverage Labor Rate for 3 person crew at $65/hr per person, 2.25 days, 10-hr dayAssume $50/day for rental car for field team

Assumes 1 node per 1,500 SF and a building slightly larger than 1,500 SF

20-mil reinforced vapor barrier (high strength polyethylene)

Running length of membrane at central location, connected to suction piping

Assume 50 ft of piping for each node

Assume $50/day for rental car

Table D-23. Cost Detail for VIM Installation – Partial Crawlspace (SSD and SMD)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Subslab Depressurization System Installation (Partial Floor) 23,090$ Labor - Oversight 23 Hour 135$ 3,038$ Labor - 3-person Crew 68 Hour 65$ 4,388$ Vehicle for Field Team 2.25 Day 50$ 113$ PID Rental 2.25 Day 100$ 225$ Miscellaneous Materials 1 LS 500$ 500$

Suction Node Installation 2 each 3,500$ 7,000$

Mitigation Fan 1 each 750$ 750$ Electrician 5 Hour 150$ 750$ Piping Installation [4" diameter piping] 100 LF 50$ 5,000$ Travel and Per Diem for Oversight 2.25 Day 135$ 304$ Vehicle for Oversight 2.25 Day 50$ 113$ Travel and Per Diem for Subcontractor 6.75 Day 135$ 911$

Additional Costs for Submembrane Depressurization System Installation (Partial Floor) 4,027$

Membrane cost 750 SF 0.36$ 266$

Perforated 4" PVC pipe 20 LF 2$ 40$

Membrane installation, sealing, and penetrations 1 LS 3,721$ 3,721$ From D-16 Sealing (x0.7) for reduced scope.

COST ELEMENT SUBTOTAL 27,117$

For installation of mitigation fan

Cost Item Notes and Comments

Labor Rate for 1 person crew -$135/hr: 2.25 days, 10-hr dayAverage Labor Rate for 3 person crew at $65/hr per person, 2.25 days, 10-hr dayAssume $50/day for rental car for field team

Assumes 1 node per 1,500 SF and a building slightly larger than 1,500 SF

Assume 50 ft of piping for each node

20-mil reinforced vapor barrier (high strength polyethylene)

Running length of membrane at central location, connected to suction piping

Lodging and Per diem of $135/day/person, 2.25 daysAssume $50/day for rental carLodging and Per diem of $135/day/person, 2.25 days

Assume installed for half the building footprint assuming footprint of approximately 1,500 SF.

Table D-24. Cost Detail for Laboratory Analysis per Building (Indoor Air and Subslab)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

COST ELEMENT DETAILQuantity Units Unit Cost Subtotal Total

Laboratory Analysis - Indoor Air 228$ Volatiles in Air 1 each 124.00$ 124$ Media Preparation - 6L SUMMA Canister with Batch Certification 1 each 33.42$ 33$ Flow Controller/Regulator for SUMMA Canister 1 each 25.89$ 26$ Weekly Rental for 6L SUMMA Canister 1 each 44.55$ 45$

Laboratory Analysis - Subslab or Crawlspace 254$ Volatiles in Soil Gas or Air 1 each 124.00$ 124$ Media Preparation - 1L SUMMA Canister with Batch Certification 1 each 33.42$ 33$ Flow Controller/Regulator for SUMMA Canister 2 each 25.89$ 52$ Weekly Rental for 1L SUMMA Canister 1 each 44.55$ 45$

COST ELEMENT SUBTOTAL 482$

Cost Item Notes and Comments

Table D-25A. Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Access Coordination 12,200$

Access Coordination 122 Hours 100$ 12,200$

Soil Vapor Source Removal - Excavation, Offsite Disposal, and Backfill 95,680$ Mobilization and Site Setup 1 EA 1,200$ 1,200$ Subcontractor General Conditions 1 LS 7,440$ 7,440$ Preconstruction Submittals 1 LS 5,800$ 5,800$ Site Prep 1 LS 5,000$ 5,000$ Survey 1 LS 4,050$ 4,050$ Utility locate 1 LS 3,395$ 3,395$ Demolish Parking Lot Pavement 2,100 SF 1.03$ 2,163$ Excavation and Direct Load 311 CY 16$ 5,054$

Transport wastes to off-site disposal facility 435 CY 35$ 15,225$ Waste disposal fee (non-hazardous wastes) 435 TN 53$ 23,055$

Confirmation Samples - Vadose Zone Soils 5 ea 100$ 500$ Backfill 404 CY 32$ 12,928$ Repave Parking Lot, Concrete 235 SY 42$ 9,870$

Soil Vapor Source Removal - SVE System Installation 372,760$ Mobilization/Demobilization 1 Each 10,000$ 10,000$

Shed-Mounted SVE System and Delivery 1 LS 200,000$ 200,000$

Drilling for SVE wells 108 LF 70$ 7,560$ Angular Materials and Casing for SVE wells 45 LF 31$ 1,395$ Angular Materials and screen for SVE wells 63 LF 27$ 1,701$ Asphalt and Concrete Cutting for Main Trench 800 LF 3$ 2,400$

Trench Excavation for SVE well piping 800 LF 40$ 32,000$ Asphalt and Concrete Restoration 1600 SF 5$ 7,520$ Clean Sand for Pipe Bedding 0 C.Y. 25$ -$ Trench Backfilling with Clean Borrow Soil 70 C.Y. 32$ 2,240$ T&D of Trenching Soil for Offsite Disposal 42 ton 132$ 5,544$ T&D of Construction Debris (Asphalt/Concrete) 36 ton 132$ 4,752$ SVE Piping Installation 800 LF 46$ 37,120$ Borehole drilling for New VMPs 36 LF 35$ 1,260$

Installation of New VMPS 36 LF 23$ 828$ Well Completion 12 EA 500$ 6,000$ IDW Drums 24 EA 110$ 2,640$ IDW Disposal 24 EA 75$ 1,800$ VGAC units 1 LS 20,000$ 20,000$ Leak Testing and Manifold 1 LS 3,000$ 3,000$ Electrical Service 1 LS 25,000$ 25,000$

SVE System Startup Assistance 0 DAY 3,500$ -$

SVE System Startup and Commissioning 29,910$

Labor Oversight - Startup and Commissioning 30 Hours 135$ 4,050$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 3 Days 140$ 420$ Vehicle for Oversight 3 Days 50$ 150$

Labor - 2-person crew 30 Hours 65$ 1,950$

Travel and Per Diem - Startup and Commissioning (field crew) 3 Days 140$ 420$ Vehicle for Field Team 3 Days 50$ 150$ PID Rental 1 week 150$ 150$ Mobilization and Site Setup - Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - Startup and Commissioning 30 Hours 135$ 4,050$ Construction Manager - Travel and Per Diem - Startup and Commissioning 3 Days 140$ 420$ Vehicle for Construction Manager 3 Days 50$ 150$ Construction Report preparation 1 LS 8,000$ 8,000$

Monitoring - Event 1612,582$

Field planning 90 Hours 85$ 7,650$

Private utility locator 122 Each 110$ 13,420$

Labor (divided into four, 2-person crews) 2,928 Hours 85$ 248,880$

Travel and Per Diem 305 Days 140$ 42,700$ Vehicle for Field Team 153 Days 50$ 7,625$ PID Rental 22 week 150$ 3,268$ GEM 5000 gas meter 22 week 260$ 5,664$ Hammer drill 22 week 260$ 5,664$ Sound meter 22 week 60$ 1,307$ Helium Detector 22 week 260$ 5,664$ Vacuum air pump with manifold 22 week 250$ 5,446$

VaporPin Installation 98 Each 300$ 29,319$

Consumables 122 Each 300$ 36,600$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2497,501$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,684 Hours 85$ 228,140$

Travel and Per Diem 280 Days 140$ 39,142$ Vehicle for Field Team 70 Days 50$ 3,495$ PID Rental 10 week 150$ 1,498$ GEM 5000 gas meter 10 week 260$ 2,596$ Hammer drill 10 week 260$ 2,596$ Sound meter 10 week 60$ 599$ Helium Detector 10 week 260$ 2,596$ Vacuum air pump with manifold 10 week 250$ 2,496$ Consumables 122 Each 60$ 7,320$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

SUBCONTRACT SUBTOTAL 1,670,633$

Contingency (15%) 250,595$

SUBCONTRACT TOTAL 1,921,228$

Payment/Performance Bonds and Insurance (2%) 33,413$

assuming 2 drums per wellAssuming non-hazardous wasteassuming two 1000 lb units Leak testing and manifold Assumes 480 V, 3 phaseDemonstration and Training; vendor startup assistance; including O&M Manual - See below

Conversion is 1.5 tons/cy, 2 hour haul, 100 miles (one way)

800 ft x 2 ft, 4 inch deep800 ft x 2 ft x 0.5 ft, included in trench excavation800 ft x 2 ft x 1.17 ftAssuming non-hazardous; 1.4 ton/CY

Assuming 4"-SCH 40 PVC 3 VMPs (each 12 ft deep 1"-PVC well)Assume 1"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs9 SVE wells and 3 VMPs

Capital Item Basis

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

Assume excavation area of 35 ft by 60 ft to a depth of 4 ft bgs. = 320 CY

Assume 15% hand digging. Includes direct loading onto truck

$600 for equipment on trailer, $600 for crew. Estimate, travel and per diem for crew - 20 days.

Assume 50 verification samples per acre - costs may vary based on the location-specific COCs

estimate for driller and system installerIncludes 120-gal knock-out tank, SVE blower, flowmeters, PLC, etc. Does not include building9 new SVE wells (Assuming 4"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs) installed by hollow stem auger.

800 ft main trench2 ft wide 2 ft deep 800 ft long, underground trench drain, gravel fill and fabric, 24" x 24", includes excavation, excludes pipe

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

Assume 2 subslab samples collected at each slab-on-grade/full basement building and 1 subslab sample collected at each partial crawlspace building per event.

Past project costs; assume $300/property for first event.

Past project costs; assume $110/property for first event.Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assume approximately 1 cooler per property and $60/cooler.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Assumes monitoring will be conducted for VIM properties and LTM only properties.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Past project costs; assume $60/property for 2nd event.Assume approximately 1 cooler per property and $60/cooler.

PikeMulberry-SV Alternative Costs-091019

Table D-25A. Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Contractor Professional/Technical Services 480,307$ Engineering/Design (6%) 1 LS 115,274$ $115,274Prime Contractor Markup (8%) 1 LS 153,698$ $153,698Project Management and Field Oversight (11%) 1 LS 211,335$ $211,335

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 2,434,947$

O&M COSTSUnits Unit Cost Subtotal Total

System Operation 25,400$ Off-gas Air Monitoring 8 sample 300$ $2,400Condensate Handling and Disposal 1 LS 5,000$ $5,000

Carbon Change-out Service and Disposal 1 LS 3,000$ $3,000Electricity Consumption 1 LS 15,000$ $15,000

Annual SVE System Monitoring 133,560$ Off-gas Air Monitoring 8 sample 300$ $2,400O&M Contractor Field Labor 832 hr 85.00$ $70,720O&M Contractor Project Management Labor 208 hr 115$ $23,920Travel and Per Diem 104 Days 140$ 14,560$ Vehicle for Field Team 104 Days 50$ 5,200$ PID Rental 10 week 150$ 1,560$ Other field equipment 52 Days 100$ $5,200Reporting 100 Hours 100$ $10,000

O&M ANNUAL SUBTOTAL 158,960$

Contingency (15%) 23,844$

O&M ANNUAL TOTAL 182,804$

Payment/Performance Bonds and Insurance (2%) 3,179$

Contractor Professional/Technical Services 38,389$ Engineering/Design (2%) 1 LS 3,656$ $3,656Prime Contractor Markup (8%) 1 LS 14,624$ $14,624Project Management and Field Oversight (11%) 1 LS 20,108$ $20,108

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 224,372$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 5,681$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (11%) 1 LS 3,289$ $3,289

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 36,101$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $2,434,947 1.000 $0 $0 $2,434,9471 Annual Cost - O&M $224,372 $0 $224,372 0.973 $218,261 $0 $218,2612 Annual Cost - O&M $224,372 $0 $224,372 0.946 $212,316 $0 $212,3163 Annual Cost - O&M $224,372 $0 $224,372 0.920 $206,533 $0 $206,5334 Annual Cost - O&M $224,372 $0 $224,372 0.895 $200,908 $0 $200,9085 Annual Cost - O&M, Periodic Costs (5-year reviews) $224,372 $36,101 $260,473 0.871 $195,435 $31,445 $226,881

TOTAL ALTERNATIVE COSTS $1,121,860 $36,101 $3,592,908 $1,033,453 $31,445 $3,499,845

PV OF ALTERNATIVE (FY 2018 Dollars) $3,499,845

O&M Item Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Assume 10-hour days.

Quarterly samples (three main legs) ; inlet and outlet (VOCs)Knock-out tank condensate from the compressors/SVE blowersAssuming initial year carbon replacement; conservative total potential to emit VOC 130 lbs ; 1lb VOC/10 lb carbonAssuming 15 HP

Quarterly samples (three main legs) ; inlet and outlet (VOCs)Average 16 hrs per weekAverage 4 hr per week

Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Prepare technical memorandum of results

Periodic Cost Item Basis

Non-Discounted Costs Discounted Costs

PikeMulberry-SV Alternative Costs-091019

Table D-25B. Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Access Coordination 10,700$

Access Coordination 107 Hours 100$ 10,700$

Soil Vapor Source Removal - Excavation, Offsite Disposal, and Backfill 95,680$ Mobilization and Site Setup 1 EA 1,200$ 1,200$ Subcontractor General Conditions 1 LS 7,440$ 7,440$ Preconstruction Submittals 1 LS 5,800$ 5,800$ Site Prep 1 LS 5,000$ 5,000$ Survey 1 LS 4,050$ 4,050$ Utility locate 1 LS 3,395$ 3,395$ Demolish Parking Lot Pavement 2,100 SF 1.03$ 2,163$ Excavation and Direct Load 311 CY 16$ 5,054$

Transport wastes to off-site disposal facility 435 CY 35$ 15,225$ Waste disposal fee (non-hazardous wastes) 435 TN 53$ 23,055$

Confirmation Samples - Vadose Zone Soils 5 ea 100$ 500$ Backfill 404 CY 32$ 12,928$ Repave Parking Lot, Concrete 235 SY 42$ 9,870$

Soil Vapor Source Removal - SVE System Installation 372,760$ Mobilization/Demobilization 1 Each 10,000$ 10,000$

Shed Mounted SVE System and Delivery 1 LS 200,000$ 200,000$

Drilling for SVE wells 108 LF 70$ 7,560$ Angular Materials and Casing for SVE wells 45 LF 31$ 1,395$ Angular Materials and screen for SVE wells 63 LF 27$ 1,701$ Asphalt and Concrete Cutting for Main Trench 800 LF 3$ 2,400$

Trench Excavation for SVE well piping 800 LF 40$ 32,000$ Asphalt and Concrete Restoration 1600 SF 5$ 7,520$ Clean Sand for Pipe Bedding 0 C.Y. 25$ -$ Trench Backfilling with Clean Borrow Soil 70 C.Y. 32$ 2,240$ T&D of Trenching Soil for Offsite Disposal 42 ton 132$ 5,544$ T&D of Construction Debris (Asphalt/Concrete) 36 ton 132$ 4,752$ SVE Piping Installation 800 LF 46$ 37,120$ Borehole drilling for New VMPs 36 LF 35$ 1,260$

Installation of New VMPS 36 LF 23$ 828$ Well Completion 12 EA 500$ 6,000$ IDW Drums 24 EA 110$ 2,640$ IDW Disposal 24 EA 75$ 1,800$ VGAC units 1 LS 20,000$ 20,000$ Leak Testing and Manifold 1 LS 3,000$ 3,000$ Electrical Service 1 LS 25,000$ 25,000$

SVE System Startup Assistance 0 DAY 3,500$ -$

SVE System Startup and Commissioning 29,910$

Labor Oversight - Startup and Commissioning 30 Hours 135$ 4,050$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 3 Days 140$ 420$ Vehicle for Oversight 3 Days 50$ 150$

Labor - 2-person crew 30 Hours 65$ 1,950$

Travel and Per Diem - Startup and Commissioning (field crew) 3 Days 140$ 420$ Vehicle for Field Team 3 Days 50$ 150$ PID Rental 1 week 150$ 150$ Mobilization and Site Setup - Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - Startup and Commissioning 30 Hours 135$ 4,050$ Construction Manager - Travel and Per Diem - Startup and Commissioning 3 Days 140$ 420$ Vehicle for Construction Manager 3 Days 50$ 150$ Construction Report preparation 1 LS 8,000$ 8,000$

Monitoring - Event 1542,191$

Field planning 90 Hours 85$ 7,650$

Private utility locator 107 Each 110$ 11,770$

Labor (divided into four, 2-person crews) 2,568 Hours 85$ 218,280$

Travel and Per Diem 268 Days 140$ 37,450$ Vehicle for Field Team 134 Days 50$ 6,688$ PID Rental 19 week 150$ 2,866$ GEM 5000 gas meter 19 week 260$ 4,968$ Hammer drill 19 week 260$ 4,968$ Sound meter 19 week 60$ 1,146$ Helium Detector 19 week 260$ 4,968$ Vacuum air pump with manifold 19 week 250$ 4,777$

VaporPin Installation 73 Each 300$ 21,981$

Consumables 107 Each 300$ 32,100$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2458,918$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,354 Hours 85$ 200,090$

Travel and Per Diem 245 Days 140$ 34,329$ Vehicle for Field Team 123 Days 50$ 6,130$ PID Rental 18 week 150$ 2,627$ GEM 5000 gas meter 18 week 260$ 4,554$ Hammer drill 18 week 260$ 4,554$ Sound meter 18 week 60$ 1,051$ Helium Detector 18 week 260$ 4,554$ Vacuum air pump with manifold 18 week 250$ 4,379$ Consumables 107 Each 60$ 6,420$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Leak testing and manifold Assumes 480 V, 3 phaseDemonstration and Training; vendor startup assistance; including O&M Manual See below

800 ft main trench

Assuming non-hazardous; 1.4 ton/CY1.8 ton/CYAssuming 4"-SCH 40 PVC 3 VMPs (each 12 ft deep 1"-PVC well)Assume 1"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs9 SVE wells and 3 VMPsassuming 2 drums per wellAssuming non-hazardous wasteassuming two 1000 lb units

Past project costs; assume $60/property for 2nd event.Assume approximately 1 cooler per property and $60/cooler.

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and

Assume 2 subslab samples collected at each slab-on-grade/full basement building and 1 subslab sample collected at each partial crawlspace building per event.

Past project costs; assume $300/property for first event.Assume approximately 1 cooler per property and $60/cooler.

Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.Past project costs; assume $110/property for first event.

Assume excavation area of 35 ft by 60 ft to a depth of 4 ft bgs. = 320 CY

Assume 15% hand digging. Includes direct loading onto truck

$600 for equipment on trailer, $600 for crew. Estimate, travel and per diem for crew. 20 days

Assume 50 verification samples per acre - costs may vary based on the location-specific COCs

Conversion is 1.5 tons/cy, 2 hour haul, 100 miles (one way)

Estimate for driller and system installer

No building (including 120-gal knock-out tank, SVE blower, flowmeters, PLC, etc.)9 new SVE wells (Assuming 4"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs) installed by hollow stem auger.

2 ft wide 2 ft deep 800 ft long, Underground trench drain, gravel fill and fabric, 24" x 24", includes excavation, excludes pipe800 ft x 2 ft, 4 inch deep800 ft x 2 ft x 0.5 ft, included in trench excavation800 ft x 2 ft x 1.17 ft

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

Capital Item Basis

Table D-25B. Costs for Alternative SV4 – Pathway Sealing, Soil Vapor Source Removal, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

SUBCONTRACT SUBTOTAL 1,560,158$

Contingency (15%) 234,024$

SUBCONTRACT TOTAL 1,794,182$

Payment/Performance Bonds and Insurance (2%) 31,203$

Contractor Professional/Technical Services 448,546$ Engineering/Design (6%) 1 LS 107,651$ $107,651Prime Contractor Markup (8%) 1 LS 143,535$ $143,535Project Management and Field Oversight (11%) 1 LS 197,360$ $197,360

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 2,273,931$

O&M COSTSUnits Unit Cost Subtotal Total

System Operation 25,400$ Off-gas Air Monitoring 8 sample 300$ $2,400Condensate Handling and Disposal 1 LS 5,000$ $5,000Carbon Change-out Service and Disposal 1 LS 3,000$ $3,000Electricity Consumption 1 LS 15,000$ $15,000

Annual SVE System Monitoring 133,560$ Off-gas Air Monitoring 8 sample 300$ $2,400 Quarterly samples (three main legs) ; inlet and outlet (VOCs)O&M Contractor Field Labor 832 hr 85.00$ $70,720 Average 16 hrs per weekO&M Contractor Project Management Labor 208 hr 115$ $23,920 Average 4 hr per weekTravel and Per Diem 104 Days 140$ 14,560$ Vehicle for Field Team 104 Days 50$ 5,200$ PID Rental 10 week 150$ 1,560$ Other field equipment 52 Days 100$ $5,200Reporting 100 Hours 100$ $10,000

O&M ANNUAL SUBTOTAL 158,960$

Contingency (15%) 23,844$

O&M ANNUAL TOTAL 182,804$

Payment/Performance Bonds and Insurance (2%) 3,179$

Contractor Professional/Technical Services 38,389$ Engineering/Design (2%) 1 LS 3,656$ $3,656Prime Contractor Markup (8%) 1 LS 14,624$ $14,624Project Management and Field Oversight (11%) 1 LS 20,108$ $20,108

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 224,372$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 26,000$ Project Manager 5 DAY $1,200 $6,000Project Engineer 20 DAY $1,000 $20,000

PERIODIC COST ANNUAL SUBTOTAL 26,000$

Contingency (15%) 3,900$

PERIODIC COST ANNUAL TOTAL 29,900$

Payment/Performance Bonds and Insurance (2%) 520$

Contractor Professional/Technical Services 5,681$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 2,392$ $2,392Project Management and Field Oversight (11%) 1 LS 3,289$ $3,289

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 36,101$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $2,273,931 1.000 $0 $0 $2,273,9311 Annual Cost - O&M $224,372 $0 $224,372 0.973 $218,261 $0 $218,2612 Annual Cost - O&M $224,372 $0 $224,372 0.946 $212,316 $0 $212,3163 Annual Cost - O&M $224,372 $0 $224,372 0.920 $206,533 $0 $206,5334 Annual Cost - O&M $224,372 $0 $224,372 0.895 $200,908 $0 $200,9085 Annual Cost - O&M, Periodic Costs (5-year reviews) $224,372 $36,101 $260,473 0.871 $195,435 $31,445 $226,881

TOTAL ALTERNATIVE COSTS $1,121,860 $36,101 $3,431,892 $1,033,453 $31,445 $3,338,829

PV OF ALTERNATIVE (FY 2018 Dollars) $3,338,829

Non-Discounted Costs Discounted Costs

Periodic Cost Item Basis

Prepare technical memorandum of results

Assume 10-hour days.Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Quarterly samples (three main legs) ; inlet and outlet (VOCs)Knock-out tank condensate from the compressors/SVE blowersAssuming initial year carbon replacement; conservative total potential to emit Assuming 15 HP

O&M Item Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Table D-26A. Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Mitigation Work Plan, Data Evaluation, and VIM System layout 75,000$

Work Plans 1 each 75,000$ 75,000$

Access Coordination 12,200$

Access Coordination 122 Hours 100$ 12,200$

Air Permitting Equivalency 10,000$ Air Permit Requirements Evaluation 1 LS 10,000$ $10,000

Pathway Sealing 624,030$

Residential buildings 71 each 5,115$ 363,165$ Commercial buildings 51 each 5,115$ 260,865$

Soil Vapor Source Removal - Excavation, Offsite Disposal, and Backfill 95,680$ Mobilization and Site Setup 1 EA 1,200$ 1,200$ Subcontractor General Conditions 1 LS 7,440$ 7,440$ Preconstruction Submittals 1 LS 5,800$ 5,800$ Site Prep 1 LS 5,000$ 5,000$ Survey 1 LS 4,050$ 4,050$ Utility locate 1 LS 3,395$ 3,395$ Demolish Parking Lot Pavement 2,100 SF 1.03$ 2,163$ Excavation and Direct Load 311 CY 16$ 5,054$

Transport wastes to off-site disposal facility 435 CY 35$ 15,225$ Waste disposal fee (non-hazardous wastes) 435 TN 53$ 23,055$

Confirmation Samples - Vadose Zone Soils 5 ea 100$ 500$ Backfill 404 CY 32$ 12,928$ Repave Parking Lot, Concrete 235 SY 42$ 9,870$

Soil Vapor Source Removal - SVE System Installation 372,760$ Mobilization/Demobilization 1 Each 10,000$ 10,000$

Shed Mounted SVE System and Delivery 1 LS 200,000$ 200,000$

Drilling for SVE wells 108 LF 70$ 7,560$ Angular Materials and Casing for SVE wells 45 LF 31$ 1,395$ Angular Materials and screen for SVE wells 63 LF 27$ 1,701$ Asphalt and Concrete Cutting for Main Trench 800 LF 3$ 2,400$ Trench Excavation for SVE well piping 800 LF 40$ 32,000$ Asphalt and Concrete Restoration 1600 SF 5$ 7,520$ Clean Sand for Pipe Bedding 0 C.Y. 25$ -$ Trench Backfilling with Clean Borrow Soil 70 C.Y. 32$ 2,240$ T&D of Trenching Soil for Offsite Disposal 42 ton 132$ 5,544$ T&D of Construction Debris (Asphalt/Concrete) 36 ton 132$ 4,752$ SVE Piping Installation 800 LF 46$ 37,120$ Borehole drilling for New VMPs 36 LF 35$ 1,260$

Installation of New VMPS 36 LF 23$ 828$ Well Completion 12 EA 500$ 6,000$ IDW Drums 24 EA 110$ 2,640$ IDW Disposal 24 EA 75$ 1,800$ VGAC units 1 LS 20,000$ 20,000$ Leak Testing and Manifold 1 LS 3,000$ 3,000$ Electrical Service 1 LS 25,000$ 25,000$

SVE System Startup Assistance 0 DAY 3,500$ -$

VIM System Diagnostic Testing 416,805$ Residential buildings 47 each 5,633$ 264,728$ Commercial buildings 27 each 5,633$ 152,078$

VIMS Installation 1,889,741$ Residential buildings - SSD systems 14 each 23,090$ 321,550$ Residential buildings - SMD systems 10 each 29,099$ 303,920$ Residential buildings - SSD/SMD combination systems 23 each 27,117$ 613,656$ Commercial buildings - SSD systems 20 each 23,090$ 467,573$ Commercial buildings - SMD systems 0 each 29,099$ -$ Commercial buildings - SSD/SMD combination systems 7 each 27,117$ 183,042$

VIMs Startup and Commissioning 309,080$

Labor Oversight - VIMS Startup and Commissioning 420 Hours 135$ 56,700$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 42 Days 140$ 5,880$ Vehicle for Oversight 42 Days 50$ 2,100$

Labor - 2-person crew 840 Hours 65$ 54,600$

Travel and Per Diem - VIMS Startup and Commissioning (field crew) 84 Days 140$ 11,760$ Vehicle for Field Team 42 Days 50$ 2,100$ PID Rental 8 week 150$ 1,260$ Mobilization and Site Setup - VIMS Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - VIMS Startup and Commissioning 420 Hours 135$ 56,700$ Construction Manager - Travel and Per Diem - VIMS Startup and Commissioning 42 Days 140$ 5,880$ Vehicle for Construction Manager 42 Days 50$ 2,100$

Construction Report preparation 1 LS 100,000$ 100,000$

SVE System Startup and Commissioning 29,910$

Labor Oversight - Startup and Commissioning 30 Hours 135$ 4,050$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 3 Days 140$ 420$ Vehicle for Oversight 3 Days 50$ 150$

Labor - 2-person crew 30 Hours 65$ 1,950$

Travel and Per Diem - Startup and Commissioning (field crew) 3 Days 140$ 420$ Vehicle for Field Team 3 Days 50$ 150$ PID Rental 1 week 150$ 150$ Mobilization and Site Setup - Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - Startup and Commissioning 30 Hours 135$ 4,050$ Construction Manager - Travel and Per Diem - Startup and Commissioning 3 Days 140$ 420$ Vehicle for Construction Manager 3 Days 50$ 150$ Construction Report preparation 1 LS 8,000$ 8,000$

Monitoring - Event 1612,582$

Field planning 90 Hours 85$ 7,650$

Private utility locator 122 Each 110$ 13,420$

Labor (divided into four, 2-person crews) 2,928 Hours 85$ 248,880$

Travel and Per Diem 305 Days 140$ 42,700$ Vehicle for Field Team 153 Days 50$ 7,625$ PID Rental 22 week 150$ 3,268$ GEM 5000 gas meter 22 week 260$ 5,664$ Hammer drill 22 week 260$ 5,664$ Sound meter 22 week 60$ 1,307$ Helium Detector 22 week 260$ 5,664$ Vacuum air pump with manifold 22 week 250$ 5,446$

VaporPin Installation 98 Each 300$ 29,319$

Assumes 480 V, 3 phaseDemonstration and Training; vendor startup assistance; including O&M Manual - see below

Conversion is 1.5 tons/cy, 2 hour haul, 100 miles (one way)

1.8 ton/CYAssuming 4"-SCH 40 PVC 3 VMPs (each 12 ft deep 1"-PVC well)Assume 1"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs9 SVE wells and 3 VMPsassuming 2 drums per wellAssuming non-hazardous wasteassuming two 1000 lb units Leak testing and manifold

Estimate for driller and system installerIncludes 120-gal knock-out tank, SVE blower, flowmeters, PLC, etc. Does not include building9 new SVE wells (Assuming 4"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs) installed by hollow stem auger.

800 ft main trench2 ft wide 2 ft deep 800 ft long, Underground trench drain, gravel fill and fabric, 800 ft x 2 ft, 4 inch deep800 ft x 2 ft x 0.5 ft, included in trench excavation800 ft x 2 ft x 1.17 ftAssuming non-hazardous; 1.4 ton/CY

Assume 2 subslab samples collected at each slab-on-grade/full basement building and 1 subslab sample collected at each partial crawlspace building per event.

Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.Past project costs; assume $110/property for first event.Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.

Similar past projects; Draft and Final Construction Completion Report, includes Data Validation and Evaluation

Assume $50/day for rental car for field team

Construction manager for 42 days, 10-hr daysConstruction manager for 42 daysAssume $50/day for rental car

1/2 day per structure; 42-days, 10-hr days, for startup assessment; assumes 5 days of buffer

Assume $50/day for rental car1/2 day per structure; 42 days, 10-hr days, for startup assessment; assumes 5 days of buffer2-person crew for 42 days, 10-hr days

See cost element detail for SMD system installationSee cost element detail for SSD/SMD combo system installationSee cost element detail for SSD system installationSee cost element detail for SMD system installationSee cost element detail for SSD/SMD combo system installation

See cost element detail for VIM system diagnostic testingSee cost element detail for VIM system diagnostic testing

See cost element detail for SSD system installation

Assume excavation area of 35 ft by 60 ft to a depth of 4 ft bgs = 320 CY

Assume 15% hand digging. Includes direct loading onto truck

Using offgas data from diagnostic testing

See cost element detail for pathway sealingSee cost element detail for pathway sealing

$600 for equipment on trailer, $600 for crew. Estimate, travel and per diem for crew - 20 days

Assume 50 verification samples per acre - costs may vary based on the location-specific COCs

Past projects. Mitigation work plan, data evaluation, and VIMS layout. Includes scoping sessions.

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

Capital Item Basis

Table D-26A. Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-6)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Consumables 122 Each 300$ 36,600$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2513,377$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,684 Hours 85$ 228,140$

Travel and Per Diem 280 Days 140$ 39,142$ Vehicle for Field Team 140 Days 50$ 6,990$ PID Rental 20 week 150$ 2,996$ GEM 5000 gas meter 20 week 260$ 5,192$ Hammer drill 20 week 260$ 5,192$ Sound meter 20 week 60$ 1,198$ Helium Detector 20 week 260$ 5,192$ Vacuum air pump with manifold 20 week 250$ 4,993$ Consumables 122 Each 60$ 7,320$ Sample shipment 122 Each 60$ 7,320$

Laboratory analysis per sample 269 Each 482$ 129,553$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

SUBCONTRACT SUBTOTAL 5,011,165$

Contingency (15%) 751,675$

SUBCONTRACT TOTAL 5,762,840$

Payment/Performance Bonds and Insurance (2%) 100,223$

Contractor Professional/Technical Services 1,440,710$ Engineering/Design (6%) 1 LS 345,770$ $345,770Prime Contractor Markup (8%) 1 LS 461,027$ $461,027Project Management and Field Oversight (11%) 1 LS 633,912$ $633,912

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 7,303,773$

O&M COSTSUnits Unit Cost Subtotal Total

Annual System Monitoring-VIM 64,918$

Labor 316 Hours 85$ $26,860

Travel and Per Diem 32 Days 140$ 4,424$ Vehicle for Field Team 32 Days 50$ 1,580$ PID Rental 3 week 150$ 474$ Other field equipment 16 Days 100$ $1,580Reporting 300 Hours 100$ $30,000

SVE System Operation 25,400$ Off-gas Air Monitoring 8 sample 300$ $2,400Condensate Handling and Disposal 1 LS 5,000$ $5,000Carbon Change-out Service and Disposal 1 LS 3,000$ $3,000Electricity Consumption 1 LS 15,000$ $15,000

Annual SVE System Monitoring 133,560$ Off-gas Air Monitoring 8 sample 300$ $2,400O&M Contractor Field Labor 832 hr 85.00$ $70,720O&M Contractor Project Management Labor 208 hr 115$ $23,920Travel and Per Diem 104 Days 140$ 14,560$ Vehicle for Field Team 104 Days 50$ 5,200$ PID Rental 10 week 150$ 1,560$ Other field equipment 52 Days 100$ $5,200Reporting 100 Hours 100$ $10,000

O&M ANNUAL SUBTOTAL 223,878$

Contingency (15%) 33,582$

O&M ANNUAL TOTAL 257,460$

Payment/Performance Bonds and Insurance (2%) 4,478$

Contractor Professional/Technical Services 54,067$ Engineering/Design (2%) 1 LS 5,149$ $5,149Prime Contractor Markup (8%) 1 LS 20,597$ $20,597Project Management and Field Oversight (11%) 1 LS 28,321$ $28,321

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 316,004$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 52,000$ Project Manager 10 DAY $1,200 $12,000Project Engineer 40 DAY $1,000 $40,000

PERIODIC COST ANNUAL SUBTOTAL 52,000$

Contingency (15%) 7,800$

PERIODIC COST ANNUAL TOTAL 59,800$

Payment/Performance Bonds and Insurance (2%) 1,040$

Contractor Professional/Technical Services 11,362$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 4,784$ $4,784Project Management and Field Oversight (11%) 1 LS 6,578$ $6,578

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 72,202$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $7,303,773 1.000 $0 $0 $7,303,7731 Annual Cost - O&M $316,004 $0 $316,004 0.973 $307,397 $0 $307,3972 Annual Cost - O&M $316,004 $0 $316,004 0.946 $299,024 $0 $299,0243 Annual Cost - O&M $316,004 $0 $316,004 0.920 $290,879 $0 $290,8794 Annual Cost - O&M $316,004 $0 $316,004 0.895 $282,957 $0 $282,9575 Annual Cost - O&M, Periodic Costs (5-year reviews) $316,004 $72,202 $388,206 0.871 $275,250 $62,890 $338,140

TOTAL ALTERNATIVE COSTS $1,580,019 $72,202 $8,955,994 $1,455,506 $62,890 $8,822,169

PV OF ALTERNATIVE (FY 2018 Dollars) $8,822,169

Non-Discounted Costs Discounted Costs

For both VIMS and SVE, double hours.

Periodic Cost Item Basis

Assume 1 PID for each 2-person crew

Prepare technical memorandum of results

Prepare technical memorandum of results

Assume 10-hour days.Assume 1 vehicle per staff.

Assuming 15 HP

Quarterly samples (three main legs); inlet and outlet (VOCs)Average 16 hrs per weekAverage 4 hr per week

Assume total VIM properties @ 2 hours per structure for 2 staff, plus 10 hours buffer for 2 staff.Assume 10-hour days.Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Quarterly samples (three main legs); inlet and outlet (VOCs)Knock-out tank condensate from the compressors/SVE blowersAssuming initial year carbon replacement; conservative total potential to emit

O&M Item Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Past project costs; assume $60/property for 2nd event.Assume approximately 1 cooler per property and $60/cooler.Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.

Past project costs; assume $300/property for first event.Assume approximately 1 cooler per property and $60/cooler.Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Table D-26B. Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

CAPITAL COSTSQuantity Units Unit Cost Subtotal Total

Institutional Controls 50,000$ Preparation of institutional control plan. 200 Hours 100$ 20,000$ Administrative time to coordinate with city to implement property restrictions. 300 Hours 100$ 30,000$

Mitigation Work Plan, Data Evaluation, and VIM System layout 75,000$

Work Plans 1 each 75,000$ 75,000$

Access Coordination 10,700$

Access Coordination 107 Hours 100$ 10,700$

Air Permitting Equivalency 10,000$ Air Permit Requirements Evaluation 1 LS 10,000$ $10,000

Pathway Sealing 547,305$

Residential buildings 71 each 5,115$ 363,165$ Commercial buildings 36 each 5,115$ 184,140$

Soil Vapor Source Removal - Excavation, Offsite Disposal, and Backfill 95,680$ Mobilization and Site Setup 1 EA 1,200$ 1,200$ Subcontractor General Conditions 1 LS 7,440$ 7,440$ Preconstruction Submittals 1 LS 5,800$ 5,800$ Site Prep 1 LS 5,000$ 5,000$ Survey 1 LS 4,050$ 4,050$ Utility locate 1 LS 3,395$ 3,395$ Demolish Parking Lot Pavement 2,100 SF 1.03$ 2,163$ Excavation and Direct Load 311 CY 16$ 5,054$

Transport wastes to off-site disposal facility 435 CY 35$ 15,225$ Waste disposal fee (non-hazardous wastes) 435 TN 53$ 23,055$

Confirmation Samples - Vadose Zone Soils 5 ea 100$ 500$ Backfill 404 CY 32$ 12,928$ Repave Parking Lot, Concrete 235 SY 42$ 9,870$

Soil Vapor Source Removal - SVE System Installation 372,760$ Mobilization/Demobilization 1 Each 10,000$ 10,000$

Shed Mounted SVE System and Delivery 1 LS 200,000$ 200,000$

Drilling for SVE wells 108 LF 70$ 7,560$ Angular Materials and Casing for SVE wells 45 LF 31$ 1,395$ Angular Materials and screen for SVE wells 63 LF 27$ 1,701$ Asphalt and Concrete Cutting for Main Trench 800 LF 3$ 2,400$

Trench Excavation for SVE well piping 800 LF 40$ 32,000$ Asphalt and Concrete Restoration 1600 SF 5$ 7,520$ Clean Sand for Pipe Bedding 0 C.Y. 25$ -$ Trench Backfilling with Clean Borrow Soil 70 C.Y. 32$ 2,240$ T&D of Trenching Soil for Offsite Disposal 42 ton 132$ 5,544$ T&D of Construction Debris (Asphalt/Concrete) 36 ton 132$ 4,752$ SVE Piping Installation 800 LF 46$ 37,120$ Borehole drilling for New VMPs 36 LF 35$ 1,260$

Installation of New VMPS 36 LF 23$ 828$ Well Completion 12 EA 500$ 6,000$ IDW Drums 24 EA 110$ 2,640$ IDW Disposal 24 EA 75$ 1,800$ VGAC units 1 LS 20,000$ 20,000$ Leak Testing and Manifold 1 LS 3,000$ 3,000$ Electrical Service 1 LS 25,000$ 25,000$

SVE System Startup Assistance 0 DAY 3,500$ -$

VIM System Diagnostic Testing 309,788$ Residential buildings 34 each 5,633$ 191,505$ Commercial buildings 21 each 5,633$ 118,283$

VIMS Installation 1,402,423$ Residential buildings - SSD systems 10 each 23,090$ 232,610$ Residential buildings - SMD systems 8 each 29,099$ 219,857$ Residential buildings - SSD/SMD combination systems 16 each 27,117$ 443,921$ Commercial buildings - SSD systems 16 each 23,090$ 363,668$ Commercial buildings - SMD systems 0 each 29,099$ -$ Commercial buildings - SSD/SMD combination systems 5 each 27,117$ 142,366$

VIMs Startup and Commissioning 264,050$

Labor Oversight - VIMS Startup and Commissioning 325 Hours 135$ 43,875$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 33 Days 140$ 4,550$ Vehicle for Oversight 33 Days 50$ 1,625$

Labor - 2-person crew 650 Hours 65$ 42,250$

Travel and Per Diem - VIMS Startup and Commissioning (field crew) 65 Days 140$ 9,100$ Vehicle for Field Team 33 Days 50$ 1,625$ PID Rental 7 week 150$ 975$ Mobilization and Site Setup - VIMS Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - VIMS Startup and Commissioning 325 Hours 135$ 43,875$ Construction Manager - Travel and Per Diem - VIMS Startup and Commissioning 33 Days 140$ 4,550$ Vehicle for Construction Manager 33 Days 50$ 1,625$

Construction Report preparation 1 LS 100,000$ 100,000$

SVE System Startup and Commissioning 29,910$

Labor Oversight - Startup and Commissioning 30 Hours 135$ 4,050$

Oversight - Travel and Per Diem - VIMS Startup and Commissioning 3 Days 140$ 420$ Vehicle for Oversight 3 Days 50$ 150$

Labor - 2-person crew 30 Hours 65$ 1,950$

Travel and Per Diem - Startup and Commissioning (field crew) 3 Days 140$ 420$ Vehicle for Field Team 3 Days 50$ 150$ PID Rental 1 week 150$ 150$ Mobilization and Site Setup - Startup and Commissioning 1 LS 10,000$ 10,000$ Labor - Construction Manager - Startup and Commissioning 30 Hours 135$ 4,050$ Construction Manager - Travel and Per Diem - Startup and Commissioning 3 Days 140$ 420$ Vehicle for Construction Manager 3 Days 50$ 150$ Construction Report preparation 1 LS 8,000$ 8,000$

Monitoring - Event 1542,191$

Field planning 90 Hours 85$ 7,650$

Private utility locator 107 Each 110$ 11,770$

Labor (divided into four, 2-person crews) 2,568 Hours 85$ 218,280$

Travel and Per Diem 268 Days 140$ 37,450$ Vehicle for Field Team 134 Days 50$ 6,688$ PID Rental 19 week 150$ 2,866$ GEM 5000 gas meter 19 week 260$ 4,968$ Hammer drill 19 week 260$ 4,968$ Sound meter 19 week 60$ 1,146$ Helium Detector 19 week 260$ 4,968$

Assume 50 verification samples per acre - costs may vary based on the location-specific COCs

$600 for equipment on trailer, $600 for crew.Estimate, travel and per diem for crew - 20 days

Conversion is 1.5 tons/cy, 2 hour haul, 100 miles (one way)

800 ft main trench

Assume 15% hand digging. Includes direct loading onto truck

800 ft x 2 ft x 0.5 ft, included in trench excavation800 ft x 2 ft, 4 inch deep

2 ft wide 2 ft deep 800 ft long, Underground trench drain, gravel fill and fabric, 24" x 24", includes excavation, excludes pipe

9 new SVE wells (Assuming 4"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 5-12 ft bgs) installed by hollow stem auger.

Includes 120-gal knock-out tank, SVE blower, flowmeters, PLC, etc. Does not include building

Estimate for driller and system installer

Assuming non-hazardous wasteAssuming 2 drums per well9 SVE wells and 3 VMPs

Assume 1"-ID SCH40 PVC 0.010-inch slotted casing installation, including riser, screen, and angular materials; screened at 7-12 ft bgs

3 VMPs (each 12 ft deep 1"-PVC well)Assuming 4"-SCH 40 PVC 1.8 ton/CYAssuming non-hazardous; 1.4 ton/CY800 ft x 2 ft x 1.17 ft

Demonstration and Training; vendor startup assistance; including O&M Manual - see below

Assumes 480 V, 3 phaseLeak Testing and Manifold Assuming two 1000 lb units

Assumes monitoring will be conducted for VIM properties and LTM only properties.Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.Past project costs; assume $110/property for first event.

Capital Item Basis

See cost element detail for pathway sealing

Assume excavation area of 35 ft by 60 ft to a depth of 4 ft bgs = 320 CY

Past projects - 1 hour per property for collecting/evaluating parcel information, contacting property owner, preparing figures, tracking in database, preparing access agreements, and tracking responses.

See cost element detail for pathway sealing

Past projects. Mitigation work plan, data evaluation, and VIMS layout. Includes scoping sessions.

Using offgas data from diagnostic testing

See cost element detail for VIM system diagnostic testingSee cost element detail for VIM system diagnostic testing

See cost element detail for SSD/SMD combo system installation

1/2 day per structure; 42-days, 10-hr days, for startup assessment; assumes 5 days of buffer

Assume $50/day for rental car

See cost element detail for SSD system installationSee cost element detail for SMD system installationSee cost element detail for SSD/SMD combo system installationSee cost element detail for SSD system installationSee cost element detail for SMD system installation

Construction manager for 42 daysAssume $50/day for rental carSimilar past projects; Draft and Final Construction Completion Report, includes Data Validation and Evaluation

1/2 day per structure; 42 days, 10-hr days, for startup assessment; assumes 5 days of buffer

Previous project costs; assumes 24 hours per property to locate utilities, complete building surveys, and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

2-person crew for 42 days, 10-hr daysAssume $50/day for rental car for field team

Construction manager for 42 days, 10-hr days

Table D-26B. Costs for Alternative SV5 – Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls (ELCR = 10-5 and 10-4)Pike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Vacuum air pump with manifold 19 week 250$ 4,777$

VaporPin Installation 73 Each 300$ 21,981$

Consumables 107 Each 300$ 32,100$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

Monitoring - Event 2458,918$

Field planning 90 Hours 85$ 7,650$

Labor (divided into four, 2-person crews) 2,354 Hours 85$ 200,090$

Travel and Per Diem 245 Days 140$ 34,329$ Vehicle for Field Team 123 Days 50$ 6,130$ PID Rental 18 week 150$ 2,627$ GEM 5000 gas meter 18 week 260$ 4,554$ Hammer drill 18 week 260$ 4,554$ Sound meter 18 week 60$ 1,051$ Helium Detector 18 week 260$ 4,554$ Vacuum air pump with manifold 18 week 250$ 4,379$ Consumables 107 Each 60$ 6,420$ Sample shipment 107 Each 60$ 6,420$

Laboratory analysis per sample 236 Each 482$ 113,660$

Data Validation 200 Hours 125$ 25,000$ Preparation of data evaluation memo 300 Hours 125$ 37,500$

SUBCONTRACT SUBTOTAL 4,168,724$

Contingency (15%) 625,309$

SUBCONTRACT TOTAL 4,794,032$

Payment/Performance Bonds and Insurance (2%) 83,374$

Contractor Professional/Technical Services 1,198,508$ Engineering/Design (6%) 1 LS 287,642$ $287,642Prime Contractor Markup (8%) 1 LS 383,523$ $383,523Project Management and Field Oversight (11%) 1 LS 527,344$ $527,344

TOTAL ESTIMATED CAPITAL COST (FY 2018 Dollars) 6,075,915$

O&M COSTSUnits Unit Cost Subtotal Total

Annual System Monitoring-VIM 56,520$

Labor 240 Hours 85$ $20,400

Travel and Per Diem 24 Days 140$ 3,360$ Vehicle for Field Team 24 Days 50$ 1,200$ PID Rental 2 week 150$ 360$ Other field equipment 12 Days 100$ $1,200Reporting 300 Hours 100$ $30,000

SVE System Operation 25,400$ Off-gas Air Monitoring 8 sample 300$ $2,400Condensate Handling and Disposal 1 LS 5,000$ $5,000

Carbon Change-out Service and Disposal 1 LS 3,000$ $3,000Electricity Consumption 1 LS 15,000$ $15,000

Annual SVE System Monitoring 133,560$ Off-gas Air Monitoring 8 sample 300$ $2,400O&M Contractor Field Labor 832 hr 85.00$ $70,720O&M Contractor Project Management Labor 208 hr 115$ $23,920Travel and Per Diem 104 Days 140$ 14,560$ Vehicle for Field Team 104 Days 50$ 5,200$ PID Rental 10 week 150$ 1,560$ Other field equipment 52 Days 100$ $5,200Reporting 100 Hours 100$ $10,000

O&M ANNUAL SUBTOTAL 215,480$

Contingency (15%) 32,322$

O&M ANNUAL TOTAL 247,802$

Payment/Performance Bonds and Insurance (2%) 4,310$

Contractor Professional/Technical Services 52,038$ Engineering/Design (2%) 1 LS 4,956$ $4,956Prime Contractor Markup (8%) 1 LS 19,824$ $19,824Project Management and Field Oversight (11%) 1 LS 27,258$ $27,258

TOTAL ESTIMATED ANNUAL O&M COST (FY 2018 Dollars) 304,150$

PERIODIC COSTS (YEARS 5, 10, 15, 20, 25, 30)Quantity Units Unit Cost Subtotal Total

5-Year Review 52,000$ Project Manager 10 DAY $1,200 $12,000Project Engineer 40 DAY $1,000 $40,000

PERIODIC COST ANNUAL SUBTOTAL 52,000$

Contingency (15%) 7,800$

PERIODIC COST ANNUAL TOTAL 59,800$

Payment/Performance Bonds and Insurance (2%) 1,040$

Contractor Professional/Technical Services 11,362$ Engineering/Design (0%) 1 LS -$ $0Prime Contractor Markup (8%) 1 LS 4,784$ $4,784Project Management and Field Oversight (11%) 1 LS 6,578$ $6,578

TOTAL ESTIMATED ANNUAL PERIODIC COST (FY 2018 Dollars) - YEARS 5, 10, 15, 20, 25, 30 72,202$

PRESENT VALUE ANALYSIS Discount Rate = 2.8%

Year Cost Type Annual O&M

Cost Annual Periodic

Total Cost Per Year

Discount Factor

Discounted O&M Cost

Discounted Periodic Cost

Annual Present Value

0 Capital Cost $0 $0 $6,075,915 1.000 $0 $0 $6,075,9151 Annual Cost - O&M $304,150 $0 $304,150 0.973 $295,866 $0 $295,8662 Annual Cost - O&M $304,150 $0 $304,150 0.946 $287,807 $0 $287,8073 Annual Cost - O&M $304,150 $0 $304,150 0.920 $279,968 $0 $279,9684 Annual Cost - O&M $304,150 $0 $304,150 0.895 $272,342 $0 $272,3425 Annual Cost - O&M, Periodic Costs (5-year reviews) $304,150 $72,202 $376,352 0.871 $264,925 $62,890 $327,815

TOTAL ALTERNATIVE COSTS $1,520,750 $72,202 $7,668,867 $1,400,908 $62,890 $7,539,713

PV OF ALTERNATIVE (FY 2018 Dollars) $7,539,713

Average 4 hr per week

Assume 2 subslab samples collected at each slab-on-grade/full basement building and 1 subslab sample collected at each partial crawlspace building per event.

Past project costs; assume $300/property for first event.Assume approximately 1 cooler per property and $60/cooler.

Previous project costs; assumes 22 hours per property to confirm building surveys and collect samples.Assume 12-hour daysAssume 1 vehicle for each 2-person crewAssume 1 PID for each 2-person crew

Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

Assumes monitoring will be conducted for VIM properties and LTM only properties.

Subcontractor coordination, obtaining necessary sampling equipment and supplies, preparing field instructions, reviewing plans/field instructions, and making travel arrangements.

Past project costs; assume $60/property for 2nd event.Assume approximately 1 cooler per property and $60/cooler.Assume 2 indoor air samples and 2 subslab (or crawlspace) samples collected at each building per event and 10% duplicate samples.

O&M Item Basis

Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.Applied to the Subcontract total, including contingency.

Assume 10-hour days.Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Assume total VIM properties @ 2 hours per structure for 2 staff, plus 10 hours buffer for 2 staff.Assume 10-hour days.Assume 1 vehicle per staff.Assume 1 PID for each 2-person crew

Prepare technical memorandum of results

Quarterly samples (three main legs) ; inlet and outlet (VOCs)Knock-out tank condensate from the compressors/SVE blowersAssuming initial year carbon replacement; conservative total potential to emit VOC 130 lbs ; 1lb VOC/10 lb carbonAssuming 15 HP

Quarterly samples (three main legs) ; inlet and outlet (VOCs)Average 16 hrs per week

Prepare technical memorandum of results

Periodic Cost Item Basis

Non-Discounted Costs Discounted Costs

For both VIMS and SVE, double hours.

Table D-27. Summary of Soil Vapor Alternatives Cost EstimatesPike & Mulberry Streets PCE Plume Site, Martinsville, Indiana

Alternative SV-1No Action

10-6 10-4 or 10-5 10-6 10-4 or 10-5 10-6 10-4 or 10-5

Non-Discounted CostsCapital Costs $0 $6,220,000 $4,962,000 $2,435,000 $2,274,000 $7,304,000 $6,076,000O&M Costs $0 $2,749,000 $2,749,000 $1,122,000 $1,122,000 $1,580,000 $1,521,000Periodic Costs $0 $1,371,000 $1,043,000 $36,000 $36,000 $72,000 $72,000Total Costs $0 $10,339,000 $8,754,000 $3,593,000 $3,432,000 $8,956,000 $7,669,000

Discounted Costs (Discount Rate = 2.8 percent)Capital Costs $0 $6,220,000 $4,962,000 $2,435,000 $2,274,000 $7,304,000 $6,076,000O&M Costs $0 $1,843,000 $1,843,000 $1,033,000 $1,033,000 $1,456,000 $1,401,000Periodic Costs $0 $819,000 $625,000 $31,000 $31,000 $63,000 $63,000Total Present Value Costs $0 $8,882,000 $7,431,000 $3,500,000 $3,339,000 $8,822,000 $7,540,000

Cost Ranges (Discounted)-30 percent $0 $6,217,000 $5,202,000 $2,450,000 $2,337,000 $6,175,000 $5,278,000+50 percent $0 $13,323,000 $11,147,000 $5,250,000 $5,009,000 $13,233,000 $11,310,000

Notes:ELCR - excess lifetime cancer riskLTM - long-term monitoringO&M - operations and maintenanceSV - soil vaporVIM - vapor intrusion mitigation

Alternative SV-3Pathway Sealing, VIM, LTM,

and Institutional Controls

Alternative SV-4Soil Vapor Source Removal,

LTM, and Institutional Controls

Alternative SV-5Pathway Sealing, Soil Vapor Source Removal, VIM, LTM, and Institutional Controls

ELCR

Appendix E REMChlor Modeling Results

T E C H N I C A L  M E M O R A N D U M    

AX0420181244MKE    1 

REMChlor Modeling Technical Memorandum for Pike and Mulberry PCE Plume Site PREPARED FOR:  U.S. Environmental Protection Agency (EPA) 

PREPARED BY:  CH2M HILL, Inc. (CH2M) 

DATE:  December 20, 2018 

 

A fate and transport modeling assessment was conducted for the groundwater contaminant plume at the Pike and Mulberry Streets Tetrachloroethene (PCE) Plume Site in Morgan County, Indiana (site). The objective of the modeling effort was to provide quantitative estimates of the time it would take for PCE concentrations in groundwater to degrade below groundwater criteria under various remediation scenarios. These estimates can be used to support the Feasibility Study (FS) remedial alternative development and cost‐estimates.  

Selected Fate and Transport Model The Remediation Evaluation Model for Chlorinated Solvents (REMChlor) was used to perform the modeling assessment. REMChlor is an analytical fate and transport solution that can simulate source and plume remediation of groundwater contaminants, in addition to natural attenuation processes. The REMChlor model was selected because it incorporates the ability to simulate source area treatment and plume treatment over different timeframes. Therefore, it was able to address the modeling objective, which was to provide quantitative estimates of the time it would take for PCE concentrations in groundwater to degrade below groundwater criteria under various remediation scenarios. While there are other analytical solutions available for contaminant transport, most other models only address natural attenuation. REMChlor also differs from other analytical models in that it includes a gamma factor, which controls the rate that contaminants are released from the source into the dissolved plume. This allows the model to simulate some source persistence, which can increase the remediation timeframe. In the REMChlor model, the source component serves as a mass flux boundary condition that releases contaminant mass over time to the plume until the source mass is depleted. The plume component is based on the one‐dimensional, Domenico analytical groundwater transport solution (1987) which considers chemical advection, dispersion, adsorption, and degradation. Contaminant degradation is incorporated in the model as a first‐order decay rate. This decay rate can be used to simulate degradation associated with natural biodegradation, natural abiotic degradation, or enhanced degradation (or remediation). Regarding biodegradation, the model also incorporates a yield factor that simulates the production of a daughter product as a parent compound is degraded, such as the reductive dechlorination of PCE to TCE. A complete description of the model is presented in the REMChlor User’s Manual (Falta et al. 2007).  

REMChlor is a screening‐level analytical model that employs simplifying assumptions about hydrogeologic and biological processes. For example, it assumes transport in a homogenous aquifer. Because actual subsurface conditions are generally complex, the model can be limited in its representation of true site conditions and can provide only approximate estimates of remediation timeframes. While the REMChlor model is not meant to be a future predictor of actual remedial timeframes, it can be used for comparing different model scenarios. 

REMCHLOR MODELING TECHNICAL MEMORANDUM FOR PIKE AND MULBERRY PCE PLUME SITE 

2    AX0420181244MKE 

Numerical models or other calculations were not selected for this modeling effort for various reasons. While larger, more intensive numerical models could incorporate multiple sources more easily, they would require a greater amount of site‐specific information and level of effort to adequately model site conditions. Numerical models have their own limitations and therefore would also not be considered an accurate predictor of remediation timeframes, even with this additional effort. Point decay rates, such as those calculated using concentration‐time trends (Newell, et al. 2002) were also not selected for this modeling effort. Unfortunately, meaningful point decay rates cannot be calculated for this site given the impact that the time‐critical removal action (TCRA), which was conducted between 2005 and 2008, had on groundwater concentrations. The TCRA caused some of the highest concentrations at the site to decrease substantially (over two orders of magnitude), although some rebound has been observed since. Due to this impact on the time‐concentrations trends, they cannot be used to estimate a natural attenuation rate for the site. Furthermore, these rates could not be used to estimate remediation timeframes for various active treatment scenarios for comparison. 

Model Input Data The REMChlor model includes a source box component and dissolved‐plume transport component. Contaminant mass is released from the source component into the dissolved‐plume component over time. Because the source component is needed to develop the plume across the site, an area upgradient of the source cannot be incorporated into the model. Table E‐1 presents input data for the modeling assessment. General model input for the source component includes the initial source concentration, value source mass, source dimensions, and a power function which controls the source discharge rate and concentration. General model input for the dissolved plume component includes the Darcy velocity, PCE retardation, dispersivity, and first‐order decay rates for PCE and its degradation products. Site‐specific input parameter values were used when available. As more site‐specific data become available, the model will be recalibrated with this additional data. The model was developed with the assumption that the source release occurred at the Master Wear facility, which is considered the primary source of PCE in groundwater. The RI (CH2M, 2018) also identified other areas that may have contributed to the groundwater contaminant plume; however, models like REMChlor can only include one source release area. If there are multiple sources present at a site, an option is to assume a larger source area, which encompasses all of the potential sources. The source should not be placed within the dissolved‐plume component of the model to prevent the model from simulating conditions where source concentrations decrease too quickly.  

As previously mentioned, a gamma value is used by the model to control the mass flux rate from the source component to the dissolved plume. For this modeling effort, the site hydrogeology and the presence of multiple potential releases were considered when selecting the gamma value. When there is little information at a site, a value of 1.01 can be used, which represents a linear decay. In sites where the geology consists of a sandier matrix or the release is more recent, a smaller gamma value can be used. Because the unconsolidated aquifer is predominantly sand, a small gamma (around 0.5) would typically be used. However, to account for potential releases upgradient of the Master Wear facility, a larger gamma value of 0.9 was used. By using a slightly higher gamma value, the model incorporates a slower source release (to simulate the added time that it would take for the upgradient contamination to reach the Master Wear facility). This provides a more conservative timeframe than using a gamma of 0.5. 

To simulate the current PCE plume extent, the Darcy velocity (hydraulic conductivity times hydraulic gradient) was based on the arithmetic mean of hydraulic conductivity values for the shallow aquifer zone, which is slightly higher than the geometric mean. Additionally, relatively high dispersivity values were assumed. First‐order decay rates for PCE and its degradation products were determined during the model calibration, which is discussed in the following section.  

REMCHLOR MODELING TECHNICAL MEMORANDUM FOR PIKE AND MULBERRY PCE PLUME SITE 

AX0420181244MKE     3 

Model Development and Results 

Base Model – Scenario 1 

A “base” (Scenario 1) model was developed to identify natural attenuation first‐order decay rates for PCE and its reductive degradation products (trichloroethene, cis‐1,2‐dichloroethene, and vinyl chloride). Although limited PCE degradation is anticipated due it the aerobic groundwater conditions at the site, the presence of reductive daughter products (TCE and cis‐1,2‐DCE) in site groundwater provides evidence that reductive degradation has occurred. Therefore, it is appropriate to include degradation in the model. However, because reductive degradation is not expected to be a dominant process, the yield factors were decreased. That is, as PCE degrades (via biotic or abiotic decay), the model does not assume that all of the degraded PCE will generate TCE. It The base model also incorporated the TCRA at the Master Wear facility, which appears to have substantially decreased dissolved PCE concentrations.  

The base model was calibrated using a trial‐and‐error method and temporal groundwater data from site monitoring wells over four‐time periods. Calibration parameters included the initial source mass, the source reduction during the TCRA, and the first‐order contaminant decay rates. Table E‐2 provides the field data and Figures E‐1 and E‐2 provide the model simulation curves. As expected, the estimated first‐order decay rate for PCE is relatively low at 0.30 per year. This rate is an order of magnitude lower than a median biodegradation rate of 0.0009 per day (3.3 per year) provided in Suarez and Rifai (1999), which was based on 50 studies. It is consistent with the average aerobic oxidation rate of 0.001 per year (0.37 per day) based on 10 studies.  

After the calibration, the Scenario 1 model was run under a simulation time of 100 years to estimate the time it would take for PCE to decrease below its maximum contaminant level (MCL) of 5 µg/L at these natural decay rates. The model projected that the plume would attenuate in 34 years after the remedy was implemented.  

The fate and transport model results are sensitive to changes in the input values, such as, Darcy velocity, initial source mass and concentration, and the gamma value. As an example, keeping all other input factors the same, decreasing gamma to 0.5 or increasing gamma to 2.0 (maximum suggested value in the REMChlor user’s manual) would decrease the estimated remediation timeframe below 34 years. On the contrary, setting gamma to 1.5 increases the estimated remediation timeframe to over 70 years. The likely reason that the greatest change for the estimated timeframe is observed at this gamma value is that source mass is released slowly into the aquifer; however, a substantial amount of contaminant mass was released before the TCRA occurred (as opposed to a gamma value of 2.0). Nevertheless, the selected gamma value for the model was based on site conditions, as described above. Use of another value will cause the model to fall out of calibration.  

Active Treatment Models – Scenarios 2 and 3 

Because REMChlor cannot incorporate a second source remediation, a second model (Scenario 2) was developed to help compare the FS alternatives. This Scenario 2 model used the natural attenuation decay rates identified from the Scenario 1 base model. The source mass value was re‐calibrated (using the same trial and error method) to a value that would result in the PCE plume attenuating below its MCL in 34 years (or the same timeframe projected by the base model). After this was completed, the Groundwater Alternative 5 (ISCR) and Groundwater Alternative 6 (ISCO) source treatment was incorporated in the model.  

The Scenario 2 Groundwater Alternative 5 model assumed source treatment would occur over a period of 6 years and degrade PCE to a treatment goal concentration of approximately 46 µg/L, consistent with the FS conceptual design.  

REMCHLOR MODELING TECHNICAL MEMORANDUM FOR PIKE AND MULBERRY PCE PLUME SITE 

4    AX0420181244MKE 

The Scenario 2 Groundwater Alternative 6 model assumed source treatment would occur over a period of 4 years and degrade PCE to a treatment goal concentration of approximately 46 µg/L, consistent with the FS conceptual design.  

Under both alternatives, the values for the source fraction removed and PCE first order decay rate were increased until concentrations at the source and along the target treatment area were below 46 µg/L. After the active treatment periods, the model assumed that the plume continued to degrade under the natural attenuation decay rates. The Scenario 2 model projected that the PCE concentrations would degrade below the MCL in 17 years and 15 years after remediation was initiated under Groundwater Alternatives 5 and 6, respectively. Table E‐3 summarizes the model results. 

A third model scenario (Scenario 3) was also developed to evaluate potential changes to the remediation timeframe, if active treatment actually degraded PCE concentrations to a value lower than the treatment goal of 46 µg/L. The Scenario 3 model used the same natural attenuation decay rates, source mass, and active treatment periods, as was used in the Scenario 2 model. However, it was assumed that the treatment processes would reduce PCE concentrations to a value of 16 µg/L, which is the concentration assuming 90‐percent removal of the average of the last four groundwater concentrations measured from near the source at MW‐1S.  

Under both alternatives, the values for the source fraction removed and PCE first order decay rate were increased until concentrations at the source and along the target treatment area were below 16 µg/L. After the active treatment periods, the model assumed that the plume continued to degrade under the natural attenuation decay rates. The Scenario 3 model projected that the PCE concentrations would degrade below the MCL in 11 years and 9 years1 after remediation was initiated under Groundwater Alternatives 5 and 6, respectively. 

Differences between the model calculations and actual future remediation timeframes can be attributed to (1) the historical remedial activities that have been conducted at the site and (2) the simplifying assumptions about hydrogeologic and biological processes that the model employs. Therefore, the model calculations cannot be regarded as accurate predictors of future plume behavior. However, the model results are useful to evaluate the effectiveness and relative outcomes of different treatment scenarios, including monitored natural attenuation. 

References CH2M HILL, Inc. (CH2M). 2018. Final Remedial Investigation Report for Pike and Mulberry Streets PCE Plume Site, Martinsville, Morgan County, Indiana. April.  

Falta, R. W., M. B. Stacy, W. M. Ahsanuzzaman, and R. C. Earle. 2007. REMChlor Remediation Evaluation Model for Chlorinated Solvents User’s Manual Version 1.0. EPA/600/C‐08/001. September.  

Newell, Charles & S. Rifai, Hanadi & Wilson, John & Connor, John & A. Aziz, Julia & P. Suarez, Monica. 2002. Calculation and Use of First‐Order Rate Constants for Monitored Natural Attenuation Studies. EPA Ground Water Issue. January.  

Suarez, M. P. and H. S. Rifai. 1999. Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater. Bioremediation Journal, 3(4): 337‐362. 

 

 1 Reversed order of 11 and 9 years in the sentence to match the appropriate GW alternative. Corrected in this replacement page, January 5, 2021. 

Table E‐1. Summary of REMChlor Model Inputa

Pike & Mulberry Streets PCE Plume Site Martinsville, IndianaInput Parameter Units Value Reference

Source Release Date yr 1989 Complaints of illegal dumping and mishandling of waste drums ocurred between 1987 and 1991. A year of 

1989 was selected since it is the average of these 2 dates.

Initial Source Concentration (PCE) g/L 0.031 Highest reported groundwater concentration in RA closure report

Source Mass

Model Scenario 1; Base Model kg 2000 Model‐calibrated value

Model Scenario 2; All Alternatives kg 1010 Model‐calibrated value

Gamma — 0.9 Power function exponent; assume release in more coarse‐grained material, but source extends to areas that 

are upgradient of MasterWear Site, where other multiple releases likely occurred

Source Width m 160 Width of PCE Plume in RA closure report

Source Depth m 6.5 Thickness of shallow groundwater zone (~ 6 to 27 feet bgs)

Darcy Velocity m/yr 8.2 Based on arithmetic average hydraulic conductivity of 1.3E‐2 cm/s in the shallow zone (Table 4‐1 of the RI 

report) and arithmetic average of the hydraulic gradient from all three phases (Table 4‐3 of the RI report). 

Effective Porosity ft3/ft3 0.22 Estimated value from RI report

Source Remediation

Model Scenario 1 (Base)

Source Fraction Removed — 0.985 Model‐calibrated value; a Time‐Critical Removal Action (TCRA) was conducted, consisting of an air sparging 

(AS) and soil vapor extraction (SVE) remedial system over a limited area of the source zone; Over 90% 

reduction observed

Remediation Start Time yr 16 Model Year; TCRA initiated in 2005

Remediation End Time yr 18 Model Year; TCRA ended early 2008 (Date for 2007 used)

Model Scenario 2 (Alternative 3)

Source Fraction Removed — 0 No active treatment under this alternative

Model Scenario 2 (Alternative 5)

Source Fraction Removed — 0.977 Model‐calibrated value; results in a source concentration of 46 µg/L, or the treatment target goal

Remediation Start Time yr 30 Model Year; Assume active treatment starts in 2019

Remediation End Time yr 36 Model Year; Assume treatment lasts for 6 years

Model Scenario 2 (Alternative 6)

Source Fraction Removed — 0.977 Model‐calibrated value; results in a source concentration of 46 µg/L, or the treatment target goal

Remediation Start Time yr 30 Model Year; Assume active treatment starts in 2019

Remediation End Time yr 34 Model Year; Assume treatment lasts for 4 years

Source Decay 1/yr 0 Assume no additional (radioactive) source decay

Retardation Factor (PCE) — 1.6 Table 6‐1 from the RI report

Sigma v — 0.44721 Assume x = x/10; high dispersion; REMChlor User's Guide

vMin — 0 Default value; REMChlor User's Guide.

vMax — 2.79 Calculated value from 1+4×Sigmav.

# streamtubes — 1000 Arbitrary value to simulate smooth plume output.

Alpha y m 7.315 Assume y = x/10 and plume length of x = 2400 ftAlpha z m 0.732 Assume z = y/10.Maximum X Direction m 765.1 Arbitrary value (~2500 feet).

Maximum Y Direction m 0 Assume centerline flow.

Maximum Z Direction m 0 Assume centerline flow.

First Order Decay Rate

         Model Scenario 1 (Base) Rates, Model Scenario 2 (Alternative 3,  Alternative 5, and Alternative 6

         [MNA rates were only applied to Alternatives 5 and 6 outside of the active treatment period]

PCE /yr 0.30 Model‐calibrated value

TCE /yr 20 Model‐calibrated value

cis‐1,2‐DCE /yr 18 Model‐calibrated value

VC /yr 77 Geometric Mean for aerobic degradation; Biodegradation Rates for Fuel Hydrocarbons and Chlorinated 

Solvents in Groundwater  (Suarez, M.P. and Rifai, H.S., 1999)

        Model Scenario 2 (Alternative 5); During treatment period; Model Years 30 to 36

PCE /yr 5.20 Model‐calibrated value; No enhanced decay rate needed for other VOCs to meet treatment goals

        Model Scenario 2 (Alternative 6); During treatment period; Model Years 30 to 34

PCE /yr 6.80 Model‐calibrated value; No enhanced decay rate needed for other VOCs to meet treatment goals

Yield

PCE to TCE — 0.40

TCE to cis‐1,2‐DCE — 0.37

cis‐1,2‐DCE to VC — 0.32

a Table E‐1. January 5, 2021, replacement page due to errata.

ft             foot L          liter

ft3/ft3     cubic feet per cubic foot m         meter

g            grams µg        micrograms

kg          kilogram yr         year

Half of the ratio between parent/daughter product molecular weights; assume not all reductively degrades 

due to aerobic conditions

Table E‐2. Field Data used in Model CalibrationsPike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Model Year Sample Year Well Distance (m)

15 July 2004 ‐ Sept 2004 MW‐1S 0 26,000 48 62 1 U

Pre‐TCRA Sampling MW‐2S 61 11,000 13 5.8 1 U

MW‐16S 162 2,000 9.1 61 1 U

AG‐43 207 610 1 U 49 1 U

AG‐42 351 280 1 U 1 U 1 U

MW‐15S 549 9.8 1 U 1 U 1 U

19 Feb 2008 MW‐1S 0 34 1 U 1 U 1 U

Post‐TCRA Sampling MW‐2S 61 52 1 U 1 U 1 U

MW‐16S 162 500 * NA NA NA

MW‐15S 549 10 1 U 1 U 1 U

21 July 2010 ‐ Aug 2010 MW‐1S 0 130 1 U 1 U NA

Site Reassessment MW‐2S 61 66 1 U 1 U NA

MW‐15S 549 4.5 1 U 1 U NA

PW‐1 671 11 0.25 1 U NA

PW‐3 747 1 U 1 U 1 U NA

26 Oct 2015 MW‐1S 0 240 1.6 0.5 U 0.5 U

Phase III RI MW‐2S 61 130 0.2 J 0.7 0.5 U

MW‐16S 162 140 0.2 J 0.5 U 0.5 U

MW‐26S 287 11 0.1 J 0.1 J 0.5 U

MW‐15S 549 22 0.5 U 0.5 U 0.5 U

PW‐1 671 18 0.4 J 0.5 U 0.5 U

PW‐3 747 0.2 J 0.1 J 0.5 U 0.5 U

Notes:

* Monitoring well MW16S was not sampled in February 2008; the PCE value shown is based on an earlier sampling event. 

U = Value was not detected; A default value of 1 µg/L was assumed for the 2004 thorugh 2010 sampling events since the reporting limit was not available. 

J = Value was estimated

NA = not available

PCE (µg/L) TCE (µg/L) cis‐1,2‐DCE (µg/L) VC (µg/L)

Table E‐3. Summary of Model Resultsa

Pike & Mulberry Streets PCE Plume Site Martinsville, Indiana

Model Years Applied

PCE Concentration 

Goal (µg/L)

Estimated Model Year 

Remediation Achievedb

Estimated Remediation 

Timeframec

Scenario 2 Alternative 3 ‐ MNA Not Applicable Not Applicable 64 34

Scenario 2 Alternative 5 ‐ ISCR 30 to 36 46 47 17

Scenario 2 Alternative 6 ‐ ISCO 30 to 34 46 45 15

Scenario 3 Alternative 5 ‐ ISCR 30 to 36 16 41 11

Scenario 3 Alternative 6 ‐ ISCO 30 to 34 16 39 9

Notes:a Table E‐3. January 5, 2021, replacement page due to errata in table.b Defined as the time, or year, when PCE concentrations decrease below the MCL or 5 µg/L. 

Model Scenario Alternative

Active Treatment Period Remediation Period (MNA and Active Treatment)

c Assumes that remediation will be initiated in the year 2019, which equates to Model Year 30 (or 30 years after the release occurred). The estimated remediation timeframe is 

equal to the Model Year that the PCE cleanup goal is achieved minus the Model Year that remediation was initiated (for example, 64 ‐ 30 = 34). 

FIGURE E-1Calibration Curves - Model Scenario 1 (Base Model)Pike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

Calibration Curve 1: Model Year 15 Calibration Curve 2: Model Year 19

Calibration Curve 3: Model Year 21 Calibration Curve 4: Model Year 26

Note: The base model was calibrated to best fit all of four data sets shown. It incorporates the previous TCRA.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 150 300 450 600 750

Conc

entr

atio

n (

g/L)

Distance (m)

2004

PCE TCE DCE VC PCEpt TCEpt DCEpt VCpt

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 150 300 450 600 750

Conc

entr

atio

n (

g/L)

Distance (m)

2010

PCE TCE DCE VC PCEpt TCEpt DCEpt

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0 150 300 450 600 750

Conc

entr

atio

n (

g/L)

Distance (m)

2015

PCE TCE DCE VC PCEpt TCEpt DCEpt VCpt

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 150 300 450 600 750

Conc

entr

atio

n (

g/L)

Distance (m)

2008

PCE TCE DCE VC PCEpt TCEpt DCEpt VCpt

EN1003161124MKE Figure_E-1_V1.ai 03.28.2018 tdaus

Figure E-1Calibration Curves – Model Scenario 1 (Base Model)Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMartinsville, Indiana

Model Scenario 2: Model Year 26 Model Scenario 2: Alternative 3 (MNA): Model Year 64

Model Scenario 2: Alternative 5 (ISCR): Model Year 36 Model Scenario 2: Alternative 5 (ISCR): Model Year 47

Model Scenario 2: Alternative 6 (ISCO): Model Year 34 Model Scenario 2: Alternative 6 (ISCO): Model Year 45

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2015

PCE TCE DCE VC PCEpt TCEpt DCEpt VCpt

1.E-01

1.E+00

1.E+01

1.E+02

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2025

PCE PCE_TreatmentGoal

1.E-01

1.E+00

1.E+01

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2053

PCE PCE_MCL

1.E-01

1.E+00

1.E+01

1.E+02

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2023

PCE PCE_TreatmentGoal

1.E-01

1.E+00

1.E+01

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2036

PCE PCE_MCL

1.E-01

1.E+00

1.E+01

0 150 300 450 600 750

Conc

entr

a�on

(µg/

L)

Distance (m)

2034

PCE PCE_MCL

EN1003161124MKE Figure_E-2_V2.ai 02.22.2019 tdaus

Figure E-2Calibra�on Curves – Model Scenario 2Feasibility Study ReportPike and Mulberry Streets PCE Plume SiteMar�nsville, Indiana