fatigue crack propagation simulating fibre debonding in cyclically loaded composites

6
Procedia Materials Science 3 (2014) 357 – 362 Available online at www.sciencedirect.com 2211-8128 © 2014 Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering doi:10.1016/j.mspro.2014.06.061 ScienceDirect 20th European Conference on Fracture (ECF20) Fatigue crack propagation simulating fibre debonding in cyclically loaded composites Roberto Brighenti a , Andrea Carpinteri a , Daniela Scorza a a Dept. of Civil-Environmental Engng & Architecture, Univ. of Parma, 43100 Parma - ITALY Abstract A partially debonded fibre can be analyzed as a 3-D mixed Mode fracture problem for which the fibre-matrix detachment growth leading to a progressive loss of the composite’s bearing capacity – can be assessed through classical fatigue crack propagation laws. In the present study, the above mentioned problem is firstly examined from the theoretical point of view, and the effects of the stress field in the matrix material on the SIFs (associated to the crack representing fibre-matrix detachment) are taken into account. Suitable fatigue crack propagation laws for mixed mode SIFs are employed in order to quantify the crack growth rate corresponding to the fibre-matrix debonding growth rate, while the matrix material undergoes a mechanical damage quantified through a Wöhler-based approach to fatigue. A damage scalar parameter aimed at measuring the debonding severity during fatigue process is also introduced. Finally, some numerical simulations are performed, and the obtained results are compared with results found in the literature. Keywords: Fibre-reinforced composites; Fatigue; Debonding; Damage; Crack growth. 1. Introduction Composites can be defined as structural materials consisting of two or more constituents combined at a macroscopic level. Their classification is usually based on the kind of matrix material (polymers, metals, ceramics) and of reinforcing phase (fibres, particles, flakes). Fibre-reinforced composites (FRCs) are commonly used in advanced engineering applications due to their enhanced mechanical properties, such as tensile strength, fracture resistance, durability, corrosion resistance, wear and fatigue strength, with respect to the traditional plain materials (Jones, 1999; Mallick, 2007; Cheng, 2012). Such multiphase materials are characterized by mechanical properties © 2014 Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering

Upload: rse

Post on 30-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Procedia Materials Science 3 ( 2014 ) 357 – 362

Available online at www.sciencedirect.com

2211-8128 © 2014 Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering

doi: 10.1016/j.mspro.2014.06.061

ScienceDirect

20th European Conference on Fracture (ECF20)

Fatigue crack propagation simulating fibre debonding in cyclically

loaded composites

Roberto Brighentia, Andrea Carpinteri

a, Daniela Scorza

a

a Dept. of Civil-Environmental Engng & Architecture, Univ. of Parma, 43100 Parma - ITALY

Abstract

A partially debonded fibre can be analyzed as a 3-D mixed Mode fracture problem for which the fibre-matrix detachment growth

– leading to a progressive loss of the composite’s bearing capacity – can be assessed through classical fatigue crack propagation

laws. In the present study, the above mentioned problem is firstly examined from the theoretical point of view, and the effects of

the stress field in the matrix material on the SIFs (associated to the crack representing fibre-matrix detachment) are taken into

account. Suitable fatigue crack propagation laws for mixed mode SIFs are employed in order to quantify the crack growth rate

corresponding to the fibre-matrix debonding growth rate, while the matrix material undergoes a mechanical damage quantified

through a Wöhler-based approach to fatigue. A damage scalar parameter aimed at measuring the debonding severity during

fatigue process is also introduced. Finally, some numerical simulations are performed, and the obtained results are compared

with results found in the literature.

© 2014 The Authors. Published by Elsevier Ltd. Selection and peer-

review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering.

Keywords: Fibre-reinforced composites; Fatigue; Debonding; Damage; Crack growth.

1. Introduction

Composites can be defined as structural materials consisting of two or more constituents combined at a

macroscopic level. Their classification is usually based on the kind of matrix material (polymers, metals, ceramics)

and of reinforcing phase (fibres, particles, flakes). Fibre-reinforced composites (FRCs) are commonly used in

advanced engineering applications due to their enhanced mechanical properties, such as tensile strength, fracture

resistance, durability, corrosion resistance, wear and fatigue strength, with respect to the traditional plain materials

(Jones, 1999; Mallick, 2007; Cheng, 2012). Such multiphase materials are characterized by mechanical properties

© 2014 Elsevier Ltd. Open access under CC BY-NC-ND license.

Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department

of Structural Engineering

358 Roberto Brighenti et al. / Procedia Materials Science 3 ( 2014 ) 357 – 362

depending on those of their constituents (the bulk material, or matrix, and the fibres), as well as on their reciprocal

bonding at the fibre-matrix interface. As a matter of fact, typical damage phenomena (leading to a significant

decrease of the mechanical performance), occurring in such materials under service loading, can be typically related

to the fibre-matrix delamination (or debonding), fibre breaking and matrix cracking. Such damaging phenomena are

particularly severe for structural components under repeated loading (Brighenti, 2004; Carpinteri et al., 2006).

The present research work deals with the development of a micromechanical approach for the assessment of the

fatigue behaviour of short fibre-reinforced composites under fatigue loading. In order to take into account the main

degrading effects occurring during cyclic loading, the progressive fibre-matrix detachment (considered as a

progressive fracture phenomenon) as well as the decrease of the mechanical properties of the matrix material are

evaluated. The proposed micromechanical model is used to perform some comparisons with experimental results,

and the main degrading effects are quantified and discussed.

Nomenclature

* +NRDc *,*,u Damage parameter after N loading cycles with stress amplitude *u and stress ratio *R

fm EE , Elastic modulus of the matrix and of the fibre, respectively * +NEE mm ,0, Young modulus for the undamaged matrix, and the reduced value after N load cycles

)(),( ¢¢rIIrI KK uu , )( ¢

zIIK u Mode I and Mode II SIFs due to the remote stresses ¢ru ,

¢zu , respectively

adL ,fL

Adhesion length of a partially debonded fiber, and fibre semi-length

adf LLl /? Fiber debonded length

*N Number of loading cycles to failure under stress amplitude *u

fi hp , Fibre-matrix interface Poisson’s ratio, and diameter of the fibre

0**,uu Generic stress amplitude, and fatigue limit of the matrix material * +xfv

Fiber-matrix interface shear stress

ff ,v , uf ,v

I

Interface friction stress, and ultimate adhesion fiber-matrix interface shear stress

2. Mechanics of fiber-matrix detachment

2.1. Shear lag model

The fiber-matrix debondig could be examined through the classical shear lag model, initially proposed by Cox

(1952) and widely used in the literature (Nairn, 1997), by considering a cylindrical portion of composite made by a

fiber surrounded by a sufficiently large volume of matrix material, under remote tension stress acting parallel to the

fiber direction (Fig. 1a). The corresponding fiber-matrix interface shear stress )(xfv and the normal stress )(xmu

in the matrix acting in the fibre direction can be expressed as follows (Brighenti, 2004; Fig. 1b):

* + * +* +ÙÙÚ×ÈÈÉÇ

©©©©?

f

fL

x

c

Fx d

ddvcosh

sinh

* + * +* + ÍÝÍÜ

ÛÍÌÍËÊ ÙÙÚ

×ÈÈÉÇ

©©//©©©?/?

f

mm

mm

mL

xAE

A

F

A

xfPx d

dcucosh

cosh1)(

(1a)

(1b)

where c is the fiber perimeter, 11 )()( // ©-©? ffmm AEAEc , cd ©©? kc , )/( mm AEPF ©©? c , P being the total

force applied to the composite region under study; fm AA , are the cross sections of the matrix and of the fibre.

359 Roberto Brighenti et al. / Procedia Materials Science 3 ( 2014 ) 357 – 362

(c)

Fig. 1. (a) Geometrical parameter of a cylindrical fiber. (b) Stress distributions along the fiber in a partial debonding stage. (c) Debonded

extremity (3D cylindrical crack) of a fiber under remote radial (¢ru ) and axial (

¢zu ) stresses.

According to the shear lag model, the debonding phenomenon takes place when the limit value of the interface

shear stress uf ,v is attained at the extremities of the adhesion region, i.e.

adLx ? ( fLx ? for a complete bonded

fiber, Fig. 1c). In such a situation, Eqs (1) are still valid as long as the fibre semi-length fL

is replaced with half of

the bonded length adL . The critical condition for debonding extension can be written as (Brighenti et al., 2012):

* + * + * + ufad

m

zadadff LEc

Lc

FLx ,max, tanh

)(tanh vdc

duddvv ?©©©©©B©©©??? ¢

* +ad

muf

czL

Ec

©©©©©‡¢ dd

cvutanh

,

,

(2a)

(2b)

where Eq. (2a) represents the critical condition rewritten in terms of the remotely applied stress. Along the

debonded length fad LxL ~~

( adf LLl /? ), the shear stress arising at the interface can be assumed to be equal to

the friction stress ff ,v . However, such a residual shear strength can be reasonably neglected, as is done in the

following, because its contribution to the composite bearing capacity is usually limited.

2.2. Fracture mechanics approach

The problem of an elastic bi-material plane with an interface crack has been widely examined in the literature

(Rice, 1988; Hutchinson et al., 1987). The extension of such a problem to a 3D case can be used to describe the

above-mentioned cylindrical crack arising in a partially debonded cylindrical fibre (Fig. 1c).

From the above remark, the detachment phenomenon can be deduced to be studied as a fracture mechanics

problem: the debonded zone can be assumed as a 3D cylindrical crack lying between two different materials (Zbib et

al., 1995; Chaudhuri, 2006). By considering the generic case of an elastic fiber embedded in an elastic matrix under

remote axial ( ¢zu ) and radial (

¢ru ) stresses (Fig 1c), a mixed mode of fracture arises, and the energetically

equivalent SIF can be defined as follows (Brighenti et al., 2013):

] _ÍÌÍËÊ ~

@--? ¢¢¢¢¢¢

0)(

0)()()(22

rzII

rzIIrIIrIi

K

KKKK uuuuuu (3)

Note that, in first approximation, the remote axial stress produces only a Mode II SIF, while the remote radial

stress is mainly responsible for Mode I and Mode II SIFs. The above SIFs, )(),( ¢¢rIIrI KK uu , )( ¢

zIIK u , can be

conveniently rewritten in a dimensionless form as )/()(* lKK wwMMw ruu ¢¢?

, where )( ¢? wMMw KK u indicates

360 Roberto Brighenti et al. / Procedia Materials Science 3 ( 2014 ) 357 – 362

the generic Mode M SIF ( IIIM ,? ) due to the remote stress ¢wu ( zrw ,? ), and MwK * is the corresponding

dimensionless value. The equivalent SIF iK at the fiber-matrix interface crack front (see Eq. (3)) can be also

employed to define the condition of unstable crack propagation, that is to say:

strain plane )1/( stress; plane 2

iiciiciici EEKK p/©?©?? GG , where icG is the interface fracture energy and

icK is the corresponding fracture toughness, whereas iE and ip are the Young modulus and the Poisson ratio of

the interface, respectively (Brighenti et al., 2013). Such a fracture mechanics approach allows us to use the classical

crack growth rate equations for the assessment of the stable crack propagation due to repeated loading.

3. Mechanical model of fiber-reinforced composite under cyclic loading and numerical implementation

The fatigue life assessment of fiber-reinforced materials is a complex task due to the different damaging

mechanisms occurring in the matrix, in the fibers and at the fiber-matrix interface. The cyclic loading reduces the

mechanical properties of the composite by decreasing the matrix mechanical properties and reducing the

effectiveness of the fiber-matrix bond. As is mentioned above, the progressive fiber-matrix debonding can be

evaluated through a fatigue propagation law applied to the growth of the detached length l of the fibers (Fig. 1c):

im

ii KCdNdl F©?/ (4)

where ii mC , are the Paris constants of the interface and iKF is the equivalent stress intensity factor range produced

by the remote cyclic stresses. For the sake of simplicity, such stresses are assumed to be in phase in order to easily

define an equivalent SIF range. On the other hand, the fatigue effect in a homogeneous material under uniaxial

constant amplitude cyclic loads can be assessed by using the experimental Wöhler diagrams (S-N curves), which

determine the number of load cycles to failure for a given value of the load ratio maxmin /uu?R (Fig. 2a).

Such curves can be approximated through the following relationship:

* +ÍÌÍËÊ ~¢

@©?? //

0

0

/1/1

*

* ,const/

uuuuuu BB

AN (5)

where 0, @BA are Wöhler fatigue constants of the material, and 0*u is the fatigue limit under cyclic stress with

stress ratio equal to *R . The number *N of loading cycles to failure can be written as follows: BBAN 11 ** /? u .

Further, the damage parameter cD quantifying the damage severity can be written as the ratio between the number

N of loading cycles, for a given stress amplitude and stress ratio, and the corresponding number *N of cycles to

failure. Taking into account the fatigue history subdivided in several blocks with cyclesN for each block, the

damage increment at the end of the i-th block can be written as follows, by using the corresponding stress amplitude

log N

max u

u,

N*

R = 0.5

R = 0.0

R = -0.5 R = -1.0

R = 1.0

R*

log

u, 0

0 N

log A

B = tg c

c

Ncycles Ncycles Ncycles Ncycles Ncycles

uumax

umin

time

Nblocks

Fig. 2. (a) Wöhler’s curves for different stress ratios R . (b) Constant amplitude stress cycles subdivided in blocksN with

cyclesN for each block.

(a) (b)

361 Roberto Brighenti et al. / Procedia Materials Science 3 ( 2014 ) 357 – 362

i*u acting on the matrix (note that, even for constant amplitude cyclic stress i*u , the damage increment is not

constant due to the variable bearing effect of the fibres that progressively debond from the surrounding material): * +0

0

/1

,* if

* if

0

1/*/*/)*,,*( uu

uuuu ~$@

ÍÌÍËÊ >??F /

/i

i

B

icyclescycles

iblockthicN

ANNNNRD (6)

In the case of cyclic loads with 0* uu ~i, the damage is assumed to be equal to zero. The failure condition

(fully damaged material) is reached when the damage parameter is equal to 1, i.e. * + 1*,*, ?NRDc u . The

mechanical properties of the matrix, such as the Young modulus, are worsened by the effect of fatigue loading

(Brighenti, 2004; Avanzini et al., 2011):

] _)*,*,(1)( 0, NRDENE Emmm u/©? (7)

where 0mE is the undamaged Young modulus of the material, and cE DD

m? is the Young modulus damage written

as a piecewise linear function (see Eq. (6)) of the number of loading cycles. For multiaxial stress states, the

previous equations can be applied by replacing *u with the combined stress equ related to the yielding criteria of

the matrix material. Alternatively, the principal stress amplitude can be also applied for the damage evaluation.

The proposed model is implemented in a FE code in order to verify its capability to estimate the fatigue

behaviour of fiber-reinforced composites under cyclic loads. For the sake of its applicability in a computational

approach, the remotely applied cyclic stresses ¢zu and ¢

ru are evaluated at the Gauss points location in each finite

element by considering the fibres pattern in the composite. In other words, in the case of randomly distributed fibres

and in the case of nearly unidirectional fibres, we have 3/iirz uuu ?? ¢¢ and * + 2/,: ,iitrz uuu B̊? ¢¢ σkk , with iit ,u the normal stress tensor components in a plane containing the fibre

axis identified by the unit vector k .

In the case of fatigue loading, Eq. (4) is applied by considering the interface SIF range evaluated through the

above stresses. In order to numerically evaluate the fibre detachment increment, the fatigue growth equation is

applied at the end of each block of the whole stress history (see dots in Fig. 2b):

im

iicyclesblockthi KCNl F©©?F / (8)

Once the current debonded fibre length )(Nl is known, the sliding function parameter m

ff

m

fεs gg /)( ? (given

by the ratio between fibre strain and matrix strain measured in the fibre direction, Brighenti and Scorza, 2012) can

be evaluated, and the tangent elastic tensor eq'C of the homogenized material can be finally obtained:

ÐH H̊©©©ÙÙÚ×

ÈÈÉÇ ©-©©-©? dpp

dεεds

εsEm

f

m

fm

f

m

ffmeq FFCC )()()(

)(''' slgjo sl (9)

where jo, are the fibre and matrix volume fractions, fm E',' ©C are the tangent tensor and the elastic modulus of

the matrix material (evaluated with )(NEm ) and the fibres, respectively. Further, )(),( sl sl pp are the

probability distribution functions describing the fibres arrangement in the space, and kkF ̊? is a second-order

tensor (Brighenti and Scorza, 2012).

4. Numerical simulation of experimental tests

The fatigue behaviour of a 20% glass (randomly distributed) fibre-reinforced polycarbonate specimen under

constant amplitude uniaxial cyclic stress is herein examined (Zago et al., 2001). The material parameters are as

362 Roberto Brighenti et al. / Procedia Materials Science 3 ( 2014 ) 357 – 362

Fig. 3. (a) Wöhler’s curves a glass fibre-reinforced polycarbonate specimen (dimensions in mm): experimental and present results. (b) Damage evolution in the matrix and dimensionless debonding in the fibres (at point P) vs the number of stress cycles.

follows: 1.3,1001.1 4 ?©? /ii mC ( dNdl / in mm/cycle,

iKF in MPa-m), ?©B? BNMPa ,102,5 6

00u 0.293,

mmL ff oh 10,1042 4 ?©? / . The attainment of the ultimate matrix strain value ( %10?ug ) is assumed to be the

fatigue failure condition (Fig. 3a). The dimensionless cyclic stress amplitude uuu /* (with MPau 75Bu = tensile

strength of the composite) against the number of stress cycles is shown in Fig.3a, where a good agreement with

some experimental results can be noted. In Fig. 3b, the damage value for a given value of *u in the matrix material

and the dimensionless detached length

are plotted against N at point P (see Fig. 3a).

5. Conclusions

In the present study, a micromechanical-based approach to assess the fatigue behaviour of FRCs is proposed. The

matrix and the fibre-matrix interface damages due to fatigue loading are accounted for. In particular, a fracture

mechanics-based approach is adopted to describe the fiber debonding, whereas a Wöhler approach is used to

quantify the damage in the matrix. A damage scalar parameter quantifying the debonding severity during fatigue is

introduced. Finally, some numerical simulation results are compared with literature results. The present model

seems to catch the main degrading mechanical effects of repeated loading on FRCs.

References

Avanzini A., Donzella G., Gallina D., 2011. Fatigue damage modelling of PEEK short fibre composites. Procedia Engng 10: 2052–2057.

Brighenti R,. 2004. Numerical modelling of the fatigue behaviour of fiber reinforced composites. Comp.Part B 35(3), 197-210.

Brighenti R., Carpinteri A., Scorza D., 2013. Fracture mechanics approach for partially debonded cylindrical fibre. Comp.Part B 53, 169–178.

Brighenti R., Scorza D., 2012. A micro-mechanical model for statistically unidirectional and randomly distributed fibre-reinforced solids.

Mathem. Mech. Sol. 18, 876–893.

Carpinteri A., Spagnoli A., Vantadori S., 2006. An elastic-plastic crack bridging model for brittle-matrix fibrous composite beams under cyclic

loading. Int. J. of Solids and Struct. 43, 4917-4936.

Chaudhuri RA., 2006. Three-dimensional singular stress field near a partially debonded cylindrical rigid fibre. Comp. Struct. 72, 141–150.

Cheng QG., 2012. Fiber Reinforced Composites. Nova Science Publishers, Inc., Hauppauge, NY.

Cox H.L., 1952. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics 3, 72–79.

Hutchinson JW., Mear ME., Rice JC., 1987. Crack paralleling an interface between dissimilar materials. J Appl Mech. 54, 828-832.

Jones R.M.A., 1999. Mechanics of Composite Materials, (Second Edition), Taylor & Francis Group.

Mallick PK., 2007. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. Dekker Mechanical Engineering, Third Edition.

Nairn J.A., 1997. On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites. Mech. Mat. 26, 63–80.

Rice JC., 1988. Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech. 55, 98-103.

Zago A., Springer G.S., 2001. Constant amplitude fatigue of short glass and carbon fiber reinforced thermoplastics. J. Reinfor. Plastics Compos.

20(07), 564-595.

Zbib HM., Hirth JP., Demir I., 1995. The stress intensity factor of cylindrical cracks. Int J. Engng Sci., 33: 247–253.