cold-air pool dynamics observed by a sodar-rass in the new zealand alps

16
ISARS Auckland, New Zealand Jan., 2014 Marwan Katurji COLD-AIR POOL DYNAMICS OBSERVED BY A SODAR-RASS SYSTEM IN THE NEW ZEALAND SOUTHERN ALPS Authors and Participants: Marwan Katurji Bob Noonan Tobias Schulmann Peyman Zawar-Reza Andrew Sturman Centre for Atmospheric Research University of Canterbury, Christchurch New Zealand

Upload: canterbury-nz

Post on 16-Jan-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

COLD-AIR POOL DYNAMICS OBSERVED BY A SODAR-RASS SYSTEM IN THE NEW

ZEALAND SOUTHERN ALPS

Authors and Participants:

Marwan Katurji Bob Noonan Tobias Schulmann Peyman Zawar-Reza Andrew Sturman

Centre for Atmospheric Research University of Canterbury, Christchurch New Zealand

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Research Objective

Establish a climatology of intermontane atmospheric boundary layers (BL) in order to understand the dynamic coupling and decoupling of the intermontane BL with extra-mountain disturbances

Implications

  For regional to basin scale downscaling of climate models that don't properly resolve intermontane BLs, especially for stable BLs.

  Establishing relationships between wind shear and air temperature profiles (threshold analysis).

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Methods

  Setup of a SODAR-RASS system in the heart of an elevated basin within New Zealand’s Southern Alps

  Measure wind velocity and air temperature at 10 minute intervals and at 5 m vertical resolution up to an effective height of ~ 400m

  Establish a ridge-top weather station to measure regional weather variations

  Test the applicability of an artificial neural network algorithm, known as Self Organized Maps (SOM), to analyze large datasets produced from the long term deployment of the SODAR-RASS system

This talk’s content (preliminary results)

1.  Provide a summary from September 2013 observations

2.  Introduce SOM results (pattern recognition and clustering)

3.  Verify SOM results with regard to mean diurnal variation

4.  Explore night-time profiles

5.  Future research

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Hokitika

Christchurch

Cass Basin - STABX

Cass Basin in the middle of the Southern Alps

Location

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Google Earth

Waimakiriri River

600 m ASL

1359 m ASL

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Scintec sFAS, SODAR-RASS system (Sep. 2013 and ongoing)

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Time-height wind vector and temperature profiles Celsius

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Time-height wind vector and temperature profiles Celsius

276 277 278 279 280 281 282 283 284 2850

50

100

150

200

250

300

350

400

450

500

Potential Temperature (Kelvin)

Hei

ght,

AGL

(m)

1−hourly average of potential temperature for Sept. 2013

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

3 4 5 6 7 8 9 10 110

50

100

150

200

250

300

350

400

450

500

Air Temperature (oC)

Hei

ght,

AGL

(m)

1−hourly average of air temperature for Sept. 2013

01:0002:0003:0004:0005:0006:0007:0008:0009:0010:0011:0012:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:0000:00

Diurnal variation: hourly average over 1 month

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500jj

Potential Temperature SOM nodes: All Period, September 2013

SOM cluster, 3x4 matrix

Celsius

Hei

ght,

AG

L (

m)

0 6 12 180

50

100

150

0 6 12 180

10

20

30

40

0 6 12 180

20

40

60

0 6 12 180

20

40

60

0 6 12 180

20

40

60

80

0 6 12 180

20

40

60

0 6 12 180

20

40

60

0 6 12 180

50

100

0 6 12 180

20

40

60

80

0 6 12 180

50

100

150

200

0 6 12 180

20

40

60

80

0 6 12 180

20

40

60

80

Frequency of Occurrence

node:1 2 3

5 4 6

7 8 9

10 11 12

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500jj

Potential Temperature SOM nodes: All Period, September 2013

17150800000000

1319281211012001

2257111195312372425

912937242221000

0121296428174814217

0350130660196791431

002014671473463814

00505023549038193220

02380156594075202979

00201247201315510340

006089283926937987

002006351223944175130

Number of transitions between nodes

To.......

From

.....

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

SOM cluster and node transitions H

eigh

t, A

GL

(m

)

Celsius

node:1 2 3

5 4 6

7 8 9

10 11 12

Daily transition from SOM nodes

−5 0 5100200300400500

HOUR:0− SN:9

−5 0 5100200300400500

HOUR:1− SN:6

−5 0 5100200300400500

HOUR:2− SN:6

−5 0 5100200300400500

HOUR:3− SN:6

−5 0 5100200300400500

HOUR:4− SN:5

−5 0 5100200300400500

HOUR:5− SN:5

−5 0 5100200300400500

HOUR:6− SN:5

−5 0 5100200300400500

HOUR:7− SN:4

−5 0 5100200300400500

HOUR:8− SN:5

−5 0 5100200300400500

HOUR:9− SN:5

−5 0 5100200300400500

HOUR:10− SN:8

−5 0 5100200300400500

HOUR:11− SN:7

−5 0 5100200300400500

HOUR:12− SN:11

−5 0 5100200300400500

HOUR:13− SN10

−5 0 5100200300400500

HOUR:14− SN:10

−5 0 5100200300400500

HOUR:15− SN:11

−5 0 5100200300400500

HOUR:16− SN:11

−5 0 5100200300400500

HOUR:17− SN:11

−5 0 5100200300400500

HOUR:18− SN:9

−5 0 5100200300400500

HOUR:19− SN:8

−5 0 5100200300400500

HOUR:20− SN:6

−5 0 5100200300400500

HOUR:21− SN:6

−5 0 5100200300400500

HOUR:22− SN:5

−5 0 5100200300400500

HOUR:23− SN:8

Blue: SOM profile

Red: Hourly average

Useful for identifying the mean state of the

atmosphere, and diurnal node transitions

Celsius

Hei

ght,

AG

L (

m)

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

0 10 20 30

100

200

300

400

500

Wind Speed profiles: Average of SOM nodes

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

−10 −5 0 5 10

100

200

300

400

500

Potential Temperature SOM nodes: 8 pm to 8 am

SOM cluster and average wind speed profile

8pm to 8 am

Hei

ght,

AG

L (

m)

Celsius ms-1

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

Conclusion

•  SOMS are very useful for analysis and interpretation of large 2-dimensional data sets

•  SOM analysis gives both static clustering and dynamic features (change of cluster with time) and is useful for deriving relationships

•  A summary of the relationship between vertical temperature profile and corresponding wind shear was provided

Future Work: How are the ridge-top pressure, air temperature, and wind speed changes related to evolution of the basin atmospheric boundary layer?

Thank You

ISARS Auckland, New Zealand Jan., 2014

Marwan Katurji

.geog.canterbury.ac.nz/research/stabx/stabx.shtml

Stable Boundary Layer Experiment - STABX