certain new grÜss type inequalities involving saigo fractional q-integral operator

12
Research Article Some New Saigo Type Fractional Integral Inequalities and Their -Analogues Junesang Choi 1 and Praveen Agarwal 2 1 Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea 2 Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India Correspondence should be addressed to Junesang Choi; [email protected] Received 6 January 2014; Accepted 21 February 2014; Published 2 April 2014 Academic Editor: G. Wang Copyright © 2014 J. Choi and P. Agarwal. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main objective of this paper is to establish some, presumably, new Saigo type fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville and Erd´ elyi-Kober type fractional integral operators, respectively. We also investigate and present -extensions of the above results and some other presumably new ones. Relevant connections of the results presented here with those earlier ones are also indicated. 1. Introduction and Preliminaries roughout this paper, N, R, C, and Z 0 denote the sets of positive integers, real numbers, complex numbers, and nonpositive integers, respectively, and N 0 := N∪{0}. Consider the following functional: (, , , ) = ∫ () ∫ () () () +∫ () ∫ () () () − (∫ () () ) (∫ () () ) − (∫ () () ) (∫ () () ), (1) where , : [, ] → R are two integrable functions on [, ] and () and () are positive integrable functions on [, ]. If and are synchronous on [, ], that is, ( () − ()) ( () − ()) ≥ 0, (2) for any , ∈ [, ], then we have (see, e.g., [1, 2]) (, , , ) ≥ 0. (3) e inequality in (2) is reversed, if and are asynchronous on [, ], that is, ( () − ()) ( () − ()) ≤ 0, (4) for any , ∈ [, ]. If () = (), for any , ∈ [, ], we get the Chebyshev inequality (see [3]). Ostrowski [4] established the following generalization of the Chebyshev inequality. If and are two differentiable and synchronous func- tions on [, ] and is a positive integrable function on [, ] with | ()| ≥ ≥ 0 and | ()| ≥ ≥ 0, for ∈ [, ], then we have (, , ) = (, , , ) ≥ ( − , − , ) ≥ 0. (5) If and are asynchronous on [, ], then we have (, , ) ≤ ( − , − , ) ≤ 0. (6) If and are two differentiable functions on [, ] with | ()| ≤ and | ()| ≤ , for ∈ [, ], and is a positive integrable function on [, ], then we have (, , ) ≤ ( − , − , ) ≤ 0. (7) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 579260, 11 pages http://dx.doi.org/10.1155/2014/579260

Upload: anandeducation

Post on 05-Dec-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Research ArticleSome New Saigo Type Fractional Integral Inequalities andTheir 119902-Analogues

Junesang Choi1 and Praveen Agarwal2

1 Department of Mathematics Dongguk University Gyeongju 780-714 Republic of Korea2Department of Mathematics Anand International College of Engineering Jaipur-303012 India

Correspondence should be addressed to Junesang Choi junesangmaildonggukackr

Received 6 January 2014 Accepted 21 February 2014 Published 2 April 2014

Academic Editor G Wang

Copyright copy 2014 J Choi and P Agarwal This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The main objective of this paper is to establish some presumably new Saigo type fractional integral inequalities whose specialcases are shown to yield corresponding inequalities associated with Riemann-Liouville and Erdelyi-Kober type fractional integraloperators respectively We also investigate and present 119902-extensions of the above results and some other presumably new onesRelevant connections of the results presented here with those earlier ones are also indicated

1 Introduction and Preliminaries

Throughout this paper N R C and Zminus0

denote the setsof positive integers real numbers complex numbers andnonpositive integers respectively andN

0

= Ncup0 Considerthe following functional

119879 (119891 119892 119901 119902) = int

119887

119886

119902 (119909) 119889119909int

119887

119886

119901 (119909) 119891 (119909) 119892 (119909) 119889119909

+ int

119887

119886

119901 (119909) 119889119909int

119887

119886

119902 (119909) 119891 (119909) 119892 (119909) 119889119909

minus (int

119887

119886

119902 (119909) 119891 (119909) 119889119909)(int

119887

119886

119901 (119909) 119892 (119909) 119889119909)

minus (int

119887

119886

119901 (119909) 119891 (119909) 119889119909)(int

119887

119886

119902 (119909) 119892 (119909) 119889119909)

(1)

where119891 119892 [119886 119887] rarr R are two integrable functions on [119886 119887]and 119901(119909) and 119902(119909) are positive integrable functions on [119886 119887]If 119891 and 119892 are synchronous on [119886 119887] that is

(119891 (119909) minus 119891 (119910)) (119892 (119909) minus 119892 (119910)) ge 0 (2)

for any 119909 119910 isin [119886 119887] then we have (see eg [1 2])119879 (119891 119892 119901 119902) ge 0 (3)

The inequality in (2) is reversed if 119891 and 119892 are asynchronouson [119886 119887] that is

(119891 (119909) minus 119891 (119910)) (119892 (119909) minus 119892 (119910)) le 0 (4)for any 119909 119910 isin [119886 119887] If 119901(119909) = 119902(119909) for any 119909 119910 isin [119886 119887]we get the Chebyshev inequality (see [3]) Ostrowski [4]established the following generalization of the Chebyshevinequality

If 119891 and 119892 are two differentiable and synchronous func-tions on [119886 119887] and 119901 is a positive integrable function on [119886 119887]with |119891

1015840

(119909)| ge 119898 ge 0 and |1198921015840

(119909)| ge 119903 ge 0 for 119909 isin [119886 119887] thenwe have119879 (119891 119892 119901) = 119879 (119891 119892 119901 119901) ge 119898119903119879 (119909 minus 119886 119909 minus 119886 119901) ge 0

(5)

If 119891 and 119892 are asynchronous on [119886 119887] then we have119879 (119891 119892 119901) le 119898119903119879 (119909 minus 119886 119909 minus 119886 119901) le 0 (6)

If 119891 and 119892 are two differentiable functions on [119886 119887] with|1198911015840

(119909)| le 119872 and |1198921015840(119909)| le 119877 for 119909 isin [119886 119887] and 119901 is a positiveintegrable function on [119886 119887] then we have

1003816100381610038161003816119879 (119891 119892 119901)1003816100381610038161003816 le 119872119877119879 (119909 minus 119886 119909 minus 119886 119901) le 0 (7)

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 579260 11 pageshttpdxdoiorg1011552014579260

2 Abstract and Applied Analysis

The functional (1) has attracted many researchersrsquo atten-tion due mainly to diverse applications in numerical quadra-ture transform theory and probability and statistical prob-lems Among those applications the functional (1) has alsobeen employed to yield a number of integral inequalities (seeeg [5ndash12] for a very recent work see also [13])

Here in this paper we aim at establishing certain pre-sumably new inequalities involving Saigo fractional integraloperator (8) whose special cases are shown to yield cor-responding inequalities associated with Riemann-Liouvillefractional integral operator (11) and Erdelyi-Kober fractionalintegral operator (12) We also investigate and present 119902-extensions of our results and some other presumably newones Relevant connections of some of the results presentedhere with those earlier ones are also pointed out

For our purpose we also need to recall the followingdefinitions and some earlier works

Definition 1 A real-valued function 119891(119905) (119905 gt 0) is said to bein the space 119862

120583

(120583 isin R) if there exists a real number 119901 gt 120583

such that 119891(119905) = 119905119901

120601(119905) where 120601(119905) isin 119862(0infin)

Definition 2 A function119891(119905) (119905 gt 0) is said to be in the space119862119899

120583

(119899 isin R) if 119891(119899) isin 119862120583

Definition 3 Let 120572 gt 0 and 120573 120578 isin R Then the Saigo frac-tional integral 119868120572120573120578

0119905

(in terms of the Gauss hypergeometricfunction) of order 120572 for a real-valued continuous function119891(119905) is defined by (see [14] see also [15])

119868120572120573120578

0119905

119891 (119905) =119905minus120572minus120573

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

2

1198651

times (120572 + 120573 minus120578 120572 1 minus120591

119905)119891 (120591) 119889120591

(8)

where the function2

1198651

(sdot) is the Gaussian hypergeometricfunction defined by (see eg [16 Section 15])

2

1198651

(119886 119887 119888 119905) =

infin

sum

119899=0

(119886)119899

(119887)119899

(119888)119899

119905119899

119899(9)

and Γ(120572) is the familiar Gamma function Here (119886)119899

is thePochhammer symbol defined for 119886 isin C by (see eg [16 p2 and pp 4ndash6])

(119886)119899

= 1 (119899 = 0)

119886 (119886 + 1) sdot sdot sdot (119886 + 119899 minus 1) (119899 isin N)

=Γ (119886 + 119899)

Γ (119886)(119886 isin C Z

minus

0

)

(10)

It is noted that Saigo fractional integral operator 1198681205721205731205780119905

includes both Riemann-Liouville and Erdelyi-Kober frac-tional integral operators respectively given by the followingrelationships (see eg [17]) for 119891 isin 119862

120583

(120583 ge minus1)

119868120572

0119905

119891 (119905) (= 119868120572minus120572120578

0119905

119891 (119905))

=1

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

119891 (120591) 119889120591 (120572 gt 0)

(11)

119868120572120578

0119905

119891 (119905) (= 1198681205720120578

0119905

119891 (119905))

=119905minus120572minus120578

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

120591120578

119891 (120591) 119889120591

(120572 gt 0 120578 isin R)

(12)

For our purpose we also recall the following definitions(see eg [16 Section 6]) and some earlier works

The 119902-shifted factorial (119886 119902)119899

is defined by

(119886 119902)119899

=

1 (119899 = 0)

119899minus1

prod

119896=0

(1 minus 119886119902119896

) (119899 isin N) (13)

where 119886 119902 isin C and it is assumed that 119886 = 119902minus119898

(119898 isin N0

)The 119902-shifted factorial for negative subscript is defined by

(119886 119902)minus119899

=1

(1 minus 119886119902minus1) (1 minus 119886119902minus2) sdot sdot sdot (1 minus 119886119902minus119899)

(119899 isin N0

)

(14)

We also write

(119886 119902)infin

=

infin

prod

119896=0

(1 minus 119886119902119896

) (119886 119902 isin C10038161003816100381610038161199021003816100381610038161003816 lt 1) (15)

It follows from (13) (14) and (15) that

(119886 119902)119899

=(119886 119902)infin

(119886119902119899 119902)infin

(119899 isin Z) (16)

which can be extended to 119899 = 120572 isin C as follows

(119886 119902)120572

=(119886 119902)infin

(119886119902120572 119902)infin

(120572 isin C10038161003816100381610038161199021003816100381610038161003816 lt 1) (17)

where the principal value of 119902120572 is takenWe begin by noting that F J Jackson was the first to

develop 119902-calculus in a systematic way The 119902-derivative of afunction 119891(119905) is defined by

119863119902

119891 (119905) =119889119902

119889119902

119905119891 (119905) =

119891 (119902119905) minus 119891 (119905)

(119902 minus 1) 119905 (18)

It is noted that

lim119902rarr1

119863119902

119891 (119905) =119889

119889119905119891 (119905) (19)

if 119891(119905) is differentiable

Abstract and Applied Analysis 3

The function 119865(119905) is a 119902-antiderivative of 119891(119905) if119863119902

119865(119905) = 119891(119905) It is denoted by

int119891 (119905) 119889119902

119905 (20)

The Jackson integral of 119891(119905) is thus defined formally by

int119891 (119905) 119889119902

119905 = (1 minus 119902) 119905

infin

sum

119895=0

119902119895

119891 (119902119895

119905) (21)

which can be easily generalized as follows

int119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119905) (119892 (119902119895

119905) minus 119892 (119902119895+1

119905)) (22)

Suppose that 0 lt 119886 lt 119887 The definite 119902-integral is definedas follows

int

119887

0

119891 (119905) 119889119902

119905 = (1 minus 119902) 119887

infin

sum

119895=0

119902119895

119891 (119902119895

119887) (23)

int

119887

119886

119891 (119905) 119889119902

119905 = int

119887

0

119891 (119905) 119889119902

119905 minus int

119886

0

119891 (119905) 119889119902

119905 (24)

A more general version of (23) is given by

int

119887

0

119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119887) (119892 (119902119895

119887) minus 119892 (119902119895+1

119887)) (25)

The classical Gamma function Γ(119911) (see eg [16 Section11]) was found by Euler while he was trying to extend thefactorial 119899 = Γ(119899 + 1) ( 119899 isin N

0

) to real numbers The 119902-factorial function [119899]

119902

(119899 isin N0

) of 119899 defined by

[119899]119902

= 1 if 119899 = 0

[119899]119902

[119899 minus 1]119902

sdot sdot sdot [2]119902

[1]119902

if 119899 isin N(26)

can be rewritten as follows

(1 minus 119902)minus119899

infin

prod

119896=0

(1 minus 119902119896+1

)

(1 minus 119902119896+1+119899)=

(119902 119902)infin

(119902119899+1 119902)infin

(1 minus 119902)minus119899

= Γ119902

(119899 + 1) (0 lt 119902 lt 1)

(27)

By replacing 119899 by 119886 minus 1 in (27) Jackson [18] defined the 119902-Gamma function Γ

119902

(119886) by

Γ119902

(119886) =(119902 119902)infin

(119902119886 119902)infin

(1 minus 119902)1minus119886

(0 lt 119902 lt 1) (28)

The 119902-analogue of (119905 minus 119886)119899 is defined by the polynomial

(119905 minus 119886)119899

119902

= 1 (119899 = 0)

(119905 minus 119886) (119905 minus 119902119886) sdot sdot sdot (119905 minus 119902119899minus1

119886) (119899 isin N)

= 119905119899

(119886

119905 119902)119899

(119899 isin N0

)

(29)

Definition 4 Let R(120572) gt 0 let 120573 and 120578 be real or complexnumbers Then a 119902-analogue of Saigorsquos fractional integral119868120572120573120578

119902

is given for |120591119905| lt 1 by (see [19 p 172 Equation (21)])

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times int

119905

0

(119902120591

119905 119902)120572minus1

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

sdot 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119891 (120591) 119889119902

120591

(30)

The integral operator 119868120572120573120578119902

includes both the 119902-analoguesof the Riemann-Liouville and Erdelyi-Kober fractional inte-gral operators given by the following definitions

Definition 5 A 119902-analogue of Riemann-Liouville fractionalintegral operator of a function 119891(119905) of an order 120572 is given by(see [20])

119868120572

119902

119891 (119905) (= 119868120572minus120572120578

119902

119891 (119905))

=119905120572minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(31)

where (119886 119902)120572

is given by (17)

Definition 6 A 119902-analogue of the Erdelyi-Kober fractionalintegral operator for 120572 gt 0 120578 isin R and 0 lt 119902 lt 1 is givenby (see [20])

119868120578120572

119902

119891 (119905) (= 1198681205720120578

119902

119891 (119905))

=119905minus120578minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

120591120578

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(32)

2 Certain Inequalities Involving SaigoFractional Integral Operator

Here we start with presenting an inequality involving Saigofractional integral (8) asserted by the following lemma

Lemma 7 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119906 (119905) 119868120572120573120578

0119905

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119868120572120573120578

0119905

V (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(33)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

4 Abstract and Applied Analysis

Proof Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) Then for all 120591 120588 isin (0 119905) with 119905 gt 0we have

(119891 (120591) minus 119891 (120588)) (119892 (120591) minus 119892 (120588)) ge 0 (34)

or equivalently

119891 (120591) 119892 (120591) + 119891 (120588) 119892 (120588) ge 119891 (120591) 119892 (120588) + 119891 (120588) 119892 (120591) (35)

Consider the following function 119865(119905 120591) defined by

119865 (119905 120591) =119905minus120572minus120573

(119905 minus 120591)120572minus1

Γ (120572)2

1198651

(120572 + 120573 minus120578 120572 1 minus120591

119905)

(120591 isin (0 119905) 119905 gt 0)

=1

Γ (120572)

(119905 minus 120591)120572minus1

119905120572+120573+(120572 + 120573) (minus120578)

Γ (120572 + 1)

(119905 minus 120591)120572

119905120572+120573+1

+(120572+120573) (120572+120573+1) (minus120578) (minus120578+1)

Γ (120572+2)

(119905minus120591)120572+1

119905120572+120573+2+sdot sdot sdot

(36)

We observe that each term of the above series is nonnegativeunder the conditions in Lemma 7 and hence the function119865(119905 120591) remains nonnegative for all 120591 isin (0 119905) (119905 gt 0)

Now by multiplying both sides of (35) by 119865(119905 120591)119906(120591)

defined by (36) integrating the resulting inequality withrespect to 120591 from 0 to 119905 and using (8) we get

119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

0119905

119906 (119905)

ge 119892 (120588) 119868120572120573120578

0119905

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(37)

Next bymultiplying both sides of (37) by119865(119905 120588)V(120588) (120588 isin

(0 119905) 119905 gt 0) where 119865(119905 120588) is given when 120591 is replaced by 120588

in (36) integrating the resulting inequality with respect to 120588

from 0 to 119905 and using (8) we are led to the desired result (33)

Theorem 8 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(38)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in Lemma 7 we get

119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(39)

Since 119868120572120573120578

0119905

119897(119905) ≧ 0 under the given conditions bymultiplying both sides of (39) by 119868120572120573120578

0119905

119897(119905) we have

119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(40)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897119898 respectivelyin (33) and then multiplying both sides of the resultinginequalities by 119868120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) both of which arenonnegative under the given assumptions respectively weget the following inequalities

119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

Abstract and Applied Analysis 5

119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(41)

Finally by adding (40) and (41) side by side we arrive at thedesired result (38)

We present another inequality involving the Saigo frac-tional integral operator in (8) asserted by the followinglemma

Lemma 9 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120574120575120577

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119906 (119905)

ge 119868120574120575120577

0119905

V (119905) 119892 (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(42)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By multiplying both sides of (37) by

119905minus120574minus120575

(119905 minus 120588)120574minus1

Γ (120574)2

1198651

(120574 + 120575 minus120577 120574 1 minus120588

119905) V (120588)

(120588 isin (0 119905) 119905 gt 0)

(43)

which remains nonnegative under the conditions in (42)integrating the resulting inequality with respect to 120588 from 0

to 119905 and using (8) we get the desired result (42)

Theorem 10 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119897 (119905) [2119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905)]

(44)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in (42) we have

119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)

ge 119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(45)

By multiplying both sides of (45) by 1198681205721205731205780119905

119897(119905) after a littlesimplification we get

119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(46)

Now by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (42)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) respectively weget the following two inequalities

119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Abstract and Applied Analysis

The functional (1) has attracted many researchersrsquo atten-tion due mainly to diverse applications in numerical quadra-ture transform theory and probability and statistical prob-lems Among those applications the functional (1) has alsobeen employed to yield a number of integral inequalities (seeeg [5ndash12] for a very recent work see also [13])

Here in this paper we aim at establishing certain pre-sumably new inequalities involving Saigo fractional integraloperator (8) whose special cases are shown to yield cor-responding inequalities associated with Riemann-Liouvillefractional integral operator (11) and Erdelyi-Kober fractionalintegral operator (12) We also investigate and present 119902-extensions of our results and some other presumably newones Relevant connections of some of the results presentedhere with those earlier ones are also pointed out

For our purpose we also need to recall the followingdefinitions and some earlier works

Definition 1 A real-valued function 119891(119905) (119905 gt 0) is said to bein the space 119862

120583

(120583 isin R) if there exists a real number 119901 gt 120583

such that 119891(119905) = 119905119901

120601(119905) where 120601(119905) isin 119862(0infin)

Definition 2 A function119891(119905) (119905 gt 0) is said to be in the space119862119899

120583

(119899 isin R) if 119891(119899) isin 119862120583

Definition 3 Let 120572 gt 0 and 120573 120578 isin R Then the Saigo frac-tional integral 119868120572120573120578

0119905

(in terms of the Gauss hypergeometricfunction) of order 120572 for a real-valued continuous function119891(119905) is defined by (see [14] see also [15])

119868120572120573120578

0119905

119891 (119905) =119905minus120572minus120573

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

2

1198651

times (120572 + 120573 minus120578 120572 1 minus120591

119905)119891 (120591) 119889120591

(8)

where the function2

1198651

(sdot) is the Gaussian hypergeometricfunction defined by (see eg [16 Section 15])

2

1198651

(119886 119887 119888 119905) =

infin

sum

119899=0

(119886)119899

(119887)119899

(119888)119899

119905119899

119899(9)

and Γ(120572) is the familiar Gamma function Here (119886)119899

is thePochhammer symbol defined for 119886 isin C by (see eg [16 p2 and pp 4ndash6])

(119886)119899

= 1 (119899 = 0)

119886 (119886 + 1) sdot sdot sdot (119886 + 119899 minus 1) (119899 isin N)

=Γ (119886 + 119899)

Γ (119886)(119886 isin C Z

minus

0

)

(10)

It is noted that Saigo fractional integral operator 1198681205721205731205780119905

includes both Riemann-Liouville and Erdelyi-Kober frac-tional integral operators respectively given by the followingrelationships (see eg [17]) for 119891 isin 119862

120583

(120583 ge minus1)

119868120572

0119905

119891 (119905) (= 119868120572minus120572120578

0119905

119891 (119905))

=1

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

119891 (120591) 119889120591 (120572 gt 0)

(11)

119868120572120578

0119905

119891 (119905) (= 1198681205720120578

0119905

119891 (119905))

=119905minus120572minus120578

Γ (120572)int

119905

0

(119905 minus 120591)120572minus1

120591120578

119891 (120591) 119889120591

(120572 gt 0 120578 isin R)

(12)

For our purpose we also recall the following definitions(see eg [16 Section 6]) and some earlier works

The 119902-shifted factorial (119886 119902)119899

is defined by

(119886 119902)119899

=

1 (119899 = 0)

119899minus1

prod

119896=0

(1 minus 119886119902119896

) (119899 isin N) (13)

where 119886 119902 isin C and it is assumed that 119886 = 119902minus119898

(119898 isin N0

)The 119902-shifted factorial for negative subscript is defined by

(119886 119902)minus119899

=1

(1 minus 119886119902minus1) (1 minus 119886119902minus2) sdot sdot sdot (1 minus 119886119902minus119899)

(119899 isin N0

)

(14)

We also write

(119886 119902)infin

=

infin

prod

119896=0

(1 minus 119886119902119896

) (119886 119902 isin C10038161003816100381610038161199021003816100381610038161003816 lt 1) (15)

It follows from (13) (14) and (15) that

(119886 119902)119899

=(119886 119902)infin

(119886119902119899 119902)infin

(119899 isin Z) (16)

which can be extended to 119899 = 120572 isin C as follows

(119886 119902)120572

=(119886 119902)infin

(119886119902120572 119902)infin

(120572 isin C10038161003816100381610038161199021003816100381610038161003816 lt 1) (17)

where the principal value of 119902120572 is takenWe begin by noting that F J Jackson was the first to

develop 119902-calculus in a systematic way The 119902-derivative of afunction 119891(119905) is defined by

119863119902

119891 (119905) =119889119902

119889119902

119905119891 (119905) =

119891 (119902119905) minus 119891 (119905)

(119902 minus 1) 119905 (18)

It is noted that

lim119902rarr1

119863119902

119891 (119905) =119889

119889119905119891 (119905) (19)

if 119891(119905) is differentiable

Abstract and Applied Analysis 3

The function 119865(119905) is a 119902-antiderivative of 119891(119905) if119863119902

119865(119905) = 119891(119905) It is denoted by

int119891 (119905) 119889119902

119905 (20)

The Jackson integral of 119891(119905) is thus defined formally by

int119891 (119905) 119889119902

119905 = (1 minus 119902) 119905

infin

sum

119895=0

119902119895

119891 (119902119895

119905) (21)

which can be easily generalized as follows

int119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119905) (119892 (119902119895

119905) minus 119892 (119902119895+1

119905)) (22)

Suppose that 0 lt 119886 lt 119887 The definite 119902-integral is definedas follows

int

119887

0

119891 (119905) 119889119902

119905 = (1 minus 119902) 119887

infin

sum

119895=0

119902119895

119891 (119902119895

119887) (23)

int

119887

119886

119891 (119905) 119889119902

119905 = int

119887

0

119891 (119905) 119889119902

119905 minus int

119886

0

119891 (119905) 119889119902

119905 (24)

A more general version of (23) is given by

int

119887

0

119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119887) (119892 (119902119895

119887) minus 119892 (119902119895+1

119887)) (25)

The classical Gamma function Γ(119911) (see eg [16 Section11]) was found by Euler while he was trying to extend thefactorial 119899 = Γ(119899 + 1) ( 119899 isin N

0

) to real numbers The 119902-factorial function [119899]

119902

(119899 isin N0

) of 119899 defined by

[119899]119902

= 1 if 119899 = 0

[119899]119902

[119899 minus 1]119902

sdot sdot sdot [2]119902

[1]119902

if 119899 isin N(26)

can be rewritten as follows

(1 minus 119902)minus119899

infin

prod

119896=0

(1 minus 119902119896+1

)

(1 minus 119902119896+1+119899)=

(119902 119902)infin

(119902119899+1 119902)infin

(1 minus 119902)minus119899

= Γ119902

(119899 + 1) (0 lt 119902 lt 1)

(27)

By replacing 119899 by 119886 minus 1 in (27) Jackson [18] defined the 119902-Gamma function Γ

119902

(119886) by

Γ119902

(119886) =(119902 119902)infin

(119902119886 119902)infin

(1 minus 119902)1minus119886

(0 lt 119902 lt 1) (28)

The 119902-analogue of (119905 minus 119886)119899 is defined by the polynomial

(119905 minus 119886)119899

119902

= 1 (119899 = 0)

(119905 minus 119886) (119905 minus 119902119886) sdot sdot sdot (119905 minus 119902119899minus1

119886) (119899 isin N)

= 119905119899

(119886

119905 119902)119899

(119899 isin N0

)

(29)

Definition 4 Let R(120572) gt 0 let 120573 and 120578 be real or complexnumbers Then a 119902-analogue of Saigorsquos fractional integral119868120572120573120578

119902

is given for |120591119905| lt 1 by (see [19 p 172 Equation (21)])

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times int

119905

0

(119902120591

119905 119902)120572minus1

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

sdot 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119891 (120591) 119889119902

120591

(30)

The integral operator 119868120572120573120578119902

includes both the 119902-analoguesof the Riemann-Liouville and Erdelyi-Kober fractional inte-gral operators given by the following definitions

Definition 5 A 119902-analogue of Riemann-Liouville fractionalintegral operator of a function 119891(119905) of an order 120572 is given by(see [20])

119868120572

119902

119891 (119905) (= 119868120572minus120572120578

119902

119891 (119905))

=119905120572minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(31)

where (119886 119902)120572

is given by (17)

Definition 6 A 119902-analogue of the Erdelyi-Kober fractionalintegral operator for 120572 gt 0 120578 isin R and 0 lt 119902 lt 1 is givenby (see [20])

119868120578120572

119902

119891 (119905) (= 1198681205720120578

119902

119891 (119905))

=119905minus120578minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

120591120578

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(32)

2 Certain Inequalities Involving SaigoFractional Integral Operator

Here we start with presenting an inequality involving Saigofractional integral (8) asserted by the following lemma

Lemma 7 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119906 (119905) 119868120572120573120578

0119905

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119868120572120573120578

0119905

V (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(33)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

4 Abstract and Applied Analysis

Proof Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) Then for all 120591 120588 isin (0 119905) with 119905 gt 0we have

(119891 (120591) minus 119891 (120588)) (119892 (120591) minus 119892 (120588)) ge 0 (34)

or equivalently

119891 (120591) 119892 (120591) + 119891 (120588) 119892 (120588) ge 119891 (120591) 119892 (120588) + 119891 (120588) 119892 (120591) (35)

Consider the following function 119865(119905 120591) defined by

119865 (119905 120591) =119905minus120572minus120573

(119905 minus 120591)120572minus1

Γ (120572)2

1198651

(120572 + 120573 minus120578 120572 1 minus120591

119905)

(120591 isin (0 119905) 119905 gt 0)

=1

Γ (120572)

(119905 minus 120591)120572minus1

119905120572+120573+(120572 + 120573) (minus120578)

Γ (120572 + 1)

(119905 minus 120591)120572

119905120572+120573+1

+(120572+120573) (120572+120573+1) (minus120578) (minus120578+1)

Γ (120572+2)

(119905minus120591)120572+1

119905120572+120573+2+sdot sdot sdot

(36)

We observe that each term of the above series is nonnegativeunder the conditions in Lemma 7 and hence the function119865(119905 120591) remains nonnegative for all 120591 isin (0 119905) (119905 gt 0)

Now by multiplying both sides of (35) by 119865(119905 120591)119906(120591)

defined by (36) integrating the resulting inequality withrespect to 120591 from 0 to 119905 and using (8) we get

119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

0119905

119906 (119905)

ge 119892 (120588) 119868120572120573120578

0119905

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(37)

Next bymultiplying both sides of (37) by119865(119905 120588)V(120588) (120588 isin

(0 119905) 119905 gt 0) where 119865(119905 120588) is given when 120591 is replaced by 120588

in (36) integrating the resulting inequality with respect to 120588

from 0 to 119905 and using (8) we are led to the desired result (33)

Theorem 8 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(38)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in Lemma 7 we get

119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(39)

Since 119868120572120573120578

0119905

119897(119905) ≧ 0 under the given conditions bymultiplying both sides of (39) by 119868120572120573120578

0119905

119897(119905) we have

119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(40)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897119898 respectivelyin (33) and then multiplying both sides of the resultinginequalities by 119868120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) both of which arenonnegative under the given assumptions respectively weget the following inequalities

119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

Abstract and Applied Analysis 5

119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(41)

Finally by adding (40) and (41) side by side we arrive at thedesired result (38)

We present another inequality involving the Saigo frac-tional integral operator in (8) asserted by the followinglemma

Lemma 9 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120574120575120577

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119906 (119905)

ge 119868120574120575120577

0119905

V (119905) 119892 (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(42)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By multiplying both sides of (37) by

119905minus120574minus120575

(119905 minus 120588)120574minus1

Γ (120574)2

1198651

(120574 + 120575 minus120577 120574 1 minus120588

119905) V (120588)

(120588 isin (0 119905) 119905 gt 0)

(43)

which remains nonnegative under the conditions in (42)integrating the resulting inequality with respect to 120588 from 0

to 119905 and using (8) we get the desired result (42)

Theorem 10 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119897 (119905) [2119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905)]

(44)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in (42) we have

119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)

ge 119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(45)

By multiplying both sides of (45) by 1198681205721205731205780119905

119897(119905) after a littlesimplification we get

119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(46)

Now by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (42)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) respectively weget the following two inequalities

119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 3

The function 119865(119905) is a 119902-antiderivative of 119891(119905) if119863119902

119865(119905) = 119891(119905) It is denoted by

int119891 (119905) 119889119902

119905 (20)

The Jackson integral of 119891(119905) is thus defined formally by

int119891 (119905) 119889119902

119905 = (1 minus 119902) 119905

infin

sum

119895=0

119902119895

119891 (119902119895

119905) (21)

which can be easily generalized as follows

int119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119905) (119892 (119902119895

119905) minus 119892 (119902119895+1

119905)) (22)

Suppose that 0 lt 119886 lt 119887 The definite 119902-integral is definedas follows

int

119887

0

119891 (119905) 119889119902

119905 = (1 minus 119902) 119887

infin

sum

119895=0

119902119895

119891 (119902119895

119887) (23)

int

119887

119886

119891 (119905) 119889119902

119905 = int

119887

0

119891 (119905) 119889119902

119905 minus int

119886

0

119891 (119905) 119889119902

119905 (24)

A more general version of (23) is given by

int

119887

0

119891 (119905) 119889119902

119892 (119905) =

infin

sum

119895=0

119891 (119902119895

119887) (119892 (119902119895

119887) minus 119892 (119902119895+1

119887)) (25)

The classical Gamma function Γ(119911) (see eg [16 Section11]) was found by Euler while he was trying to extend thefactorial 119899 = Γ(119899 + 1) ( 119899 isin N

0

) to real numbers The 119902-factorial function [119899]

119902

(119899 isin N0

) of 119899 defined by

[119899]119902

= 1 if 119899 = 0

[119899]119902

[119899 minus 1]119902

sdot sdot sdot [2]119902

[1]119902

if 119899 isin N(26)

can be rewritten as follows

(1 minus 119902)minus119899

infin

prod

119896=0

(1 minus 119902119896+1

)

(1 minus 119902119896+1+119899)=

(119902 119902)infin

(119902119899+1 119902)infin

(1 minus 119902)minus119899

= Γ119902

(119899 + 1) (0 lt 119902 lt 1)

(27)

By replacing 119899 by 119886 minus 1 in (27) Jackson [18] defined the 119902-Gamma function Γ

119902

(119886) by

Γ119902

(119886) =(119902 119902)infin

(119902119886 119902)infin

(1 minus 119902)1minus119886

(0 lt 119902 lt 1) (28)

The 119902-analogue of (119905 minus 119886)119899 is defined by the polynomial

(119905 minus 119886)119899

119902

= 1 (119899 = 0)

(119905 minus 119886) (119905 minus 119902119886) sdot sdot sdot (119905 minus 119902119899minus1

119886) (119899 isin N)

= 119905119899

(119886

119905 119902)119899

(119899 isin N0

)

(29)

Definition 4 Let R(120572) gt 0 let 120573 and 120578 be real or complexnumbers Then a 119902-analogue of Saigorsquos fractional integral119868120572120573120578

119902

is given for |120591119905| lt 1 by (see [19 p 172 Equation (21)])

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times int

119905

0

(119902120591

119905 119902)120572minus1

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

sdot 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119891 (120591) 119889119902

120591

(30)

The integral operator 119868120572120573120578119902

includes both the 119902-analoguesof the Riemann-Liouville and Erdelyi-Kober fractional inte-gral operators given by the following definitions

Definition 5 A 119902-analogue of Riemann-Liouville fractionalintegral operator of a function 119891(119905) of an order 120572 is given by(see [20])

119868120572

119902

119891 (119905) (= 119868120572minus120572120578

119902

119891 (119905))

=119905120572minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(31)

where (119886 119902)120572

is given by (17)

Definition 6 A 119902-analogue of the Erdelyi-Kober fractionalintegral operator for 120572 gt 0 120578 isin R and 0 lt 119902 lt 1 is givenby (see [20])

119868120578120572

119902

119891 (119905) (= 1198681205720120578

119902

119891 (119905))

=119905minus120578minus1

Γ119902

(120572)int

119905

0

(119902120591

119905 119902)120572minus1

120591120578

119891 (120591) 119889119902

120591

(120572 gt 0 0 lt 119902 lt 1)

(32)

2 Certain Inequalities Involving SaigoFractional Integral Operator

Here we start with presenting an inequality involving Saigofractional integral (8) asserted by the following lemma

Lemma 7 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119906 (119905) 119868120572120573120578

0119905

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119868120572120573120578

0119905

V (119905) 119892 (119905)

+ 119868120572120573120578

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(33)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

4 Abstract and Applied Analysis

Proof Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) Then for all 120591 120588 isin (0 119905) with 119905 gt 0we have

(119891 (120591) minus 119891 (120588)) (119892 (120591) minus 119892 (120588)) ge 0 (34)

or equivalently

119891 (120591) 119892 (120591) + 119891 (120588) 119892 (120588) ge 119891 (120591) 119892 (120588) + 119891 (120588) 119892 (120591) (35)

Consider the following function 119865(119905 120591) defined by

119865 (119905 120591) =119905minus120572minus120573

(119905 minus 120591)120572minus1

Γ (120572)2

1198651

(120572 + 120573 minus120578 120572 1 minus120591

119905)

(120591 isin (0 119905) 119905 gt 0)

=1

Γ (120572)

(119905 minus 120591)120572minus1

119905120572+120573+(120572 + 120573) (minus120578)

Γ (120572 + 1)

(119905 minus 120591)120572

119905120572+120573+1

+(120572+120573) (120572+120573+1) (minus120578) (minus120578+1)

Γ (120572+2)

(119905minus120591)120572+1

119905120572+120573+2+sdot sdot sdot

(36)

We observe that each term of the above series is nonnegativeunder the conditions in Lemma 7 and hence the function119865(119905 120591) remains nonnegative for all 120591 isin (0 119905) (119905 gt 0)

Now by multiplying both sides of (35) by 119865(119905 120591)119906(120591)

defined by (36) integrating the resulting inequality withrespect to 120591 from 0 to 119905 and using (8) we get

119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

0119905

119906 (119905)

ge 119892 (120588) 119868120572120573120578

0119905

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(37)

Next bymultiplying both sides of (37) by119865(119905 120588)V(120588) (120588 isin

(0 119905) 119905 gt 0) where 119865(119905 120588) is given when 120591 is replaced by 120588

in (36) integrating the resulting inequality with respect to 120588

from 0 to 119905 and using (8) we are led to the desired result (33)

Theorem 8 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(38)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in Lemma 7 we get

119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(39)

Since 119868120572120573120578

0119905

119897(119905) ≧ 0 under the given conditions bymultiplying both sides of (39) by 119868120572120573120578

0119905

119897(119905) we have

119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(40)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897119898 respectivelyin (33) and then multiplying both sides of the resultinginequalities by 119868120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) both of which arenonnegative under the given assumptions respectively weget the following inequalities

119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

Abstract and Applied Analysis 5

119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(41)

Finally by adding (40) and (41) side by side we arrive at thedesired result (38)

We present another inequality involving the Saigo frac-tional integral operator in (8) asserted by the followinglemma

Lemma 9 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120574120575120577

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119906 (119905)

ge 119868120574120575120577

0119905

V (119905) 119892 (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(42)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By multiplying both sides of (37) by

119905minus120574minus120575

(119905 minus 120588)120574minus1

Γ (120574)2

1198651

(120574 + 120575 minus120577 120574 1 minus120588

119905) V (120588)

(120588 isin (0 119905) 119905 gt 0)

(43)

which remains nonnegative under the conditions in (42)integrating the resulting inequality with respect to 120588 from 0

to 119905 and using (8) we get the desired result (42)

Theorem 10 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119897 (119905) [2119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905)]

(44)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in (42) we have

119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)

ge 119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(45)

By multiplying both sides of (45) by 1198681205721205731205780119905

119897(119905) after a littlesimplification we get

119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(46)

Now by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (42)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) respectively weget the following two inequalities

119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Abstract and Applied Analysis

Proof Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) Then for all 120591 120588 isin (0 119905) with 119905 gt 0we have

(119891 (120591) minus 119891 (120588)) (119892 (120591) minus 119892 (120588)) ge 0 (34)

or equivalently

119891 (120591) 119892 (120591) + 119891 (120588) 119892 (120588) ge 119891 (120591) 119892 (120588) + 119891 (120588) 119892 (120591) (35)

Consider the following function 119865(119905 120591) defined by

119865 (119905 120591) =119905minus120572minus120573

(119905 minus 120591)120572minus1

Γ (120572)2

1198651

(120572 + 120573 minus120578 120572 1 minus120591

119905)

(120591 isin (0 119905) 119905 gt 0)

=1

Γ (120572)

(119905 minus 120591)120572minus1

119905120572+120573+(120572 + 120573) (minus120578)

Γ (120572 + 1)

(119905 minus 120591)120572

119905120572+120573+1

+(120572+120573) (120572+120573+1) (minus120578) (minus120578+1)

Γ (120572+2)

(119905minus120591)120572+1

119905120572+120573+2+sdot sdot sdot

(36)

We observe that each term of the above series is nonnegativeunder the conditions in Lemma 7 and hence the function119865(119905 120591) remains nonnegative for all 120591 isin (0 119905) (119905 gt 0)

Now by multiplying both sides of (35) by 119865(119905 120591)119906(120591)

defined by (36) integrating the resulting inequality withrespect to 120591 from 0 to 119905 and using (8) we get

119868120572120573120578

0119905

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

0119905

119906 (119905)

ge 119892 (120588) 119868120572120573120578

0119905

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(37)

Next bymultiplying both sides of (37) by119865(119905 120588)V(120588) (120588 isin

(0 119905) 119905 gt 0) where 119865(119905 120588) is given when 120591 is replaced by 120588

in (36) integrating the resulting inequality with respect to 120588

from 0 to 119905 and using (8) we are led to the desired result (33)

Theorem 8 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(38)

for all 119905 gt 0 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 ≧ 0 and 120578 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in Lemma 7 we get

119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(39)

Since 119868120572120573120578

0119905

119897(119905) ≧ 0 under the given conditions bymultiplying both sides of (39) by 119868120572120573120578

0119905

119897(119905) we have

119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(40)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897119898 respectivelyin (33) and then multiplying both sides of the resultinginequalities by 119868120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) both of which arenonnegative under the given assumptions respectively weget the following inequalities

119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

Abstract and Applied Analysis 5

119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(41)

Finally by adding (40) and (41) side by side we arrive at thedesired result (38)

We present another inequality involving the Saigo frac-tional integral operator in (8) asserted by the followinglemma

Lemma 9 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120574120575120577

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119906 (119905)

ge 119868120574120575120577

0119905

V (119905) 119892 (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(42)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By multiplying both sides of (37) by

119905minus120574minus120575

(119905 minus 120588)120574minus1

Γ (120574)2

1198651

(120574 + 120575 minus120577 120574 1 minus120588

119905) V (120588)

(120588 isin (0 119905) 119905 gt 0)

(43)

which remains nonnegative under the conditions in (42)integrating the resulting inequality with respect to 120588 from 0

to 119905 and using (8) we get the desired result (42)

Theorem 10 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119897 (119905) [2119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905)]

(44)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in (42) we have

119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)

ge 119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(45)

By multiplying both sides of (45) by 1198681205721205731205780119905

119897(119905) after a littlesimplification we get

119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(46)

Now by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (42)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) respectively weget the following two inequalities

119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 5

119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(41)

Finally by adding (40) and (41) side by side we arrive at thedesired result (38)

We present another inequality involving the Saigo frac-tional integral operator in (8) asserted by the followinglemma

Lemma 9 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119906 V [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120574120575120577

0119905

V (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119906 (119905)

ge 119868120574120575120577

0119905

V (119905) 119892 (119905) 1198681205721205731205780119905

119906 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

V (119905) 119891 (119905) 119868120572120573120578

0119905

119906 (119905) 119892 (119905)

(42)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By multiplying both sides of (37) by

119905minus120574minus120575

(119905 minus 120588)120574minus1

Γ (120574)2

1198651

(120574 + 120575 minus120577 120574 1 minus120588

119905) V (120588)

(120588 isin (0 119905) 119905 gt 0)

(43)

which remains nonnegative under the conditions in (42)integrating the resulting inequality with respect to 120588 from 0

to 119905 and using (8) we get the desired result (42)

Theorem 10 Let 119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120573120578

0119905

119897 (119905) [2119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

0119905

119898 (119905) 119868120574120575120577

0119905

119899 (119905)

+119868120572120573120578

0119905

119899 (119905) 119868120574120575120577

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119898 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119898 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119899 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

0119905

119899 (119905) [119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119868120574120575120577

0119905

119898 (119905) 119892 (119905)

+119868120572120573120578

0119905

119897 (119905) 119892 (119905) 119868120574120575120577

0119905

119898 (119905) 119891 (119905)]

(44)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin R with 120572 + 120573 ≧ 0120578 ≦ 0 120574 + 120575 ≧ 0 and 120577 ≦ 0

Proof By setting 119906 = 119898 and V = 119899 in (42) we have

119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)

ge 119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+ 119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)

(45)

By multiplying both sides of (45) by 1198681205721205731205780119905

119897(119905) after a littlesimplification we get

119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905)]

ge 119868120572120573120578

0119905

119897 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119898 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119898 (119905) 119892 (119905)]

(46)

Now by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (42)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

0119905

119898(119905) and 119868120572120573120578

0119905

119899(119905) respectively weget the following two inequalities

119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119898 (119905) [119868120574120575120577

0119905

119899 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119899 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Abstract and Applied Analysis

119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905)]

ge 119868120572120573120578

0119905

119899 (119905) [119868120574120575120577

0119905

119898 (119905) 119892 (119905) 119868120572120573120578

0119905

119897 (119905) 119891 (119905)

+119868120574120575120577

0119905

119898 (119905) 119891 (119905) 119868120572120573120578

0119905

119897 (119905) 119892 (119905)]

(47)

Finally we find that the inequality (44) follows by adding theinequalities (46) and (47) side by side

Remark 11 It may be noted that the inequalities (38) and(44) in Theorems 8 and 10 respectively are reversed if thefunctions are asynchronous on [0infin) The special case of(44) in Theorem 10 when 120572 = 120574 120573 = 120575 and 120578 = 120577 is easilyseen to yield the inequality (38) in Theorem 8

Here we derive certain presumably new integralinequalities by setting 120573 = 0 in (38) and 120573 = 0 = 120575 in (44)respectively and applying the integral operator (12) to theresulting inequalities we obtain two integral inequalitiesinvolving Erdelyi-Kober fractional integral operators statedin Corollaries 12 and 13 below

Corollary 12 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

2119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120578

0119905

119898 (119905) 119868120572120578

0119905

119899 (119905) 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119898 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120572120578

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119899 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (t) 1198681205721205780119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120572120578

0119905

119897 (119905) 119892 (119905)]

(48)

for all 119905 gt 0 120572 gt 0 and 120578 isin R

Corollary 13 Let119891 and 119892 be two continuous and synchronousfunctions on [0infin) and let 119897 119898 119899 [0infin) rarr [0infin) becontinuous functions Then the following inequality holds true

119868120572120578

0119905

119897 (119905) [2119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120577

0119905

119899 (119905) 119868120572120578

0119905

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120578

0119905

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120578

0119905

119898 (119905) 119868120574120577

0119905

119899 (119905)

+119868120572120578

0119905

119899 (119905) 119868120574120577

0119905

119898 (119905)]

ge 119868120572120578

0119905

119897 (119905) [119868120572120578

0119905

119898 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119898 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119898 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119899 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119899 (119905) 119891 (119905)]

+ 119868120572120578

0119905

119899 (119905) [119868120572120578

0119905

119897 (119905) 119891 (119905) 119868120574120577

0119905

119898 (119905) 119892 (119905)

+119868120572120578

0119905

119897 (119905) 119892 (119905) 119868120574120577

0119905

119898 (t) 119891 (119905)]

(49)

for all 119905 gt 0 120572 gt 0 120574 gt 0 and 120578 120577 isin R

Remark 14 The special cases 120573 = minus120572 in Theorem 8 and 120573 =

minus120572 and 120575 = minus120574 in Theorem 10 are seen to yield the knownfractional integral inequalities due to Dahmani [21]

3 Saigo Fractional 119902-Integral Inequalities

We establish certain 119902-integral inequalities which are the 119902-analogues (or extensions) of the results derived in the preced-ing section some of which are presumably new ones For ourpurpose we begin with providing comparison properties forthe fractional 119902-integral operators asserted by the followinglemma

Lemma 15 Let 0 lt 119902 lt 1 and 119891 [0infin) rarr R be continuousfunctions with 119891(119905) ge 0 for all 119905 isin [0infin) Then we have thefollowing inequalities

(i) the Saigo fractional 119902-integral operator of the function119891(119905) in (30)

119868120572120573120578

119902

119891 (119905) ge 0 (50)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0(ii) the 119902-analogue of Riemann-Liouville fractional integral

operator of the function 119891(119905) of an order 120572 in (31)

119868120572

119902

119891 (119905) ge 0 (51)

for all 120572 gt 0

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 7

(iii) the 119902-analogue of Erdelyi-Kober fractional integraloperator of the function 119891(119905) in (32)

119868120578120572

119902

119891 (119905) ge 0 (52)

for all 120572 gt 0 and 120578 isin R

Proof By applying (23) to the 119902-integral in (30) we have

119868120572120573120578

119902

119891 (119905) =119905minus120573minus1

Γ119902

(120572)

times

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)

sdot (1minus119902) 119905

infin

sum

119895=0

119902119895

(119902119895+1

119902)120572minus1

(119902119895

minus1)119898

119902

119891 (119902119895

119905)

(53)

It is easy to see that

Γ119902

(120572) gt 0 (119902120572

119902)119898

gt 0

(119902119895+1

119902)120572minus1

=

(119902119895+1

119902)infin

(119902120572+119895 119902)infin

gt 0

(54)

for all 120572 gt 0 and 119895119898 isin N0

Next for simplicity

ℎ (119895119898 119902) = (minus1)119898

(119902119895

minus 1)119898

119902

(119895 119898 isin N0

) (55)

Then we claim that ℎ(119895 119898 119902) ge 0 for all 119895119898 isin N0

We findfrom (29) that

ℎ (119895119898 119902) = (minus1)119898

119902119895119898

(1

119902119895 119902)

119898

= 119902119895119898

(minus1)119898

119898minus1

prod

119896=0

(1 minus 119902119896minus119895

)

(56)

It is easy to see that if119898 gt 119895 then ℎ(119895119898 119902) = 0 On the otherhand if119898 le 119895 then we have

ℎ (119895119898 119902) = 119902119895119898

119898minus1

prod

119896=0

(119902119896minus119895

minus 1) gt 0 (57)

since 119896 minus 119895 lt 0 for all 119896 with 0 le 119896 le 119898 minus 1 lt 119898 le 119895Finally we find that under the given conditions each termin the double series of (53) is nonnegativeThis completes theproof of (50) The other two inequalities in (51) and (52) maybe easily proved

For convenience and simplicity we define the followingfunctionH by

H (120591 119905 119906 (120591) 120572 120573 120578 119902)

=119905minus120573minus1

Γ119902

(120572)(119902120591

119905 119902)120572minus1

sdot

infin

sum

119898=0

(119902120572+120573

119902)119898

(119902minus120578

119902)119898

(119902120572 119902)119898

(119902 119902)119898

times 119902(120578minus120573)119898

(minus1)119898

119902minus(119898

2

)(120591

119905minus 1)

119898

119902

119906 (120591)

(58)

where 119905 gt 0 0 le 120591 le 119905 120572 gt 0 120573 120578 isin R with 120572 + 120573 gt 0

and 120578 lt 0 0 lt 119902 lt 1 119906 [0infin) rarr [0infin) is a continuousfunction As in the process of Lemma 15 it is seen that

H (120591 119905 119906 (120591) 120572 120573 120578 119902) ge 0 (59)

under the conditions given in (58)Here we present two 119902-integral inequalities involving the

Saigo fractional 119902-integral operator (30) stated in Lemmas 16and 17 below

Lemma 16 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 [0infin) rarr [0infin) be acontinuous function Then the following inequality holds truefor 119905 isin (0infin)

119868120572120573120578

119902

119906 (119905) 119868120572120573120578

119902

V (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119906 (119905) 119891 (119905) 119868120572120573120578

119902

V (119905) 119892 (119905)

+ 119868120572120573120578

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(60)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof Since 119891 and 119892 are two synchronous functions on[0infin) for all 120591 120588 ge 0 the inequality (35) is satisfiedBy multiplying both sides of (35) by H(120591 119905 119906(120591) 120572 120573 120578 119902)

in (58) together with (59) and taking 119902-integration of theresulting inequality with respect to 120591 from 0 to 119905 with the aidof Definition 4 we get

119868120572120573120578

119902

119906 (119905) 119891 (119905) 119892 (119905) + 119891 (120588) 119892 (120588) 119868120572120573120578

119902

119906 (119905)

ge 119892 (120588) 119868120572120573120578

119902

119906 (119905) 119891 (119905) + 119891 (120588) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(61)

Next by multiplying both sides of (61) byH(120588 119905 V(120588) 120572 120573 120578 119902) in (58) together with (59) taking119902-integration of the last resulting inequality with respect to 120588from 0 to 119905 and using Definition 4 we are led to the desiredresult (60)

Lemma 17 Let 0 lt 119902 lt 1 let 119891 and 119892 be two continuous andsynchronous functions on [0infin) let 119906 V [0infin) rarr [0infin)

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Abstract and Applied Analysis

be continuous functions Then the following inequality holdstrue for 119905 isin (0infin)

119868120574120575120577

119902

V (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119906 (119905)

ge 119868120574120575120577

119902

V (119905) 119892 (119905) 119868120572120573120578119902

119906 (119905) 119891 (119905)

+ 119868120574120575120577

119902

V (119905) 119891 (119905) 119868120572120573120578

119902

119906 (119905) 119892 (119905)

(62)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By multiplying both sides of (61) byH(120588 119905 V(120588) 120574 120575 120577 119902) in (58) together with (59) andtaking the 119902-integration of the resulting inequality withrespect to 120588 from 0 to 119905 with the aid of Definition 4 we getthe desired result (62)

Theorem 18 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (t)] (63)

for all 120572 gt 0 and 120573 120578 isin R with 120572 + 120573 gt 0 and 120578 lt 0

Proof We start with (60) in Lemma 16 by putting 119906 = 119898 andV = 119899 we get

119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

ge 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(64)

By multiplying both sides of (64) by 119868120572120573120578119902

119897(119905) we have

119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(65)

Similarly by replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60)respectively and then multiplying both sides of the resultinginequalities by 119868

120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively weget

119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(66)

Finally by adding (65) and (66) side by side we arrive at thedesired result in Theorem 18

Theorem 19 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572120573120578

119902

119897 (119905) [2119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572120573120578

119902

119898 (119905) 119868120574120575120577

119902

119899 (119905)

+119868120572120573120578

119902

119899 (119905) 119868120574120575120577

119902

119898 (119905)]

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 9

ge 119868120572120573120578

119902

119897 (119905) [119868120572120573120578

119902

119898 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119898 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119898 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119899 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119899 (119905) 119891 (119905)]

+ 119868120572120573120578

119902

119899 (119905) [119868120572120573120578

119902

119897 (119905) 119891 (119905) 119868120574120575120577

119902

119898 (119905) 119892 (119905)

+119868120572120573120578

119902

119897 (119905) 119892 (119905) 119868120574120575120577

119902

119898 (119905) 119891 (119905)]

(67)

for all 120572 gt 0 120574 gt 0 and 120573 120578 120575 120577 isin Rwith 120572+120573 gt 0 120574+120575 gt 0120578 lt 0 and 120577 lt 0

Proof By setting 119906 = 119898 and V = 119899 in (62) we have

119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)

ge 119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+ 119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)

(68)

By multiplying both sides of (68) by 119868120572120573120578119902

119897(119905) after a littlesimplification we get

119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905)]

ge 119868120572120573120578

119902

119897 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119898 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119898 (119905) 119892 (119905)]

(69)

By replacing 119906 V by 119897 119899 and 119906 V by 119897 119898 in (60) andthen multiplying both sides of the resulting inequalities by119868120572120573120578

119902

119898(119905) and 119868120572120573120578

119902

119899(119905) respectively we get

119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119898 (119905) [119868120574120575120577

119902

119899 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119899 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905) 119892 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905)]

ge 119868120572120573120578

119902

119899 (119905) [119868120574120575120577

119902

119898 (119905) 119892 (119905) 119868120572120573120578

119902

119897 (119905) 119891 (119905)

+119868120574120575120577

119902

119898 (119905) 119891 (119905) 119868120572120573120578

119902

119897 (119905) 119892 (119905)]

(70)

We therefore find that the inequality (67) follows by addingthe inequalities (69) and (70) side by side

Remark 20 It is noted that the inequalities in (63) and (67)are reversed if the functions 119891 and 119892 are asynchronous It isalso easily seen that the special cases 120572 = 120574 120573 = 120575 and 120578 = 120577

of (67) inTheorem 19 reduce to those inTheorem 18

Following Garg and Chanchlani [19] the operator (30)would reduce immediately to the extensively investigated119902-analogue of Erdelyi-Kober and Riemann-Liouville typefractional integral operators in (31) and (32) respectively(see also [20]) Indeed by suitably specializing the values ofparameters 120572 (and additionally 120575 in Theorem 19) the resultspresented in this section would find further fractional 119902-integral inequalities involving the 119902-analogues of Erdelyi-Kober and Riemann-Liouville type fractional integral oper-ators in (31) and (32) For example if we set 120573 = minus120572 inTheorem 18 and 120573 = minus120572 and 120575 = minus120574 in Theorem 19respectively andmake use of the relation (31) we are led to thefollowing presumably new 119902-integral inequalities involving119902-Riemann-Liouville fractional integral operators given inCorollaries 21 and 22 below

Corollary 21 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120572

119902

119898 (119905) 119868120572

119902

119899 (119905) 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119899 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120572

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119891 (119905) 119868120572

119902

119897 (119905) 119892 (119905)]

(71)

for all 120572 gt 0

Corollary 22 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120572

119902

119897 (119905) [2119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905) 119891 (119905) 119892 (119905)

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

10 Abstract and Applied Analysis

+119868120574

119902

119899 (119905) 119868120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120572

119902

119898 (119905) 119868120574

119902

119899 (119905)

+119868120572

119902

119899 (119905) 119868120574

119902

119898 (119905)]

ge 119868120572

119902

119897 (119905) [119868120572

119902

119898 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119898 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119898 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119899 (119905) 119891 (119905)]

+ 119868120572

119902

119899 (119905) [119868120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119898 (119905) 119892 (119905)

+119868120572

119902

119897 (119905) 119892 (119905) 119868120574

119902

119898 (119905) 119891 (119905)]

(72)

for all 120572 gt 0 and 120574 gt 0

Furthermore if we set 120573 = 0 in Theorem 18 and 120573 = 0 =

120575 in Theorem 19 we obtain the following presumably newinequalities involving 119902-analogue of the Erdelyi-Kober typefractional integral operators asserted by Corollaries 23 and24 below

Corollary 23 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

2119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119891 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 2119868120578120572

119902

119898 (119905) 119868120578120572

119902

119899 (119905) 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905)

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119899 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120578120572

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119891 (119905) 119868120578120572

119902

119897 (119905) 119892 (119905)]

(73)

for all 120572 gt 0

Corollary 24 Let 0 lt 119902 lt 1 let 119891 119892 [0infin) rarr R betwo continuous synchronous functions let 119897 119898 119899 [0infin) rarr

[0infin) be continuous functions Then the following inequalityholds true for 119905 isin (0infin)

119868120578120572

119902

119897 (119905) [2119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905) 119892 (119905)

+ 119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905) 119892 (119905)

+119868120574120575

119902

119899 (119905) 119868120578120572

119902

119898 (119905) 119891 (119905) 119892 (119905)]

+ 119868120578120572

119902

119897 (119905) 119891 (119905) 119892 (119905) [119868120578120572

119902

119898 (119905) 119868120574120575

119902

119899 (119905)

+119868120578120572

119902

119899 (119905) 119868120574120575

119902

119898 (119905)]

ge 119868120578120572

119902

119897 (119905) [119868120578120572

119902

119898 (119905) 119891 (119905) 119868120574120575

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119898 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119898 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574

119902

119899 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119899 (119905) 119891 (119905)]

+ 119868120578120572

119902

119899 (119905) [119868120578120572

119902

119897 (119905) 119891 (119905) 119868120574120575

119902

119898 (119905) 119892 (119905)

+119868120578120572

119902

119897 (119905) 119892 (119905) 119868120574120575

119902

119898 (119905) 119891 (119905)]

(74)

for all 120572 gt 0 120575 gt 0 and 120574 120578 isin R

4 Concluding Remarks

It is easy to see that

lim119902rarr1

Γ119902

(119886) = Γ (119886)

lim119902rarr1

(119902119886

119902)119899

(1 minus 119902)119899

= (119886)119899

(75)

where (119886)119899

is the Pochhammer symbol given in (10) Takingthe limit of some of the results presented in Section 3 as 119902 rarr

1 with the aid of (75) the resulting inequalities are seen tocorrespond with those results in Section 2 It is noted that theinequalities in (71) and (72) are equal to the known ones byDahmani [21 pp 494ndash496 Equations (8) and (24)]

Representations of the inequalities in terms of the frac-tional integral operators have been investigated by manyresearchers in the existing literature Here we have presentedsome presumably new Saigo type fractional integral inequal-ities and their 119902-analogues by using the one parameters ofdeformation Very recently Baleanu and Agarwal [22] alsogave some new Saigo type 119902-fractional integral inequalitiesby using the two parameters of deformation 119902

1

and 1199022

whichare totally new and different ones from those presented here

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 11

Acknowledgment

This work was supported by Dongguk University ResearchFund of 2013

References

[1] J C Kuang Applied Inequalities Shandong Sciences and Tech-nologie Press Shandong China 2004 (Chinese)

[2] D S Mitrinovic Analytic Inequalities Springer Berlin Ger-many 1970

[3] P L Chebyshev ldquoSur les expressions approximatives des inte-grales definies par les autres prises entre les memes limitesrdquoProceedings of the Mathematical Society of Kharkov vol 2 pp93ndash98 1882

[4] A M Ostrowski ldquoOn an integral inequalityrdquo AequationesMathematicae vol 4 pp 358ndash373 1970

[5] G A AnastassiouAdvances on Fractional Inequalities SpringerBriefs in Mathematics Springer New York NY USA 2011

[6] S Belarbi and Z Dahmani ldquoOn some new fractional integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 10 no 3 article 86 p 5 2009

[7] Z Dahmani O Mechouar and S Brahami ldquoCertain inequali-ties related to the Chebyshevrsquos functional involving a Riemann-Liouville operatorrdquoBulletin ofMathematical Analysis and Appli-cations vol 3 no 4 pp 38ndash44 2011

[8] S S Dragomir ldquoSome integral inequalities of Gruss typerdquoIndian Journal of Pure and Applied Mathematics vol 31 no 4pp 397ndash415 2000

[9] S L Kalla and A Rao ldquoOn Gruss type inequality for ahypergeometric fractional integralrdquoLeMatematiche vol 66 no1 pp 57ndash64 2011

[10] V Lakshmikantham and A S Vatsala ldquoTheory of fractionaldifferential inequalities and applicationsrdquo Communications inApplied Analysis vol 11 no 3-4 pp 395ndash402 2007

[11] H Ogunmez and U M Ozkan ldquoFractional quantum integralinequalitiesrdquo Journal of Inequalities and Applications vol 2011Article ID 787939 7 pages 2011

[12] W T Sulaiman ldquoSome new fractional integral inequalitiesrdquoJournal of Mathematical Analysis vol 2 no 2 pp 23ndash28 2011

[13] D Baleanu S D Purohit and P Agarwal ldquoOn fractional inte-gral inequalities involving hypergeometric operatorsrdquo ChineseJournal of Mathematics vol 2014 Article ID 609476 5 pages2014

[14] M Saigo ldquoA remark on integral operators involving the Gausshypergeometric functionsrdquo Mathematical Reports of College ofGeneral Education Kyushu University vol 11 no 2 pp 135ndash1431978

[15] V S Kiryakova Generalized Fractional Calculus and Applica-tions vol 301 of Pitman Research Notes in Mathematical SeriesLongman Scientific amp Technical Harlow UK 1994

[16] H M Srivastava and J Choi Zeta and q-Zeta Functions andAssociated Series and Integrals Elsevier Science Publishers NewYork NY USA 2012

[17] S G Samko A A Kilbas and O I Marichev FractionalIntegrals and Derivatives Theory and Applications Gordon andBreach Science Publishers New York NY USA 1993

[18] F H Jackson ldquoOn 119902-definite integralsrdquoTheQuarterly Journal ofPure and Applied Mathematics vol 41 pp 193ndash203 1910

[19] M Garg and L Chanchlani ldquo119902-analogues of Saigorsquos fractionalcalculus operatorsrdquoBulletin ofMathematical Analysis andAppli-cations vol 3 no 4 pp 169ndash179 2011

[20] R P Agarwal ldquoCertain fractional 119902-integrals and 119902-derivativesrdquoMathematical Proceedings of the Cambridge Philosophical Soci-ety vol 66 pp 365ndash370 1969

[21] Z Dahmani ldquoNew inequalities in fractional integralsrdquo Interna-tional Journal of Nonlinear Science vol 9 no 4 pp 493ndash4972010

[22] D Baleanu and P Agarwal ldquoCertain inequalities involving thefractional 119902-integral operatorsrdquo In press

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of