sharp kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions

14
UDC 517.5 V. Babenko (Dnepropetrovsk Nat. Univ., Inst. Appl. Math. and Mech. Nat. Acad. Sci. Ukraine), N. V. Parfinovych (Dnepropetrovsk Nat. Univ.), S. A. Pichugov (Dnepropetrovsk State Technical Univ. Railway Transport) SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES OFMULTIVARIATE FUNCTIONS ТОЧНI НЕРIВНОСТI ТИПУ КОЛМОГОРОВА ДЛЯ НОРМ ДРОБОВИХ ПОХIДНИХ ФУНКЦIЙ БАГАТЬОХ ЗМIННИХ Let C(R m ) be spaces of bounded and continuous functions x : R m R, endowed with the norm kxk C = = kxk C(R m ) := sup{|x(t)| : t R m }. Let e j ,j =1,...,m, be the standard basis in R m . Given moduli of continuity ω j ,j =1,...,m, denote H j,ω j := ( x C(R m ): kxkω j = kxk H j,ω j = sup t j 6=0 kΔt j e j x(·)k C ω j (|t j |) < ) . In this paper, new sharp Kolmogorov-type inequalities for norms of mixed fractional derivatives kD α ε xk C of functions x m T j=1 H j,ω j are obtained. Some applications of these inequalities are presented. Нехай C(R m ) — простори неперервних обмежених функцiй x : R m R з нормами kxk C = = kxk C(R m ) := sup{|x(t)| : t R m },e j ,j =1,...,m, звичайна база в R m . Для заданих моду- лiв неперервностi ω j ,j =1,...,m, позначимо H j,ω j := ( x C(R m ): kxkω j = kxk H j,ω j = sup t j 6=0 kΔt j e j x(·)k C ω j (|t j |) < ) . У роботi отримано новi точнi нерiвностi типу Колмогорова для норм мiшаних частинних похiдних kD α ε xk C функцiй x m T j=1 H j,ω j . Наведенi деякi застосування цих нерiвностей. 1. Introduction. Statements of the problems. Main results. Sharp Kolmogorov type inequalities for univariate and multivariate functions, estimating the norms of intermedi- ate derivatives through the norms of the function itself and its derivatives of higher order, are of great importance for many branches of mathematics and its applications. After A.N. Kolmogorov obtained his inequality (see [1 – 3]) many inequalities of this type for norms of integer derivatives of univariate functions were obtained (see, for example, [4 – 8]). In the case of functions of two or more variables very few results of this type are known (see [9]–[15]). Many questions in Analysis require to consider derivatives and antiderivatives of fractional order (see, for instance, [16]). One of the natural and useful definitions of the fractional derivative for a univariate function x(u),u R, is the following definition of Marchaud fractional derivative [17] (see also [9 – 15]): (D α ± x)(u) := α Γ(1 - α) Z 0 x(u) - x(u t) t 1+α dt, α (0, 1). For brevity, we denote A α = α Γ(1 - α) . c V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV, 2010 302 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 3

Upload: independent

Post on 10-Dec-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

UDC 517.5

V. Babenko (Dnepropetrovsk Nat. Univ., Inst. Appl. Math. and Mech. Nat. Acad. Sci. Ukraine),

N. V. Parfinovych (Dnepropetrovsk Nat. Univ.),

S. A. Pichugov (Dnepropetrovsk State Technical Univ. Railway Transport)

SHARP KOLMOGOROV-TYPE INEQUALITIESFOR NORMS OF FRACTIONAL DERIVATIVESOF MULTIVARIATE FUNCTIONS

ТОЧНI НЕРIВНОСТI ТИПУ КОЛМОГОРОВА ДЛЯ НОРМДРОБОВИХ ПОХIДНИХ ФУНКЦIЙ БАГАТЬОХ ЗМIННИХ

Let C(Rm) be spaces of bounded and continuous functions x : Rm → R, endowed with the norm ‖x‖C == ‖x‖C(Rm) := sup|x(t)| : t ∈ Rm. Let ej , j = 1, . . . , m, be the standard basis in Rm. Given moduliof continuity ωj , j = 1, . . . , m, denote

Hj,ωj :=

(x ∈ C(Rm) : ‖x‖ωj = ‖x‖

Hj,ωj = sup

tj 6=0

‖∆tjejx(·)‖Cωj(|tj |)

<∞)

.

In this paper, new sharp Kolmogorov-type inequalities for norms of mixed fractional derivatives ‖Dαε x‖C

of functions x ∈mTj=1

Hj,ωj are obtained. Some applications of these inequalities are presented.

Нехай C(Rm) — простори неперервних обмежених функцiй x : Rm → R з нормами ‖x‖C == ‖x‖C(Rm) := sup|x(t)| : t ∈ Rm, ej , j = 1, . . . , m, звичайна база в Rm. Для заданих моду-лiв неперервностi ωj , j = 1, . . . , m, позначимо

Hj,ωj :=

(x ∈ C(Rm) : ‖x‖ωj = ‖x‖

Hj,ωj = sup

tj 6=0

‖∆tjejx(·)‖Cωj(|tj |)

<∞)

.

У роботi отримано новi точнi нерiвностi типу Колмогорова для норм мiшаних частинних похiдних

‖Dαε x‖C функцiй x ∈

mTj=1

Hj,ωj . Наведенi деякi застосування цих нерiвностей.

1. Introduction. Statements of the problems. Main results. Sharp Kolmogorov typeinequalities for univariate and multivariate functions, estimating the norms of intermedi-ate derivatives through the norms of the function itself and its derivatives of higherorder, are of great importance for many branches of mathematics and its applications.After A.N. Kolmogorov obtained his inequality (see [1 – 3]) many inequalities of thistype for norms of integer derivatives of univariate functions were obtained (see, forexample, [4 – 8]).

In the case of functions of two or more variables very few results of this type areknown (see [9]–[15]).

Many questions in Analysis require to consider derivatives and antiderivatives offractional order (see, for instance, [16]). One of the natural and useful definitions of thefractional derivative for a univariate function x(u), u ∈ R, is the following definition ofMarchaud fractional derivative [17] (see also [9 – 15]):

(Dα±x)(u) :=

α

Γ(1− α)

∞∫0

x(u)− x(u∓ t)t1+α

dt, α ∈ (0, 1).

For brevity, we denote Aα =α

Γ(1− α).

c© V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV, 2010

302 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 303

Let C(R) be the space of all bounded and continuous functions x : R→ R endowedwith the norm

‖x‖C := sup|x(t)| : t ∈ R

.

Let ω(t) be a modulus of continuity, i.e., continuous, nondecreasing, subadditivefunction defined on [0,+∞) and such that ω(0) = 0. By Hω = Hω(R) denote thespace of functions x ∈ C(R), for which

‖x‖ω = ‖x‖Hω = supt1, t2∈Rt1 6=t2

|x(t1)− x(t2)|ω(|t1 − t2|)

<∞.

If ω(t) = tβ , β ∈ (0, 1], then we write Hβ instead of Hω.

Let α ∈ (0, 1) and ω(t) be such that

1∫0

ω(t)t1+α

dt <∞,

or, equivalently, ∫R+

min1, ω(t)t1+α

dt <∞.

It was proved in [18] that for any h > 0 the following additive Kolmogorov typeinequality:

‖Dα±x‖C ≤ Aα

‖x‖ω h∫0

ω(t)t1+α

dt+2‖x‖Cαhα

(1)

holds.Moreover, this inequality becomes an equality for the function

xh(u) =

ω(|u|)− ω(h)

2, |u| ≤ h,

ω(h)2

, |u| > h.

Note that after minimization over h of the right-hand side of inequality (1), it can berewritten in the following form:

‖Dα±x‖C ≤ Aα

∞∫0

min2‖x‖C , ‖x‖ωω(t)t1+α

dt. (2)

In the case ω(t) = tβ , β ∈ (0, 1], α < β ≤ 1, inequality (2) becomes

‖Dα±x‖C ≤

1Γ(1− α)

21−α/β

1− α/β‖x‖1−α/βC ‖x‖α/β

Hβ. (3)

Other knownresults on sharp Kolmogorov type inequalities for fractional derivativescan be found in [18 – 21].

Let Rm be the space of points t = (t1, . . . , tm) and eimi=1 be the standard basisin Rm.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

304 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

By C(Rm) denote the space of all bounded and continuous functions x : Rm → Rwith the norm

‖x‖C = ‖x‖C(Rm) := sup|x(t)| : t ∈ Rm

.

For a given vector t = (t1, . . . , tm) ∈ Rm, by ∆tjejx(u) denote the first difference ofthe function x(u) along the variable uj with the step tj , j = 1, . . . ,m

∆tjejx(u) := x(u)− x(u+ tjej),

and define as∆tx(u) := ∆t1e1∆t2e2 . . .∆tmemx(u)

the mixed difference of the function x(u) with the step t.Let ωj(tj), tj ≥ 0, j = 1, . . . ,m, be given moduli of continuity. We will consider

the following spaces:

Hj,ωj :=

x ∈ C(Rm) : ‖x‖ωj = ‖x‖Hj,ωj = sup

tj 6=0

‖∆tjejx(·)‖Cωj(|tj |)

<∞

.

If ωj(tj) = tβjj , βj ∈ (0, 1], then we write Hj,βj instead of Hj,ωj , j = 1, . . . ,m.

For a given function x(u), u ∈ Rm, and a vector of smoothness α = (α1, . . . , αm),αj ∈ (0, 1), j = 1, . . . ,m, and a vector of sign distribution ε = (ε1, . . . , εm), εj = ±,j = 1, . . . ,m, the mixed Marchaud derivative of order α is defined in the following way(see [17, p. 347]):

(Dαε x)(u) := Aα

∫Rm+

∆εtx(u)m∏j=1

t−αj−1j dt,

where x ∈ C(Rm), Aα =∏m

j=1Aαj , Aαj =

αjΓ(1− αj)

, εt := (ε1t1, . . . , εmtm).

V. F. Babenko and S. A. Pichugov [15] proved that for any function x ∈m⋂j=1

Hj,βj ,

the sharp inequality holds

‖Dαε x‖C ≤

2m−1∏m

j=1Γ(1− αj)

21−Pmj=1

αjβj

1−∑m

j=1

αjβj

‖x‖1−

Pmj=1

αjβj

C

m∏j=1

‖x‖αj/βjHj,βj

, (4)

provided that βj ∈ (0, 1] and αj ∈ (0, 1), j = 1, . . . ,m, satisfy the condition∑m

j=1

αjβj

< 1.

The inequality (4) is the multivariate analog of (3). In this paper we obtain aninequality, which is a generalization of (4) and represents a multivariate analog of (2).

In what follows, for αj ∈ (0, 1), j = 1, . . . ,m, and for given moduli of continuityω1(t1), . . . , ωm(tm), we will need the following condition:∫

Rm+

min

1, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt <∞. (5)

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 305

Theorem 1. Let moduli of continuity ω1(t1), . . . , ωm(tm) and numbers αj ∈∈ (0, 1), j = 1, . . . ,m, be such that condition (5) is satisfied. Then for any function

x ∈m⋂j=1

Hj,ωj and any vector ε of sign distribution, the following sharp inequality holds

∥∥Dαε x∥∥C≤

≤ 2m−1Aα

∫Rm+

min

2‖x‖C , ‖x‖ω1ω1(t1), . . . , ‖x‖ωmωm(tm) m∏j=1

t−αj−1j dt. (6)

For given moduli of continuity ω1, . . . , ωm, by UHj,ωj , j = 1, . . . ,m, denote theunit ball in the space Hj,ωj .

Consider the function

Ω

δ, m⋂j=1

UHj,ωj

:= supx∈

Tmj=1UH

j,ωj,

‖x‖C≤δ

‖Dαε x‖C , δ ≥ 0. (7)

The function (7) is called the modulus of continuity of the operator Dαε on the set

m⋂j=1

UHj,ωj .

Theorem 1 implies the following statement.Corollary 1. Under conditions of Theorem 1 for any δ > 0,

Ω

δ, m⋂j=1

UHj,ωj

= 2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt. (8)

In particular, if βj ∈ (0, 1] and αj ∈ (0, 1), j = 1, . . . ,m, are such that∑m

j=1

αjβj

< 1,

then

Ω

δ, m⋂j=1

UHj,βj

=2m−1∏m

j=1Γ(1− αj)

21−Pmj=1

αjβj

1−∑m

j=1

αjβj

δ1−

Pmj=1

αjβj .

The problem of finding of the modulus of continuity for a given operator on a givenset is closely related to the problem about approximation of an unbounded operator bybounded ones.

We now consider the general statement of this problem.Let X and Y be the Banach spaces, let L(X,Y ) be the space of linear bounded

operators S : X → Y, and let A : X → Y be an operator (not necessarily linear) withthe domain DA ⊂ X. Let also Q ⊂ DA be some class of elements.

For N > 0, the quantity

EN (A,Q) = infS∈L(X,Y )‖S‖≤N

supx∈Q‖Ax− Sx‖Y (9)

is called the best approximation of the operator A on the set Q by linear operatorsS : X → Y such that ‖S‖ = ‖S‖X→Y ≤ N.

The problem is to compute the quantity (9) and to find the extremal operator, i.e. theoperator delivering the infimum on the right-hand side of (9).

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

306 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

This problem appeared in Stechkin’s investigations in 1965. The statement of thisproblem, the first important results and the solution of this problem for low orderdifferentiation operators were presented in [22]. For a survey of further research on thisproblem see [4, 5].

The functionΩ(δ,Q) := sup

x∈Q‖x‖X≤δ

‖Ax‖Y , δ ≥ 0,

is called the modulus of continuity of the operator A on the set Q.Note, that this definition generalizes the above presented definition of the modulus

of continuity of the operator Dαε on the set

m⋂j=1

UHj,ωj .

It is easily seen that the problem of computation of the function Ω(δ,Q) for a givenoperator is the abstract version of the problem about the Kolmogorov inequality.

S. B. Stechkin [22] proved that

EN (A,Q) ≥ supδ≥0

Ω(δ,Q)−Nδ

. (10)

Namely, the inequality (10) shows the relation between the Stechkin problem andKolmogorov type inequalities.

The following theorem gives the solution of the Stechkin problem for the operator

Dαε on the class

m⋂j=1

UHj,ωj .

Theorem 2. Let the strictly increasing moduli of continuity ω1(t1), . . . , ωm(tm)and the numbers αj ∈ (0, 1), j = 1, . . . ,m, be such that the condition (5) is satisfied.Given N > 0, let hN = (hN1 , . . . , h

Nm) ∈ Rm+ be such that

ω1(hN1 ) = . . . = ωm(hNm) and2mAα

α1 . . . αm

m∏j=1

(hNj )−αj = N. (11)

LetG(hN ) :=

u = (u1, . . . , um) ∈ Rm : |u1| ≥ hN1 , . . . , |um| ≥ hNm

.

Then

EN

Dαε ,

m⋂j=1

UHj,ωj

= 2m−1Aα

∫Rm+ \G(hN )

minω1(t1), . . . , ωm(tm)

m∏j=1

t−αj−1j dt.

In addition, the operator

BhNx(u) = Aα

∫G(hN )

∆εtx(u)m∏j=1

t−αj−1j dt

is the extremal operator.

Note that the lower estimate for EN

(Dαε ,

m⋂j=1

UHj,ωj

)will be obtained with the

help of Corollary 1. In order to obtain the upper bound for EN

(Dαε ,

m⋂j=1

UHj,ωj

)we

will estimate from above the quantity∥∥Dα

ε x−BhNx∥∥C

on the classm⋂j=1

UHj,ωj .

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 307

Note also that in the case ω(tj) = tβjj , βj ∈ (0, 1], j = 1, . . . ,m, applying

Theorem 2, we immediately obtain the following statement.Corollary 2. Suppose that βj ∈ (0, 1] and αj ∈ (0, 1), j = 1, . . . ,m, satisfy the

inequality∑m

j=1

αjβj

< 1. Then for any N > 0,

EN

Dαε ,

m⋂j=1

UHj,βj

=

2m−Pmj=1

αjβj∏m

j=1Γ(1− αj)

1Pmj=1

αjβj

∑m

j=1

αjβj

1−∑m

j=1

αjβj

N1− 1Pm

j=1αjβj .

The inequalities for intermediate derivatives are also closely related to the Kolmogorovproblem about necessary and sufficient conditions of the existence of a function, forwhich given numbers are the upper bounds of absolute values of its derivatives ofcorresponding order (see [2, 3]). For some known results in this direction see, forexample, [23 – 26] and [6].

We consider the Kolmogorov type problem in the following setting. It is requiredto find the necessary and sufficient conditions on the numbers M0,Mα,Mω1 , . . . ,Mωm

for existence of the function x ∈m⋂j=1

Hj,ωj such that

‖x‖C = M0, ‖Dαε x‖C = Mα, ‖x‖ω1 = Mω1 , . . . , ‖x‖ωm = Mωm .

Theorem 3. Let moduli of continuity ω1(t1), . . . , ωm(tm) and numbers αj ∈∈ (0, 1), j = 1, . . . ,m, be such that (5) holds, and let numbersM0, Mα, Mω1 , . . . ,Mωm

be given. There exists a function x ∈m⋂j=1

Hj,ωj such that

‖x‖C = M0, ‖Dαε x‖C = Mα, ‖x‖ω1 = Mω1 , . . . , ‖x‖ωm = Mωm ,

if and only if the inequality

Mα ≤ 2m−1Aα

∫Rm+

min

2M0,Mω1ω1(t1), . . . ,Mωmωm(tm) m∏j=1

t−αj−1j dt (12)

holds.Corollary 3. Suppose that βj ∈ (0, 1] and αj ∈ (0, 1), j = 1, . . . ,m, satisfy the

condition∑m

j=1

αjβj

< 1, and let numbers M0, Mα, Mβ1 , . . . ,Mβm be given. There

exists a function x ∈m⋂j=1

Hj,βj such that

‖x‖C = M0, ‖Dαε x‖C = Mα, ‖x‖H1,β1 = Mβ1 , . . . , ‖x‖Hm,βm = Mβm ,

if and only if the inequality

Mα ≤2m−1∏m

j=1Γ(1− αj)

21−Pmj=1

αjβj

1−∑m

j=1

αjβj

M1−

Pmj=1

αjβj

0

m∏j=1

Mαj/βj

Hj,βj

holds.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

308 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

2. Proofs. Proof of Theorem 1. We prove the theorem in the case ε = (+, . . . ,+)only, since for any other ε one can use analogous arguments. Taking into account thedefinition of the fractional derivative we have

∀u ∈ Rm |Dαε x(u)| ≤ Aα

∫Rm+

‖∆tx(·)‖Cm∏j=1

t−αj−1j dt. (13)

To estimate the norm ‖∆tx‖C we will use the following inequalities

‖∆tx‖C ≤ 2m‖x‖C

and‖∆tx‖C ≤ 2m−1‖∆tjejx‖C ≤ 2m−1‖x‖ωjωj(|tj |), j = 1, . . . ,m.

Combining these estimates we obtain

‖∆tx‖C ≤ 2m−1 min

2‖x‖C , ‖x‖ω1ω1(|t1|), . . . , ‖x‖ωmωm(|tm|).

Applying the last estimate to the right-hand side of (13) we have

∀u ∈ Rm :∣∣Dα

ε x(u)∣∣ ≤

≤ 2m−1Aα

∫Rm+

min

2‖x‖C , ‖x‖ω1ω1(t1), . . . , ‖x‖ωmωm(tm) m∏j=1

t−αj−1j dt. (14)

Let us show that for every function x ∈m⋂j=1

Hj,ωj , its fractional derivative Dαε x(u)

depends on u continuously.Let

ω(x, θ) := sup|t|<θ‖x(·)− x(·+ t)‖C ,

where |t| =√t21 + . . .+ t2m, t = (t1, . . . , tm).

Applying the inequality (14) to the difference x(u)− x(u+ δ), δ ∈ Rm, we obtain∣∣Dαε x(u)−Dα

ε x(u+ δ)∣∣ ≤

≤ 2m−1Aα

∫Rm+

min

2ω(x, |δ|), 2‖x‖ω1ω1(t1), . . . , 2‖x‖ωmωm(tm) m∏j=1

t−αj−1j dt.

Note, that the function

min

2ω(x, |δ|), 2‖x‖ω1ω1(t1), . . . , 2‖x‖ωmωm(tm) m∏j=1

t−αj−1j

uniformly converges to zero (as δ → 0) on any set of points (t1, . . . , tm) ∈∏m

j=1[σj ,∞),

σj > 0, j = 1, . . . ,m, and the integral∫Rm+

min

2ω(x, |δ|), 2‖x‖ω1ω1(t1), . . . , 2‖x‖ωmωm(tm) m∏j=1

t−αj−1j dt

uniformly converges on any bounded set of values of the parameter δ.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 309

Therefore|Dα

ε x(u)−Dαε x(u+ δ)| → 0, |δ| → 0,

which proves the continuity of Dαε x(u) for all u ∈ Rm.

Thus, we obtain from (14): ∥∥Dαε x∥∥C≤

≤ 2m−1Aα

∫Rm+

min

2‖x‖C , ‖x‖ω1ω1(t1), . . . , ‖x‖ωmωm(tm) m∏j=1

t−αj−1j dt,

and inequality (1) is proved. Construct now the function f(t), which turns (1) intoequality. To this end, we will use the methods from [15]. Define f(u) for u ∈ Rm+ ,and then extend it to the whole space Rm evenly with respect to each variable. Foru = (u1, . . . , um) ∈ Rm+ and δ > 0, set ωδj (uj) = minωj(uj), 2δ.

Consider the vector ωδ(u) =(ωδ1(u1), . . . , ωδm(um)

)and denote v = v(u) : =

: =(v1(u), . . . , vm(u)

)=(ωδ(u)

)∗, where (ωδ(u))∗ is the rearrangement of the

numbers ωδ1(u1), . . . , ωδm(um) in nonincreasing order. Now, define the function f(u)by setting for u ∈ Rm+ ,

f(u) = v1(u)− v2(u) + . . .+ (−1)m−1vm(u)− δ.

Since 0 ≤∑m

j=1(−1)j−1vj(u) ≤ 2δ, we have ‖f‖C ≤ δ. Let us verify, that f ∈

∈m⋂j=1

Hj,ωj , and estimate ‖f‖ωj , j = 1, . . . ,m. For this purpose, consider the di-

fference

f(u+ hej)− f(u) =

= v1(u+ hej)− v2(u+ hej) + . . .+ (−1)m−1vm(u+ hej)−

−(v1(u)− v2(u) + . . .+ (−1)m−1vm(u)), h > 0.

The vector u+hej differs from the vector u in the j-th coordinate only, which is greaterthen the j-th coordinate of the vector u. Therefore, v(u+ hej) differs from v(u) in thefollowing way. Let the number ωδj (uj) be the ν-th coordinate of vector v(u). Then thereexists µ ≤ ν such that ωδj (uj + hej) is the µ-th coordinate of v(u + hej). Moreover,coordinates of v(u+ hej) coincide with coordinates of the vector v(u), as soon as theyhave indices less than µ or greater than ν.

Thus,

f(u+ hej)− f(u) =

= (−1)µ−1ωδj (uj + h) + (−1)µvµ(u) + . . .+ (−1)ν−1vν−1(u)−

−(−1)µ−1vµ(u)− . . .− (−1)ν−2vν−1(u)− (−1)ν−1ωδj (uj) =

= (−1)µ−1ωδj (uj + h) + 2(−1)µvµ(u) + . . .

. . .+ 2(−1)ν−1vν−1(u)− (−1)ν−1ωδj (uj).

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

310 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

Sinceωδj (uj + h) ≥ vµ(u) ≥ . . . ≥ vν−1(u) ≥ ωδj (uj),

it is easy to verify that

ωδj (uj)− ωδj (uj + h) ≤

≤ (−1)µ−1ωδj (uj + h) + 2(−1)µvµ(u) + . . .

. . .+ 2(−1)ν−1vν−1(u)− (−1)ν−1ωδj (uj) ≤

≤ ωδj (uj + h)− ωδj (uj). (15)

Taking into account that

ωδj (uj + h)− ωδj (uj) ≤ ωj(uj + h)− ωj(uj) ≤ ωj(h),

we obtain f ∈ Hj,ωj and ‖f‖ωj ≤ 1, j = 1, . . . ,m.We now compute |(Dα

ε f)(0)| when ε = (+, . . . ,+). In order to do this, we firstlyshow that for all t ∈ Rm+ ,

∆t1 . . .∆tmf(0, . . . , 0) = −2m−1 min

2δ, ω1(t1), . . . , ωm(tm)

=

= −2m−1 minωδ1(t1), . . . , ωδm(tm)

.

The proof is by induction on m. For m = 2 (induction basis), this fact can be verifieddirectly.

Since the operators ∆ti and ∆tj commute, we can take ∆t1 , . . . ,∆tm in any conveni-ent order, while computing ∆t1 . . .∆tmf(0, . . . , 0). For definiteness, suppose that ωδ1(t1)is the greatest number among ωδ1(t1), . . . , ωδm(tm). We will compute the difference int1 in last turn. Represent the difference ∆t1 . . .∆tmf(0, . . . , 0) in the following way:

∆t1 . . .∆tmf(0, . . . , 0) =

=1∑

j1=0

1∑j2=0

. . .

1∑jm=0

(−1)j1+...+jmf(j1t1, j2t2, . . . , jmtm) =

=1∑

j2=0

. . .

1∑jm=0

(−1)j2+...+jmf(0, j2t2, . . . , jmtm) =

−1∑

j2=0

. . .

1∑jm=0

(−1)j2+...+jmf(t1, j2t2, . . . , jmtm).

By the induction assumption,

1∑j2=0

. . .

1∑jm=0

(−1)j2+...+jm · f(0, j2t2, . . . , jmtm) =

= −2m−2 minωδ2(t2), . . . , ωδm(tm)

. (16)

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 311

Using the fact that ωδ1(t1) is the greatest number among ωδ1(t1), . . . , ωδm(tm), and thedefinition of f, we obtain

f(t1, j2t2, . . . , jmtm) = ωδ1(t1)− f(0, j2t2, . . . , jmtm).

Thus,

−1∑

j2=0

. . .

1∑jm=0

(−1)j2+...+jm(ωδ1(t1)− f(0, j2t2, . . . , jmtm)

)=

= −2m−2 minωδ2(t2), . . . , ωδm(tm)

(here we have used the induction hypothesis (16) again). Finaly, we have

∆t1 . . .∆tmf(0, . . . , 0) =

= −2m−2 minωδ2(t2), . . . , ωδm(tm)

− 2m−2 min

ωδ2(t2), . . . , ωδm(tm)

=

= −2m−1 minωδ2(t2), . . . , ωδm(tm)

=

= −2m−1 minωδ1(t1), ωδ2(t2), . . . , ωδm(tm)

.

For ε = (+, . . . ,+), we estimate ‖Dαε f‖C from below:∥∥Dα

ε f∥∥C≥∣∣(Dα

ε f)(0, . . . , 0)∣∣ =

= 2m−1Aα

∫Rm+

m∏j=1

t−αj−1∆tf(0, . . . , 0) dt =

= 2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1 dt ≥

≥ 2m−1Aα

∫Rm+

min

2‖f‖C , ‖f‖ω1ω1(t1), . . . , ‖f‖ωmωm(tm) m∏j=1

t−αj−1j dt. (17)

Combining (1) (for the function f ) with (17), we see that

‖Dαε f‖C = 2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1 dt =

= 2m−1Aα

∫Rm+

min

2‖f‖C , ‖f‖ω1ω1(t1), . . . , ‖f‖ωmωm(tm) m∏j=1

t−αj−1j dt, (18)

i.e., relation (1) turns into equality.The proof is complete.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

312 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

Proof of Corollary 1. It follows from equality (1) that for any δ > 0,

Ω

δ, m⋂j=1

UHj,ωj

≤ 2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt.

For the function f, constructed in proof of Theorem 1,

‖f‖C ≤ δ, f ∈m⋂j=1

Hj,ωj .

Using (18) we obtain

Ω

δ, m⋂j=1

UHj,ωj

≥ ‖Dαε f‖C =

= 2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt.

The corollary is proved.Proof of Theorem 2. As in the proof of Theorem 1 suppose that ε = (+, . . . ,+).

Remind that for a given N > 0, the vector hN = (hN1 , . . . , hNm) ∈ Rm+ is defined by the

following conditions:

ω1(hN1 ) = . . . = ωm(hNm),2mAα

α1 . . . αm

m∏j=1

(hNj )−αj = N,

andG(hN ) :=

u = (u1, . . . , um) ∈ Rm : u1 ≥ hN1 , . . . , um ≥ hNm

.

Define the operator BhN as follows

BhNx(u) = Aα

∫G(hN )

∆tx(u)m∏j=1

t−αj−1j dt.

Show that BhN is the bounded operator from C(Rm) to C(Rm), and moreover‖BhN ‖ ≤ N. Indeed for all x ∈ C(Rm),

∥∥BhNx∥∥C ≤ 2mAα∫

G(hN )

m∏j=1

t−αj−1j dt‖x‖C =

=2mAα

α1 . . . αm

m∏j=1

(hNj)−αj ‖x‖C = N‖x‖C .

For any x ∈m⋂j=1

Hj,ωj , estimate the deviation ‖Dαε x−BhNx‖C . We have

∥∥Dαε x−BhNx

∥∥C≤ ‖Aα

∫Rm+ \G(hN )

∆tx(u)m∏j=1

t−αj−1j dt‖C ≤

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 313

≤ 2m−1Aα

∫Rm+ \G(hN )

minω1(t1), . . . , ωm(tm)

m∏j=1

t−αj−1j dt.

We have obtained the estimation of the value EN

(Dαε ,

m⋂j=1

UHj,ωj

)from above.

Let us estimate this value from below. From (10) we obtain

EN

Dαε ,

m⋂j=1

UHj,ωj

≥ supδ>0

Ω

δ, m⋂j=1

UHj,ωj

−Nδ. (19)

Using Corollary 1 and condition (11) we have

EN

Dαε ,

m⋂j=1

UHj,ωj

≥ supδ>0

2m−1Aα

∫Rm+

min

2δ, ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt −

−2mAαδ∫

G(hN )

m∏j=1

t−αj−1j dt

. (20)

SetδN = ω1(hN1 ) = . . . = ωm(hNm).

Note that for t ∈ G(hN ),

min

2δN , ω1(t1), . . . , ω(tm)

= 2δN

and for t ∈ Rm+ \G(hN ),

min

2δN , ω1(t1), . . . , ω(tm)

= minω1(t1), . . . , ω(tm)

.

From (20) we derive

EN

Dαε ,

m⋂j=1

UHj,ωj

≥≥ 2m−1Aα

∫Rm+

min

2δN , ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt−

−2m−1Aα

∫G(hN )

min

2δN , ω1(t1), . . . , ωm(tm) m∏j=1

t−αj−1j dt =

= 2m−1Aα

∫Rm+ \G(hN )

minω1(t1), . . . , ωm(tm)

m∏j=1

t−αj−1j dt.

We have obtained the required estimation from below. Theorem 2 is proved.

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

314 V. BABENKO, N. V. PARFINOVYCH, S. A. PICHUGOV

Proof of Theorem 3. Let us consider the case ε = (+, . . . ,+). For δ > 0and modulus of continuity ω1, . . . , ωm, by f( · ; δ;ω1, . . . , ωm) denote the functionf constructed in the proof of Theorem 1. Suppose the inequality (12) holds true andselect 0 < L0 ≤M0 such that

Mα = 2m−1Aα

∫Rm+

min

2L0,Mω1ω1(t1), . . . ,Mωmωm(tm) m∏j=1

t−αj−1j dt.

For the function f(· ;L0;Mω1ω1, . . . ,Mωmωm), we have∥∥f(· ;L0;Mω1ω1, . . . ,Mωmωm)∥∥C≤ L0 ≤M0.

In addition, it is easy to verify that∥∥f(· ;L0;Mω1ω1, . . . ,Mωmωm)∥∥ωj

= Mωj , j = 1, . . . ,m.

As in the proof of Theorem 1, we obtain∥∥Dαε f(· ;L0;Mω1ω1, . . . ,Mωmωm)

∥∥C

=

= 2m−1Aα

∫Rm+

min

2L0,Mω1ω1(t1), . . . ,Mωmωm(tm) m∏j=1

t−αj−1j dt = Mα.

Now construct the function

x(u) = f(u;L0;Mω1ω1, . . . ,Mωmωm) +M0 −∥∥f(· ;L0;Mω1ω1, . . . ,Mωmωm)

∥∥C.

It is obvious that x ∈m⋂j=1

Hj,ωj , and also

‖x‖C = M0, ‖Dαε x‖C = Mα, ‖x‖ωj = Mωj , j = 1, . . . ,m.

Theorem 3 is proved.

1. Kolmogorov A. N. Une generalisation de J. Hadamard entre les bornes superieures des derivees succesivesd’une fonction // C. r. Acad. Sci. – 1938. – 36. – P. 764 – 765.

2. Kolmogorov A. N. On inequalities between the upper bounds of the successive derivatives of an arbitraryfunction on an infinite interval // Uch. Zapiski MGU. Mat. – 1939. – 30, 3. – S. 3 – 13.

3. Kolmogorov A. N. On inequalities between the upper bounds of the successive derivatives of an arbitraryfunction on an infinite interval // Selected Words. Math., Mech. – Moskow: Nauka, 1985. – P. 252 – 263(in Russian).

4. Arestov A. A. Approximation of unbounded operators by the bounded ones and relative extremal problems// Uspekhi Mat. Nauk. – 1996. – 51, 6. – P. 88 – 124 (in Russian).

5. Arestov A. A., Gabushin V. N. The best approximation of unbounded operators by the bounded ones //Izv. Vuzov. Math. – 1995. – 1. – P. 44 – 66 (in Russian).

6. Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A. Inequalities for derivatives and theirapplicatios. – Kiev: Naukova Dumka, 2003 (in Russian).

7. Kwong M. K., Zettl A. Norm inequalities for derivatives and differences // Lect. Notes Math. – Berlinetc.: Springer, 1992. – 1536.

8. Mitrinovic D. S., Pecaric J. E., Fink A. M. Inequalities involving functions and their integrals andderivatives. – Dordrecht etc.: Kluver Acad. Publ., 1991.

9. Konovalov V. N. Exact inequalities for norms of the functions, third partial and second mixed derivatives// Mat. Zametki. – 1978. – 23, 1. – S. 67 – 78 (in Russian).

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3

SHARP KOLMOGOROV-TYPE INEQUALITIES FOR NORMS OF FRACTIONAL DERIVATIVES . . . 315

10. Buslaev A. P., Tikhomirov V. M. On inequalities for derivatives in multivariate case // Mat. Zametki. –1979. – 25, 1. – S. 54 – 74 (in Russian).

11. Timoshin O. A. Sharp inequalities between norms of partial derivatives of second and third order // Dokl.RAN. – 1995. – 344, 1. – S. 20 – 22 (in Russian).

12. Babenko V. F., Kofanov V. A., Pichugov S. A. Multivariate inequalities of Kolmogorov type and theirapplications // Multivariate Approxim. and Splines / Eds G. Nerberger, J. W. Schmidt, G. Walz. – Basel:Birkhauser, 1997. – P. 1 – 12.

13. Babenko V. F. On sharp Kolmogorov type inequalities for bivariate functions // Dop. NAN Ukrainy. –2000. – 5. – S. 7 – 11 (in Russian).

14. Babenko V. F., Pichugov S. A. Kolmogorov type inequalities for fractional derivatives of Holder functionsof two variables // E. J. Approxim. – 2007. – 13, 3. – P. 321 – 329.

15. Babenko V. F., Pichugov S. A. Exact estimates of norms of fractional derivatives of multivariate functionssutisfying Holder conditions // Mat. Zametki (to appear).

16. Samko S. G., Kilbas A. A., Marichev O. I. Integrals and derivatives of franctional order and theirapplications. – Minsk, 1987 (in Russian).

17. Marchaud A. Sur de derivees et sur les differences des fonctions de variables reelles // J. math. pures etappl. – 1927. – 6. – P. 337 – 425.

18. Babenko V. F., Churilova M. S. On inequalities of Kolmogorov type for derivatives of fractional order// Bull. Dnepropetrovsk Univ. Mat. – 2001. – 6. – P. 16 – 20 (in Russian).

19. S. P. Geisberg Generalization of Hadamard inequality // Sb. Nauch. Tr. Leningr. Mech. Inst. – 1965. –50. – S. 42 – 54 (in Russian).

20. V. V. Arestov Inequalities for functional derivatives on the half-line // Approxim. Theory. – Warsaw:PWN, 1979. – P. 19 – 34.

21. Magaril-Il’jaev G. G., Tihomirov V. M. On the Kolmogorov inequality for fractional derivatives on thehalf-line // Anal. math. – 1981. – 7, 1. – P. 37 – 47.

22. Stechkin S. B. Best approximation of linear operators // Mat. Zametki. – 1967. – 1, 2. – S. 137 – 148(in Russian).

23. Rodov A. M. Relation between upper bounds of derivatives of real functions, defined on the whole realline // Isv. AN USSR. – 1946. – 10. – S. 257 – 270 (in Russian).

24. Rodov A. M. Relation Sufficient conditions of existence of real values function with given upper boundsof moduluses of the function itself and its five successive derivatives // Uch. Zap. Bel. Gos. Univ. – 1954.– 19. – S. 65 – 72 (in Russian).

25. Dzyadyk V. K., Dubovik V. A. To the Kolmogorov problem on dependence between upper bound ofderivatives of real valued functions, defined on the whole real line // Ukr. Mat. Zh. – 1974. – 26, 3. –S. 246 – 259 (in Russian).

26. Dzyadyk V. K., Dubovik V. A. To Kolmogorov inequalities between upper bound of derivatives of realvalued functions, defined on the whole real line // Ukr. Mat. Zhurn. – 1975. – 27, 3. – S. 291–299(in Russian).

Received 14.12.09

ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, 3