bioconstrucciÓn: esperanza histÓrica de un futuro sostenible y sustentable

57
BIOCONSTRUCCIÓN: ESPERANZA HISTÓRICA DE UN FUTURO SOSTE- NIBLE Y SUSTENTABLE FORUM DE CIENCIA Y TÉCNICA 2015 YENIFER RUTH TUCO HUARAHUARA INSTITUTO SUPERIOR POLITÉNICO JOSÉ ANTONIO ECHEVERRÍA

Upload: independent

Post on 11-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

BIOCONSTRUCCIÓN: ESPERANZA HISTÓRICA DE UN FUTURO SOSTE-NIBLE Y SUSTENTABLE

FORUM DE CIENCIA Y TÉCNICA 2015

YENIFER RUTH TUCO HUARAHUARA

INSTITUTO SUPERIOR POLITÉNICO JOSÉ ANTONIO ECHEVERRÍA

1

RESUMEN

La bioconstrucción como alternativa de construcción histórica en siglos transitados ha

perdido su importancia a pesar de su efectiva viabilidad. De esta manera, en principios

del presente siglo y finales del anterior se han ido creando movimientos que reviven

esta técnica de construcción y la plantean como una forma sustentable y sostenible de

construcción. Asimismo, son diversos los trabajos de investigación que ejemplifican

diversas maneras de refuerzos de las bioestructuras que permiten una mayor

resistencia a diversos fenómenos naturales, dentro de los cuales la actividad sísmica

ha sido la más estudiada debido a que la mayoría de países con alto y mediano riesgo

sísmico son aquellos en los cuales la mayoría de su población vive en este tipo de

construcción. De esta forma, se resalta la importancia de actualizadas investigaciones

para lograr nuevos métodos de refuerzo a este tipo de estructuras para otorgarle

mayor seguridad a este tipo de construcciones.

PALABRAS CLAVES: Bioconstrucción, vivienda, rural, ecológico.

2

INDICE

RESUMEN 01

INTRODUCCIÓN 03

OBJETIVOS 04

1. CAPÍTULO I 05

1.1. INFLUENCIA DE LA TÉCNICA Y LA TECNOLOGÍA EN

CONSTRUCCIONES MODERNAS 05

1.2. PROBLEMAS SOCIALES GENERADOS POR EL ESTANCAMIENTO

DE ´TÉCNICAS DE CONSTRUCCIÓN RURALES 07

2. CAPÍTULO II 09

2.1. BASE HISTÓRICA 09

2.2. NECESIDAD DE OPTIMIZACIÓN DE LAS TÉCNICAS DE

BIOCONSTRUCCIÓN. 10

2.3. BIOCONSTRUCCIÓN 12

3. CAPÍTULO III 16

3.1 FORMAS COMUNES RURALES DE BIOCONSTRUCCIÓN 16

3.2. TÉCNICAS USAS PARA EL MEJORAMIENTO DE LA CALIDAD DE LAS

VIVIENDAS BIOCONSTRUIDAS 17

3.2.1. TAPIAL 19

3.2.2. TERRÓN 25

3.2.3. CUBIERTA Y VIGAS: CAÑA, TOTOAR, PALMA Y BAMBÚ 27

3.2.4. ADOBE Y BLOQUE DE TIERRA-CEMENTO 32

VALORACIÓN ECONÓMICA Y APORTE SOCIAL 46

CONCLUSIONES Y RECOMENDACIONES 47

BIBLIOGRAFÍA 48

ANEXOS 50

3

INTRODUCCIÓN

El ser humano, como ser final de la evolución, es un ente biótico de numerosas

cualidades y habilidades con las cuales ha logrado la creación de diversos

mecanismos para la satisfacción de sus propias necesidades, y por qué no decir, para

hacer la “vida más fácil” a las generaciones venideras. La evidente evolución del

transporte es uno de los ejemplos más claros de progreso en la técnica y la tecnología

aplicada en la sociedad; pues se ha pasado de transitar, montar, transporte en

carruaje, trenes, automóviles hasta los aviones. Ello ha llevado a la conquista por el

ser humano de los diferentes ecosistemas de vida de los demás seres; como el

marítimo, aéreo y terrestre. Si bien es cierto que con ello se ha logrado el

mejoramiento de las comunicaciones, es también el transporte una de las principales

causas de muerte en todo el mundo, principalmente por el uso inadecuado del mismo.

En la actualidad, muchas de las actividades humanas se han vuelto condescendientes

gracias al uso de la técnica y la tecnología. Sin embargo, pese a los grandes cambios

de vida y a la satisfacción de la mayoría de las necesidades, el uso excesivo e

“incorrecto” de la tecnología ha acarreado diversos problemas sociales, económicos y

ambientales. De esta forma, uno de los principales problemas acarreados gracias a las

evoluciones y utilizaciones inadecuadas de las últimas tecnologías es la contaminación

ambiental. De este modo, la Bioconstrucción se presenta como una alternativa

sostenible y sustentable para el desarrollo social, así como una forma de reducción del

porcentaje de contaminación ambiental atribuido al campo constructor. Por otro lado,

es también la optimización de técnicas de bioconstrucción una necesidad social

especialmente por las millones de personas que viven en este tipo de construcción.

Por ello, el presenta trabajo se ha divido en 3 capítulos. El primer capítulo, es una

base y explicación de la necesidad de optimización de las técnicas de bioconstrucción;

asimismo, explica el porqué de su sustentabilidad y sostenibilidad. Por otro lado, en el

segundo capítulo se ha desarrollado la bioconstrucción propiamente así como su

importancia y relevancia a nivel mundial especialmente a finales del siglo XX y

principios del siglo XXI, así como los diversos movimientos que ha generado este tipo

de construcción. Finalmente, el tercer capítulo está orientado a la explicación detallada

de diversas técnicas de bioconstrucción que han sido probadas experimentalmente y

que han demostrado su efectividad; las mismas que están en dependencia del tipo de

biomaterial a utilizar en la construcción de la vivienda.

4

OBJETIVOS

OBJETIVO PRINCIPAL

Demostrar la vigencia, sostenibilidad y sustentabilidad de la Bioconstrucción

como técnica de construcción de viviendas de una o dos plantas.

OBJETIVOS SECUNDARIOS

Motivar la optimización de materiales y técnicas de Bioconstrucción.

Demostrar que la Bioconstrucción es una vía de solución a problemas

ambientales, económicos y sociales.

Informar de técnicas que refuerzan las bioestructuras para la seguridad de la

población.

5

1. CAPÍTULO I

1.1 INFLUENCIA DE LA TÉCNICA Y LA TECNOLOGÍA EN LAS

CONSTRUCCIONES MODERNAS

En la actualidad, muchos de los graduados en ingeniería civil y arquitectura de las

universidades alrededor del mundo se muestran ambiciosos respecto a proyectos

de gran envergadura tales como los rascacielos, puentes y/o carreteras de

múltiples vías; asimismo la ambición se encuentra centrada en poseer la creación

e innovación de técnicas que permitan disminuir los riesgos de colapso de grandes

edificaciones hasta las mejores cotizaciones para la construcción de estos mismos.

Sin embargo, es ínfimo el porcentaje de profesionales que dedican proyectos

orientados a áreas rurales en los diversos países del mundo.

De esta manera, se ha olvidado la época en la que el hombre dependía de la

naturaleza para la construcción de sus propios refugios, se ha olvidado de la mano

de obra empleada por el hombre en la que la tierra, la piedra y la paja se

convertían en bloques, cimientos y techo de protección respectivamente. Se ha

pasado abruptamente de la naturaleza a materiales mejores desarrollados como el

cemento, las vigas de acero, etc. que a pesar de su gran importancia y desempeño

en la prevención a colapsos o pandeos de las estructuras, su producción es una de

las principales causas de la contaminación ambiental como lo afirma la Master en

Arquitectura y Sostenibilidad Marcela Carranza (2010). Asimismo según World

Watch Institute (2010), la edificación consume el 25% de las materias primas de la

litosfera en su página online oficial. Con lo que se da cuenta de la gran cantidad de

materiales que son necesarios para construcción de diversas edificaciones

alrededor del mundo, señalando que de ese 25% un 2 a 3% son inutilizados y

desechados posteriormente, tal y como se aprecia en la siguiente imagen.

Fig. 01 Desechos descartados de una vivienda unifamiliar.

6

De esta manera, y siguiendo la línea de análisis en cuestión cabe rescatar los

diferentes proyectos llevados a cabo por ingenieros y arquitectos que reciclan

estos áridos para la elaboración de morteros de albañilería u otros materiales

posibles de elaborar en bases a procesos de re-uso y reciclaje; sin embargo, y

como lo señala el artículo escrito por los Ingenieros Civiles Martínez, I., Etxeberria,

M., Pavón, E., & Díaz, N. (2012) la elaboración de este mortero requiere diferentes

procesos de obtención y una adecuada recolección. Con lo cual, se podría reducir

el porcentaje de contaminación ambiental generado por parte de la industria

constructora.

Sin embargo, como lo afirma Jebenz, P. el Worldwatch Institute de Washington

afirmó que casi el 50% de las emisiones CO2 son producidas directamente por el

área de la construcción y la utilización de los mismos, donde cada m2 de vivienda

es responsable de un media de emisión de hasta 1,9 toneladas de este químico en

el transcurso de su vida. De ahí la importancia de y responsabilidad de ingenieros

y arquitectos en contribuir en el ámbito de la construcción sostenible.

Fig. 02 Imagen del trabajo de Carranza, M. (2010)

En la imagen mostrada se evidencia los porcentajes de emisión de Dióxido de

carbono en las diversas etapas del ciclo de vida de un edificio. Con ello, se aprecia

y reafirma el porcentaje de “culpa” que recae en la Industria Constructora por la

Contaminación ambiental. Cabe resaltar, que con los argumentos ya presentados

7

no se pretende menospreciar la construcciones modernas, ni a los famosos y

hábiles ingenieros que trabajan en proyectos de gran envergadura ya son estos

proyectos los que han llevado a la humanidad al nivel de desarrollo y evolución en

el que se encuentra actualmente. Sin embargo, sí se realiza una crítica y un

llamado de conciencia al desarrollo de técnicas y tecnologías que permitan una

mejor calidad de vida en las zonas urbanas y peri-urbanas.

1.2 PROBLEMAS SOCIALES GENERADOS A PARTIR DEL ESTANCAMIENTO EN

TÉCNICAS DE CONSTRUCCIÓN EN ZONAS RURALES. LA NO EVOLUCIÓN

EN LA TÉCNICA Y TECNOLOGÍA EN LA INDUSTRIA CONSTRUCTORA EN

ZONAS RURALES

Desde el siglo XX mucho de los pobladores de las áreas rurales de diversos

países han ido inmigrando a las capitales de sus respectivos países o regiones

generando diversos problemas sociales como la centralización, la sobrepoblación

en ciertas ciudades, el desempleo, etc. Asimismo, las razones que han originado

este tipo de problemas sociales son muchas tales como: la constante

industrialización de las capitales, la falta de escuelas en zonas rurales, falta de

hospitales, falta de empleos, etc. Sin embargo, una de las causas de esta

constante inmigración, aunque no es muy comentada, es la falta de seguridad que

sienten los pobladores respecto a sus lugares de vivienda. Esta falta de seguridad

se evidencia principalmente en zonas que son propensas a fenómenos naturales

tales como: huaicos, terremotos, avalanchas, derrumbes, etc. de los cuales han

sido “víctimas” los pobladores desde tiempos remotos.

Sin embargo, la crítica no es hacia los fenómenos naturales sino hacia el no

mejoramiento de las técnicas y materiales de construcción empleados, los cuales

desde las primeras construcciones a base de adobe, tapial, caña, etc. en las

civilizaciones desde antes de cristo no han sido estudiados. Por ello, uno de los

objetivos de este trabajo es demostrar que mediante el mejoramiento de las

técnicas de construcción y los materiales construcción podemos evitar o, al menos,

reducir el porcentaje de inmigración de pobladores de zonas rurales a zonas

urbanas. Para ello, es necesario tomar diversas medidas. Un primer propósito es el

de mejorar la resistencia a diversos fenómenos por parte de la estructura en su

conjunto y de los materiales, lo cual será desarrollado en los siguientes capítulos.

En segundo lugar, es necesario mantener a los pobladores informados de nuevas

formas de construcción sustentable o bioconstrucción y las ventajas de los

mismos. Seguidamente es necesario mejorar la estética de los elementos a

8

construir para lograr con ello un ambiente de vida alegre y vivo con lo cual motiva y

mantiene a los pobladores integrados con su ambiente de vida.

Asimismo, el mejoramiento de las construcciones basadas en el materiales bióticos

ayuda a la reducción de muertes a causas de derrumbes producidos por

terremotos. En el terremoto de 2001 en El Salvador, más de 200,000 casas de

adobe fueron severamente dañadas o colapsaron, 1 100 personas murieron bajo

los escombros de estas edificaciones y más de 1000 000 personas quedaron sin

hogar (USAID El Salvador 2001). Ese mismo año, el terremoto en el sur de Perú

causó la muerte de 81 personas, la destrucción de casi 25 000 viviendas de adobe

y daño severo en 36 000 casas, dejando sin vivienda a más de 220 000 personas

(USAID Perú 2001). De esta manera, se evidencia la importancia de una toma de

conciencia respecto a la innovación en técnicas y tecnologías de construcción a

costos módicos especialmente en zonas rurales debido a la falta de recursos

económicos en los mismos y la abundancia de recursos naturales; por lo cual, la

bioconstrucción se plantea como solución sostenible y sustentable de la misma.

9

2 CAPÍTULO II

2.1 BASE HISTÓRICA

Si nos remontamos a la historia, la construcción basada en materia prima prove-

niente de la naturaleza esta datada desde miles de años antes de Cristo. En lo

concerniente a construcciones a base de terrón existen escasas evidencias foto-

gráficas; sin embargo, se puede señalar según la Arquitecta Alderton, C.:

Las construcciones de terrón más antiguas se han hallado en Rusia y

Polonia (desde el S V hasta el S XV); en los Países Escandinavos (he-

rencia de los vikingos, desde el S VIII), en Dinamarca, donde existe la

Fortaleza de Solvig del S XIV; en Suecia, Noruega, Holanda, Alemania y

el Reino Unido: Inglaterra (en Devon existen construcciones bien con-

servadas), Escocia, (en 1980 se realizó la construcción del Museo Fol-

klórico Kingussie, según la tradición del S XVIII de construcción con te-

rrón), en Irlanda; en Islandia (S XVIII y S XIX, existe una construcción

reciclada en museo); en Asia y en los Países de Europa Mediterránea

(Portugal, España y Francia).

Asimismo, la evidencia fotográfica es brindada por la misma arquitecta en su traba-

jo de “Bioconstrucción: construcción con materiales naturales”:

Fig. 03 Vivienda de Terrón, Devon, Inglaterra. S XIX

10

Fig. 04 Construcción a Base de terrón, Nebraska, EEUU. S XIX

De esta manera, también podemos apreciar edificaciones basadas en barro como

la bimilenaria ciudad de Arg e Bam en Irán cuyos historiadores aseguran que su

construcción data de hasta 500 aC. y que la misma fue habitada hasta el siglo XIX.

Fig. 05 Bimilenaria ciudad de Arg e Bam, Irán.

Por otro lado, las construcciones a base de adobe son bien conocidas especial-

mente las edificaciones que datan de las épocas coloniales como las de Perú. Así

también se tiene en cuenta como bioconstrucciones a la Ciudadela de Macchu

Picchu en Perú, las Pirámides de Egipto, las Maravillas del mundo Antiguo como el

Coliseo Romano, etc. Es decir que como antecedentes históricos de la Biocons-

trucción se puede encontrar una vasta bibliografía; por otro lado, y no siendo así el

caso, las bioconstrucciones modernas no son muchas y su mejoramiento y perfec-

cionamiento ha sido ínfimo respecto a las de las construcciones que utilizan mate-

riales industrializados.

2.2 NECESIDAD DE LA OPTIMIZACIÓN DE TÉCNICAS DE BIOCONSTRUCCIÓN

Aunque puede ser malinterpretado, es necesario expresar que la necesidad del

perfeccionamiento de la Bioconstrucción está orientado principalmente para las

11

personas de bajos recursos debido al coste ínfimo de las edificaciones a base de

materiales naturales. Asimismo, la necesidad radica en la seguridad como bien fue

planteada en el primer capítulo, especialmente por la cantidad de personas que vi-

ven en viviendas elaboradas de materiales bióticos tales como el adobe. Según la

Sensi (2003) la mayoría de países con elevados riesgos sísmicos son aquellos en

las que sus construcciones están basadas en adobe, tal y como lo demuestra las

siguientes gráficas.

Fig. 06 Distribución Mundial de Riesgo sísmico moderado y alto

Fig. 07 Distribución Mundial de Construcciones basadas en Adobe

Asimismo y siguiendo la misma línea de pensamiento Houben & Guillard (1994)

afirmaron:

12

“Alrededor del 30% de la población mundial vive en construcciones de

tierra. Aproximadamente el 50% de la población de los países en desa-

rrollo, incluyendo la mayoría de la población rural y por lo menos el 20%

de la población urbana y urbano marginal, viven en casas de tierra.”

Asimismo, Blondet, M., Villa, G. & Brzev, S. (2003) afirmaron que:

“…en Perú, 60% de las casas son construidas con adobe o con tapial.

En India, de acuerdo al Censo de 1971, 73% de todas las edificaciones

son hechas de tierra (67 millones de casas habitadas por 374 millones

de personas.”

Con lo señalado, se puede afirmar que el mejoramiento de técnicas Biocosntructi-

vas más que una necesidad económica, necesidad ambiental posee una necesi-

dad social y humana debido a la cantidad de personas que habitan y viven en este

tipo de construcciones; sin embargo, no se debe rechazar sus otros grandes bene-

ficios y mucho menos negarlos.

2.3 BIOCONSTRUCCIÓN

Según la Real Academia de la Lengua Española se define Bio como lo relativo a la

vida y Construcción como al arte de edificar y/o construir. De esta forma, Biocons-

trucción es el arte edificaciones a partir de la vida. Asimismo, Jebez, P. afirma que:

“La bioconstrucción entiende la casa como un ecosistema dinámico armónico y

en equilibrio, que antiguamente y en otras culturas era el en foque natural y ló-

gico. No necesitaba un nombre especial porque toda la construcción era ecoló-

gica, realizada con materiales naturales y aprovechando las ventajas del lugar

y del clima.”

De esta manera, y en acuerdo con la importancia de la bioconstrucción en la socie-

dad, es necesario señala la importancia y relevancia en diversos países tales como

Alemania que a partir de 1976 se ha creado un al Institut für Baubiologie traducién-

dose como el Instituto de Bioconstrucción. Asimismo, y en el mismo país se hizo

popular un movimiento denominado la casa enferma que se traduce como las casas

modernas convencionales en las que no se aprovechan los recursos naturales re-

novables, y en la cual ingresan 4 recursos los cuales se comportan de manera li-

13

neal, lo que provoca que de esta casa salgan desechos que son agentes contami-

nantes.

Fig. 08 Casa Enferma

Asimismo, y en respuesta a este fenómeno se postuló y motivó en Alemania el mo-

vimiento de la casa sana conocido también como un edificio de Bioconstrucción

donde se utilizan y rescatan los recursos externos, asimismo en este modelos los

recursos entrantes son reutilizados comportándose de manera cíclica, además cada

recurso se encuentra entre lazado con los demás recursos utilizados en la casa.

Por ejemplo, el agua proveniente de las lluvias puede utilizarse para regar las plan-

tas así como una vez procesada pueda utilizarse para actividades domésticas como

actividades de limpieza o para los servicios sanitarios. Asimismo, se puede recolec-

tar la energía solar mediante paneles solares con lo cual se disminuye el gasto

energético.

14

Fig. 09 Edificio de Bioconstrucción (Jebenz, P.)

De esta manera, podemos afirmar que la Bioconstrucción es un método Bio susten-

table y sostenible de construcción con la cual podemos mejorar nuestro hábitat na-

tural, un método que es legendario pero que fue gravemente olvidado, y por el cual

pese a los movimientos de construcción sustentable no ha recibido la atención re-

querida, así como lo afirma Caballero, A. (2012):

15

“El cada vez más conocido movimiento internacional de bioconstruccio-

nes o construcciones naturales, ha llegado mucho antes y de manera

más integral a soluciones habitacionales para un mundo en descenso

energético, que las tan discutibles “certificaciones de edificios sosteni-

bles” que solamente se concretan a cumplir con una serie de requisitos,

muchas veces solo en papel, que una vez debidamente acreditados

suben de valor económico y se insertan nuevamente en el paradigma

de desarrollo que tan caro ha costado al medio ambiente.”

Por ello, la importancia de las Bioconstrucciones debido a sus tan detalladas

ventajas y cualidades, a su importancia histórica a su necesidad social, econó-

mica y ambiental. Y entre más de sus cualidades Caballero, A. (2012) afirma:

“Las bioconstrucciones no pretenden solamente dar soluciones técnicas

a los problemas de vivienda, sino que más bien abordan el problema

constructivo de una manera holística en donde la producción de vivien-

da tiene que ver con conceptos tales como sembrar tus muros (en el

caso de pacas de paja), proteger la biodiversidad a través de la cons-

trucción de tu techo de paja (thatch), cosechar de manera sustentable el

barro para los adobes, ahorrar agua a través de un baño compostero,

captar agua de lluvia, producir comida sana etcétera.”

Con lo cual se puede afirmar que la bioconstrucción es una nueva forma de vi-

da por la cual muchas de nuestras actividades comunes pueden ser converti-

das en actividades ecológicas con las cuales se hará de este mundo un mundo

mejor.

16

3 CAPÍTULO III

3.1 FORMAS COMUNES RURALES DE BIOCONSTRUCCIÓN

Dentro de los materiales más comúnmente usados para la bioconstrucción se en-

cuentran el adobe, la bloqueta, el terrón, la fajina, el bajareque, el tapial, el barro y

la piedra en cuanto a muros, cimientos y cerramientos; asimismo para la cubierta y

las vigas de la misma se hace uso extensivo de cañas, bambú, paja, totora, pal-

mas, o tejas a base de arcilla elaboradas de manera artesanal.

Fig. 10 El Salvador. Prisma. (Blondet, M., Villa, G. & Brzev, S.; 2003)

Fig. 11 Casa Vaimaca. Paneles de Fajina (Etchebarne, R, ; 2012)

17

Fig. 12 Casa de la Fig. 11 terminada (Ídem)

3.2 TÉCNIICAS USADAS PARA EL MEJORAMIENTO DE LA CALIDAD DE LAS

VIVIENDAS BIOCONSTRUIDAS

Uno de los principales propósitos de la presente es servir de guía para los ciuda-

danos que opten por la bioconstrucción como técnica de edificación para sus vi-

viendas. Especialmente debido a las diferentes deficiencias que se presentan en

estas construcciones. Por ejemplo, tal como lo expone la Asociación Colombiana

de Ingeniería Sísmica:

Fig. 13 Princiaples problemas en edificaciones a base de tierra (AIS)

18

Fig. 14 Collage de principales problemas de construcciones a base de tierra. (AIS)

19

Por ello, a continuación se expondrán diversos procesos y estudios que se han

realizado con la finalidad de darle a la bioconstrucción y a sus construcciones el

mérito apropiado en cuanto a su capacidad de resistencia a fenómenos y de evi-

denciar sus cualidades estéticas, económicas y ambientales.

3.2.1 TAPIAL

El tapial es un método constructivo mediante el cual un caja de similar es-

tructura que la del encofrado es llenado de tierra comprimida, cabe señalar

que entre mejor compactada este la tierra es mejor en cuanto a la resisten-

cia de este material. Como lo explica Caballero, A. (2012):

“A diferencia del adobe y el cob, no necesita agregársele paja y re-

quiere una mínima cantidad de agua. La humedad requerida es solo

la necesaria para que la arcilla pueda ligar los otros materiales. Esta

técnica consiste en hacer una especie de roca sedimentaria instan-

tánea en donde la gravedad será suplida por la fuerza de un pisón,

normalmente manual pero puede ser neumático,..”

Esta técnica se basa en un trabajo constante en el que en menor longitud

sea la presión proporcionada a la tierra mayor compactación tendrá la tierra

empleada.

Fig.15 Instrumentos utilizados en el Tapial. Fuente: Asociación Colom-

biana de Ingeniería Antisísmica (AIS)

20

Asimismo la AIS determina que una de las ventajas de esta forma de bio-

construcción es la poca mano de obra que requiere, ya que al criterio de es-

ta entidad solo se requiere de tres personas para la realización de de este

tipo de construcción. Estos son: el pisón, el zurronero (encargado de pro-

veer constantemente tierra al tapial) y el preparador de tierra.

G

Fig. 16 Mano de obra requerida

en la cosntrucción del tapial

(AIS)

Uno de los principales indicadores de la calidad de este tipo de construc-

ción está evidenciada por lod diferentes proyectos llevados a cabo. Uno de

estos fue desarrollado en el Pujili, Ecuador en el año 1989.

21

Fig. 17 Vivienda a base de tapial a bajo costo. Pujili, Ecuador. Diseño:

Minke, G. y FUNHABIT, Quito.

Esta vivienda según Minke, G. (2001) fue construida con muros de tapial de

40 cm de espesor a base de tierra arcillosa y piedra pómez para mejorar el

aislamiento térmico. Asimismo, se observa su estructura con una cubierta a

4 aguas cubierto con mezcla de tierra y estiércol. El diseñador de esta vi-

vienda, hace verdadero hincapié en la necesidad de que en este tipo de vi-

viendas exista una independencia de la estructura o armazón de la cubierta

respecto a los muros de la vivienda, para que en un desperfecto de la es-

tructura pueda mantenerse estable las vigas y se disminuya el riesgo a co-

lapso. Lo que se traduce en la semi rigidez de las uniones entre vigas y co-

lumnas para lograr la ductilidad necesaria durante dado el lugar de cons-

trucción.

Asimismo, este famoso diseñador alemán graficó diversos formas en las

que se puede encofrar y los instrumentos utilizados en el proceso de piso-

near. Además, propone diversas formas de muros y sus dimensiones que

por sus características son más estables. En general, las formas que preva-

lecen son las simétricas dadas sus características sectoriales y seccionales

donde el ancho de la edificación debe estar en proporción con su respectivo

largo.

22

Fig 18. Izquierda: elementos estabilizados de acuerdo a su forma. Derecho:

dimensiones recomendadas. (Minke, G. 2001)

Es necesario señalar, que estas dimensiones pueden variar en dependen-

cia de la zona de construcción así como la topografía y relieve de la misma.

Por otro lado, se ha propuesto diversas medidas para disminuir los efectos

de las fuerzas horizontales provocadas por los sismos dentro de las cuales

el refuerzo vertical dentro del tapial ha demostrado bastante mejoría, por su

anclaje con el cimiento de la estructura a base de piedra u hormigón cicló-

peo. Según Minke, G. (2001) este tipo de refuerzo fue utilizado desde 1978

como parte de un proyecto de investigación en el FEB, el cual se implemen-

tó satisfactoriamente en Guatemala con la Universidad de Francisco Marro-

quín y el Centro de Tecnología Apropiada (CEMAT).

Por otro lado, y tal como la experiencia lo demuestra este tipo de refuerzo

genera en su mayoría pequeñas aberturas verticales las cuales pueden ser

repelladas con barro ; sin embargo, pese a ello la estructura en sí no que-

da afecta. No de la misma manera sucede con el refuerzo horizontal a base

de caña o bambú debido a que no se encuentran anclados a tierra lo que

debilita las secciones entre los mismos.

23

Fig. 19 Secciones, vista en 3D y puesta en marcha respectivamente de los

refuerzos verticales.

24

Asimismo la investigación del diseñador alemán y su trabajo conjunto con

universidades han desarrollado que una de las mejores maneras de cons-

truir con este tipo de material es mediante las siguientes vistas en planta de

las siguientes viviendas.

Fig. 20 Vivienda de tapial reforzada en Alhué, Chile. 2001

Fig. 21 Plantas de viviendas con uniones angulares. Minke, G. 2001

Una de las finales recomendaciones popularizadas respecto a este material

es las construcciones de las uniones de manera angular, así como la utili-

zación de pilastras o contrafuertes es estructuras si refuerzo vertical.

25

3.2.2 TERRÓN

Este material ha sido muy utilizado desde épocas remotas, en este a dife-

rencia del anteriormente descrito no puede ser reforzado verticalmente da-

da la esencia de su técnica. En primer lugar, se debe seleccionar un buen

lugar que servirá de “cantera” de la cual se extraerá cuadros de tierra.

Fig. 22 Extracción de terrones.

Este es el más importante primer paso que el pedazo de tierra escogida

debe ser donde la materia prima esté bien compacta. Asimismo, y como

sucede con la mayoría de la edificaciones bioconstruidas los cimientos utili-

zados pueden ser a base de piedras canteras o hormigón ciclópeo. Segui-

damente, se empieza a apilar cada terrón uno encima de otro sin necesidad

de usar mortero de junta. Además, existe la costumbre de empezar con te-

rrones de gran magnitud hasta terminar con terrones más angostos para

darle la estabilidad a la estructura. Un dato, que no siempre es acertado es

el mito de escoger tierra con bastantes raíces para que dentro de la estruc-

tura esta crezca y se entrelace entre la tierra y otorgarle así al muro un

comportamiento de sistema, aunque los beneficios de esta teoría es bas-

tante valorado, existe la posibilidad; por otro lado, de que las raíces escogi-

das provengan de una planta de gran magnitud, y que sus bases de la

misma crezcan a tal escala que provoquen grandes grietas en el muro. Por

ello, es necesario que la tierra escogida haya sido usada como base de

pastos o césped que es la vegetación ideal para este material.

26

Fig. 23 Elevación del muro a base de terrones.

En países como Australia según Aldertón, C. (sa) se acostumbra poner sal

entre cada capa de terrón para retrasar el proceso de descomposición or-

gánica. Asimismo, es necesario resaltar la importancia de trabajar 3 ó 4 hi-

ladas por jornada diaria para lograr una mayor compactación de este mate-

rial.

El terrón y sus construcciones a base del mismo tienen bastante aceptación

debido a la rapidez de elaboración y construcción respectivamente. De esta

manera, son muchas las evidencias actuales y los proyecto a base del

mismo en zonas donde los riesgos a desastres naturales no son altos, ya

que en cuanto a resistencia respecto a otros biomateriales su calificación es

baja.

Fig. 24 Rancho de Terrón,Fría Montero, Maldonado, Uruguay. (Aldertón, C.)

27

Fig. 25 Edificaciones a base de Terrón en Uruguay.

3.2.3 CUBIERTAS Y VIGAS: CAÑA,TOTORA, PALMA Y BAMBÚ

En este parte tan importante de cualquier edificación, los investigadores

concuerdan en el hecho de que las cubiertas de edificaciones a base de

biomateriales debe poseer una estructura separada a la de los muros debi-

do a que si el pandeo de los muros como sistema ocasiona un derrumbe

del mismo este no ocasione un colapso del techo lo que podría arriesgar

aún más la vida de los que residen en la edificación.

Del mismo modo, es necesario prestar especial atención a los elementos

actuantes como columnas en las estructuras las cuales deben estar correc-

tamente unidas a las vigas que soportarán la cubierta. La cual generalmen-

te está basada en uniones de cañas de bambú o madera encima de las

cuales se recubre con diferentes materiales, tales como, la palma, o la toto-

ra los cuales actúan como aislantes térmicos y no permiten el paso de la-

gua proveniente de las lluvias, este tipo de cubiertas se conoce como te-

chos verdes.

28

En concordancia con la importancia que la cubierta representa para una de-

terminada estructura, diversas asociaciones han planeado e ilustrado las

formas seguras de uniones entre las cubiertas; dentro de esta organizacio-

nes resalta la AIS.

Fig. 26 Posición ideal de las uniones en las esquinas de la madera que sir-

ve como vigas. AIS

Fig. 27 Unión de las vigas con los muros. AIS

29

Fig. 28 Cubierta ideal de pares y nudillos

Fig. 29 Uniones entre los elementos de la Cubierta. AIS

30

Fig. 30 Collage de uniones entre los elementos de la cubierta. Formas ade-

cuadas de unión.

De esta manera, uno de los principales aspectos a rescatar y resaltar es las

uniones boca de pescado que sirven de manera efectiva y ayudan a la in-

terrelación de los elementos y a que las fuerzas interiores se distribuyan de

manera más efectiva. Asimismo, y con la finalidad de usar biomateriales, se

puede utilizar en vez de clavos cuerdas elaboradas de manera manual a

base de totoras u otras plantas que debido a su dureza son eficaces mate-

riales para las juntas.

31

Por otro lado, y respecto a los elementos que componen la cubierta es ne-

cesario detallar las diferentes capas que componen el techo. En primer lu-

gar es necesario situar unas esteras o calaminas encima del sistema em-

pleado en la cubierta. La calamina por ser un material a base de aluminio,

tiende a ser muy caliente en verano y frío en invierno por lo cual se reco-

mienda poner debajo de este capas de material plástico. Por lo cual, se re-

comienda usar esteras las cuales son elaboradas artesanalmente mediante

el trenzado de hilos de caña. Encima de estas esteras, es necesario poner

una capa de aislante térmico función que puede ser cumplida con una capa

media –fina de barro. Asimismo, encima de esta última capa es necesario

poner unas cuantas palmas o totoras las cuales sirven de canaletas que

transportan y ayudan a que el agua proveniente de las lluvias no dañe la

cubierta. Por otro lado, es bueno resaltar que los anchos de los aleros de

las casas deben ser los adecuados para evitar que la inclinación de la di-

rección de las lluvias no dañe los muros de la edificación.

Fig. 31 Esquema constructivo de cubierta a base de bambú y cañas. Mas,

J. Kirshbaum, C. & Tonello, G. (2011)

32

Uno de los finales e importantes aspectos a tener en cuenta respecto a la

cubierta es relación a la materia propia en si como lo es la caña. En base a

la experiencia se sabe que pre a su utilización este material no recibe nin-

gún procedimiento, ni tratamiento lo que ocasiona la degradación del mis-

mo mediante los hongos o algunos insectos que se alimentan del mismo.

De esta manera, y pese a que existen muchos tipos y variedades de esta

planta algunos de los cuales son ínfimamente propensos a este tipo de de-

gradación según Salame, H. (2006) todas la variedades son propensas a

ser atacadas.

Por ello, y como lo plantean Mas, J. Kirshbaum, C. & Tonello, G. (2011) es

necesario tomar las siguientes medidas:

“… luego de seleccionar y cortar las cañas, se las sometió a

procesos de curado utilizando el método de inmersión, sumer-

giéndolas en una solución de aguas, bórax y ácido bórico duran-

te 48 horas. Transcurrido el tiempo estipulado, se las colocó al

aire libre durante 90 días para el proceso de secado.”

Fig. 32 Pileta utilizada para el proceso de inmersión y caña lista

para ser usada. Mas, J. Kirshbaum, C. & Tonello, G. (2011)

La realización de este proceso descrito ayuda a mejorar el tiempo de vida

útil de las cañas usadas en la estructura de la cubierta. Lo cual genera

grandes beneficios tanto económicos como las del ámbito de la salud.

3.2.4 ADOBE Y BLOQUE DE TIERRA-CEMENTO

Dentro de la gran variedad de biomateriales utilizados en la antigüedad

hasta la época contemporánea, el más utilizado y uno de los más estudia-

33

dos es el adobe. De esta manera, hasta la actualidad se han elaborado di-

versos trabajos en pro de la optimización de este material, y de la resisten-

cia de las estructuras a base del mismo a diferentes fenómenos naturales,

entre los cuales al que se le ha hecho más ofensiva es a las actividades

sísmicas.

En primer lugar, es necesario señalar las formas adecuadas de selección

de la materia prima en la que se basa este biomaterial que es la tierra arci-

llosa. Con la finalidad de lograr este propósito se han propuestos diversos

métodos de verificación de calidad dentro de los cuales Blondet, M., Villa,

G. & Brzev, S. (2003) consideran que las más importantes recomendacio-

nes en cuanto a la calidad son: el ensayo de resistencia seca y el ensayo

de rollo. Asimismo, la calidad de la paja y la cantidad usada en la mezcla es

analizada mediante un ensayo de micro fisuración.

Fig. 33 Ensayo de Resistencia seca. (PUCP/CIID, 1995)

Este ensayo fue realizado por la Pontifica universidad Católica del Perú en

conjunto con Instituto Británico de Tecnología en Columbia. En este ensayo

se hacen tres bolitas de barro de aproximadamente 2 cm de diámetro, lue-

go de 24 horas de secado de la misma a condiciones naturales se debe

aplastar las mismas y si alguna de estas es aplastado la tierra escogida no

es la adecuada.

El ensayo de rollo, es más fácil y rápida respecto a la anterior señalada,

debido a que sólo se debe hacer un rollito de barro de 5 a 15 cm, que en

dependencia a su longitud de ruptura se pueden determinadas medidas.

34

Fig. 34 Ensayo del Rollo. CTAR/COPASA, 2002

Fig. 35 Ensayo de Micro fisuración. PUCP/CIID, 1995

35

Este ensayo es de suma importancia dado que el uso inadecuado en cuan-

to a cantidad o calidad de paja puede ocasionar grandes fisuras que termi-

nan en adobes de mala y baja calidad, de lo cual se construyen estructuras

deficientes y propensas a derrumbes.

A partir de la adoptación de estas medidas, es necesario buscar medidas

de solución a las los diversos patrones típicos de daños sufridos en este ti-

po de viviendas.

Fig. 36 Patrones típicos de Daños por terremotos. EERI/LAEE Enciclopedia

Mundial de Vivienda. (www.world-housing.net)

A diferencia del tapial ya descrito en este tipo de construcciones se puede

usar refuerzos verticales y horizontales, a lo que comúnmente se le conoce

como en tremado de muros. Uno de los principales vías de refuerzo es el

uso de cañas dentro de la construcciones de adobe. Por ejemplo el Instituto

nacional de normalización de la vivienda en Perú, desarrollo un sistema de

refuerzo interno para muros. Asimismo en la PUCP se han realizado múlti-

ples investigaciones en edificaciones de adobe reforzadas con caña los

cuales han venido realizándose desde 1972. (Blondet, M., Villa, G. & Brzev,

S.; 2003). Estos experimentos demostraron que las construcciones con re-

fuerzo interno son considerablemente más resistentes que los modelos sin

refuerzo.

36

Fig. 37 Sistema ININVI en Perú.

Fig. 38 Colocación del Refuerzo de Caña en Perú. (Blondet, M., Villa, G. &

Brzev, S.; 2003)

Fig. 39 Colocación de Refuerzo en El Salvador. (Dowling, 2002)

37

Fig. 40 Comportamiento Sísmico de Edificaciones de Adobe. . (Blondet,

M.& Corazao, M.; 1974)

Por otro lado, otra forma de resistencia en los muros es mediante el uso de

pilastras y contrafuertes, así como se señala en la construcción con tapial.

Fig. 41 Uso de Pilastra en construcción de adobe en El Salvador. (Equipo

Maíz, 200)

De esta manera, la IAEE 1986 emitió algunas recomendaciones en cuanto

a las dimensiones necesarias y las proporciones de unas respecto a otras

respecto al uso de contrafuertes y pilastras en las construcciones de adobe.

38

Fig. 42 Guía para la construcción de muros con contrafuertes y pilastras.

IAEE 1986

Por otro lado, uno de las principales formas de otorgar resistencia a los mu-

ros de adobe es mediante una viga corona o collar. Este tipo de viga ayuda

a la resistencia a los terremotos debido a que la estructura se comporta

como un sistema dinámico. Asimismo es necesario que esta viga se en-

cuentre sujeta fuertemente a los muros y que el amarre de la misma sea de

manera segura debido a que la misma posee la función de soportar la car-

ga de la cubierta; del mismo modo, es importante señalar y siguiendo las

bases de este trabajo, que la viga en cuestión puede ser construida de con-

creto o de madera con lo cual se apoya una vez más a la Bioconstrucción.

39

Fig. 43 Construcción de viga collar a base de concreto reforzado en El Sal-

vador (Dowling, 2002)

Fig. 44 Guía para la construcción de viga collar a base de madera. PUCP/

CIID, 1995

Por otro lado, se han realizado estudios mediante los cuales se evidencia

que una vivienda reforzada con viga collar y con conectores tipo tijera entre

el dintel y la viga collar aumentan la resistencia a movimientos telúricos. De

esta manera, el estudio realizado por Blondet, M. & Corazao, M. (1974) la

PUCP evidencian el enunciado declarado. En la Fig. 45 se observa el

comportamiento Sísmico de un Módulo de Adobe sin refuerzo; mientras que

la Fig. 46 es el comportamiento de un Módulo de Adobe con refuerzo inte-

rior (horizontal y vertical), así como la viga collar y los conectores de made-

ra tipo tijeral. Comparando ambas imágenes se aprecia la eficiencia de los

refuerzos mencionados, aunque la estructura reforzada ha sufrido bastan-

40

tes grietas, no ha llegado a su colapso como la Fig, 45 lo cual conlleva a la

salvación de vidas.

Fig. 45 Comportamiento Sísmico de un Módulo de Adobe sin refuerzo.

Fig. 46 Comportamiento Sísmico de un Módulo de adobe con refuerzo inte-

rior, viga collar, y conectores de madera en forma de tijeral.

41

Fig. 47 Guía para la construcción de conectores de madera y su posterior

unión a la viga collar. (Blondet, M., Villa, G. & Brzev, S. 2003)

El uso apropiado de todas estas recomendaciones contribuye a la cons-

trucción de un edificio bioconstruido seguro. Sin embargo, todas las reco-

mendaciones ya señalas solo son posibles a realizar en la fase de cons-

trucción. Por ello, se han logrado idear diversas medidas mediante las cua-

les se puede reforzar viviendas en la prevención de colapsos, otorgándole a

la estructura mayor resistencia a fenómenos y desastres naturales.

Una de las principales y comunes formas de reforzamiento de estructuras

de adobe es mediante las mallas de alambre puestas en la estructura en

forma vertical y horizontal en función de vigas y columnas y posterior re-

lleno de las mismas a base de un mortero elaborado a base de arena y cal.

Fig. 48 Una casa con refuerzo exterior de malla Electrosoldada sin daño en

el primer plano, detrás casa sin refuerzo gravemente afectada por el terre-

moto de Arequipa, Perú en 2001. ( Zegarra y otros, 2001)

42

43

Fig. 49 Collage de pasos en la instalación de la malla en edificio biocons-

truido. AIS

Asimismo, existen otros tipos de rehabilitación a edificios bioconstruidos a

base de madera, dentro de los la Agencia Colombiana de Ingeniería Sísmi-

ca señala como las más importantes:

44

Fig. 50 Rehabilitación de viviendaa base de madera AIS

El adobe como biomaterial es absolutamente seguro y aún más si se to-

man en cuenta las recomendaciones señaladas. De esta manera, y bio ve-

cinos de este material es el bloque de tierra cemento que según Mas, J.,

Kirshbaum, C. & Tonello, G. (2011) afirmaron que:

“… los bloques fabricados, tienen un valor de resistencia pro-

dmedio de 55,90kg/cm2. Considerando que la resistencia míni-

ma de una ladrillo cerámico común clase C es de 60 kg/cm2, los

valores resistencia son adecuados.”

45

Fig. 51 Elaboración de bloques cemento y ensayos de resistencia a com-

presión de los mismos. Mas, J., Kirshbaum, C. & Tonello, G. (2011

46

VALORACIÓN ECONÓMICA Y APORTE SOCIAL

La sociedad actual y las relaciones económicas que esta engloba son una constante

en toda planificación de gobierno. De esta manera, una masiva generalización de folle-

tos con instrucción acerca de la bioconstrucción generaría un costo ínfimo en compa-

ración con los beneficios que se generarían a partir del mismo. En primer lugar, el por-

centaje de importaciones de materiales industrializados utilizados en la construcción

de viviendas de una o dos plantas se vería reducido lo que generaría un gran ahorra

tanto al Estado como a las familias en sí mismas. Asimismo, y además del evidente

beneficio ambiental que genera la técnica de bioconstrucción en sí misma, ayudaría a

la sociedad a recuperar sus valores históricos y culturales que la técnica conlleva dada

la base histórica de la misma.

Por otro lado, la generalización, transmisión e instrucción de esta técnica de construc-

ción abriría las puertas a nuevos proyectos ingenieriles pro ambientalistas que incre-

mentaría la participación y motivación de nuevos ingenieros en el desarrollo de iniciati-

vas que colaboren y hagan hincapié en la lucha ecológica que lleva el mundo consigo

respetando los valores y la cultura de los pueblos, especialmente de aquellos asenta-

mientos humanos que se encuentran en la rural y periurbana área de las ciudades.

47

CONCLUSIONES Y RECOMENDACIONES

Pese a la modernización de las técnicas y materiales de construcción, existen técni-

cas ecológicas mediante las cuales es posible mejorar y disminuir ese 50 % de res-

ponsabilidad en contaminación que se le atribuye al área de la construcción. Una de

las formas recientemente rediseñadas es la bioconstrucción, que se plantea como una

necesidad económica, social y ambiental para la sociedad, y por la mejoraría de la

calidad de vida de nuestro planeta.

La bioconstrucción como método histórico de construcción es uno de los más impor-

tantes dada la cantidad de personas que viven en este tipo de edificación; por lo cual,

es necesaria la correcta información e instrucción de los pobladores para el correcto

uso de las técnicas de bioconstrucción, así como las formas posibles de optimización

de las mismas.

Dada la diversidad de biomateriales disponibles para la bioconstrucción son elementa-

les las recomendaciones que se resaltan dado cualquier biomaterial como: la necesi-

dad de independencia de la estructura de la cubierta respecto al sistema de muros y

cimientos, correcta y apropia recolección de materia prima con los métodos y ensayos

propuestos, refuerzo interno en las estructuras bioconstruidas ya sea de manera verti-

cal y/o horizontal. De esta manera, la viabilidad y prosperidad de la bioconstrucción se

ve ampliamente respaldada al existir evidencias circunstanciales de efectividad de los

nuevos métodos de reforzamiento de los estos sistemas de edificación. Finalmente, es

necesario resaltar la importancia de nuevas investigación e implementación de nuevas

técnicas de refuerzo para así progresivamente lograr estructuras mucho más resisten-

te para que la población opte por este tipo de bioconstrucción.

48

BIBLIOGRAFÍA

Alderton, C.(sd) Bioconstrucción: construcción con materiales naturales. Técni-

ca terrón.

Arquetea, J. (1999) . Caracterización de los materiales usados en construccio-

nes de viviendas en el área rural y peri urbana. Universidad de San Carlos de

Guatemala.

Asociación Colombiana de Ingeniería Sísmica (sd) Manual para la rehabilita-

ción de viviendas construidas en adobe y tapia pisada. Fondo para la recons-

trucción y desarrollo social del eje cafetero: Colombia.

Bariola, J., Blodent, M., Torrealv, D. & Vargas, J. (1985) Comportamientos di-

námico de viviendas de adobe. Proyecto financiado por la Agencia Internacio-

nal para el desarrollo. PUCP: Lima

Blondet, M., Villa, G. & Loaiza, C.(2003). ¿Viviendas sismo resistentes de tie-

rra?: una visión al futuro. XIV Congreso Nacional de Ingeniería Civil: Iquitos.

Caballero, A. (2012) Bioconstrucciones: lo viejo visto con ojos nuevo. Revista

Horizontes Nº4 Otoño: Uruguay.

Carranza, M. (2010) ¿Existen técnicas adecuadas de construcción con tierra

para países símicos? ETSAB universidad UPC, Centro Fundación politécnica

de Catalunya: Barcelona.

CENAPRED. Métodos de refuerzo para la vivienda rural de autoconstrucción.

Ciudad de México: México.

Corazao, M. & Blondet. M. (1974). Estudio Experimental del comportamiento estructural

de las construcciones de adobe frente a solicitaciones sísmica. Banco peruano de los

constructores: Lima.

CTAR/COPASA, GTZ, PUCP, SENCICO (2002) ¿Terremoto? ¡Mi casa sí resiste!. Are-

quipa, Perú.

Dowling, D.M., (forthcoming). Adobe Housing in El Salvador: Earthquake Per-

formance and Seismic Improvement, Geological Society of America Special

Paper on Natural Hazards in El Salvador.

EERI (2003) Earthquake Engineering Research Institute. World Housing Ency-

clopedia: Oakland, CA.

Equipo Maíz. (2001) La casa de adobe sismo resistente. Asociación Equipo

Maíz: El Salvador.

Etchebarne, R. (2012) Casa de tierra para un desarrollo sustentable, experien-

cia en Uruguay. Revista Horizontes Nº 4 Otoño: Uruguay.

Houben, H. & Guillaud,H. (1984). Earth Construction. Primer: Bruselas.

49

IAEE (1986) Guidelines for Earthquake Resistant Non-Engineered Construction

International Association for Earthquke Engineering, Tokio, Japan.

ININVI (Instituto Nacional de Investigación y Normalización de viviendas en Pe-

rú): Construcciones de adobe.

Jebenz, P. (sd) Contribuir al futuro: arquitectura sosteni-

ble=bioclimatismo+bioconstrucción. Alemania

Martinez, I., Etxeberria, M., Pavón, E& Díaz, N. (2012) Evaluación de morteros

de albañilería elaborados con áridos recilados mixtos con diferentes procesos

de obtención. RCI. Vol. III Nº 2 mayo-Agosto: La Habana.

Mas, J., Kirshbaum,C. & Tonello, G.(2011) Vivienda rural en suelo cemento: in-

vestigación, trasferencia y autoconstrucció. En: Construcción con tierra. Tecno-

logía y arquitectura. Congreso de arquitectura de tierra en Cuenca de Campos

2010/2011. Valladolid: Cátedra Juan Villanueva: Universidad de Valladolid.

Minke, G. (2001) Manual de construcción para viviendas antisísmicas de tierra.

Universidad de Kassel: Alemania.

50

ANEXOS

ANEXO 01

51

ANEXO 02

PRÁCTICA SUSTENTABLE REALIZADA EL 1 DE OCTUBRE DEL 2011 EN EL VA-

LLE DE OAXACA, MÉXICO. LA MISMA FUE REALIZADA POR LOS PARTICIPAN-

TES DEL COLOQUIO DE ARQUITECTURA REGIONAL Y SUSTENTABLE FOMEN-

TADA POR LA ASOCIACIÓN HORIZONTES DE ARQUITECTURA.

52

53

54

ANEXO 03

CARTA COMPROMISO REALIZADA EN OAXACA, MÉXICO.

55

56