bellevue apartments, belfast 19-0101 precast design

151
Project Bellevue Apartments, Belfast Job Ref. 19-0101 Section Precast Design Statement Sheet no./rev. 1 of 4 Author M Magill Date 01/01/2019 Revision B Date 24/04/2019 Checked by M Chidiac Date 24/04/2019 1.0 General 1.1 This design statement covers the precast concrete elements at the Bellevue Apartments project 1.2 The project consists of one apartment block rising from insitu concrete foundations 1.3 The block is 14.7m tall (4 storeys + stair core overrun) 1.4 Footprint is 36.115m x 14.32m 1.5 All construction is new build 2.0 Reference Information 2.1 Clients Development Brief 2.2 Consulting Engineers Structural Design Statement 2.3 Consulting Engineers Precast Concrete Performance Specification 3.0 Basis of Design 3.1 BS EN 1990 (EC0) Basis of structural design 3.2 BS EN 1991 (EC1) Actions on structures 3.3 BS EN 1992 (EC2) Design of concrete structures 3.4 BS EN 1993 (EC3) Design of steel structures 3.5 National Annexes to relevant Eurocodes 3.6 PD6687 Background paper to the National Annexes to BS EN 1992-1 and BS EN 1992-3 3.7 BS EN 13369 Common rules for precast concrete products 3.8 BS EN 14992 Precast concrete products – Wall elements 3.9 BS EN 1168 Precast concrete products – Hollow core slabs 3.10 BS EN 14843 Precast concrete products – Stairs 3.11 BS EN 12354 Building acoustics 3.12 BS 8297 Design, manufacture and installation of architectural precast concrete 3.13 BS 8110 Structural use of concrete 3.14 BS 8500 Concrete – Complementary British Standard to BS EN 206 3.15 BS 5975 Code of practice for temporary works procedures and the permissible stress design of falsework 3.16 Non-contradictory published codes of practice and standards 4.0 Acoustic performance – calculated values BS EN 13369, clause 4.3.5 and BS EN 12354-1, Annex B and C 4.1 Weighted sound reduction index (dB) of 160mm wall Rw = 54 4.2 Weighted sound reduction index (dB) of 200mm wall Rw = 58 4.3 Weighted sound reduction index (dB) of 250mm wall Rw = 61 4.4 Weighted sound reduction index (dB) of 250mm hollowcore slab Rw = 52 5.0 Thermal performance 5.1 Sandwich wall panels and insulated cladding panels to provide a u-value of 0.19W/m 2 K 5.2 Any reduction in cavity and insulation thickness at door thresholds and window returns to be included within the door & window u-value calculation

Upload: khangminh22

Post on 16-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Project

Bellevue Apartments, Belfast

Job Ref.

19-0101

Section

Precast Design Statement

Sheet no./rev.

1 of 4

Author

M Magill

Date

01/01/2019

Revision

B

Date

24/04/2019

Checked by

M Chidiac

Date

24/04/2019

1.0 General

1.1 This design statement covers the precast concrete elements at the Bellevue Apartments project

1.2 The project consists of one apartment block rising from insitu concrete foundations

1.3 The block is 14.7m tall (4 storeys + stair core overrun)

1.4 Footprint is 36.115m x 14.32m

1.5 All construction is new build

2.0 Reference Information

2.1 Clients Development Brief

2.2 Consulting Engineers Structural Design Statement

2.3 Consulting Engineers Precast Concrete Performance Specification

3.0 Basis of Design

3.1 BS EN 1990 (EC0) Basis of structural design

3.2 BS EN 1991 (EC1) Actions on structures

3.3 BS EN 1992 (EC2) Design of concrete structures

3.4 BS EN 1993 (EC3) Design of steel structures

3.5 National Annexes to relevant Eurocodes

3.6 PD6687 Background paper to the National Annexes to BS EN 1992-1 and BS EN 1992-3

3.7 BS EN 13369 Common rules for precast concrete products

3.8 BS EN 14992 Precast concrete products – Wall elements

3.9 BS EN 1168 Precast concrete products – Hollow core slabs

3.10 BS EN 14843 Precast concrete products – Stairs

3.11 BS EN 12354 Building acoustics

3.12 BS 8297 Design, manufacture and installation of architectural precast concrete

3.13 BS 8110 Structural use of concrete

3.14 BS 8500 Concrete – Complementary British Standard to BS EN 206

3.15 BS 5975 Code of practice for temporary works procedures and the permissible stress design of falsework

3.16 Non-contradictory published codes of practice and standards

4.0 Acoustic performance – calculated values BS EN 13369, clause 4.3.5 and BS EN 12354-1, Annex B and C

4.1 Weighted sound reduction index (dB) of 160mm wall Rw = 54

4.2 Weighted sound reduction index (dB) of 200mm wall Rw = 58

4.3 Weighted sound reduction index (dB) of 250mm wall Rw = 61

4.4 Weighted sound reduction index (dB) of 250mm hollowcore slab Rw = 52

5.0 Thermal performance

5.1 Sandwich wall panels and insulated cladding panels to provide a u-value of 0.19W/m2K

5.2 Any reduction in cavity and insulation thickness at door thresholds and window returns to be included within

the door & window u-value calculation

Project

Bellevue Apartments, Belfast

Job Ref.

19-0101

Section

Precast Design Statement

Sheet no./rev.

2 of 4

Author

M Magill

Date

01/01/2019

Revision

B

Date

24/04/2019

Checked by

M Chidiac

Date

24/04/2019

6.0 Structural Element Philosophies

6.1 Shear walls are designed as vertical cantilevers

6.2 All walls are designed as pinned and braced perpendicular to the minor axis

6.3 All floor slabs are designed as simply supported

6.4 Stair flights span simply supported between landings/supports

6.5 Landings span simply supported between supports perpendicular to stair flights

7.0 Lateral Stability

7.1 The precast floor slabs are designed to act as a rigid diaphragm at each level

7.2 The floor diaphragm is tied to and transfers horizontal loading to the shear walls at each level

7.3 All lateral loads are resisted by shear walls

7.4 Internal walls and external sandwich walls are used as shear walls to provide stability

8.0 Robustness

8.1 The building is considered as Class 2B

8.2 Disproportionate collapse mitigated by provision of vertical and horizontal ties

9.0 Loading

9.1 Permanent, Levels 01 - 03

9.1.1 Finishes 0.3kN/m2

9.1.2 100mm screed 2.4kN/m2

9.1.3 Ceiling and services 0.5kN/m2

9.2 Permanent, Roof

9.2.1 Ballast 1.6kN/m2

9.2.2 Single ply membrane 0.2kN/m2

9.2.3 Insulation 0.15kN/m2

9.2.4 100mm screed 2.4kN/m2

9.2.5 Ceiling and services 0.5kN/m2

9.3 Variable, Levels 01 - 03

9.3.1 Apartments (inc. partitions) 2.5kN/m2

9.3.2 Corridors 3kN/m2

9.3.3 Stairs 3kN/m2

9.4 Variable, Roof

9.4.1 Access 1.5kN/m2

9.4.2 Snow 0.7kN/m2

9.5 Wind

9.5.1 Basic wind speed 25.5m/s

9.5.2 Site altitude 60m

9.5.3 Nearest distance to the sea 2km

Project

Bellevue Apartments, Belfast

Job Ref.

19-0101

Section

Precast Design Statement

Sheet no./rev.

3 of 4

Author

M Magill

Date

01/01/2019

Revision

B

Date

24/04/2019

Checked by

M Chidiac

Date

24/04/2019

9.6 Geometric imperfections

9.6.1 Equivalent horizontal forces are applied to the structure due to geometric imperfections

10.0 Serviceability

10.1 Long term deflection of stairs, landings and floor slabs limited to span/250

10.2 Minimum natural frequency of floor slabs 4Hz

10.3 Internal exposure class for all elements is XC1

10.4 External exposure class for all elements is XC3

10.5 Cracking limited to 0.3mm

10.6 Durability in accordance with BS8500

10.7 Design life for all precast elements is 50 years

10.8 Fire resistance REI 90 for wall panels (wall exposed on one side only)

10.9 Fire resistance REI 90 for floor slabs

10.10 Fire resistance R 60 for stair flights and landings

10.11 Wind acceleration limited to threshold of perceptibility equal to 1.5% g = 0.14715m/s2

10.12 Building sway limited to height/750 for the entire precast structure and height/300 over any single storey

11.0 Material Characteristics

11.1 Typical precast concrete strength for load bearing walls C50/60, density 2450kg/m3

11.2 Typical precast concrete strength for hollowcore slabs C40/50, density 2400kg/m3

11.3 Typical precast concrete strength for solid slabs C32/40, density 2450kg/m3

11.4 Typical precast concrete strength for stairs and landings C32/40, density 2450kg/m3

11.5 Typical insitu concrete strength C32/40, density 2400kg/m3

11.6 Typical grout strength C40/50, density 2100kg/m3

11.7 Typical structural mortar strength C40/50, density 2095kg/m3

11.8 Typical reinforcement strength 500N/mm2 (B500B Type 2 deformed)

11.9 Tie reinforcement strength 500N/mm2 (B500C Type 2 deformed)

11.10 Prestressing strand strength 1860N/mm2

12.0 Surface Finish

12.1 Internal precast wall elements that are exposed to view are to have a surface finish that is suitable for direct

decoration, reference Type C description given in Clause 6.2.7.3 of BS8110-1:1997

12.2 External precast cladding and the external leaf of each type of sandwich panel is to have an approved

benchmark sample with colour, consistency and finish agreed by the client

12.3 Surface finish of precast slab soffits covered by a suspended ceiling is Type A, reference description given in

Clause 6.2.7.3 of BS8110-1:1997

12.4 Surface finish of precast stair and landing soffits is Type C, reference description given in Clause 6.2.7.3 of

BS8110-1:1997

Project

Bellevue Apartments, Belfast

Job Ref.

19-0101

Section

Precast Design Statement

Sheet no./rev.

4 of 4

Author

M Magill

Date

01/01/2019

Revision

B

Date

24/04/2019

Checked by

M Chidiac

Date

24/04/2019

13.0 Manufacturing Tolerance

13.1 BS EN 13369 Common rules for precast concrete products

13.2 BS EN 14992 Precast concrete products – Wall elements

13.3 BS EN 1168 Precast concrete products – Hollow core slabs

13.4 BS EN 14843 Precast concrete products – Stairs

13.5 BS 8297 Design, manufacture and installation of architectural precast concrete

13.6 National Structural Concrete Specification for Building Construction 4th Edition

14.0 Erection Tolerance

14.1 BS EN 13670 Execution of concrete structures

14.2 National Structural Concrete Specification for Building Construction 4th Edition

14.3 BS 5606 Accuracy in building

AA

AB

AC

AD

A1

A3

A4

A5

A6

A7

2720

5025

5025

5025

5025

A8

5025

A9

4400

A10

2400

A2

930

608515756115

2200

1700

2200

1700

200

200

200

800

800

100

4286 1829

1115

2520

3530 2500

Code :- 200 - RA - 1005Hanger Mk. 00-000-H1

Hanger Mk. 00-000-H2Code :- 200 - LA - 1100

Hanger Mk. 00-000-H1Code :- 200 - 2A - 1005

CREAGH - TYPICAL HANGER BRACKET DETAILS

Creagh Concrete Products Ltd. Prestressed Flooring Technical Manual TECHNICAL INFORMATION

Page 11 of 65

A.4 Load/Span Characteristics The company produce a range of floor depths (listed below), which in turn are available in a

variety of strand patterns, allowing a wide range of load carrying capabilities at various spans.

Load/span tables for each of the units listed below with various strand patterns are shown in

Appendix A of this Manual. Slab profiles and strand patterns are shown in Appendix B.

Available depths: Self weight (kN/m2)

(un-grouted)

Self weight (kN/m2)

(grouted)

Maximum Handling Length (m)

80mm – solid 1.92 1.96 4.25

90mm – solid 2.16 2.20 5.1

100mm – solid 2.36 2.4 6.5

110mm – solid 2.6 2.64 7.4

150mm - solid 3.51 3.6 8.0

150mm – hollowcore (11 core) 2.54 2.63 7.4

150mm dense – hollowcore (11 core) 2.95 3.04 7.4

200mm – hollowcore (11 core) 3.11 3.26 9.4

250mm – hollowcore (11 core) 3.76 3.95 10.8

250mm – hollowcore (6 core) 3.44 3.63 10.8

300mm – hollowcore (11 core) 4.47 4.72 13.5

300mm – hollowcore (6 core) 3.89 4.13 13.5

350mm – hollowcore (6 core) 4.23 4.53 15.0

400mm – hollowcore (6 core) 4.58 4.93 16.0

Table A.4.1

Typical load/spans for all slab types are shown in the following Table A.4.2.

Creagh Concrete Products Ltd. Prestressed Flooring Technical Manual TECHNICAL INFORMATION

Page 44 of 65

A.22 Rip Units (narrow widths)

The standard widths of a full unit is 1197mm. Eleven-core units, see Figure A.22.1, are restricted

to the following narrow widths:

1100, 1090, 1080, 1070

1000, 990, 980, 970

900, 890, 880, 870

800, 790, 780, 770

300 (dependant on depth and O/A length of unit)

700, 690, 680, 670

600, 590, 580, 570

500, 490, 480, 470

400, 390, 380, 370

Figure A.22.1

Six-core units, see Figure A.22.2, are restricted to the following narrow widths:

1050, 1040, 1030, 1010, 1000

870, 860, 850, 840, 830,820

690, 680, 670, 660, 650,640

510, 500,490, 480, 470, 460

330, 320, 310, 300, 290,280

330-280 (dependant on depth and O/A length of unit)

Figure A.22.2

PRESTRESSED HOLLOWCORE FLOORING

STANDARD REINFORCEMENT PATTERNS AND

CONCRETE COVER PROFILES

Slab Depth Reinforcement Pattern Concrete Cover Profile

100mm – solid 8x9.3mm ∅ 30mm 10x9.3mm ∅ 30mm

110mm – solid 8x9.3mm ∅ 30mm 10x9.3mm ∅ 30mm 12x9.3mm ∅ 35mm

150mm – solid 8x9.3mm ∅ 35mm 10x9.3mm ∅ 35mm 12x9.3mm ∅ 35mm

200mm – solid 8x9.3mm ∅ 35mm 10x9.3mm ∅ 35mm 12x9.3mm ∅ 35mm 4x9.3mm + 6x12.5mm ∅ 35mm

150mm – hollowcore (11 core) 8x9.3mm ∅ 35mm 10x9.3mm ∅ 35mm 12x9.3mm ∅ 35mm

150mm dense – hollowcore (11 core) 8x9.3mm ∅ 35mm 10x9.3mm ∅ 35mm 12x9.3mm ∅ 35mm

200mm – hollowcore (11 core) 8x9.3mm ∅ 35mm 10x9.3mm ∅ 35mm 12x9.3mm ∅ 35mm 4x9.3mm + 6x12.5mm ∅ 35mm

250mm – hollowcore (6 core) 7x9.3mm ∅ 35mm 5x9.3mm + 2x12.5mm ∅ 35mm 7x12.5mm ∅ 35mm 2x9.3mm + 7x12.5mm ∅ 35mm 5x9.3mm + 7x12.5mm ∅ 35mm

300mm – hollowcore (6 core) 7x9.3mm ∅ 40mm 5x9.3mm + 2x12.5mm ∅ 40mm 7x12.5mm ∅ 40mm 2x9.3mm + 7x12.5mm ∅ 40mm 5x9.3mm + 7x12.5mm ∅ 40mm 7x9.3mm + 7x12.5mm ∅ 40mm

350mm – hollowcore (6 core) 5x9.3mm + 2x12.5mm ∅ 40mm 7x12.5mm ∅ 40mm 5x9.3mm + 7x12.5mm ∅ 40mm 7x9.3mm + 7x12.5mm ∅ 40mm 4x9.3mm + 10x12.5mm ∅ 40mm

400mm – hollowcore (6 core) 5x9.3mm + 2x12.5mm ∅ 40mm 7x12.5mm ∅ 40mm 5x9.3mm + 7x12.5mm ∅ 40mm 7x9.3mm + 7x12.5mm ∅ 40mm 4x9.3mm + 10x12.5mm ∅ 40mm

450mm – hollowcore (6 core) 5x9.3mm + 2x12.5mm ∅ 40mm 7x12.5mm ∅ 40mm 5x9.3mm + 7x12.5mm ∅ 40mm 7x9.3mm + 7x12.5mm ∅ 40mm 4x9.3mm + 10x12.5mm ∅ 40mm 2x9.3mm + 12x12.5mm ∅ 40mm

500mm – hollowcore (6 core) 5x9.3mm + 2x12.5mm ∅ 40mm 7x12.5mm ∅ 40mm 5x9.3mm + 7x12.5mm ∅ 40mm 7x9.3mm + 7x12.5mm ∅ 40mm 4x9.3mm + 10x12.5mm ∅ 40mm 2x9.3mm + 12x12.5mm ∅ 40mm

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 1 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 337.0 kN Serviceability moment of resistance 61.67 kNm

Eccentricity 58.2 mm Ultimate moment of resistance 74.98 kNm

Total losses 17.0 % Ultimate shear resistance (Vrd,c) 132.2 kN

Prestress at transfer at bottom 5.98 PASS Ultimate shear resistance (Vrd,cr) 70.4 kN

Prestress at transfer at top -0.91 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 8.08 8.35 8.08 29.66 17.23 9.15 8.99

2.0 7.38 7.68 7.38 24.82 14.66 8.93 8.66

3.0 6.82 7.14 6.82 21.29 12.79 8.72 8.37

4.0 6.37 6.71 6.37 18.64 11.39 8.53 8.11

5.0 6.00 6.34 6.00 16.58 10.29 8.36 7.88

6.0 5.68 6.03 5.68 14.94 9.41 8.19 7.67

7.0 5.41 5.76 5.41 13.59 8.69 8.04 7.48

8.0 5.18 5.52 5.18 12.47 8.09 7.90 7.31

9.0 4.97 5.31 4.97 11.52 7.58 7.77 7.15

10.0 4.79 5.12 4.79 10.71 7.14 7.64 7.00

200-11 hollow core. (6 x 9.3 strands)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 2 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 438.4 kN Serviceability moment of resistance 73.80 kNm

Eccentricity 58.2 mm Ultimate moment of resistance 98.17 kNm

Total losses 19.1 % Ultimate shear resistance (Vrd,c) 137.4 kN

Prestress at transfer at bottom 7.92 PASS Ultimate shear resistance (Vrd,cr) 80.7 kN

Prestress at transfer at top -1.21 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.14 9.14 9.26 30.83 19.65 9.66 9.38

2.0 8.40 8.40 8.45 25.80 16.72 9.42 9.02

3.0 7.81 7.81 7.82 22.13 14.57 9.19 8.71

4.0 7.30 7.33 7.30 19.37 12.96 8.99 8.43

5.0 6.88 6.93 6.88 17.23 11.70 8.80 8.19

6.0 6.52 6.59 6.52 15.52 10.70 8.62 7.96

7.0 6.21 6.29 6.21 14.12 9.87 8.46 7.76

8.0 5.94 6.03 5.94 12.96 9.18 8.30 7.58

9.0 5.70 5.80 5.70 11.97 8.60 8.16 7.41

10.0 5.49 5.59 5.49 11.13 8.10 8.02 7.25

200-11 hollow core. (8 x 9.3 strands)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 3 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70.00 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 495.7 kN Serviceability moment of resistance 79.78 kNm

Eccentricity 57.0 mm Ultimate moment of resistance 108.74 kNm

Total losses 20.0 % Ultimate shear resistance (Vrd,c) 135.7 kN

Prestress at transfer at bottom 8.92 PASS Ultimate shear resistance (Vrd,cr) 86.4 kN

Prestress at transfer at top -1.26 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.40 9.51 9.75 30.46 20.96 9.90 9.56

2.0 8.74 8.74 8.90 25.49 17.82 9.64 9.19

3.0 8.12 8.12 8.23 21.86 15.52 9.41 8.87

4.0 7.62 7.62 7.69 19.14 13.80 9.20 8.58

5.0 7.20 7.20 7.24 17.02 12.45 9.00 8.33

6.0 6.85 6.85 6.86 15.33 11.38 8.82 8.10

7.0 6.54 6.54 6.54 13.95 10.50 8.65 7.89

8.0 6.26 6.27 6.26 12.80 9.76 8.49 7.70

9.0 6.01 6.03 6.01 11.83 9.14 8.34 7.53

10.0 5.78 5.81 5.78 11.00 8.60 8.20 7.37

200-11 hollow core. (2 x 9.3 + 4 x 12.5 strands)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 4 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70.00 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 534.9 kN Serviceability moment of resistance 85.71 kNm

Eccentricity 58.2 mm Ultimate moment of resistance 117.88 kNm

Total losses 21.0 % Ultimate shear resistance (Vrd,c) 142.3 kN

Prestress at transfer at bottom 9.82 PASS Ultimate shear resistance (Vrd,cr) 91.2 kN

Prestress at transfer at top -1.50 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.40 9.86 10.15 31.92 22.07 10.15 9.74

2.0 9.05 9.05 9.27 26.72 18.75 9.88 9.36

3.0 8.41 8.41 8.57 22.91 16.33 9.64 9.03

4.0 7.89 7.89 8.01 20.05 14.51 9.42 8.74

5.0 7.46 7.46 7.55 17.84 13.09 9.22 8.48

6.0 7.09 7.09 7.15 16.07 11.96 9.03 8.24

7.0 6.76 6.76 6.81 14.62 11.03 8.85 8.03

8.0 6.48 6.48 6.52 13.41 10.25 8.68 7.83

9.0 6.23 6.23 6.26 12.39 9.59 8.53 7.66

10.0 6.01 6.01 6.03 11.52 9.02 8.38 7.49

200-11 hollow core. (10 x 9.3 strands)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 5 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70.00 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 589.5 kN Serviceability moment of resistance 91.54 kNm

Eccentricity 57.2 mm Ultimate moment of resistance 126.74 kNm

Total losses 21.9 % Ultimate shear resistance (Vrd,c) 140.9 kN

Prestress at transfer at bottom 10.81 PASS Ultimate shear resistance (Vrd,cr) 96.4 kN

Prestress at transfer at top -1.55 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.40 10.19 10.53 31.60 23.28 10.37 9.91

2.0 9.36 9.36 9.62 26.45 19.77 10.10 9.52

3.0 8.70 8.70 8.89 22.67 17.20 9.85 9.18

4.0 8.16 8.16 8.31 19.85 15.28 9.62 8.88

5.0 7.71 7.71 7.83 17.66 13.78 9.41 8.61

6.0 7.32 7.32 7.42 15.91 12.58 9.21 8.37

7.0 6.99 6.99 7.07 14.47 11.60 9.03 8.15

8.0 6.70 6.70 6.76 13.28 10.78 8.86 7.95

9.0 6.44 6.44 6.49 12.27 10.08 8.70 7.77

10.0 6.21 6.21 6.25 11.41 9.48 8.55 7.60Impo

sed load

v clear spa

n table

200-11 hollow core. (4 x 9.3 + 4 x 12.5 strands)

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 6 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70.00 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 626.5 kN Serviceability moment of resistance 97.41 kNm

Eccentricity 58.2 mm Ultimate moment of resistance 134.67 kNm

Total losses 22.9 % Ultimate shear resistance (Vrd,c) 146.9 kN

Prestress at transfer at bottom 11.70 PASS Ultimate shear resistance (Vrd,cr) 100.8 kN

Prestress at transfer at top -1.78 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.40 10.52 10.86 32.95 24.30 10.60 10.09

2.0 9.40 9.65 9.92 27.57 20.63 10.32 9.69

3.0 8.96 8.96 9.17 23.64 17.95 10.07 9.34

4.0 8.40 8.40 8.57 20.69 15.93 9.83 9.03

5.0 7.94 7.94 8.07 18.41 14.37 9.61 8.75

6.0 7.54 7.54 7.65 16.58 13.11 9.41 8.51

7.0 7.20 7.20 7.29 15.08 12.09 9.22 8.28

8.0 6.90 6.90 6.97 13.84 11.23 9.05 8.08

9.0 6.63 6.63 6.70 12.79 10.50 8.88 7.89

10.0 6.39 6.39 6.45 11.89 9.87 8.73 7.64

200-11 hollow core. (12 x 9.3 strands)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section 7 Name

Date 5/2/15

Sectional & material data

Depth of unit 200 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 474 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 151641 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 668.32 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 97.9 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 6.828 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 6.545 mm3 Initial stressing of strand 70.00 %

Self weight of unit 3.03 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 746.7 kN Serviceability moment of resistance 111.55 kNm

Eccentricity 57.1 mm Ultimate moment of resistance 154.40 kNm

Total losses 25.1 % Ultimate shear resistance (Vrd,c) 146.8 kN

Prestress at transfer at bottom 14.07 PASS Ultimate shear resistance (Vrd,cr) 112.4 kN

Prestress at transfer at top -2.00 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.40 11.26 11.63 32.93 26.96 11.13 10.48

2.0 9.40 10.33 10.63 27.56 22.87 10.83 10.05

3.0 9.40 9.59 9.83 23.63 19.88 10.56 9.68

4.0 8.99 8.99 9.18 20.68 17.64 10.30 9.36

5.0 8.49 8.49 8.65 18.40 15.89 10.07 9.07

6.0 8.06 8.06 8.20 16.57 14.49 9.85 8.80

7.0 7.69 7.69 7.81 15.08 13.35 9.65 8.57

8.0 7.37 7.37 7.47 13.83 12.39 9.47 8.24

9.0 7.08 7.08 7.18 12.78 11.58 9.29 7.92

10.0 6.83 6.83 6.91 11.88 10.89 9.12 7.64Impo

sed load

v clear spa

n table

200-11 hollow core. (4 x 9.3 + 6 x 12.5 strands)

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section A-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 440.7 kN Serviceability moment of resistance 96.06 kNm

Eccentricity 63.3 mm Ultimate moment of resistance 115.46 kNm

Total losses 17.2 % Ultimate shear resistance (Vrd,c) 113.1 kN

Prestress at transfer at bottom 6.26 PASS Ultimate shear resistance (Vrd,cr) 65.0 kN

Prestress at transfer at top -0.19 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 9.72 10.12 9.72 23.87 16.14 10.90 10.78

2.0 8.94 9.35 8.94 20.28 14.07 10.66 10.41

3.0 8.30 8.73 8.30 17.53 12.49 10.43 10.08

4.0 7.78 8.22 7.78 15.44 11.28 10.22 9.79

5.0 7.34 7.79 7.34 13.80 10.33 10.03 9.53

6.0 6.97 7.42 6.97 12.48 9.55 9.84 9.29

7.0 6.65 7.10 6.65 11.40 8.91 9.67 9.07

8.0 6.37 6.82 6.37 10.49 8.37 9.51 8.87

9.0 6.12 6.56 6.12 9.72 7.90 9.36 8.69

10.0 5.90 6.34 5.90 9.05 7.50 9.22 8.52

250-6 hollow core. (7 x 9.3 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section B-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 519.6 kN Serviceability moment of resistance 109.11 kNm

Eccentricity 66.1 mm Ultimate moment of resistance 139.47 kNm

Total losses 18.7 % Ultimate shear resistance (Vrd,c) 114.4 kN

Prestress at transfer at bottom 7.64 PASS Ultimate shear resistance (Vrd,cr) 71.8 kN

Prestress at transfer at top -0.40 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.69 10.79 10.69 24.14 17.71 11.33 11.11

2.0 9.84 9.97 9.84 20.51 15.43 11.07 10.72

3.0 9.13 9.31 9.13 17.72 13.68 10.83 10.37

4.0 8.56 8.76 8.56 15.61 12.35 10.61 10.07

5.0 8.08 8.30 8.08 13.95 11.30 10.40 9.79

6.0 7.67 7.90 7.67 12.62 10.44 10.21 9.54

7.0 7.32 7.56 7.32 11.52 9.73 10.02 9.31

8.0 7.01 7.26 7.01 10.60 9.14 9.85 9.10

9.0 6.73 6.99 6.73 9.82 8.63 9.69 8.91

10.0 6.49 6.74 6.49 9.15 8.18 9.54 8.73

250-6 hollow core. (5 x 9.3 + 2 x 12.5 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

Impo

sed load

v clear spa

n table

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section C-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 632.5 kN Serviceability moment of resistance 128.32 kNm

Eccentricity 68.8 mm Ultimate moment of resistance 173.49 kNm

Total losses 20.9 % Ultimate shear resistance (Vrd,c) 115.8 kN

Prestress at transfer at bottom 9.68 PASS Ultimate shear resistance (Vrd,cr) 81.2 kN

Prestress at transfer at top -0.71 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.80 11.71 11.94 24.42 19.86 11.95 11.57

2.0 10.80 10.81 10.99 20.75 17.28 11.66 11.15

3.0 10.09 10.09 10.20 17.93 15.31 11.40 10.79

4.0 9.49 9.49 9.55 15.79 13.80 11.16 10.46

5.0 8.99 8.99 9.02 14.12 12.62 10.93 10.17

6.0 8.56 8.56 8.56 12.77 11.65 10.72 9.90

7.0 8.17 8.18 8.17 11.66 10.86 10.53 9.66

8.0 7.83 7.85 7.83 10.73 10.18 10.35 9.44

9.0 7.52 7.56 7.52 9.94 9.61 10.17 9.23

10.0 7.25 7.30 7.25 9.26 9.11 10.01 9.04

250-6 hollow core. (2 x 9.3 + 5 x 12.5 strands + 4 x 5 top wire)Im

posed load

v clear spa

n table

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section D-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 704.3 kN Serviceability moment of resistance 140.89 kNm

Eccentricity 70.1 mm Ultimate moment of resistance 193.19 kNm

Total losses 22.3 % Ultimate shear resistance (Vrd,c) 116.4 kN

Prestress at transfer at bottom 11.02 PASS Ultimate shear resistance (Vrd,cr) 87.0 kN

Prestress at transfer at top -0.91 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.80 12.27 12.60 24.56 21.18 12.34 11.86

2.0 10.80 11.32 11.60 20.87 18.42 12.04 11.43

3.0 10.56 10.56 10.76 18.03 16.30 11.76 11.05

4.0 9.94 9.94 10.09 15.88 14.69 11.51 10.71

5.0 9.41 9.41 9.52 14.20 13.42 11.27 10.40

6.0 8.96 8.96 9.04 12.84 12.39 11.06 10.13

7.0 8.56 8.56 8.63 11.72 11.54 10.85 9.88

8.0 8.22 8.22 8.26 10.79 10.82 10.66 9.65

9.0 7.91 7.91 7.94 9.99 10.21 10.48 9.43

10.0 7.63 7.63 7.66 9.31 9.67 10.31 9.24

250-6 hollow core. (7 x 12.5 strands + 4 x 5 top wire)Im

posed load

v clear spa

n table

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section E-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 791.0 kN Serviceability moment of resistance 157.25 kNm

Eccentricity 71.8 mm Ultimate moment of resistance 215.89 kNm

Total losses 24.0 % Ultimate shear resistance (Vrd,c) 120.6 kN

Prestress at transfer at bottom 12.73 PASS Ultimate shear resistance (Vrd,cr) 94.1 kN

Prestress at transfer at top -1.21 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.80 12.97 13.33 25.42 22.78 12.83 12.23

2.0 10.80 11.96 12.27 21.60 19.79 12.52 11.78

3.0 10.80 11.15 11.39 18.66 17.51 12.23 11.38

4.0 10.48 10.48 10.67 16.44 15.77 11.96 11.02

5.0 9.92 9.92 10.07 14.69 14.40 11.71 10.70

6.0 9.44 9.44 9.56 13.28 13.29 11.48 10.42

7.0 9.03 9.03 9.13 12.13 12.37 11.26 10.15

8.0 8.66 8.66 8.74 11.16 11.59 11.06 9.91

9.0 8.33 8.33 8.40 10.34 10.93 10.87 9.69

10.0 8.04 8.04 8.10 9.63 10.35 10.69 9.49Impo

sed load

v clear spa

n table

Maximum clear span (m) for 'Domestic loading', based on:

250-6 hollow core. (2 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section G-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 913.2 kN Serviceability moment of resistance 181.36 kNm

Eccentricity 73.7 mm Ultimate moment of resistance 245.38 kNm

Total losses 26.6 % Ultimate shear resistance (Vrd,c) 126.1 kN

Prestress at transfer at bottom 15.25 PASS Ultimate shear resistance (Vrd,cr) 103.8 kN

Prestress at transfer at top -1.65 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.80 13.94 14.22 26.58 24.97 13.53 12.75

2.0 10.80 12.83 13.08 22.57 21.68 13.19 12.26

3.0 10.80 11.95 12.14 19.50 19.16 12.88 11.84

4.0 10.80 11.23 11.38 17.18 17.25 12.59 11.46

5.0 10.63 10.63 10.74 15.35 15.73 12.32 11.12

6.0 10.11 10.11 10.20 13.88 14.51 12.07 10.82

7.0 9.66 9.66 9.74 12.67 13.50 11.84 10.54

8.0 9.26 9.26 9.33 11.66 12.64 11.62 10.26

9.0 8.91 8.91 8.96 10.80 11.91 11.42 9.86

10.0 8.60 8.60 8.64 10.06 11.28 11.22 9.51Impo

sed load

v clear spa

n table

Maximum clear span (m) for 'Domestic loading', based on:

250-6 hollow core. (5 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section H-T Name

Date 5/2/15

Sectional & material data

Depth of unit 250 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 300 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 168011 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 1270.55 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 123.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 10.326 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 10.008 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.36 kN/m2 Cover for fire and/or exposure XC1 35 mm

Structural data

Final prestressing force 989.7 kN Serviceability moment of resistance 195.09 kNm

Eccentricity 74.7 mm Ultimate moment of resistance 263.08 kNm

Total losses 28.3 % Ultimate shear resistance (Vrd,c) 129.4 kN

Prestress at transfer at bottom 16.90 FAIL Ultimate shear resistance (Vrd,cr) 109.8 kN

Prestress at transfer at top -1.93 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 60 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.80 14.46 14.72 27.27 26.32 13.97 13.07

2.0 10.80 13.37 13.55 23.17 22.84 13.61 12.57

3.0 10.80 12.45 12.58 20.02 20.18 13.29 12.13

4.0 10.80 11.69 11.79 17.63 18.15 12.99 11.74

5.0 10.80 11.06 11.13 15.75 16.55 12.71 11.39

6.0 10.52 10.52 10.57 14.24 15.26 12.45 11.07

7.0 10.05 10.05 10.08 13.00 14.19 12.20 10.74

8.0 9.63 9.63 9.66 11.96 13.29 11.97 10.27

9.0 9.27 9.27 9.29 11.08 12.52 11.76 9.87

10.0 8.94 8.94 8.95 10.32 11.85 11.56 9.52Impo

sed load

v clear spa

n table

Maximum clear span (m) for 'Domestic loading', based on:

250-6 hollow core. (7 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

0

1

2

3

4

5

6

7

8

9

10

5.0 6.0 7.0 8.0 9.0 10.0 11.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section A-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 446.2 kN Serviceability moment of resistance 123.21 kNm

Eccentricity 77.4 mm Ultimate moment of resistance 141.35 kNm

Total losses 16.2 % Ultimate shear resistance (Vrd,c) 149.8 kN

Prestress at transfer at bottom 5.58 PASS Ultimate shear resistance (Vrd,cr) 75.8 kN

Prestress at transfer at top -0.22 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 10.34 11.03 10.34 29.15 17.40 12.18 12.15

2.0 9.59 10.25 9.59 25.18 15.37 11.94 11.77

3.0 8.94 9.62 8.94 21.94 13.73 11.71 11.43

4.0 8.40 9.09 8.40 19.45 12.47 11.49 11.12

5.0 7.95 8.63 7.95 17.47 11.45 11.29 10.84

6.0 7.57 8.24 7.57 15.87 10.63 11.10 10.59

7.0 7.23 7.90 7.23 14.53 9.93 10.93 10.36

8.0 6.94 7.59 6.94 13.41 9.35 10.76 10.15

9.0 6.67 7.32 6.67 12.45 8.84 10.60 9.95

10.0 6.44 7.08 6.44 11.62 8.40 10.45 9.76

300-6 hollow core. (7 x 9.3 strands + 4 x 5 top wire)Imposed load v clear span table

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section B-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 527.0 kN Serviceability moment of resistance 139.54 kNm

Eccentricity 80.9 mm Ultimate moment of resistance 171.18 kNm

Total losses 17.5 % Ultimate shear resistance (Vrd,c) 151.5 kN

Prestress at transfer at bottom 6.82 PASS Ultimate shear resistance (Vrd,cr) 84.0 kN

Prestress at transfer at top -0.43 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 11.38 11.74 11.38 29.47 19.11 12.62 12.48

2.0 10.57 10.91 10.57 25.46 16.87 12.36 12.08

3.0 9.85 10.23 9.85 22.18 15.06 12.11 11.73

4.0 9.26 9.66 9.26 19.66 13.66 11.89 11.41

5.0 8.76 9.18 8.76 17.67 12.54 11.67 11.12

6.0 8.34 8.76 8.34 16.04 11.63 11.48 10.85

7.0 7.97 8.40 7.97 14.69 10.86 11.29 10.61

8.0 7.64 8.07 7.64 13.56 10.21 11.11 10.39

9.0 7.36 7.78 7.36 12.59 9.66 10.95 10.18

10.0 7.10 7.52 7.10 11.75 9.17 10.79 9.99

Maximum clear span (m) for 'Domestic loading', based on:

300-6 hollow core. (5 x 9.3 + 2 x 12.5 strands + 4 x 5 top wire)Imposed load v clear span table

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section D-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 717.5 kN Serviceability moment of resistance 179.50 kNm

Eccentricity 86.2 mm Ultimate moment of resistance 243.36 kNm

Total losses 20.8 % Ultimate shear resistance (Vrd,c) 154.2 kN

Prestress at transfer at bottom 9.86 PASS Ultimate shear resistance (Vrd,cr) 102.1 kN

Prestress at transfer at top -0.93 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 13.26 13.33 13.59 30.01 22.92 13.64 13.26

2.0 12.37 12.37 12.62 25.92 20.19 13.34 12.82

3.0 11.59 11.59 11.76 22.59 18.00 13.07 12.43

4.0 10.94 10.94 11.06 20.02 16.30 12.81 12.08

5.0 10.39 10.39 10.47 17.98 14.94 12.58 11.76

6.0 9.91 9.91 9.96 16.33 13.83 12.35 11.47

7.0 9.49 9.49 9.52 14.96 12.91 12.14 11.20

8.0 9.12 9.12 9.13 13.80 12.12 11.94 10.96

9.0 8.79 8.79 8.79 12.81 11.45 11.76 10.73

10.0 8.48 8.50 8.48 11.96 10.87 11.58 10.52Imposed load v clear span table

300-6 hollow core. (7 x 12.5 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section E-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 807.7 kN Serviceability moment of resistance 200.07 kNm

Eccentricity 88.3 mm Ultimate moment of resistance 271.55 kNm

Total losses 22.4 % Ultimate shear resistance (Vrd,c) 159.7 kN

Prestress at transfer at bottom 11.41 PASS Ultimate shear resistance (Vrd,cr) 110.5 kN

Prestress at transfer at top -1.22 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 13.50 14.08 14.37 31.06 24.67 14.15 13.64

2.0 13.06 13.06 13.33 26.83 21.73 13.83 13.18

3.0 12.23 12.23 12.43 23.38 19.35 13.54 12.77

4.0 11.54 11.54 11.69 20.72 17.51 13.27 12.40

5.0 10.95 10.95 11.06 18.61 16.04 13.02 12.07

6.0 10.44 10.44 10.53 16.90 14.84 12.79 11.77

7.0 10.00 10.00 10.06 15.48 13.85 12.56 11.49

8.0 9.61 9.61 9.65 14.28 13.00 12.36 11.24

9.0 9.26 9.26 9.29 13.26 12.27 12.16 11.00

10.0 8.95 8.95 8.96 12.38 11.64 11.97 10.79

300-6 hollow core. (2 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

Imposed load v clear span table

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section F-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 935.8 kN Serviceability moment of resistance 230.51 kNm

Eccentricity 90.6 mm Ultimate moment of resistance 309.77 kNm

Total losses 24.8 % Ultimate shear resistance (Vrd,c) 167.1 kN

Prestress at transfer at bottom 13.68 PASS Ultimate shear resistance (Vrd,cr) 122.3 kN

Prestress at transfer at top -1.64 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 13.50 15.12 15.35 32.49 27.10 14.86 14.18

2.0 13.50 14.01 14.25 28.06 23.85 14.53 13.69

3.0 13.10 13.10 13.28 24.45 21.22 14.22 13.25

4.0 12.36 12.36 12.49 21.67 19.19 13.93 12.87

5.0 11.72 11.72 11.82 19.46 17.57 13.66 12.51

6.0 11.18 11.18 11.25 17.67 16.24 13.40 12.19

7.0 10.70 10.70 10.75 16.18 15.14 13.17 11.90

8.0 10.28 10.28 10.32 14.93 14.21 12.94 11.63

9.0 9.90 9.90 9.93 13.86 13.40 12.73 11.39

10.0 9.57 9.57 9.58 12.94 12.71 12.53 11.15

300-6 hollow core. (5 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

Imposed load v clear span table

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Creagh Concrete Products Ltd. Prestressed Concrete Design Information Sheet to EC2

Section G-T Name

Date 5/2/15

Sectional & material data

Depth of unit 300 mm Concrete cylinder strength 40 N/mm2

Breadth at top of unit 1154 mm Concrete cylinder strength at transfer 28 N/mm2

Breadth at bottom of unit 1197 mm Young's modulus of concrete 35.2 kN/mm2

Total breadth of webs 329 mm Young's modulus of concrete transfer 32.3 kN/mm2

Cross section area 189924 mm2 Aggregate and cement type Gravel CEM 42.5R

Second moment of area (e6) 2078.85 mm4 Serviceability tensile stress limit 3.51 N/mm2

Height to centroid 147.0 mm Tensile yield strength of strand 1860 N/mm2

Section modulus at bottom (e6) 14.141 mm3 Young's modulus of strand 195 kN/mm2

Section modulus at top (e6) 13.588 mm3 Initial strand stressing 70.00 %

Self weight of unit 3.80 kN/m2 Cover for fire and/or exposure XC1 40 mm

Structural data

Final prestressing force 1016.6 kN Serviceability moment of resistance 250.53 kNm

Eccentricity 91.7 mm Ultimate moment of resistance 333.65 kNm

Total losses 26.3 % Ultimate shear resistance (Vrd,c) 171.6 kN

Prestress at transfer at bottom 15.17 PASS Ultimate shear resistance (Vrd,cr) 129.6 kN

Prestress at transfer at top -1.92 PASS Live load factor for strength = 0.7, service = 1.0, deflection = 0.3

Bearing length 100 mm Fire resistance 90 mins.

Safe

imposed load Clear Service Ultimate Ultimate Ultimate Service Service

(kN/m2) span bending bending shear shear deflection deflection

incl 1.5 kN/m2 (m) moment moment Vrd,c Vrd,cr all load live load

1.0 13.50 15.77 15.93 33.35 28.60 15.32 14.51

2.0 13.50 14.60 14.79 28.80 25.16 14.97 14.01

3.0 13.50 13.65 13.79 25.10 22.37 14.64 13.56

4.0 12.86 12.86 12.96 22.24 20.22 14.34 13.15

5.0 12.20 12.20 12.27 19.98 18.50 14.06 12.79

6.0 11.63 11.63 11.68 18.13 17.10 13.79 12.46

7.0 11.13 11.13 11.16 16.61 15.94 13.55 12.16

8.0 10.69 10.69 10.71 15.32 14.95 13.31 11.88

9.0 10.30 10.30 10.31 14.22 14.10 13.09 11.62

10.0 9.94 9.94 9.95 13.28 13.36 12.89 11.23Imposed load v clear span table

300-6 hollow core. (7 x 9.3 + 7 x 12.5 strands + 4 x 5 top wire)

Maximum clear span (m) for 'Domestic loading', based on:

0

1

2

3

4

5

6

7

8

9

10

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Imposed load (

kN

/m2)

Clear span (m)

Bellevue Apartments

Span between grids A3 - A5

0.00 Date

HOLLOW

Frequent live load factor

Combination live load factor for ultimate load

First moment of area (10^6) mm3 Combination dead load factor

Bearing length mm Steel yield strength for strand

minutes Steel yield strength for 5 mm wire Load (kN) Distance* (m)

Relative humidity at transfer % Steel yield strength for 7 mm wire Point load 1 DEAD

Relative humidity to installation % Ratio initial prestress 12.5 strand Point load 2 DEAD

Detensioning age hours Ratio initial prestress 9.3 strand Point load 3 DEAD

Age at installation days Ratio initial prestress top tendon Point load 4 DEAD

Aggregate type Young's modulus of tendonCement type CEM 42.5R Tendon relaxtion class

Environmental exposure class 1000 hour relaxation % Load (kN/m) Start* (m) End* (m)STRAND PATTERN Line load 1 LIVE

Line load 2 DEAD

Line load 3 DEAD

Line load 4 DEAD

Area of tendons each row (mm2)

Stress in tendons (N/mm2) *Distances measured from left hand end to centre of support

Initial prestress force (kN)

Initial force x axis height (kNmm)

Mean axis height = 46,833 / 1,012.23 = 46.3 mm. Eccentricity = 123.0 - 46.3 = 76.8 mm

Mean initial stress in all tendons = 1,012,227 / 794 = 1,274.4 N/mm2 Page 1 of 14

XC1 2.5

N/mm2

1860

0.700

0.400

2Gravel

N/mm2

195000 N/mm2

20

0.00

Designed by

Checked by

Date

Revision

0.70

0.925

POINT LOADS

LINE LOADS PARALLEL WITH SPAN

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.000.00

0.50

104 794

CREAGH CONCRETE LTD. CREAGH INDUSTRIAL ESTATE, BLACKPARK ROAD, TOOMEBRIDGE, ANTRIM, N. IRELAND BT41 3SETEL 028 796 51236 FAX 028 796 59596 E-MAIL [email protected]

M MagillProject title :

SECTION PROPERTIES MATERIAL PROPERTIES SPAN AND LOADS

N/mm2 Effective span 9.925 Depth of unit 250 mm Concrete cylinder strength

Floor level : Level 01 - 03, corridor loading REF '250 - 6' TO BS EN 1992-1-1:2004

Job ref. : 19-0101-C01-1

Location :

00/01/1900

R Escriva

CONCRETE SOLID PLANK UNIT TO EC2 01/01/2019

STANDARD DESIGN CALCULATION FOR PRESTRESSED

40 m

WITH FIRE MOMENT METHOD

Breadth at top 1154 mm Concrete transfer cylinder strength kN/m2

kN/m2

28 N/mm2 Self weight of precast unit plus infill in joints 3.63 48.0 N/mm2 Self weight of screed 2.40 Breadth at bottom for full width unit 1197 mm Concrete mean comp strength

kN/m2

3.51 N/mm2 Services UDL 0.50 kN/m2

22.7 N/mm2 Finishes UDL 0.30

Depth of top flange 40 mm Concrete mean tensile strength

Total breadth of webs 300 mm Concrete design strength

Depth of bottom flange 35 mm Concrete tensile 5% characteristic 2.46 N/mm2 Ceilings UDL 0.00 kN/m2

0.30

No. of cores 6 Limiting tensile stress in service 3.51 3.00 kN/m2N/mm2 Imposed live load UDL

Breadth of core 140 mm Concrete Young's modulus 35220 N/mm2 Quasi-permanent live load factor (EC1)36.0 N/mm2

Second moment of area (10^6) 1270.55

mm2 Transfer mean comp strengthArea of concrete 168011

18.7 N/mm2mm4 Transfer design strength 6.784 Transfer tensile strength 2.63 N/mm2

Fire resistance 60

1860N/mm2Height to centroid from bottom 123.0 mm Transfer Young's modulus 32308

75

1860

70

0.00

28

0.00 0.00

0.0050

0.00 0.00

N/mm2

0 6,5015,369 34,964

No. of tendons in each row

Cover to tendons (mm)

Diameter of tendons (mm)

0.0 1,012.23

1,302

135.4

46,833

744

29.2

0

TOTALROW 2

5.0

TOP

25

ROW 1

0

0

0.0

2

35

9.3

ROW 3

0.700

1,302

847.6

2

0

7

35

12.5

651 39

Page 2 of 14

LOSSES

Immediate steel relaxation loss = 1,274.4 x 0.66 x 2.5 x e^(9.1 x 0.700) x (20/1000)^(0.75 x (1-0.700)) / 100000 = 5.09 N/mm2

Initial force in tendons after relaxation loss = (1,274.4 - 5.09) x 794 = 1,008,182 N

Elastic shortening after relaxtion loss = 195,000 x 10.68 / 32,308 = 64.45 N/mm2. At mid-span after subtract self weight = 46.31 N/mm2

where initial stress in concrete at centroid of tendons = (1,008,182 / 168,011) + (1,008,182 x 76.8 / 16,548,342) = 10.68 N/mm2. At mid-span ditto = 7.67 N/mm2

Residual stress after initial loss = 1,205 N/mm2 Should be less than 0.75 x 1860 = 1,395 N/mm2

TRANSFER STRESS CHECK

Transfer force after initial losses = 1,205 x 794 = 956,991 N

Transfer stress at bottom = (956,991 / 168,011) + (956,991 x 76.8 / 10,325,847) = 12.81 N/mm2 Allowable stress = 0.6 x 28 = 16.8 N/mm2 PASS

Transfer stress at top = (956,991 / 168,011) - (956,991 x 76.8 / 10,007,937) = -1.65 N/mm2 Allowable stress = -2.63 N/mm2 PASS

where Z bottom = 1,270,550,862 / 123.0 = 10,325,847 mm3, and Z top = 1,270,550,862 / 127.0 = 10,007,937 mm3

Long time losses: 1. From transfer to installation using RH = 70 % with all 4 faces of unit exposed Maturity of concrete during curing

Notional thickness = 2 x area / perimeter = 2 x 168,011 / 2851 = 117.9 mm Mean temperature during 20 hours curing = 50 oC

RH factor for RH at transfer = (1+ ((1-(70/100)) x 0.80/(0.1 x 117.9^1/3))) x 0.94 = 1.399 Equivalent age = (20/24) e^-[4000/(273 + 50)) - 13.65] = 2.96 days

Concrete strength factor = 16.8 / 48^0.5 = 2.425 Factor for Cement Class R = 1

Age of initial loading factor at maturity (see opposite) = 1 / (0.1+ 7.65^0.2) = 0.624 Maturity age = 2.96 x [9/(2 + 2.96^1.2) + 1]^1 = 7.65 days

RH factor beta H =((1.5*(1+ (0.012 x 70)^18) x 117.9)+ (250 x 0.85)) = 398 days

Factor for time after initial loading to installation = ((28 - 20/24)/(398 + 28 - 20/24))^0.3 = 0.438

Creep coefficient for loading at 1 day = 1.399 x 2.425 x 0.624 x 0.438 = 0.928

Concrete stress after initial loss = (956,991 / 168,011)+ (956,991 x 76.8^2 / 1,270,550,862) = 10.14 N/mm2. At mid-span after subtract self weight (battens at 0.5 m from ends) = 7.89 N/mm2

Denominator in eq. 5.46, transfer to installation = 1.081

Creep loss of stress at installation = 195000 x 0.928 x 10.14 / (35,220 x 1.081) = 48.2 N/mm2. At mid-span = 37.49 N/mm2

Residual stress at installation = 1,204.9 - 48.2 = 1,156.7 N/mm2. At mid-span = 1,185.5 N/mm2

Force at installation Fpmi = 1,156.7 x 794 = 918,730 N. At mid-span = 941,617.8 N

2. From installation to life using RH = 50 % with bottom only exposed

Notional thickness = 2 x area / bottom = 2 x 168,011 / 1200 = 280.7 mm

RH factor for RH at installation = (1+ ((1-(50/100)) x 0.80/(0.1 x 280.7^1/3))) x 0.94 = 1.513

Age of initial loading factor at installation = 1 / (0.1+ 28^0.2) = 0.488

RH factor beta H =((1.5*(1+ (0.012 x 50)^18) x 280.7)+ (250 x 0.85)) = 635 days

Factor for time after installation to life = ((20833 - 28) / (635 + 20833 - 28)^0.3 = 0.991

Creep coefficient at life = 1.513 x 0.488 x 2.425 x 0.991 = 1.777

Concrete stress at level of strands after installation loss = (918,730 / 168,011) + (918,730 x 76.8^2 / 1,270,550,862) = 9.73 N/mm2. At mid-span after subtract self weight and dead UDL = 4.42 N/mm2

Denominator in eq. 5.46, installation to life = 1.113

Creep loss of stress at life = 195000 x 1.777 x 9.73 / (35,220 x 1.113) = 86.0 N/mm2. At mid-span = 39.11 N/mm2

Concrete shrinkage Page 3 of 14

kn factor for eff thickness = 0.77

Relative humidity factor, beta RH = 1.55 x (1-(50/100)^3) = 1.356

Age factor transfer to life = (20833-1)/[(20833-1)+ 0.04 x 280.7^1.5] = 0.991

Drying shrinkage strain = 0.77 x 0.85 x (220+ 110 x 6) x e^-0.11 x 48/10)) x 1.356 x 0.991 / 1000000 = 0.000456

Creep coefficient from transfer to life = 1.513 x 2.425 x 0.624 x 0.991 = 2.270

Denominator in eq. 5.46, installation to life = 1.131

Shrinkage loss of stress = 0.000456 x 195000 / 1.131 = 78.64 N/mm2

Strand relaxation

Residual stress ratio after initial losses = 1,205 / 1860 = 0.648. At mid-span = 0.658

Long term relaxation stress = 1,205 x 0.66 x 2.5 x e^(0.648 x 9.1)) x ((500000/1000)^(0.75 x (1-0.648))) / 100000 = 37.28 N/mm2. At mid-span = 39.51 N/mm2

Long term relaxation loss = 0.8 x 37.28 / 1.131 = 26.37 N/mm2. At mid-span = 27.95 N/mm2

Final prestress = 1,156.70 - 86.01 - 78.64 - 26.37 = 965.7 N/mm2. At mid-span = 1,039.8 N/mm2

Final force Fpo = 965.7 x 794 = 767,015 N. At mid-span = 825,900 N

Residual losses ratio in service Rwk = 767,015 / 1,012,227 = 0.758. At mid-span ratio = 0.816

FINAL PRESTRESS AT SUPPORT FINAL PRESTRESS AT MID-SPAN

Prestress at bottom = (767,015 / 168,011) + (767,015 x 76.8 / 10,325,847) = 10.27 N/mm2 Prestress at bottom = (825,900 / 168,011) + (825,900 x 76.8 / 10,325,847) = 11.06 N/mm2

Prestress at top = (767,015 / 168,011) - (767,015 x 76.8 / 10,007,937) = -1.32 N/mm2 Prestress at top = (825,900 / 168,011) - (825,900 x 76.8 / 10,007,937) = -1.42 N/mm2

Allowable stress = 0.45 x 40 = 18 N/mm2 PASS

Allowable stress = -3.51 N/mm2 PASS

SECTION PROPERTIES OF COMPOUND SECTION WITH TENDONS

Modular ratio m - 1 = (195000 / 35,220) - 1 = 4.54

Compound area = 168,011 + 4.54 x 794.269875 = 171,614 mm2; compound yb,co = 121.5 mm

Compound 2nd moa Ic,co = 1,294,949,759 mm4

Compound Zt,co = 10,078,374 mm3; Zb,co = 10,656,967 mm3, these values are used only for the service moment of resistance.

SERVICEABILITY MOMENT OF RESISTANCE AT SUPPORT SERVICEABILITY MOMENT OF RESISTANCE AT MID-SPAN

Service moment top stress = (18 - -1.32) x 10,078,374 = 194,704,777 Nmm Service moment top stress = (18 - -1.42) x 10,078,374 = 195,725,385 Nmm

Service moment bottom stress = (10.27 - -3.51) x 10,656,967 = 146,824,114 Nmm Service moment bottom stress = (11.06 - -3.51) x 10,656,967 = 155,225,275 Nmm

Critical service moment of resistance = 146.8 kNm Critical service moment of resistance = 155.2 kNm

Page 4 of 14

ULTIMATE MOMENT OF RESISTANCE Limiting stress = 1,593 N/mm2

Area of strands in tension zone (exclude top wires) = 755 mm2 Stress fp (N/mm2)

Height to centroid of these strands = (104 x 39.7 + 651 x 41.3 + 0 x 0.0) / 755 = 41.0 mm

Effective depth to strands in tension zone = 209.0 mm Ultimate stress = 0.87 x 1860

Prestrain = 965.7 / 195000 = 0.004952 1,617

Ultimate strain = 0.0035 x (209.0 - X) / X

Total strain = 0.001452 + 0.731 / X Eq. 1 1,456

Ultimate force in concrete Fc = 0.8 x 22.67 x 1154 X = 20,926X

Ultimate force in tendons Fs = fp x 755

Then for equilibrium: X / fp = 755 / 20,926 Eq. 2

If final strain > 0.007465, then fp = 1,456 + [161 x (0.0222 - final strain) / (0.0222 - 0.007465)] Eq. 3

Combining eq. 1-3 gives the quadratic equation: 321 X^2 + -15,460 X + -89,313 = 0

Then X = 53.4 mm E = 195 kN/mm2

But 0.8X > top flange of 40 mm, then compression block is 'T section' comprising top flange and webs (see diagram)

Combining eq. 1-3 gives the new quadratic equation: 80 X^2 + -3,440 X + -89,313 = 0

Then final X = 61.1 mm

Depth to centroid of compression block = 21.3 mm

Lever arm = 209.0 - 21.3 = 187.7 mm

From eq. 1. final strain = 0.013424

From eq. 3. fp = 1,521 N/mm2

Ultimate moment of resistance = 1,521 x 755 x 187.7 = 215.5 kNm Top flange = 40 mm

Anchorage bond length to full Mrd = 824 + 0.25 x 11.8 x (1,521 - 966) / 2.29 = 1,457 mm

Web breadth 300 mm Compression zone

ULTIMATE SHEAR CAPACITY Vrd,c - FLEXURALLY UNCRACKED

Mean concrete tensile strength at transfer = 0.7 x 2.63 / 1.5 = 1.23 N/mm2 824 mm

Bond strength at transfer = 3.2 x 1.23 = 3.93 N/mm2

Average preimeter of strands = 11.8 mm 198.0 mm

Transmission length Lpt2 = 1.2 x 0.19 x 1,205 x 11.8 / 3.93 = 650 mm Transmission length

Prestress at NA after all losses, incl gamma,p = 0.9 x 965.7 x 794 / 168,011 = 4.11 N/mm2

Design tensile splitting strength = 2.46 / 1.5 = 1.64 N/mm2

Critical distance from end = 75 + 123.0 = 198.0 mm

Critical / transmission factor alpha = 198.0 / 824 = 0.240

First moment of area above centroidal plane = 6,783,626 mm3

Uncracked shear resistance Vcd,c = (1,270,550,862 x 300 / 6,783,626) x [(1.64^2 + 0.240 x 4.11 x 1.64)^0.5] = 116.6 kN

45 deg. shear plane

Stress v strain curve for strands (EC2: Fig. 3.10)

0.007465

X

0.02 0.0222

75 123.0

1154 mm

Page 5 of 14

ULTIMATE SHEAR CAPACITY Vrd,cr - FLEXURALLY CRACKED

Depth factor k (but not greater than 2) = 1 + (200/209.0)^0.5 = 2.0

Concrete shear stress = 0.035 x 2.0^1.5 x 40^0.5 = 0.62 N/mm2

Steel bars ratio at end (but not greater than 0.02) = 755 / (300 x 209.0) = 0.0120

Maximum cracked shear resistance Vrd,c = (0.18/1.5) x 2.0 x (100 x 0.0120 x 40^1/3 + 0.15 x 4.11) x 300 x 209.0 = 92.9 kN

Minimum cracked shear resistance Vrd,c = (0.62 + 0.15 x 4.11) x 300 x 209.0 = 77.3 kN

Cracked shear resistance Vrd,cr = 92.9 kN

Use Vrd,cr where Ms > cracking moment Mc = 10,656,967 x (10.27 + 2.46/1.5) = 126.88 kNm

No flexible supports present

BEARING CAPACITY

Bearing material = Precast concrete

Nominal bearing length provided = 75 mm

Iterated estimate of net bearing length = 30 mm

Maximum end reaction = 77.61 kN

Stress / fcd = (77,615 / 600 x 30) / 26.6666666666667 = 0.16

Net bearing length required a1 = 30 mm

Ineffective bearing allowances: a2 = 10; a3 = 5; delta a2 = 10; delta a3 = 3.97; resultant (EC2, eq. 10.6) = 26 mm

Nominal bearing length required = 56 mm OK

Effective bearing width = 600 mm

Ultimate bearing stress = 0.4 x 40 / 1.5 = 10.67 N/mm2

Bearing capacity = 10.67 x 600 x (75 - 26) / 1000 = 313.6 kN. PASS

Page 6 of 14SERVICEABILITY DEFLECTION (calculated for basic compound section only, i.e ignores holes)

Deflection at transfer

Upward camber = -956,991 x 76.8 x 9925^2 / (8 x 32,308 x 1,294,949,759) = -21.6 mm

Due to self weight = (5 x 4.12 x 9925^4) / (384 x 32,308 x 1,294,949,759) = 12.4 mm

Net deflection at transfer = -9.2 mm

Deflection at installation

Creep coefficient at infinity = 2.5

Creep coefficient at installation = 0.4

Creep coefficient at transfer 1 day = 0.1

Effective creep coefficient = [32,308/(0.5 x (32,308 + 35,220))] x 2.5 x (0.4 - 0.1) = 0.72

Camber = -[956,991 x (1+0.72) - (956,991 - 918,730)] x 76.8 x 9925^2 / (8 x 35,220 x 1,294,949,759) = -36.4 mm

Due to visco and self weight = (12.4 x 0.72) + (5 x 4.36 x 9925^4) / (384 x 35,220 x 1,294,949,759) = 21.4 mm

Net deflection at installation = -15.0 mm

Long-term deflections (calculated at midspan, even though the aggregate deflections for all UDL, line and point loads may not occur there)

Creep factor for loading at 28 days (age factor = 0.8) = 0.8 x 2.5 x (1 - 0.4) = 1.20

Camber = -36.4 -[(918,730 x 1.20) - (918,730 - 767,015)] x 76.8 x 9925^2 / (8 x 35,220 x 1,294,949,759) = -56.1 mm

Additional due to visco self weight and UDL dead + live = 21.4 + [(1.20 x 4.36 + (1 + 1.20) x (1.2 x 3.20) + (1 + 2.00) x (1.2 x 0.90)] x 5 x 9925^4 / (384 x 35,220 x 1,294,949,759) = 68.2 mm

where added UDL (screed + finishes + services + partitions + factored live load) = 2.40 + 0.30 + 0.50 + 0.00 = 3.20 kN/m2

No point load 1

No point load 2

No point load 3

No point load 4

No line load 1

No line load 2

No line load 3

No line load 4

Net maximum deflection due to all loads = 12.2 mm Limiting deflection = span/250 = 39.7 mm PASS

Movement due to imposed loads, visco dead, camber and creep after installation = 14.1 mm Limiting deflection = span/350 = 28.4 mm PASS

Overall ratio of service moment / capacity = 145.3 / 155.2 = 0.94

Overall ratio of ultimate moment / capacity = 192.6 / 215.5 = 0.89

Overall ratio of ultimate shear / uncracked or cracked shear capacity, determined at 50 intervals along span = 0.64

Page 7 of 14

DYNAMIC, ACOUSTIC AND THERMAL PROPERTIES

Maximum deflection due to imposed UDL dead and 10% live loads = (5 x 1.2 x 7.13 x 9925^4) / (384 x 1.2 x 35,220 x 1,294,949,759) = 20 mm

Natural frequency = 0.18 x (9.81 / 0.020)^0.5 = 4.0 Hz

Partitions not present and therefore dynamic damping factor = 0.02

Number of units side-by-side in slab field = 11, i.e. 13.2 m actual width

Width of slab field contributing to dynamic dispersion (least of span or actual width) = 9.925 m

Peak acceleration 'a/g' = 100 x 300 x e^ -(0.35 x 4.0) / (0.02 x 9.83 x 1200 x 9.93) = 0.5% making the slab field OK for shops, dining, dancing

Sound attenuation (standard reduction) = 37.5 x Log 10 [102 x (3.63 + 2.40 + 0.30)] - 44 = 61 dB

Thermal resistance = 0.35 x [150 + 102 x (3.63 + 2.40 + 0.30)] = 0.28 m2 degC / W

No top notched ends

x

x

Page 8 of 14

Section Properties and Resistances at Holes and Notches

No hole present

.

Page 9 of 14

No hole 2 present

.

Page 10 of 14

No notch at left end No notch at right end

. .

Page 11 of 14

PUCHING SHEAR AND CONCENTRATED LOADS (are combined if less than unit depth apart)

EN1168, Clause 4.3.3.2.4. Punching shear for point loads and trimmer loads.

Effective breadth beff using 45o load spread into 1, 2 or more webs, and full shear depth h unless load breadth < 0.5 x core width, whence top flange depth hf.

Internal web width = 40 mm; External web width = 50.2 mm; Breadth of core = 140 mm.

No Point load 1

No Point load 2

No Point load 3

No Point load 4

EN1168, Clause 4.3.3.2.5. Maxium concentrated loads and trimmer loads anywhere. Point and line loads not spread laterally (user defined)

Second MoA transverse = 856,371 mm4 per mm width; W,bottom = 856,371 / 123.0 = 6,960 mm3 per mm width; W,top = 856,371 / 127.0 = 6,746 mm3 per mm width; fctk,0.05 = 2.46 N/mm2

No Point load 1

No Point load 2

No Point load 3

No Point load 4

EN1168, Clause 4.3.3.2.5. Line loads and edge line loads.

No Line load 1

No Line load 2

No Line load 3

No Line load 4

SHEAR AND ANCHORAGE IN FIRE LOADING

Hollow core only. EN1168+A3:2011, Appendix G, Table G.2.

For REI 90 mins fire resistance, and depth of slab = 250 mm

Ratio VRd,c,fi / VRd,c,cold = 0.60

Left end (notch capacity if present). VRd,c,fi = 0.60 x 116.6 = 70.0 kN

Service shear force at A (all PSF = 1.0) = 56.7 kN PASS

Right end (notch capacity if present). VRd,c,fi = 0.60 x 116.6 = 70.0 kN

Service shear force at B (all PSF = 1.0) = 56.7 kN PASS

No additional tie bars in cores required

Page 12 of 14AXIS DISTANCE FOR FIRE RESISTANCE (varies according to fire/ultimate moments) FIRE MOMENT OF RESISTANCE

EC2, Part 1-2,clause 2.4.2 and 5.2. EC2, Part 1-2, Table 3.1, 3.3 (tendon cold worked Class A), Figures 4.3 and A.2Eq. 5.3. Additional axis distance Da = 0.1 (500 - qcr) mm Fire resistance required = 90 mins.

MEd,fire = Ms,dead + y2 Ms,live = 101.0 + 0.3 x 44.3 = 114.3 kNm Axis distance to tendons x = 41 mm

Ratio MEd,fi / MEd = 114.3 / 192.6 = 0.59 From R90 temperature curve for slabs at x. Temp = 391 oC

Ap, req for MEd of 192.6 kNm. K = 0.092; z = 190 and x = 47. NA In flange Temperature at top of slab (EN 1168, Annex G.1.2) taken as 160 oC

EC2-1-2 Concrete factor kc = 0.970

Strain = 0.017180; fp = 1,562; Ap,req = MEd / z fp = 648 mm2; Ap,req/prov =648 / 755 = 0.86 fck(q) = 38.8 N/mm2kp (qcr) = 0.59 x 0.86 / 1.15 = 0.443 Steel factor kp = 0.518

Figure 5.1 for prestressing steel curve 3. qcr = 398 deg. C fpd(q) = 964 N/mm2Da = 0.1 (500 - 398) = 10.2 mm, but >0 and <15, then = 10.2 mm Net breadth at top bfi(q) = 1,154 mm

Mean axis distance a to tendons in tension = 41.0 mm. a = 41.0 - 10.2 - Ddev 5.0 = 25.8 mm Eff depth d = 209.0 mm

Then fire resistance R = 60 mins. Also REI for effective thickness of 250 mm = 180 mins Ap bottom = 755.0 mm2

Critical REI = 60 mins. Check MRd,f Tension force Fp = 727,868 N

x to NA (top flange = 40 mm) = 20.3 mm

Concrete strain ec1(q) = 0.0049

Strain in tendons = 0.045491 . Limiting strain in tendons = 0.059542 . Tendon strain OK

Lever arm z,fi = 198.5 mm

MRd,fire = 144.5 kNm

MEd,fire = Ms,q-p = 114.3 kNm. Pass

Depth to a50% (EN 1168, Annex G, Fig G.1) = 66.1 mm

Axis a = 41.0 mm

Section is considered as solid

Page 13 of 14

(includes holes, notches and shelf angles)

Service Serv moment Ultimate Ult moment Ultimate shear Ultimate shear Deflection at Deflection at Movement after Final

moment of resistance moment* of resistance force* Vrd or Vrd,cr transfer installation installation deflection

4.6

92.9 -8.5 -13.9 12.1 9.76.55 130.4 154.4 172.9 215.5 24.8

21.7 92.9 -8.7 -14.1 12.5 10.2

92.9 -8.8 -14.4 13.0 10.7

215.5

6.15 136.9 154.7 181.5 215.5

6.35 133.9 154.6 177.5

18.6

15.5 92.9 -8.9 -14.6 13.3 11.2

92.9 -9.0 -14.7 13.6 11.5

215.5

5.76 141.6 155.0 187.7 215.5

5.96 139.5 154.9 184.9

12.4

9.3 92.9 -9.1 -14.8 13.8 11.8

92.9 -9.2 -14.9 14.0 12.0

215.5

5.36 144.4 155.2 191.3 215.5

5.56 143.2 155.1 189.8

6.2

3.1 92.9 -9.2 -15.0 14.1 12.1

92.9 -9.2 -15.0 14.1 12.2

215.5

4.96 145.3 155.2 192.6 215.5

5.16 145.1 155.2 192.3

0.0

3.1 92.9 -9.2 -15.0 14.1 12.1

92.9 -9.2 -14.9 14.0 12.0

215.5

4.57 144.4 155.2 191.3 215.5

4.76 145.1 155.2 192.3

6.2

9.3 92.9 -9.1 -14.8 13.8 11.8

92.9 -9.0 -14.7 13.6 11.5

215.5

4.17 141.6 155.0 187.7 215.5

4.37 143.2 155.1 189.8

12.4

15.5 92.9 -8.9 -14.6 13.3 11.2

92.9 -8.8 -14.4 13.0 10.7

215.5

3.77 136.9 154.7 181.5 215.5

3.97 139.5 154.9 184.9

18.6

21.7 92.9 -8.7 -14.1 12.5 10.2

92.9 -8.5 -13.9 12.1 9.7

215.5

3.37 130.4 154.4 172.9 215.5

3.57 133.9 154.6 177.5

24.8

27.9 116.6 -8.3 -13.5 11.5 9.1

116.6 -8.1 -13.2 11.0 8.4

215.5

2.98 122.1 153.9 161.8 215.5

3.18 126.5 154.1 167.6

31.0

34.2 116.6 -7.8 -12.8 10.3 7.7

116.6 -7.5 -12.3 9.7 6.9

215.5

2.58 111.8 153.3 148.2 215.5

2.78 117.2 153.6 155.3

37.3

40.4 116.6 -7.2 -11.8 9.0 6.2

116.6 -6.8 -11.2 8.2 5.4

2.38 106.0 153.0 140.5 215.5

2.18 99.7 152.6 132.2

7.5

0.0 0.0 75.0 116.6 0.0

116.6

116.6

215.5 43.5

Distance

0.00 0.0

DESIGN MOMENTS, SHEAR FORCES AND DEFLECTIONS, AND MOMENT AND SHEAR CAPACITY AT 50 POINTS ALONG THE SPAN

0.00.00.0

from left

0.0

0.20 11.4 35.5 15.1

101.4 71.4

54.7 74.5

0.40 22.3 71.4 29.6

116.6

-1.5 0.6 0.0-0.9

0.4

-2.9 1.3

0.60 32.8 107.5 43.4 140.2 2.0

0.1-1.7

68.3 -2.5 -4.1

-3.2

193.6 62.1 -3.9116.6

170.9 65.2 116.60.79 42.8 143.9 56.7

0.99 52.3 149.8 69.3 -6.4 3.5 1.2

-5.3 2.8 0.7

59.0 116.6 -4.51.19 61.4 150.4 81.3 -7.4 4.3 1.8

1.39 70.0 150.9 92.7 215.1 55.9 116.6

-9.1 5.9 3.1

-8.3 5.1 2.5-5.0

1.59 78.1 151.3 103.5 -5.6215.5 52.8 116.6

3.9-6.0 -9.9 6.749.7 116.6

-6.5 -10.6215.5 46.6 116.6

215.5

1.99 93.0 152.2 123.3

1.79 85.8 151.8 113.7

208.3

Service Serv moment Ultimate Ult moment Ultimate shear Ultimate shear Deflection at Deflection at Movement after Final

moment of resistance moment of resistance force Vrd or Vrd,cr transfer installation installation deflection

* maxima for all load combinations explained below.

COMBINATION DEAD AND LIVE UDL, POINT AND LINE LOADS FOR ULTIMATE LIMIT STATE TO EN1991

Ultimate load is the greater of :

Equation 6.10(a) = 1.35 x dead loads + 0.7 x 1.5 x live loads

Equation 6.10(b) = 0.925 x 1.35 x dead loads + 1.5 x one dominant live load + 0.7 x 1.5 x all other accompanying live loads taken in turn

Eq. 6.10(a). UDL = (1.35 x 1.2 x 6.83) + (0.7 x 1.5 x 1.2 x 3.00) = 14.85 kN/m per unit

Eq. 6.10(b). Live UDL load dominant. UDL = (0.925 x 1.35 x 1.2 x 6.83) + (1.5 x 1.2 x 3.00) = 15.64 kN/m per unit

End of document

0.1

0.4

-5.3

0.0 0.0

2.8 0.7

1.2

-1.5 0.6

-4.1 2.0

1.3

from left

-9.2 -15.0Maxima = 14.1 12.2

Distance

0.0 0.0

0.0

9.93 0.0 0.0 0.0 0.0 75.0 116.6

54.7 74.5 116.6 -0.99.73 11.4 35.5 15.1

71.4 116.6 -1.7 -2.9101.4

9.33 32.8 107.5 43.4 140.2

9.53 22.3 71.4

-6.4 3.5

29.6

65.2 116.6 -3.2

116.6 -2.5

170.9

68.3

193.6

9.13 42.8 143.9 56.7

8.93 52.3 149.8 69.3 62.1

59.0 116.6 -4.5

116.6 -3.9

208.3 -7.4 4.3 1.8

116.6 -5.0 -8.3 5.1 2.58.54 70.0 150.9 92.7 215.1

8.73 61.4 150.4 81.3

55.9

52.8 116.6 -5.6 -9.1 5.9 3.1

116.6 -6.0 -9.9 6.7 3.9

215.5

8.14 85.8 151.8 113.7 215.5

8.34 78.1 151.3 103.5

49.7

46.6 116.6 -6.5 -10.6 7.5 4.6

116.6 -6.8 -11.2 8.2 5.4

215.5

7.74 99.7 152.6 132.2 215.5

7.94 93.0 152.2 123.3

43.5

40.4 116.6 -7.2 -11.8 9.0 6.2

116.6 -7.5 -12.3 9.7 6.9

215.5

7.34 111.8 153.3 148.2 215.5

7.54 106.0 153.0 140.5

37.3

34.2 116.6 -7.8 -12.8 10.3 7.7

116.6 -8.1 -13.2 11.0 8.4

215.5

6.95 122.1 153.9 161.8 215.5

7.15 117.2 153.6 155.3

31.0

27.9 116.6 -8.3 -13.5 11.5 9.1215.56.75 126.5 154.1 167.6

Project title Designed by

Job ref Checked by

Location Date

Floor level Revision Date

PRECAST UNIT INPUT DATA 250 - 6 6 MOMENT & SHEAR RESISTANCES Basic unit At hole 1 At hole 2 Left notch Right notch

Depth of hollow core unit 250 mm Service moment of resistance M sr (kNm) 155.2

Nominal width of hollow core unit 1200 mm Ultimate moment of resistance M Rd (kNm) 215.5

Ult uncracked shear resistance V Rd,c (kN) 116.6

TENDON PATTERN Row 1 Row 2 Row 3 Top Ult cracked shear resistance V Rd,cr (kN) 92.9

No. of tendons in each row 2 7 0 2 Cracking moment M cr (kNm) 126.9

Cover to tendons in each row (mm) 35.0 35.0 0.0 25

Diameter of tendons in each row (mm) 9.3 12.5 0.0 5.0 DESIGN MOMENTS & SHEAR FORCES Basic unit At hole 1 At hole 2 Left notch Right notch

Service moment Ms (kNm) 145.3

INPUT LOADS, SPANS & LOAD FACTORS Ultimate moment M Ed (kNm) 192.6

Effective span 9.925 m Ultimate shear force V Ed (kN) 75.0

Self weight of precast unit plus infill in joints 3.63 kN/m2 Ratio of design shear V Ed / V Rd,c 0.64

Self weight of screed 2.40 kN/m2 PASS

Finishes UDL 0.30 kN/m2

Services UDL 0.50 kN/m2 DEFLECTIONS AND CRACK WIDTH Limit Deflection

Other UDL 0.00 kN/m2 Camber at transfer (mm) = span / 1,080 -9.2

Imposed live load UDL 3.00 kN/m2 39.7 -15.0 PASS

0.70 0.925 28.4 14.1 PASS

0.50 0.30 39.7 12.2 PASS

NO 0.2 0.00 PASS

POINT LOADS Trimmer Load width Point load Distance PSF

Distance is from centre of bearing angle? (m) (kN) from left (m) PRESTRESS CHECK Transfer Service

Point load 1 NO 0.000 0.00 0.000 1.35 Stress at bottom (N/mm2) 12.81 PASS 10.27 PASS

Point load 2 NO 0.000 0.00 0.000 1.35 Stress at top (N/mm2) -1.65 PASS -1.32 PASS

Point load 3 NO 0.000 0.00 0.000 1.35

Point load 4 NO 0.000 0.00 0.000 1.35

Self weight of unit (exclude infill) 4.12 kN/m

LINE LOADS PARALLEL WITH SPAN Edge Line load Distance from Distance from PSF 0.020 m

Distance is from centre of bearing load (kN/m) left to start (m) left to end (m) Natural frequency 4.0 Hz

Line load 1 NO 0.00 0.000 0.000 1.50 Dynamic damping factor 0.02

Line load 2 NO 0.00 0.000 0.000 1.35 9.93 m

Line load 3 NO 0.00 0.000 0.000 1.35 Peak acceleration and suitability 0.5 % a/g

Line load 4 NO 0.00 0.000 0.000 1.35 61 dB

0.28 m2 o

C/W

Fire resistance in minutes using axis distance (incl a,dev = 5 mm) = 26 mm 60 Check MRd,f

Fire moment MRd,fire for temp at tendons = 391 oC and MEd,fire = 114.3 kNm 144.5 PASS

XD2 PASS

77.6 kN

313.6 PASS

Allow lateral load spreading of point and line loads?

Frequent live load factor (ψ1) for crack control and live load (ψ2) for long term deflection

Deflection at installation of precast unit (limit span/250) (mm)

DYNAMIC, ACOUSTIC, THERMAL, FIRE & DURABILITY PROPERTIES

OK for shops, dining, dancing

Thermal resistance, including finishes

Width of slab field contributing to dynamic dispersion

DESIGN OF PRESTRESSED CONCRETE

Unit reference & no. cores :

Level 01 - 03, corridor loading

HOLLOW CORE FLOOR UNIT TO EC2

R Escriva

TEL 028 796 51236 FAX 028 796 59596 E-MAIL [email protected]

Span between grids A3 - A5

Maximum ultimate end reaction per unit

Exposure class satisfactory

Ult bearing capacity of 75 mm bearing onto Precast concrete (kN)

Sound attenuation, including finishes

Elastic maximum deflection due to UDL (Ec = 1.2 x static)

Bellevue Apartments

WITH FIRE MOMENT METHOD

M Magill

Movement after installation, creep & losses (Non-brittle finishes span/350)

Final long term deflection (limit span/250) (mm)

Crack width (mm)

CREAGH CONCRETE LTD. CREAGH INDUSTRIAL ESTATE, BLACKPARK ROAD, TOOMEBRIDGE, ANTRIM, N. IRELAND BT41 3SE

Combination live (ψ0) and dead load (ζ) factors for ultimate load

01/01/2019

19-0101-C01-1

HOLES IN UNIT Distance* Length Width Edge

Dimensions of hole 1 (mm) 0 0 0 0 Depth of unit 250 mm

Dimensions of hole 2 (mm) 0 0 0 0 Breadth at top 1154 mm

Position of tendons lost at holes Row 1 Row 2 Row 3 Top 1197 mm

No. of tendons lost at hole 1 0 0 0 0 Total breadth of webs 300 mm

No. of tendons lost at hole 2 0 0 0 0 Depth of top flange 40 mm

Breadth of webs after deduction for hole 1 (mm) 300 Depth of bottom flange 35 mm

Breadth of webs after deduction for hole 2 (mm) 300 No. of cores 6 HOLLOW

Do not use < 140 mm wide when cut through hollow core. *Distance to centre of holes from LEFT end centre of bearing. Breadth of core 140 mm

Maximum hole or notch width x length = 600 x 2,000 mm for 10.000 m long unit. Edge distance from edge of unit to edge of hole or notch. Area of concrete 168011 mm2

Second moment of area (10^6) 1270.6 mm4

NOTCHES IN ENDS OF UNIT Length Width Edge First moment of area (10^6) 6.784 mm3

Dimensions of notch at left end (mm) 0 0 0 Height to centroid from bottom 123.0 mm

Dimensions of notch at right end (mm) 0 0 0 Area of infill in longitudinal gap 9964 mm2

Position of tendons lost at notches Row 1 Row 2 Row 3 Top Internal web breadth 40 mm

No. of tendons lost at left notch 0 0 0 0 External web breadth 50.2 mm

No. of tendons lost at right notch 0 0 0 0

300

300 Concrete mean compressive strength fcm 48 N/mm2

Length of notches from centre of bearing. Concrete design strength fcd 22.7 N/mm2

Concrete mean flexural tensile strength fctm 3.51 N/mm2

Derived limiting tensile stress in service = fctm 3.51

Concrete cylinder strength 40 N/mm2 Flexural strength fctm,fl not specified 1.00

Concrete transfer cylinder strength 28 N/mm2 Flexural strength in service 3.51 N/mm

2

Use permissible tension fctm,fl NO Concrete tensile 5% characteristic fct,0.05 2.46 N/mm2

Precast unit concrete density 24.5 kN/m3 Concrete Young's modulus Ecm 35220 N/mm

2

Steel yield strength for strand 1860 N/mm2 Transfer mean compressive strength fcm,t 36 N/mm

2

Steel yield strength for 5 mm wire 1860 N/mm2 Transfer design strength fcd,t 18.67 N/mm

2

Steel yield strength for 7 mm wire 1860 N/mm2 Transfer tensile strength fctm,t 2.63 N/mm

2

Ratio of initial prestress for 12.5 dia. bottom tendons 0.700 Transfer Young's modulus Ecm,t 32308 N/mm2

Ratio of initial prestress for wire and 9.3 dia. bottom tendons 0.700

Ratio of initial prestress for top tendons 0.400 OUTPUT DATA FOR UNIT Basic unit At hole 1 At hole 2 Left notch Right notch

Young's modulus of tendons 195000 N/mm2 Section modulus at bottom (mm3) 1.033E+07

Tendon relaxtion class 2 number Section modulus at top (mm3) 1.001E+07

1000 hour relaxation 2.5 % Total area of bottom tendons and top wire (mm2) 794

Detensioning age 20 hours Eccentricity of prestress (mm) 76.8

Relative humidity at transfer 70 % Initial prestressing force (kN) 1012.2

Relative humidity from installation to life 50 % Total losses (%) 24.2

Age at installation 28 days Final prestressing force (kN) 767.0

Aggregate type Gravel

Cement Class R CEM 42.5R

25 N/mm2

Sheet 2 of 3

Concrete cylinder strength for top infilled cores

Breadth at bottom for full width unit

CREAGH CONCRETE LTD. DESIGN OF PRESTRESSED CONCRETE HOLLOW CORE FLOOR UNIT TO EC2 WITH FIRE MOMENT METHOD

SECTION PROPERTIES OF PRECAST UNIT

Breadth of webs after deduction for notch at right end (mm)

PRECAST MATERIAL AND PRESTRESSING INPUT DATA

Breadth of webs after deduction for notch at left end (mm) CONCRETE STRENGTHS AND MODULUS OF PRECAST UNIT

Load 1 Load 2 Load 3 Load 4

Bearing material

Nominal bearing length 75 mm Point punching loads (kN) Ultimate

Fire resistance required Tendon axis distance Minimum 90 mins. Punching shear limit Limit

XC1

50 years Point concentrated loads (kN) Service

11 Point load limit Limit

300 kg/m2

Select finishes and ceilings

Line loads (kN/m) Ultimate

RIGID OR FLEXIBLE SUPPORTS Line or edge load limit Limit

Precast unit on a flexible support ? NO NO

SERVICE END REACTIONS AT SUPPORTS PER M RUN Left end Right end

Dead load reaction 34.05 34.05 kN/m

Live load reaction 14.89 14.89 kN/m

Left end Right end

116.6 116.6 kN

60 60 %

Shear capcity in fire VRd,c,fi 70.0 70.0 kN

Shear force in fire VE,fi (service load) 56.7 56.7 kN

0.81 0.81

Tie steel is required if shear fails PASS PASS

END CONDITIONS Left end Right end

Select supporting end conditions Standard Standard

0 0

0 0

Sheet 3 of 3

Table G.2. h = 250 mm & REI 90. Fire / room shear capacity

Shear capacity at room temperature VRd,c

Minimum required sound density of floor slab

Number of units side-by-side in slab field (for dynamic properties)

Line loads alone or combined (if nearer than unit depth)

BEARINGS, FIRE, ENVIRONMENTAL AND DYNAMIC DATA

Precast concrete

PUNCHING SHEAR AND CONCENTRATED LOADS

Point loads alone or combined (if nearer than unit depth)

SHEAR CAPACITY IN FIRE. BS EN 1168+A3:2011, Annex G

CREAGH CONCRETE LTD. DESIGN OF PRESTRESSED CONCRETE HOLLOW CORE FLOOR UNIT TO EC2 WITH FIRE MOMENT METHOD

No additional tie bars in cores required

Design working life (for durability purpose)

Ratio of force / capacity VEd,fi / VRd,c,fi

Environmental exposure class designation required

Non-brittle finishes

Right endLeft end

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

1 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

2 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

3 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

4 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

5 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Load Combination Information Sheet No.

6 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

1 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

WIND LOADING (EN1991)

WIND LOADING (EN1991-1-4)

In accordance with EN1991-1-3:2005+A1:2010 and the UK national annex

TEDDS calculation version 3.0.19

Building data

Type of roof Flat

Length of building L = 36155 mm

Width of building W = 14320 mm

Height to eaves H = 14701 mm

Eaves type Sharp

Total height h = 14701 mm

Basic values

Location Belfast

Wind speed velocity (FigureNA.1) vb,map = 25.5 m/s

Distance to shore Lshore = 5.00 km

Altitude above sea level Aalt = 15.0m

Altitude factor calt = Aalt × 0.001m-1 + 1 = 1.015

Fundamental basic wind velocity vb,0 = vb,map × calt = 25.9 m/s

Direction factor cdir = 1.00

Season factor cseason = 1.00

Shape parameter K K = 0.2

Exponent n n = 0.5

Air density ρ = 1.226 kg/m3

Probability factor cprob = [(1 - K × ln(-ln(1-p)))/(1 - K × ln(-ln(0.98)))]n = 1.00

Basic wind velocity (Exp. 4.1) vb = cdir × cseason × vb,0 × cprob = 25.9 m/s

Reference mean velocity pressure qb = 0.5 × ρ × vb2 = 0.411 kN/m2

Orography

Orography factor not significant co = 1.0

Terrain category Town

Displacement height (sheltering effect excluded) hdis =

0mm

The velocity pressure for the windward face of the building with a 0 degree wind is to be considered as 1 part as

the height h is less than b (cl.7.2.2)

The velocity pressure for the windward face of the building with a 90 degree wind is to be considered as 2 parts as

the height h is greater than b but less than 2b (cl.7.2.2)

Peak velocity pressure - windward wall - Wind 0 deg and roof

14320

14701

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

2 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Reference height (at which q is sought) z = 14701mm

Displacement height (sheltering effects excluded) hdis = 0 mm

Exposure factor (Figure NA.7) ce = 2.83

Exposure correction factor (Figure NA.8) ce,T = 0.87

Peak velocity pressure qp = ce × ce,T × qb = 1.01 kN/m2

Structural factor

Structural damping δδδδs = 0.100

Height of element hpart = 14701 mm

Size factor (Table NA.3) cs = 0.811

Dynamic factor (Figure NA.9) cd = 1.010

Structural factor csCd = cs ×××× cd = 0.819

Peak velocity pressure - windward wall (lower part) - Wind 90 deg

Reference height (at which q is sought) z = 14320mm

Displacement height (sheltering effects excluded) hdis = 0 mm

Exposure factor (Figure NA.7) ce = 2.81

Exposure correction factor (Figure NA.8) ce,T = 0.86

Peak velocity pressure qp = ce × ce,T × qb = 1.00 kN/m2

Structural factor

Structural damping δδδδs = 0.100

Height of element hpart = 14320 mm

Size factor (Table NA.3) cs = 0.852

Dynamic factor (Figure NA.9) cd = 1.028

Structural factor csCd = cs ×××× cd = 0.877

Peak velocity pressure - windward wall (upper part) - Wind 90 deg and roof

Reference height (at which q is sought) z = 14701mm

Displacement height (sheltering effects excluded) hdis = 0 mm

Exposure factor (Figure NA.7) ce = 2.83

Exposure correction factor (Figure NA.8) ce,T = 0.87

Peak velocity pressure qp = ce × ce,T × qb = 1.01 kN/m2

Structural factor

Structural damping δδδδs = 0.100

Height of element hpart = 381 mm

Size factor (Table NA.3) cs = 0.893

Dynamic factor (Figure NA.9) cd = 1.028

Structural factor csCd = cs ×××× cd = 0.918

Structural factor

Structural damping δδδδs = 0.100

Height of element hpart = 14701 mm

Size factor (Table NA.3) cs = 0.852

Dynamic factor (Figure NA.9) cd = 1.028

Structural factor csCd = cs ×××× cd = 0.876

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) qp,i = 1.01 kN/m2

Pressures and forces

Net pressure p = csCd × qp × cpe - qp,i × cpi

Net force Fw = pw × Aref

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

3 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Roof load case 1 - Wind 0, cpi 0.20, -cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

F (-ve) -2.00 1.01 -1.85 43.22 -79.94

G (-ve) -1.40 1.01 -1.35 63.08 -85.47

H (-ve) -0.70 1.01 -0.78 411.44 -320.13

Total vertical net force Fw,v = -485.53 kN

Total horizontal net force Fw,h = 0.00 kN

Walls load case 1 - Wind 0, cpi 0.20, -cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

A -1.20 1.01 -1.19 86.45 -102.88

B -0.80 1.01 -0.86 124.07 -106.76

D 0.80 1.01 0.46 531.51 243.43

E -0.50 1.01 -0.61 531.51 -326.54

Overall loading

Equiv leeward net force for overall section Fl = Fw,wE = -326.5 kN

Net windward force for overall section Fw = Fw,wD = 243.4 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/W is 1.027

Overall loading overall section Fw,D = fcorr × (Fw - Fl + Fw,h) = 485.0 kN

Roof load case 2 - Wind 0, cpi -0.3, +cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

F (+ve) -2.00 1.01 -1.35 43.22 -58.19

G (+ve) -1.40 1.01 -0.85 63.08 -53.73

H (+ve) -0.70 1.01 -0.27 411.44 -113.13

Total vertical net force Fw,v = -225.05 kN

Total horizontal net force Fw,h = 0.00 kN

Walls load case 2 - Wind 0, cpi -0.3, +cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

A -1.20 1.01 -0.69 86.45 -59.39

B -0.80 1.01 -0.36 124.07 -44.34

D 0.80 1.01 0.96 531.51 510.84

E -0.50 1.01 -0.11 531.51 -59.13

Overall loading

Equiv leeward net force for overall section Fl = Fw,wE = -59.1 kN

Net windward force for overall section Fw = Fw,wD = 510.8 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/W is 1.027

Overall loading overall section Fw,D = fcorr × (Fw - Fl + Fw,h) = 485.0 kN

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

4 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Roof load case 3 - Wind 90, cpi 0.20, -cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

F (-ve) -2.00 1.01 -1.96 10.25 -20.15

G (-ve) -1.40 1.01 -1.44 10.25 -14.72

H (-ve) -0.70 1.01 -0.82 82.02 -67.14

I (-ve) -0.20 1.01 -0.38 415.21 -156.78

Total vertical net force Fw,v = -258.79 kN

Total horizontal net force Fw,h = 0.00 kN

Walls load case 3 - Wind 90, cpi 0.20, -cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

A -1.20 1.01 -1.26 42.10 -53.02

B -0.80 1.01 -0.91 168.41 -152.70

C -0.50 1.01 -0.64 321.00 -206.12

Db 0.72 1.00 0.43 205.06 87.85

Du 0.72 1.01 0.46 5.46 2.54

E -0.34 1.01 -0.50 210.52 -105.81

Overall loading

Equiv leeward net force for upper section Fl = Fw,wE / Aref,wE × Aref,wu = -2.7 kN

Net windward force for upper section Fw = Fw,wu = 2.5 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/L is 0.407

Overall loading upper section Fw,u = fcorr × (Fw - Fl + Fw,h) = 4.5 kN

Equiv leeward net force for bottom section Fl = Fw,wE / Aref,wE × Aref,wb = -103.1 kN

Net windward force for bottom section Fw = Fw,wb = 87.9 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/L is 0.407

Overall loading bottom section Fw,b = fcorr × (Fw - Fl) = 162.3 kN

Roof load case 4 - Wind 90, cpi -0.3, +cpe

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

F (+ve) -2.00 1.01 -1.46 10.25 -14.99

G (+ve) -1.40 1.01 -0.93 10.25 -9.56

H (+ve) -0.70 1.01 -0.32 82.02 -25.87

I (+ve) 0.20 1.01 0.48 415.21 198.56

Total vertical net force Fw,v = 148.14 kN

Total horizontal net force Fw,h = 0.00 kN

Walls load case 4 - Wind 90, cpi -0.3, +cpe

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

5 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Zone Ext pressure

coefficient cpe

Peak velocity pressure

qp, (kN/m2)

Net pressure p (kN/m2)

Area Aref (m2)

Net force Fw (kN)

A -1.20 1.01 -0.76 42.10 -31.84

B -0.80 1.01 -0.40 168.41 -67.96

C -0.50 1.01 -0.14 321.00 -44.62

Db 0.72 1.00 0.93 205.06 191.02

Du 0.72 1.01 0.97 5.46 5.28

E -0.34 1.01 0.00 210.52 0.11

Overall loading

Equiv leeward net force for upper section Fl = Fw,wE / Aref,wE × Aref,wu = 0.0 kN

Net windward force for upper section Fw = Fw,wu = 5.3 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/L is 0.407

Overall loading upper section Fw,u = fcorr × (Fw - Fl + Fw,h) = 4.5 kN

Equiv leeward net force for bottom section Fl = Fw,wE / Aref,wE × Aref,wb = 0.1 kN

Net windward force for bottom section Fw = Fw,wb = 191.0 kN

Lack of correlation (cl.7.2.2(3) – Note) fcorr = 0.85 as h/L is 0.407

Overall loading bottom section Fw,b = fcorr × (Fw - Fl) = 162.3 kN

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C02

Calculation Title

Wind Loading

Sheet No.

6 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

14701

14701

14701

F

F

G H I

3580

7160

3580

1432 5728 28995

36155

14320

Wind - 90o

Plan view - Flat roof

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-1

Calculation Title

Shear wall load distribution - X direction %

Sheet No.

1 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Notional 100kN load applied to provide % distribution of lateral loading.

RIGID DIAPHRAGM FORCE DISTRIBUTION

RIGID DIAPHRAGM FORCE DISTRIBUTION

Tedds calculation version 1.1.01

The location of elements are relative to the origin (0m, 0m).

Floor data

Building type Concrete

No of concrete columns Ncc = 0

No of shear walls NSW = 16

No of other elements Nele = 0

Floor height below Hf = 3.000 m

Modulus of elasticity for concrete E = Ec = 28000 N/mm2

Loads

Lateral load in X Fx = 100.000 kN

Location of Fx from origin Y = 7.160 m

Lateral load in Y Fy = 0.000 kN

Location of Fy from origin X = 0.000 m

Shear wall

No. Height Location

(relative to

origin)

Rotation

to

Y axis

Thickness Length k along X

axis

k along Y

axis

H (m) X (m) Y (m) θ (deg) tSW (mm) lSW (m) kx

(kN/mm)

ky

(kN/mm)

SW1 3 1.22 3.58 0 200 6.36 0 13307.943

SW2 3 0.29 11.22 0 200 5.39 0 8096.949

SW3 3 3.94 3.35 0 200 6.28 0 12842.312

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-1

Calculation Title

Shear wall load distribution - X direction %

Sheet No.

2 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

SW4 3 3.94 10.99 0 200 6.26 0 12689.55

SW5 3 13.99 3.42 0 200 6.12 0 11885.53

SW6 3 13.99 10.91 0 200 6.1 0 11740.468

SW7 3 24.04 3.43 0 200 6.12 0 11885.53

SW8 3 24.04 10.91 0 200 6.1 0 11740.468

SW9 3 29.07 3.32 0 200 5.91 0 10676.379

SW10 3 35.89 1.9 0 160 3.06 0 1192.052

SW11 3 2.47 0.29 90 200 2.71 1026.281 0

SW12 3 2.01 14.03 90 200 3.64 2490.448 0

SW13 3 25.43 6.39 90 200 2.54 852.714 0

SW14 3 29.43 6.39 90 200 3.45 2129.225 0

SW15 3 34.07 6.39 90 200 3.8 2838.481 0

SW16 3 30.48 7.96 90 200 5.54 8811.673 0

Center of rigidity

ΣΣΣΣky (kN/mm) ΣΣΣΣkyX (kN) XCoR (m) ΣΣΣΣkx (kN/mm) ΣΣΣΣkxY (kN) YCoR (m)

106057 1370761763 12.925 18149 142542910 7.854

Forces on the lateral resisting system

All distances are measured from centre of rigidity.(C.R.)

Eccentricity of Fy ex = X – XCoR = -12.925 m

Eccentricity of Fx ey = Y – YCoR = -0.694 m

Moment about centre of rigidity Mz = (Fx × ey) - (Fy × ex) = -69.411 kNm

Torsion

No.

Xi

(m)

kxYi

(kN)

kxY2i

(kNm)

Yi

(m)

kyXi

(kN)

kyX2i

(kNm)

SW1 11.7 0 0 -4.27 155766052 182320157

3

SW2 12.63 0 0 3.37 102302866 129257040

0

SW3 8.98 0 0 -4.51 115384867 103670335

1

SW4 8.98 0 0 3.13 114012341 102437156

2

SW5 -1.07 0 0 -4.43 -12661146 13487377

SW6 -1.07 0 0 3.05 -12506618 13322764

SW7 -11.12 0 0 -4.43 -

132110718

146844461

2

SW8 -11.12 0 0 3.05 -

130498319

145052237

9

SW9 -16.14 0 0 -4.54 -

172319501

278128106

4

SW10 -22.96 0 0 -5.96 -27369824 628418188

SW11 10.45 -7762902 58719476 -7.56 0 0

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-1

Calculation Title

Shear wall load distribution - X direction %

Sheet No.

3 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

SW12 10.92 15380725 94989611 6.18 0 0

SW13 -12.5 -1252734 1840408 -1.47 0 0

SW14 -16.51 -3128073 4595495 -1.47 0 0

SW15 -21.14 -4170052 6126280 -1.47 0 0

SW16 -17.55 933036 98796 0.11 0 0

ΣΣΣΣkxY2i 166370066 ΣΣΣΣkyX2i 115323232

70

Forces on elements

No.

fxf

(%)

fxm

(%)

fx

(%)

fyf

(%)

fym

(%)

fy

(%)

SW1 0 0 0 0 -0.92 -0.92

SW2 0 0 0 0 -0.61 -0.61

SW3 0 0 0 0 -0.68 -0.68

SW4 0 0 0 0 -0.68 -0.68

SW5 0 0 0 0 0.08 0.08

SW6 0 0 0 0 0.07 0.07

SW7 0 0 0 0 0.78 0.78

SW8 0 0 0 0 0.77 0.77

SW9 0 0 0 0 1.02 1.02

SW10 0 0 0 0 0.16 0.16

SW11 5.65 0.05 5.7 0 0 0

SW12 13.72 -0.09 13.63 0 0 0

SW13 4.7 0.01 4.71 0 0 0

SW14 11.73 0.02 11.75 0 0 0

SW15 15.64 0.02 15.66 0 0 0

SW16 48.55 -0.01 48.55 0 0 0

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-2

Calculation Title

Shear wall load distribution - Y direction %

Sheet No.

1 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Notional 100kN load applied to provide % distribution of lateral loading.

RIGID DIAPHRAGM FORCE DISTRIBUTION

RIGID DIAPHRAGM FORCE DISTRIBUTION

Tedds calculation version 1.1.01

The location of elements are relative to the origin (0m, 0m).

Floor data

Building type Concrete

No of concrete columns Ncc = 0

No of shear walls NSW = 16

No of other elements Nele = 0

Floor height below Hf = 3.000 m

Modulus of elasticity for concrete E = Ec = 28000 N/mm2

Loads

Lateral load in X Fx = 0.000 kN

Location of Fx from origin Y = 0.000 m

Lateral load in Y Fy = 100.000 kN

Location of Fy from origin X = 18.078 m

Shear wall

No. Height Location

(relative to

origin)

Rotation

to

Y axis

Thickness Length k along X

axis

k along Y

axis

H (m) X (m) Y (m) θ (deg) tSW (mm) lSW (m) kx

(kN/mm)

ky

(kN/mm)

SW1 3 1.22 3.58 0 200 6.36 0 13307.943

SW2 3 0.29 11.22 0 200 5.39 0 8096.949

SW3 3 3.94 3.35 0 200 6.28 0 12842.312

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-2

Calculation Title

Shear wall load distribution - Y direction %

Sheet No.

2 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

SW4 3 3.94 10.99 0 200 6.26 0 12689.55

SW5 3 13.99 3.42 0 200 6.12 0 11885.53

SW6 3 13.99 10.91 0 200 6.1 0 11740.468

SW7 3 24.04 3.43 0 200 6.12 0 11885.53

SW8 3 24.04 10.91 0 200 6.1 0 11740.468

SW9 3 29.07 3.32 0 200 5.91 0 10676.379

SW10 3 35.89 1.9 0 160 3.06 0 1192.052

SW11 3 2.47 0.29 90 200 2.71 1026.281 0

SW12 3 2.01 14.03 90 200 3.64 2490.448 0

SW13 3 25.43 6.39 90 200 2.54 852.714 0

SW14 3 29.43 6.39 90 200 3.45 2129.225 0

SW15 3 34.07 6.39 90 200 3.8 2838.481 0

SW16 3 30.48 7.96 90 200 5.54 8811.673 0

Center of rigidity

ΣΣΣΣky (kN/mm) ΣΣΣΣkyX (kN) XCoR (m) ΣΣΣΣkx (kN/mm) ΣΣΣΣkxY (kN) YCoR (m)

106057 1370761763 12.925 18149 142542910 7.854

Forces on the lateral resisting system

All distances are measured from centre of rigidity.(C.R.)

Eccentricity of Fy ex = X – XCoR = 5.153 m

Eccentricity of Fx ey = Y – YCoR = -7.854 m

Moment about centre of rigidity Mz = (Fx × ey) - (Fy × ex) = -515.276 kNm

Torsion

No.

Xi

(m)

kxYi

(kN)

kxY2i

(kNm)

Yi

(m)

kyXi

(kN)

kyX2i

(kNm)

SW1 11.7 0 0 -4.27 155766052 182320157

3

SW2 12.63 0 0 3.37 102302866 129257040

0

SW3 8.98 0 0 -4.51 115384867 103670335

1

SW4 8.98 0 0 3.13 114012341 102437156

2

SW5 -1.07 0 0 -4.43 -12661146 13487377

SW6 -1.07 0 0 3.05 -12506618 13322764

SW7 -11.12 0 0 -4.43 -

132110718

146844461

2

SW8 -11.12 0 0 3.05 -

130498319

145052237

9

SW9 -16.14 0 0 -4.54 -

172319501

278128106

4

SW10 -22.96 0 0 -5.96 -27369824 628418188

SW11 10.45 -7762902 58719476 -7.56 0 0

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C03-2

Calculation Title

Shear wall load distribution - Y direction %

Sheet No.

3 of 3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

SW12 10.92 15380725 94989611 6.18 0 0

SW13 -12.5 -1252734 1840408 -1.47 0 0

SW14 -16.51 -3128073 4595495 -1.47 0 0

SW15 -21.14 -4170052 6126280 -1.47 0 0

SW16 -17.55 933036 98796 0.11 0 0

ΣΣΣΣkxY2i 166370066 ΣΣΣΣkyX2i 115323232

70

Forces on elements

No.

fxf

(%)

fxm

(%)

fx

(%)

fyf

(%)

fym

(%)

fy

(%)

SW1 0 0 0 12.55 -6.86 5.69

SW2 0 0 0 7.63 -4.51 3.13

SW3 0 0 0 12.11 -5.08 7.03

SW4 0 0 0 11.96 -5.02 6.94

SW5 0 0 0 11.21 0.56 11.76

SW6 0 0 0 11.07 0.55 11.62

SW7 0 0 0 11.21 5.82 17.03

SW8 0 0 0 11.07 5.75 16.82

SW9 0 0 0 10.07 7.59 17.66

SW10 0 0 0 1.12 1.21 2.33

SW11 0 0.34 0.34 0 0 0

SW12 0 -0.68 -0.68 0 0 0

SW13 0 0.06 0.06 0 0 0

SW14 0 0.14 0.14 0 0 0

SW15 0 0.18 0.18 0 0 0

SW16 0 -0.04 -0.04 0 0 0

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C04

Section

Lateral loads & moments

Sheet No.

1 of 1

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Equivalent Horizontal Forces due to geometrical imperfections

Horizontal loading

Wind X direction (sls) wx = 162.5kN + 4.5kN = 167kN

Wind Y direction (sls) wy = 485kN

EHF dead X & Y direction (sls) ehfd = 59kN

EHF live X & Y direction (sls) ehfl = 10kN

Moments

Wind X direction (sls) wx = 162.5kN × 7.16m + 4.5kN × 14.51m = 1229kNm

Wind Y direction (sls) wy = 485kN × 7.350m = 3565kNm

EHF dead X & Y direction (sls) ehfd = 450kNm

EHF live X & Y direction (sls) ehfl = 68kNm

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

1 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Number of storeys n = 5

Basic horizontal tie force Ft = min(60kN,((20 + (4 × n)) × 1kN)) = 40kN

1. Peripheral tie – gridline A10

The following calculation will determine the peripheral tie requirement upon notional removal of a section of the supporting

wall where the slab span is perpendicular to the wall.

Level 01

Clear storey height (floor to ceiling) H = 2940mm

End slab span lse = 6717mm

Supported floor length le = lse / 2 = 3359mm

Notional length of wall removed lr = 2.25 × H = 6615mm

Apartment live load qk = 2.5kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 65.8kN/m

Peripheral tie force Ftr = Ftd × le = 221.1kN

Characteristic strength of strand fpk = 1860N/mm2

Tensile capacity of 12.5mm strand Tcap = 0.9 × fpk × 93mm2 = 155.7kN

Number of strands required nstrand = round((Ftr / Tcap + 0.5),0) = 2

Capacity provided Tc = Tcap × nstrand = 311.4kN Tie is adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

2 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

2. Peripheral tie – gridline AA

The following calculation will determine the peripheral tie requirement where the slab span is parallel to the wall, a notional

1m wide strip of slab is considered.

Level 01 – 03 Apartments

Slab span lr = 9925mm

Apartment live load qk = 2.5kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 98.8kN/m

Peripheral tie force Ftr = Ftd × 1m = 98.8kN

Characteristic strength of strand fpk = 1860N/mm2

Tensile capacity of 9.3mm strand Tcap = 0.9 × fpk × 93mm2 = 155.7kN

Number of strands required nstrand = round((Ftr / Tcap + 0.5),0) = 1

Capacity provided Tc = Tcap × nstrand = 155.7kN Tie is adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

3 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

3. Edge tie – slabs bearing onto gridline A10

The following calculation will determine the tie requirement for the precast floor units to their support.

Level 01 – 03 Apartments

Corridor live load qk = 3kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Span lr = 6717mm

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 70.4kN/m

Number of tie bars provided per 1.2m unit ntb = 2

Tie bar diameter φt = 12mm

Yield strength of reinforcement fy = 500N/mm2

Tie capacity of bar Ttb = fy × ((φt)2 × π / 4) = 56.5kN

Tie capacity required per 1.2m wide slab Fts = Ftd × 1.2m = 84.5kN

Tie capacity provided per 1.2m wide slab Tbars = Ttb × ntb = 113.1kN Ties are adequate

4. Edge tie – wall SW10 on gridline A10

The following calculation will determine the tie requirement for the load bearing wall to the floor slabs.

Level 01

Clear storey height (floor to ceiling) ls = 2940mm

Axial load (uls) NEd = 514kN/m (SW10)

Span lr = 6717mm

Design tie force Ftd = (max(min((2 × Ft / 1m),(ls × Ft / 2.5m) / 1m),(0.03 × NEd))) = 47.0kN/m

Tie capacity required per 1.2m wide slab Fts = 1.2m × Ftd = 56.4kN

Number of tie bars provided per 1.2m unit ntb = 2

Tie bar diameter φt = 12mm

Yield strength of reinforcement fy = 500N/mm2

Tie capacity of bar Ttb = fy × ((φt)2 × π / 4) = 56.5kN

Tie capacity required per 1.2m wide slab Fts = Ftd × 1.2m = 56.4kN

Tie capacity provided per 1.2m wide slab Tbars = Ttb × ntb = 113.1kN Ties are adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

4 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

5. Edge tie – side pockets in slabs spanning parallel to wall

Basic horizontal tie force Fte = Ft / 1m = 40kN/m

Provide side pockets along slab edge

Spacing of side pockets sps = 1200mm

Tie bar diameter φt = 12mm

Number of bars per pocket npb = 1

Yield strength of reinforcement fy = 500N/mm2

Tie capacity Tc = fy × ((φt)2 × π / 4) × npb = 56.5kN

Tie capacity required per side pocket Tcr = Fte × sps = 48.0kN Tie is adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

5 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

6. Internal tie - perpendicular to gridline A5

The following calculation will determine the tie requirement for the precast floor units to each other over their support.

Level 01 – 03 Apartments

Apartment live load q = 2.5kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Span lr = 9925mm

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 104.1kN/m

Number of tie bars provided per 1.2m unit ntb = 2

Tie bar diameter φt = 16mm

Yield strength of reinforcement fy = 500N/mm2

Tie capacity of bar Ttb = fy × ((φt)2 × π / 4) = 100.5kN

Tie capacity required per 1.2m wide slab Fts = Ftd × 1.2m = 124.9kN

Tie capacity provided per 1.2m wide slab Tbars = Ttb × ntb = 201.1kN Ties are adequate

Roof Level

Roof live load qk = 1.5kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 2.9kN/m2

Ballast, etc. gbp = 1.95kN/m2

Total dead load gk = gsw + gt + gbp = 8.48kN/m2

Span lr = 9925mm

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 105.7kN/m

Number of tie bars provided per 1.2m unit ntb = 2

Tie bar diameter φt = 16mm

Yield strength of reinforcement fy = 500N/mm2

Tie capacity of bar Ttb = fy × ((φt)2 × π / 4) = 100.5kN

Tie capacity required per 1.2m wide slab Fts = Ftd × 1.2m = 126.8kN

Tie capacity provided per 1.2m wide slab Tbars = Ttb × ntb = 201.1kN Ties are adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C05

Section

Peripheral, Edge and Internal ties

Sheet No.

6 of 6

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

7. Internal tie - along gridline A5

The following calculation will determine the tie requirement upon notional removal of a section of the supporting wall

Level 01

Clear storey height (floor to ceiling) H = 2940mm

Slab span ls1 = 9925mm

Slab span ls2 = 9925mm

Average slab span le = (ls1 + ls2) / 2 = 9925mm

Notional length of wall removed lr = 2.25 × H = 6615mm

Apartment live load qka = 2.5kN/m2

Corridor live load qkc = 3kN/m2

Conservatively assume corridor live load over entire slab

Live load qk = max(qka, qkc) = 3.0kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 69.4kN/m

Internal tie force Ftr = Ftd × le = 688.4kN

Characteristic strength of strand fpk = 1860N/mm2

Tensile capacity of 12.5mm strand Tcap = 0.9 × fpk × 93mm2 = 155.7kN

Number of strands required nstrand = round((Ftr / Tcap + 0.5),0) = 5

Capacity provided Tc = Tcap × nstrand = 778.4kN Tie is adequate

Levels 02 & 03 Clear storey height (floor to ceiling) H = 2570mm

Slab span ls1 = 9925mm

Slab span ls2 = 9925mm

Average slab span le = (ls1 + ls2) / 2 = 9925mm

Notional length of wall removed lr = 2.25 × H = 5783mm

Apartment live load qka = 2.5kN/m2

Corridor live load qkc = 3kN/m2

Conservatively assume corridor live load over entire slab

Live load qk = max(qka, qkc) = 3.0kN/m2

Hollowcore slab gsw = 3.63kN/m2

Screed, ceiling & services gt = 3.2kN/m2

Total dead load gk = gsw + gt = 6.83kN/m2

Design tie force Ftd = max((Ft / 1m), Ft × ((qk + gk) / 7.5kN) × (lr / 5)) = 60.6kN/m

Internal tie force Ftr = Ftd × le = 601.8kN

Characteristic strength of strand fpk = 1860N/mm2

Tensile capacity of 12.5mm strand Tcap = 0.9 × fpk × 93mm2 = 155.7kN

Number of strands required nstrand = round((Ftr / Tcap + 0.5),0) = 4

Capacity provided Tc = Tcap × nstrand = 622.7kN Tie is adequate

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C06

Section

Shear wall SW9 starter bars, vertical tie & horiz. shear

Sheet No.

1 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Wall data

Wall thickness tw = 200mm

Length of wall L = 5910mm

Wind moment (sls) Mw = 630kNm

EHF Dead moment (sls) Mhd = 79kNm

EHF Live moment (sls) Mhl = 12kNm

Dead load (sls) g = 227kN/m

Live load (sls) q = 53kN/m

Horizontal shear (uls) VEd = 145kN

Cylinder strength of precast concrete fck = 40N/mm2

Cylinder strength of bedding material fck,bed = 40N/mm2

Cylinder strength of insitu concrete fck,ins = 32N/mm2

Characteristic strength of reinf fy = 500N/mm2

Dead load factors G,sup = 1.35 G,supeq = 1.1 G,infeq = 0.9

Live load factors Q,sup = 1.5

Domestic, residential areas:

Comb, Freq, Quasi-perm values 0 = 0.7 1 = 0.5 2 = 0.3

Wind loads on buildings 0w = 0.5

Stability check

In plane overturning moment (uls) Meq = G,supeq Mhd + Q,sup Mw + Q,sup 0 Mhl = 1045kNm

Axial load (uls) Neq = (g G,infeq + q 0) L = 1207kN

Max stress under wall max = (Neq / (tw L)) + (6 Meq / (tw L2)) = 1.92N/mm2

Min stress under wall min = (Neq / (tw L)) - (6 Meq / (tw L2)) = 0.12N/mm2

Length of wall under compression lcpe = (max / (max + if(min < 0N/mm2,abs(min),0N/mm2))) L = 5910mm

Length of wall in tension lt = (L - lcpe) = 0mm

Uplift T = abs(min) tw lt = 0kN

Tension reinf required Asreq = (abs(min) tw lt) / (0.87 fy) = 0mm2

Try 1 No. 25 dia bar(s) As = 491mm2 bar = D = 25mm

Starter bars provided (each end) Asprov = As = 491mm2 Steel ok

Vertical tie check

Dead load per level gtie = 378kN

Live load per level qtie = 52kN

Tie force T = gtie + qtie 1 = 404kN

Tension reinforcement required As_ten = T / fy = 808mm2

Starter bars provided Asp = As 2 = 982mm2 Steel ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C06

Section

Shear wall SW9 starter bars, vertical tie & horiz. shear

Sheet No.

2 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Axial load for strength check

Eq. 6.10a Msta = G,sup Mhd + Q,sup 0 Mw + Q,sup 0 Mhl = 781kNm

Eq. 6.10a Na = (G,sup g + Q,sup 0 q) L = 2140kN

Max stress under wall maxa = (Na / (tw L)) + (6 Msta / (tw L2)) = 2.48N/mm2

Min stress under wall mina = (Na / (tw L)) - (6 Msta / (tw L2)) = 1.14N/mm2

Length of wall under compression lcpa = (maxa / (maxa + if(min < 0N/mm2,abs(mina),0N/mm2))) L = 5910mm

Axial load Na = maxa tw = 496kN/m

Wind leading

Eq. 6.10b Mstb = 0.925 G,sup Mhd + Q,sup Mw + Q,sup 0 Mhl = 1056kNm

Eq. 6.10b Nb = (0.925 G,sup g + Q,sup 0 q) L = 2004kN

Max stress under wall maxbw = (Nb / (tw L)) + (6 Mstb / (tw L2)) = 2.60N/mm2

Min stress under wall minbw = (Nb / (tw L)) - (6 Mstb / (tw L2)) = 0.79N/mm2

Length of wall under compression lcpbw = (maxbw / (maxbw + if(min < 0N/mm2,abs(minbw),0N/mm2))) L = 5910mm

Axial load Nbw = maxbw tw = 521kN/m

Gravity imposed leading

Eq. 6.10b Mstb = 0.925 G,sup Mhd + Q,sup 0w Mw + Q,sup Mhl = 589kNm

Eq. 6.10b Nb = (0.925 G,sup g + Q,sup q) L = 2145kN

Max stress under wall maxbg = (Nb / (tw L)) + (6 Mstb / (tw L2)) = 2.32N/mm2

Min stress under wall minbg = (Nb / (tw L)) - (6 Mstb / (tw L2)) = 1.31N/mm2

Length of wall under compression lcpbg = (maxbg / (maxbg + if(min < 0N/mm2,abs(minbg),0N/mm2))) L = 5910mm

Axial load Nbg = maxbg tw = 464kN/m

Axial load (uls) N = max(Na, max(Nbw, Nbg)) = 521kN/m

Axial load for service check

Max stress under wall, dead (sls) maxd = (6 Mhd / (tw L2)) = 0.07N/mm2

Max stress under wall, live (sls) maxl = (6 Mhl / (tw L2)) = 0.01N/mm2

Max stress under wall, wind (sls) maxw = (6 Mw / (tw L2)) = 0.54N/mm2

Nd = maxd tw = 14kN/m

Nl = maxl tw = 2kN/m

Nw = maxw tw = 108kN/m

Axial load (quasi-permanent) Nqp = g + Nd + (Nl + q) 2 + Nw = 365kN/m

Refer to RC wall design calculation for axial load checks

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C06

Section

Shear wall SW9 starter bars, vertical tie & horiz. shear

Sheet No.

3 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Horizontal shear check

Shear coefficient c = 0.025 very smooth

Friction coefficient = 0.5 very smooth

Strength reduction value = 0.6 (1 – (max(fck, fck,bed, fck,ins) / 250N/mm2)) = 0.50

Reinforcement angle = 90

Partial factor for concrete c = 1.5

Factor for reinforced concrete cc = 0.85

Factor for reinforced concrete ct = 1

Mean comp. strength, wall fcm,w = fck + 8N/mm2 = 48N/mm2

Mean tens. Strength, wall fctm,w = 0.3N/mm2 (fck / 1N/mm2)2/3 = 3.5N/mm2

Tensile strength 5% fractile, wall fctk,0.05,w = 0.7 fctm,w = 2.456N/mm2

Design tensile strength, wall fctd,w = (ct fctk,0.05,w) c = 1.64N/mm2

Design compressive strength, wall fcd,w = cc fck / c = 22.67N/mm2

Mean comp. strength, bed fcm,b = fck,bed + 8N/mm2 = 48N/mm2

Mean tens. Strength, bed fctm,b = 0.3N/mm2 (fck,bed / 1N/mm2)2/3 = 3.5N/mm2

Tensile strength 5% fractile, bed fctk,0.05,b = 0.7 fctm,b = 2.456N/mm2

Design tensile strength, bed fctd,b = (ct fctk,0.05,b) c = 1.64N/mm2

Design compressive strength, bed fcd,b = cc fck,bed / c = 22.67N/mm2

Mean comp. strength, insitu fcm,i = fck,ins + 8N/mm2 = 40N/mm2

Mean tens. Strength, insitu fctm,i = 0.3N/mm2 (fck,ins / 1N/mm2)2/3 = 3.0N/mm2

Tensile strength 5% fractile, insitu fctk,0.05,i = 0.7 fctm,i = 2.117N/mm2

Design tensile strength, insitu fctd,i = (ct fctk,0.05,i) c = 1.41N/mm2

Design compressive strength, insitu fcd,i = cc fck,ins / c = 18.13N/mm2

Design tensile strength, joint fctd = min(fctd,w, fctd,b, fctd,i) = 1.41N/mm2

Design compressive strength, joint fcd = min(fcd,w, fcd,b, fcd,i) = 18.13N/mm2

Limiting shear resistance vRdi,lim = 0.5 fcd = 4.57N/mm2

Average stress normal to interface n = if(lcpe < L, max 0.5, (min + (max - min) 0.5)) = 1.02N/mm2

= Asprov / (tw lcpe) = 0.0004

Design shear resistance vRdid = c fctd + n + (0.87 fy) ( sin() + cos()) = 0.64N/mm2

Interface shear resistance vRdi = min(vRdi,lim, vRdid) = 0.64N/mm2

Minimum length of wall under comp. lcmin = min(lcpe, lcpa, lcpbw, lcpbg) = 5910mm

Horizontal shear stress at interface vEdi = VEd / (tw lcmin) = 0.12N/mm2 Horiz. shear ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C06

Section

Shear wall SW9 starter bars, vertical tie & horiz. shear

Sheet No.

4 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Bearing stress check

Max stress under wall m = max(max, maxa,maxbw,maxbg) = 2.60N/mm2

Design compressive strength, joint fcd = min(fcd,w, fcd,b, fcd,i) = 18.13N/mm2 Bearing stress ok

Wall reinforcement check – clause 10.9.2 BS EN 1992-1-1

Bearing stress ratio rs = m / fcd,w = 0.11 Stress ratio ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C08

Section

Shear wall SW16 starter bars, vertical tie & horiz. shear

Sheet No.

1 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Wall data

Wall thickness tw = 200mm

Length of wall L = 5540mm

Wind moment (sls) Mw = 597kNm

EHF Dead moment (sls) Mhd = 218kNm

EHF Live moment (sls) Mhl = 33kNm

Dead load (sls) g = 85kN/m

Live load (sls) q = 9kN/m

Horizontal shear (uls) VEd = 168kN

Cylinder strength of precast concrete fck = 40N/mm2

Cylinder strength of bedding material fck,bed = 40N/mm2

Cylinder strength of insitu concrete fck,ins = 32N/mm2

Characteristic strength of reinf fy = 500N/mm2

Dead load factors G,sup = 1.35 G,supeq = 1.1 G,infeq = 0.9

Live load factors Q,sup = 1.5

Domestic, residential areas:

Comb, Freq, Quasi-perm values 0 = 0.7 1 = 0.5 2 = 0.3

Wind loads on buildings 0w = 0.5

Stability check

In plane overturning moment (uls) Meq = G,supeq Mhd + Q,sup Mw + Q,sup 0 Mhl = 1170kNm

Axial load (uls) Neq = (g G,infeq + q 0) L = 424kN

Max stress under wall max = (Neq / (tw L)) + (6 Meq / (tw L2)) = 1.53N/mm2

Min stress under wall min = (Neq / (tw L)) - (6 Meq / (tw L2)) = -0.76N/mm2

Length of wall under compression lcpe = (max / (max + if(min < 0N/mm2,abs(min),0N/mm2))) L = 3696mm

Length of wall in tension lt = (L - lcpe) = 1844mm

Uplift T = abs(min) tw lt = 281kN

Tension reinf required Asreq = (abs(min) tw lt) / (0.87 fy) = 645mm2

Try 2 No. 25 dia bar(s) As = 982mm2 bar = D = 25mm

Starter bars provided (each end) Asprov = As = 982mm2 Steel ok

Vertical tie check

Dead load per level gtie = 124kN

Live load per level qtie = 8kN

Tie force T = gtie + qtie 1 = 128kN

Tension reinforcement required As_ten = T / fy = 256mm2

Starter bars provided Asp = As 2 = 1964mm2 Steel ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C08

Section

Shear wall SW16 starter bars, vertical tie & horiz. shear

Sheet No.

2 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Axial load for strength check

Eq. 6.10a Msta = G,sup Mhd + Q,sup 0 Mw + Q,sup 0 Mhl = 956kNm

Eq. 6.10a Na = (G,sup g + Q,sup 0 q) L = 688kN

Max stress under wall maxa = (Na / (tw L)) + (6 Msta / (tw L2)) = 1.56N/mm2

Min stress under wall mina = (Na / (tw L)) - (6 Msta / (tw L2)) = -0.31N/mm2

Length of wall under compression lcpa = (maxa / (maxa + if(min < 0N/mm2,abs(mina),0N/mm2))) L = 4611mm

Axial load Na = maxa tw = 311kN/m

Wind leading

Eq. 6.10b Mstb = 0.925 G,sup Mhd + Q,sup Mw + Q,sup 0 Mhl = 1202kNm

Eq. 6.10b Nb = (0.925 G,sup g + Q,sup 0 q) L = 640kN

Max stress under wall maxbw = (Nb / (tw L)) + (6 Mstb / (tw L2)) = 1.75N/mm2

Min stress under wall minbw = (Nb / (tw L)) - (6 Mstb / (tw L2)) = -0.60N/mm2

Length of wall under compression lcpbw = (maxbw / (maxbw + if(min < 0N/mm2,abs(minbw),0N/mm2))) L = 4132mm

Axial load Nbw = maxbw tw = 351kN/m

Gravity imposed leading

Eq. 6.10b Mstb = 0.925 G,sup Mhd + Q,sup 0w Mw + Q,sup Mhl = 769kNm

Eq. 6.10b Nb = (0.925 G,sup g + Q,sup q) L = 663kN

Max stress under wall maxbg = (Nb / (tw L)) + (6 Mstb / (tw L2)) = 1.35N/mm2

Min stress under wall minbg = (Nb / (tw L)) - (6 Mstb / (tw L2)) = -0.15N/mm2

Length of wall under compression lcpbg = (maxbg / (maxbg + if(min < 0N/mm2,abs(minbg),0N/mm2))) L = 4973mm

Axial load Nbg = maxbg tw = 270kN/m

Axial load (uls) N = max(Na, max(Nbw, Nbg)) = 351kN/m

Axial load for service check

Max stress under wall, dead (sls) maxd = (6 Mhd / (tw L2)) = 0.21N/mm2

Max stress under wall, live (sls) maxl = (6 Mhl / (tw L2)) = 0.03N/mm2

Max stress under wall, wind (sls) maxw = (6 Mw / (tw L2)) = 0.58N/mm2

Nd = maxd tw = 43kN/m

Nl = maxl tw = 6kN/m

Nw = maxw tw = 117kN/m

Axial load (quasi-permanent) Nqp = g + Nd + (Nl + q) 2 + Nw = 249kN/m

Refer to RC wall design calculation for axial load checks

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C08

Section

Shear wall SW16 starter bars, vertical tie & horiz. shear

Sheet No.

3 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Horizontal shear check

Shear coefficient c = 0.025 very smooth

Friction coefficient = 0.5 very smooth

Strength reduction value = 0.6 (1 – (max(fck, fck,bed, fck,ins) / 250N/mm2)) = 0.50

Reinforcement angle = 90

Partial factor for concrete c = 1.5

Factor for reinforced concrete cc = 0.85

Factor for reinforced concrete ct = 1

Mean comp. strength, wall fcm,w = fck + 8N/mm2 = 48N/mm2

Mean tens. Strength, wall fctm,w = 0.3N/mm2 (fck / 1N/mm2)2/3 = 3.5N/mm2

Tensile strength 5% fractile, wall fctk,0.05,w = 0.7 fctm,w = 2.456N/mm2

Design tensile strength, wall fctd,w = (ct fctk,0.05,w) c = 1.64N/mm2

Design compressive strength, wall fcd,w = cc fck / c = 22.67N/mm2

Mean comp. strength, bed fcm,b = fck,bed + 8N/mm2 = 48N/mm2

Mean tens. Strength, bed fctm,b = 0.3N/mm2 (fck,bed / 1N/mm2)2/3 = 3.5N/mm2

Tensile strength 5% fractile, bed fctk,0.05,b = 0.7 fctm,b = 2.456N/mm2

Design tensile strength, bed fctd,b = (ct fctk,0.05,b) c = 1.64N/mm2

Design compressive strength, bed fcd,b = cc fck,bed / c = 22.67N/mm2

Mean comp. strength, insitu fcm,i = fck,ins + 8N/mm2 = 40N/mm2

Mean tens. Strength, insitu fctm,i = 0.3N/mm2 (fck,ins / 1N/mm2)2/3 = 3.0N/mm2

Tensile strength 5% fractile, insitu fctk,0.05,i = 0.7 fctm,i = 2.117N/mm2

Design tensile strength, insitu fctd,i = (ct fctk,0.05,i) c = 1.41N/mm2

Design compressive strength, insitu fcd,i = cc fck,ins / c = 18.13N/mm2

Design tensile strength, joint fctd = min(fctd,w, fctd,b, fctd,i) = 1.41N/mm2

Design compressive strength, joint fcd = min(fcd,w, fcd,b, fcd,i) = 18.13N/mm2

Limiting shear resistance vRdi,lim = 0.5 fcd = 4.57N/mm2

Average stress normal to interface n = if(lcpe < L, max 0.5, (min + (max - min) 0.5)) = 0.76N/mm2

= Asprov / (tw lcpe) = 0.0013

Design shear resistance vRdid = c fctd + n + (0.87 fy) ( sin() + cos()) = 0.71N/mm2

Interface shear resistance vRdi = min(vRdi,lim, vRdid) = 0.71N/mm2

Minimum length of wall under comp. lcmin = min(lcpe, lcpa, lcpbw, lcpbg) = 3696mm

Horizontal shear stress at interface vEdi = VEd / (tw lcmin) = 0.23N/mm2 Horiz. shear ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C08

Section

Shear wall SW16 starter bars, vertical tie & horiz. shear

Sheet No.

4 of 4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Bearing stress check

Max stress under wall m = max(max, maxa,maxbw,maxbg) = 1.75N/mm2

Design compressive strength, joint fcd = min(fcd,w, fcd,b, fcd,i) = 18.13N/mm2 Bearing stress ok

Wall reinforcement check – clause 10.9.2 BS EN 1992-1-1

Bearing stress ratio rs = m / fcd,w = 0.08 Stress ratio ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C10

Section

Anchorage of bars in grout sleeves

Sheet No.

1 of 2

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Starter bar anchorage design

Bar Diameter bar = 25mm

Characteristic strength of concrete fck 40N/mm2 cylinder

Tension capacity of bar T = ( bar2 / 4) 0.87 500N/mm2 = 213.5kN

Partial safety factor, concrete c = 1.5

Bond Conditions – See Figure 8.2

‘Good’ bond conditions n1 = 1.0

nb = (132mm - bar) / 100mm = 1.07

n2 = if(bar >32mm, nb, 1) = 1.00

Mean tensile strength of concrete fctm = 0.3N/mm2 (fck / 1N/mm2)2/3 = 3.5N/mm2

fctk,0.05 = 0.7 fctm = 2.5N/mm2

cc = 0.85

ct = 1

fctd = ct fctk,0.05 c = 1.6N/mm2

fcd = cc fck / c = 22.7N/mm2

Minimum mandrel diameter m,min = if(bar > 16mm, (7 bar), (4 bar)) = 175mm

8.4.2 Ultimate Bond Stress

Ultimate bond stress, ribbed bars fbd = 2.25 n1 n2 fctd 3.7N/mm2

8.4.3 Basic Anchorage Length

Design stress of the bar sd = 500N/mm2 / 1.15 = 435N/mm2

Basic required anchorage length Ib,rqd = (bar/ 4) (sd fbd) = 738mm

8.4.4 Design Anchorage Length

Value of cd – see Figure 8.3

Bar spacing a = 200mm

Side cover c1 = 35mm

Bottom cover c = 100mm

cd, straight bars cd = min(a/2, c1, c) = 35mm

For coefficients 1, 2, 3, 4&5 - see Table 8.2 & Figure 8.4

Form of bars, straight 1 = 1

Cover, straight 2 = min(1, max(0.7, 1 - 0.15 (cd -bar) / bar)) = 0.94

Confinement bars 3 = 1

Welded confinement bars 4 = 1

Pressure effects 5 = 1

The product (α2 α3 α5) must be greater than or equal to 0.7

Minimum tension anchorage lb,min = max(0.3 Ib,rqd, 10 bar,100mm) = 250mm

Design anchorage length lbd = max(lb,min, (1 2 3 4 5 Ib,rqd)) = 693mm

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C10

Section

Anchorage of bars in grout sleeves

Sheet No.

2 of 2

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Vertical tie bar anchorage design – robustness connection

Bar Diameter bar = 25mm

Characteristic strength of concrete fck 40N/mm2 cylinder

Tension capacity of bar T = ( bar2 / 4) 0.87 500N/mm2 = 213.5kN

Partial safety factor, concrete c = 1.2 – accidental actions

Bond Conditions – See Figure 8.2

‘Good’ bond conditions n1 = 1.0

nb = (132mm - bar) / 100mm = 1.07

n2 = if(bar >32mm, nb, 1) = 1.00

Mean tensile strength of concrete fctm = 0.3N/mm2 (fck / 1N/mm2)2/3 = 3.5N/mm2

fctk,0.05 = 0.7 fctm = 2.5N/mm2

cc = 0.85

ct = 1

fctd = ct fctk,0.05 c = 2.0N/mm2

fcd = cc fck / c = 28.3N/mm2

Minimum mandrel diameter m,min = if(bar > 16mm, (7 bar), (4 bar)) = 175mm

8.4.2 Ultimate Bond Stress

Ultimate bond stress, ribbed bars fbd = 2.25 n1 n2 fctd 4.6N/mm2

8.4.3 Basic Anchorage Length

Design stress of the bar sd = 500N/mm2 – characteristic strength

Basic required anchorage length Ib,rqd = (bar/ 4) (sd fbd) = 679mm

8.4.4 Design Anchorage Length

Value of cd – see Figure 8.3

Bar spacing a = 200mm

Side cover c1 = 35mm

Bottom cover c = 100mm

cd, straight bars cd = min(a/2, c1, c) = 35mm

For coefficients 1, 2, 3, 4&5 - see Table 8.2 & Figure 8.4

Form of bars, straight 1 = 1

Cover, straight 2 = min(1, max(0.7, 1 - 0.15 (cd -bar) / bar)) = 0.94

Confinement bars 3 = 1

Welded confinement bars 4 = 1

Pressure effects 5 = 1

The product (α2 α3 α5) must be greater than or equal to 0.7

Minimum tension anchorage lb,min = max(0.3 Ib,rqd, 10 bar,100mm) = 250mm

Design anchorage length lbd = max(lb,min, (1 2 3 4 5 Ib,rqd)) = 638mm

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

1 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

2 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

3 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

4 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

5 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

6 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

7 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

8 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

9 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast Job Ref.

19-0101

Section

Eurocode Robustness Information Sheet No.

10 of 10

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C07

Section

Shear wall SW9, RC wall design

Sheet No.

1 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

RC WALL DESIGN (EN1992)

RC WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.1.01

Wall input details

Wall geometry

Thickness h = 200 mm

Length b = 1000 mm/m

Clear height between restraints l = 2940 mm

Stability about minor axis Braced

Concrete details

Concrete strength class C40/50

Partial safety factor for concrete (2.4.2.4(1)) γC = 1.50

Coefficient αcc (3.1.6(1)) αcc = 0.85

Maximum aggregate size dg = 10 mm

Reinforcement details

Reinforcement in outer layer Horizontal

Nominal cover to outer layer cnom = 25 mm

Vertical bar diameter φv = 8 mm

Spacing of vertical reinforcement sv = 200 mm

Area of vertical reinforcement (per face) Asv = 251 mm2/m

Horizontal bar diameter φh = 8 mm

Spacing of horizontal reinforcement sh = 200 mm

Area of horizontal reinforcement (per face) Ash = 251 mm2/m

Characteristic yield strength fyk = 500 N/mm2

Partial safety factor for reinft (2.4.2.4(1)) γS = 1.15

Modulus of elasticity of reinft (3.2.7(4)) Es = 200.0 kN/mm2

Fire resistance details

Fire resistance period R = 90 min

Exposure to fire Exposed on two sides

Ratio of fire design axial load to design resistance µfi = 0.70

25

200

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C07

Section

Shear wall SW9, RC wall design

Sheet No.

2 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Axial load and bending moments from frame analysis

Design axial load NEd = 521.0 kN/m

Moment about minor axis at top Mtop = 0.0 kNm/m

Moment about minor axis at bottom Mbtm = 0.0 kNm/m

Wall end restraints

End restraints for buckling about minor axis Braced, no rotational restraint both ends

Crack width details

Axial load due to quasi-permanent SLS. NEd_SLS = 365.0 kN/m

Moment at top due to quasi-permanent SLS. Mtop_SLS = 0.0 kNm/m

Moment at btm due to quasi-permanent SLS. Mbtm_SLS = 0.0 kNm/m

Duration of applied loading Long term

Maximum allowable crack width wk_max = 0.3 mm

Calculated wall properties

Concrete properties

Area of concrete Ac = h × b = 200000 mm2/m

Characteristic compression cylinder strength fck = 40 N/mm2

Design compressive strength (3.1.6(1)) fcd = αcc × fck / γC = 22.7 N/mm2

Mean value of cylinder strength (Table 3.1) fcm = fck + 8 MPa = 48.0 N/mm2

Mean value of tensile strength fctm = 3.51 N/mm2

Secant modulus of elasticity (Table 3.1) Ecm = 22000 MPa × (fcm / 10 MPa)0.3 = 35.2 kN/mm2

Rectangular stress block factors

Depth factor (3.1.7(3)) λsb = 0.8

Stress factor (3.1.7(3)) η = 1.0

Strain limits

Compression strain limit (Table 3.1) εcu3 = 0.00350

Pure compression strain limit (Table 3.1) εc3 = 0.00175

Design yield strength of reinforcement

Design yield strength (3.2.7(2)) fyd = fyk / γS = 434.8 MPa

Check nominal cover for fire and bond requirements

Min. cover reqd for bond (4.4.1.2(3)) Cmin,b = max(φh, φv - φh) = 8 mm

Min axis distance for fire (EN1992-1-2 T 5.4) afi = 25 mm

Allowance for deviations from min cover (4.4.1.3) ∆cdev = 5 mm

Min allowable nominal cover cnom_min = max(afi - φh / 2, cmin,b + ∆cdev) = 21 mm

PASS - the nominal cover is greater than the minimum required

Effective depth of vertical bars

Effective depth d = h - cnom - φh - φv / 2 = 163 mm

Depth to compression face bars d’ = cnom + φh + φv / 2 = 37 mm

Wall effective length

Eff. length factor (minor axis buckling) (Fig. 5.7) f = 1.0

Wall effective length l0 = f × l = 2940 mm

Column slenderness

Radius of gyration about minor axis i = h / √(12) = 5.8 cm

Minor axis slenderness ratio (5.8.3.2(1)) λ = l0 / i = 50.9

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C07

Section

Shear wall SW9, RC wall design

Sheet No.

3 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Design bending moments

Frame analysis moments combined with moments due to imperfections (cl. 5.2 & 6.1(4))

Ecc. due to geometric imperfections ei = l0 /400 = 7.4 mm

Minimum end moment about minor axis M01 = min(abs(Mtop), abs(Mbtm)) + ei × NEd = 3.8 kNm/m

Maximum end moment about minor axis M02 = max(abs(Mtop), abs(Mbtm)) + ei × NEd = 3.8 kNm/m

Slenderness limit for buckling about minor axis (cl. 5.8.3.1)

Factor A A = 0.7

Mechanical reinforcement ratio ω = 2 × Asv × fyd / (Ac × fcd) = 0.048

Factor B B = √(1 + 2 × ω) = 1.047

Moment ratio rm = 1.000

Factor C C = 1.7 - rm = 0.700

Relative normal force n = NEd / (Ac × fcd) = 0.115

Slenderness limit λlim = 20 × A × B × C / √(n) = 30.3

λλλλ>=λλλλlim - Second order effects must be considered

Second order bending moment about minor axis (cl. 5.8.8.2 & 5.8.8.3)

Parameter nu nu = 1 + ω = 1.048

Approx value of n at max moment of resistance nbal = 0.4

Axial load correction factor Kr = min(1.0 , (nu - n) / (nu - nbal)) = 1.000

Reinforcement design strain εyd = fyd / Es = 0.00217

Basic curvature curvebasic = εyd / (0.45 × d) = 0.0000296 mm-1

Notional size of wall h0 = 2 × h ×b / (2 × b) = 200 mm

Factor α1 (Annex B.1(1)) α1 = (35 MPa / fcm)0.7 = 0.802

Factor α2 (Annex B.1(1)) α2 = (35 MPa / fcm)0.2 = 0.939

Relative humidity factor (Annex B.1(1)) φRH = [1 + ((1 - RH / 100%) / (0.1 mm-1/3 × (h0)1/3)) × α1] × α2 = 1.582

Concrete strength factor (Annex B.1(1)) βfcm = 16.8 × (1 MPa)1/2 / √(fcm) = 2.4

Concrete age factor (Annex B.1(1)) βt0 = 1 / (0.1 + (t0 / 1 day)0.2) = 0.488

Notional creep coefficient (Annex B.1(1)) φ0 = φRH × βfcm × βt0 = 1.874

Final creep development factor (at t = ¥) βc∞ = 1.0

Final creep coefficient (Annex B.1(1)) φ∞ = φ0 × βc∞ = 1.874

Effective creep ratio (5.8.4(2)) φef = φ∞ × rM = 1.312

Factor β β = 0.35 + fck / 200 MPa - λ / 150 = 0.211

Creep factor Kφ = max(1.0 , 1 + β × φef) = 1.276

Modified curvature curvemod = Kr × Kφ × curvebasic = 0.0000378 mm-1

Curvature distribution factor c = 10

Deflection e2 = curvemod × l02 / c = 32.7 mm

Nominal 2nd order moment M2 = NEd × e2 = 17.0 kNm/m

Design bending moment about minor axis (cl. 5.8.8.2)

Equivalent moment M0e = max(0.6 × M02 + 0.4 × M01, 0.4 × M02) = 3.8 kNm/m

Design moment MEd = max(M02, M0e + M2, M01 + 0.5 × M2, NEd × max(h/30, 20 mm))

MEd = 20.9 kNm/m

Moment capacity about minor axis with axial load NEd

Moment of resistance of concrete

By iteration:-

Position of neutral axis z = 35.2 mm

Concrete compression force (3.1.7(3)) Fc = η× fcd × min(max(λsb × z, 0 mm) , h) × b = 637.4 kN/m

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C07

Section

Shear wall SW9, RC wall design

Sheet No.

4 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Moment of resistance MRdc = Fc × [h / 2 - (min(λsb × z , h)) / 2] = 54.8 kNm/m

Moment of resistance of reinforcement

Strain in tension face bars ε = εcu3 × (1 - d / z) = -0.01273

Stress in tension face bars σ = if(ε< 0, max(-1×fyd, Es × ε), min(fyd, Es × ε)) = -434.8 N/mm2

Force in tension face bars Fs = if(d > λsb × z, Asv × σ, Asv × (σ - η × fcd)) = -109.3 kN/m

Strain in compression face bars ε’ = εcu3 × (1 - d’ / z) = -0.00018

Stress in compression face bars σ’ = if(ε’< 0, max(-1×fyd, Es × ε’), min(fyd, Es × ε’)) = -36.8 N/mm2

Force in compression face bars Fs’ = if(d’ > λsb × z, Asv × σ’, Asv × (σ’ - η × fcd)) = -9.3 kN/m

Resultant concrete/steel force F = Fc + Fs + Fs’ = 518.9 kN/m

PASS - This is within half of one percent of the applied axial load therefore say OK

Moment of resistance of tension face bars MRds = Fs × (d - h / 2) = -6.9 kNm/m

Moment of resistance of compression face bars MRds’ = Fs’ × (h / 2 - d’) = -0.6 kNm/m

Combined moment of resistance

Moment of resistance about minor axis MRd = MRdc + MRds’ - MRds = 61.1 kNm/m

PASS - The moment capacity exceeds the design bending moment

Crack widths

Slenderness limit (cl. 5.8.3.1)

Min 1st order moment about minor axis M01_SLS=min(abs(Mtop_SLS),abs(Mbtm_SLS))+ei×NEd_SLS = 2.7 kNm/m

Max 1st order moment about minor axis M02_SLS=max(abs(Mtop_SLS),abs(Mbtm_SLS))+ei×NEd_SLS = 2.7 kNm/m

Moment ratio rm_SLS = 1.000

Factor C CSLS = 1.7 - rm_SLS = 0.700

Relative normal force nSLS = NEd_SLS / (Ac × fcd) = 0.081

Slenderness limit λlim_SLS = 20 × A × B × CSLS / √(nSLS) = 36.2

λλλλ>=λλλλlim_SLS - Second order effects must be considered

Second order bending moment about minor axis (cl. 5.8.8.2 & 5.8.8.3)

Axial load correction factor Kr_SLS = min(1.0 , (nu - nSLS) / (nu - nbal)) = 1.000

Effective creep ratio φef_SLS = φ∞ × 1.0 = 1.874

Factor β β = 0.35 + fck / 200 MPa - λ / 150 = 0.211

Creep factor Kφ_SLS = max(1.0, 1 + β × φef_SLS) = 1.395

Modified curvature curvemod_SLS = Kr_SLS × Kφ_SLS × curvebasic = 0.0000413 mm-1

Deflection e2_SLS = curvemod_SLS × l02 / c = 35.7 mm

Nominal 2nd order moment M2_SLS = NEd_SLS × e2_SLS = 13.0 kNm/m

Design bending moment about minor axis (cl. 7.3.4)

Equivalent 1st order moment M0e_SLS = max(0.6×M02_SLS+0.4×M01_SLS,0.4×M02_SLS) = 2.7 kNm/m

Design moment

MEd_SLS = max(M02_SLS, M0e_SLS + M2_SLS, M01_SLS + 0.5 × M2_SLS)

MEd_SLS = 15.7 kNm/m

Cover to tension reinforcement c = h - d - φv / 2 = 33.0 mm

Ratio of steel to concrete modulii αe = Es / Ecm = 5.7

Area of reinft in concrete units As,eff = 2 × αe × Asv = 2854 mm2/m

Combined area of steel/conc in conc units Aeff = b × h + As,eff = 202854 mm2/m

Reinforcement ratio per face ρ = Asv /(b × d) = 0.002

Neutral axis depth with pure bending xb = d × [-2×αe×ρ + √(4×αe2×ρ2 + 2×αe×ρ×(1+d’/d))] = 21.2 mm

Second moment of area of cracked section Ic = b×xb3/3 + αe×ρ×b×d×[(xb-d’)2 + (d-xb)2] = 32228709 mm4/m

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C07

Section

Shear wall SW9, RC wall design

Sheet No.

5 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Strain in tension face steel due to bending εsb = MEd_SLS × (xb - d) / (Ecm × Ic) = -0.00196

Strain in comp face steel due to bending εsb’ = MEd_SLS × (xb - d’) / (Ecm × Ic) = -0.00022

Strain due to axial load εaxial = NEd_SLS / (Aeff × Ecm) = 0.00005

Resultant strain in tension face steel εs = εsb + εaxial = -0.00191

Resultant strain in comp face steel εs’ = εsb’ + εaxial = -0.00017

Stress in tension steel σs = min(fyd, abs(Es × εs)) = 382.6 MPa

Depth to neutral axis x = [(εs’ × d) - (εs × d’)] / (εs’ - εs) = 24.9 mm

Effective depth of concrete in tension hc,ef = min(2.5×(h-d), (h-x)/3, h/2) = 58.4 mm

Effective area of concrete in tension Ac,eff = hc,ef × b = 58368 mm2/m

Load duration factor kt = 0.4

Reinforcement ratio ρp,eff = Asv / Ac,eff = 0.004

Mean value of conc tensile strength fct,eff = fctm = 3.51 MPa

Difference between reinft and concrete strains εdiff = max([σs-kt×fct,eff×(1+αe×ρp,eff)/ρp,eff]/Es, 0.6×σs/Es) = 0.00115

Maximum crack spacing sr,max = 1.3 × (h - x) = 227.6 mm

Crack width wk = sr,max × εdiff = 0.261 mm

Allowable crack width wk_max = 0.3 mm

PASS - The maximum crack width is less than the maximum allowable

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C09

Section

Shear wall SW16, RC wall design

Sheet No.

1 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

RC WALL DESIGN (EN1992)

RC WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.1.01

Wall input details

Wall geometry

Thickness h = 200 mm

Length b = 1000 mm/m

Clear height between restraints l = 2940 mm

Stability about minor axis Braced

Concrete details

Concrete strength class C40/50

Partial safety factor for concrete (2.4.2.4(1)) γC = 1.50

Coefficient αcc (3.1.6(1)) αcc = 0.85

Maximum aggregate size dg = 10 mm

Reinforcement details

Reinforcement in outer layer Horizontal

Nominal cover to outer layer cnom = 25 mm

Vertical bar diameter φv = 8 mm

Spacing of vertical reinforcement sv = 200 mm

Area of vertical reinforcement (per face) Asv = 251 mm2/m

Horizontal bar diameter φh = 8 mm

Spacing of horizontal reinforcement sh = 200 mm

Area of horizontal reinforcement (per face) Ash = 251 mm2/m

Characteristic yield strength fyk = 500 N/mm2

Partial safety factor for reinft (2.4.2.4(1)) γS = 1.15

Modulus of elasticity of reinft (3.2.7(4)) Es = 200.0 kN/mm2

Fire resistance details

Fire resistance period R = 90 min

Exposure to fire Exposed on two sides

Ratio of fire design axial load to design resistance µfi = 0.70

25

200

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C09

Section

Shear wall SW16, RC wall design

Sheet No.

2 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Axial load and bending moments from frame analysis

Design axial load NEd = 351.0 kN/m

Moment about minor axis at top Mtop = 0.0 kNm/m

Moment about minor axis at bottom Mbtm = 0.0 kNm/m

Wall end restraints

End restraints for buckling about minor axis Braced, no rotational restraint both ends

Crack width details

Axial load due to quasi-permanent SLS. NEd_SLS = 249.0 kN/m

Moment at top due to quasi-permanent SLS. Mtop_SLS = 0.0 kNm/m

Moment at btm due to quasi-permanent SLS. Mbtm_SLS = 0.0 kNm/m

Duration of applied loading Long term

Maximum allowable crack width wk_max = 0.3 mm

Calculated wall properties

Concrete properties

Area of concrete Ac = h × b = 200000 mm2/m

Characteristic compression cylinder strength fck = 40 N/mm2

Design compressive strength (3.1.6(1)) fcd = αcc × fck / γC = 22.7 N/mm2

Mean value of cylinder strength (Table 3.1) fcm = fck + 8 MPa = 48.0 N/mm2

Mean value of tensile strength fctm = 3.51 N/mm2

Secant modulus of elasticity (Table 3.1) Ecm = 22000 MPa × (fcm / 10 MPa)0.3 = 35.2 kN/mm2

Rectangular stress block factors

Depth factor (3.1.7(3)) λsb = 0.8

Stress factor (3.1.7(3)) η = 1.0

Strain limits

Compression strain limit (Table 3.1) εcu3 = 0.00350

Pure compression strain limit (Table 3.1) εc3 = 0.00175

Design yield strength of reinforcement

Design yield strength (3.2.7(2)) fyd = fyk / γS = 434.8 MPa

Check nominal cover for fire and bond requirements

Min. cover reqd for bond (4.4.1.2(3)) Cmin,b = max(φh, φv - φh) = 8 mm

Min axis distance for fire (EN1992-1-2 T 5.4) afi = 25 mm

Allowance for deviations from min cover (4.4.1.3) ∆cdev = 5 mm

Min allowable nominal cover cnom_min = max(afi - φh / 2, cmin,b + ∆cdev) = 21 mm

PASS - the nominal cover is greater than the minimum required

Effective depth of vertical bars

Effective depth d = h - cnom - φh - φv / 2 = 163 mm

Depth to compression face bars d’ = cnom + φh + φv / 2 = 37 mm

Wall effective length

Eff. length factor (minor axis buckling) (Fig. 5.7) f = 1.0

Wall effective length l0 = f × l = 2940 mm

Column slenderness

Radius of gyration about minor axis i = h / √(12) = 5.8 cm

Minor axis slenderness ratio (5.8.3.2(1)) λ = l0 / i = 50.9

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C09

Section

Shear wall SW16, RC wall design

Sheet No.

3 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Design bending moments

Frame analysis moments combined with moments due to imperfections (cl. 5.2 & 6.1(4))

Ecc. due to geometric imperfections ei = l0 /400 = 7.4 mm

Minimum end moment about minor axis M01 = min(abs(Mtop), abs(Mbtm)) + ei × NEd = 2.6 kNm/m

Maximum end moment about minor axis M02 = max(abs(Mtop), abs(Mbtm)) + ei × NEd = 2.6 kNm/m

Slenderness limit for buckling about minor axis (cl. 5.8.3.1)

Factor A A = 0.7

Mechanical reinforcement ratio ω = 2 × Asv × fyd / (Ac × fcd) = 0.048

Factor B B = √(1 + 2 × ω) = 1.047

Moment ratio rm = 1.000

Factor C C = 1.7 - rm = 0.700

Relative normal force n = NEd / (Ac × fcd) = 0.077

Slenderness limit λlim = 20 × A × B × C / √(n) = 36.9

λλλλ>=λλλλlim - Second order effects must be considered

Second order bending moment about minor axis (cl. 5.8.8.2 & 5.8.8.3)

Parameter nu nu = 1 + ω = 1.048

Approx value of n at max moment of resistance nbal = 0.4

Axial load correction factor Kr = min(1.0 , (nu - n) / (nu - nbal)) = 1.000

Reinforcement design strain εyd = fyd / Es = 0.00217

Basic curvature curvebasic = εyd / (0.45 × d) = 0.0000296 mm-1

Notional size of wall h0 = 2 × h ×b / (2 × b) = 200 mm

Factor α1 (Annex B.1(1)) α1 = (35 MPa / fcm)0.7 = 0.802

Factor α2 (Annex B.1(1)) α2 = (35 MPa / fcm)0.2 = 0.939

Relative humidity factor (Annex B.1(1)) φRH = [1 + ((1 - RH / 100%) / (0.1 mm-1/3 × (h0)1/3)) × α1] × α2 = 1.582

Concrete strength factor (Annex B.1(1)) βfcm = 16.8 × (1 MPa)1/2 / √(fcm) = 2.4

Concrete age factor (Annex B.1(1)) βt0 = 1 / (0.1 + (t0 / 1 day)0.2) = 0.488

Notional creep coefficient (Annex B.1(1)) φ0 = φRH × βfcm × βt0 = 1.874

Final creep development factor (at t = ¥) βc∞ = 1.0

Final creep coefficient (Annex B.1(1)) φ∞ = φ0 × βc∞ = 1.874

Effective creep ratio (5.8.4(2)) φef = φ∞ × rM = 1.312

Factor β β = 0.35 + fck / 200 MPa - λ / 150 = 0.211

Creep factor Kφ = max(1.0 , 1 + β × φef) = 1.276

Modified curvature curvemod = Kr × Kφ × curvebasic = 0.0000378 mm-1

Curvature distribution factor c = 10

Deflection e2 = curvemod × l02 / c = 32.7 mm

Nominal 2nd order moment M2 = NEd × e2 = 11.5 kNm/m

Design bending moment about minor axis (cl. 5.8.8.2)

Equivalent moment M0e = max(0.6 × M02 + 0.4 × M01, 0.4 × M02) = 2.6 kNm/m

Design moment MEd = max(M02, M0e + M2, M01 + 0.5 × M2, NEd × max(h/30, 20 mm))

MEd = 14.1 kNm/m

Moment capacity about minor axis with axial load NEd

Moment of resistance of concrete

By iteration:-

Position of neutral axis z = 28.3 mm

Concrete compression force (3.1.7(3)) Fc = η× fcd × min(max(λsb × z, 0 mm) , h) × b = 513.2 kN/m

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C09

Section

Shear wall SW16, RC wall design

Sheet No.

4 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Moment of resistance MRdc = Fc × [h / 2 - (min(λsb × z , h)) / 2] = 45.5 kNm/m

Moment of resistance of reinforcement

Strain in tension face bars ε = εcu3 × (1 - d / z) = -0.01666

Stress in tension face bars σ = if(ε< 0, max(-1×fyd, Es × ε), min(fyd, Es × ε)) = -434.8 N/mm2

Force in tension face bars Fs = if(d > λsb × z, Asv × σ, Asv × (σ - η × fcd)) = -109.3 kN/m

Strain in compression face bars ε’ = εcu3 × (1 - d’ / z) = -0.00108

Stress in compression face bars σ’ = if(ε’< 0, max(-1×fyd, Es × ε’), min(fyd, Es × ε’)) = -215.2 N/mm2

Force in compression face bars Fs’ = if(d’ > λsb × z, Asv × σ’, Asv × (σ’ - η × fcd)) = -54.1 kN/m

Resultant concrete/steel force F = Fc + Fs + Fs’ = 349.8 kN/m

PASS - This is within half of one percent of the applied axial load therefore say OK

Moment of resistance of tension face bars MRds = Fs × (d - h / 2) = -6.9 kNm/m

Moment of resistance of compression face bars MRds’ = Fs’ × (h / 2 - d’) = -3.4 kNm/m

Combined moment of resistance

Moment of resistance about minor axis MRd = MRdc + MRds’ - MRds = 49.0 kNm/m

PASS - The moment capacity exceeds the design bending moment

Crack widths

Slenderness limit (cl. 5.8.3.1)

Min 1st order moment about minor axis M01_SLS=min(abs(Mtop_SLS),abs(Mbtm_SLS))+ei×NEd_SLS = 1.8 kNm/m

Max 1st order moment about minor axis M02_SLS=max(abs(Mtop_SLS),abs(Mbtm_SLS))+ei×NEd_SLS = 1.8 kNm/m

Moment ratio rm_SLS = 1.000

Factor C CSLS = 1.7 - rm_SLS = 0.700

Relative normal force nSLS = NEd_SLS / (Ac × fcd) = 0.055

Slenderness limit λlim_SLS = 20 × A × B × CSLS / √(nSLS) = 43.8

λλλλ>=λλλλlim_SLS - Second order effects must be considered

Second order bending moment about minor axis (cl. 5.8.8.2 & 5.8.8.3)

Axial load correction factor Kr_SLS = min(1.0 , (nu - nSLS) / (nu - nbal)) = 1.000

Effective creep ratio φef_SLS = φ∞ × 1.0 = 1.874

Factor β β = 0.35 + fck / 200 MPa - λ / 150 = 0.211

Creep factor Kφ_SLS = max(1.0, 1 + β × φef_SLS) = 1.395

Modified curvature curvemod_SLS = Kr_SLS × Kφ_SLS × curvebasic = 0.0000413 mm-1

Deflection e2_SLS = curvemod_SLS × l02 / c = 35.7 mm

Nominal 2nd order moment M2_SLS = NEd_SLS × e2_SLS = 8.9 kNm/m

Design bending moment about minor axis (cl. 7.3.4)

Equivalent 1st order moment M0e_SLS = max(0.6×M02_SLS+0.4×M01_SLS,0.4×M02_SLS) = 1.8 kNm/m

Design moment

MEd_SLS = max(M02_SLS, M0e_SLS + M2_SLS, M01_SLS + 0.5 × M2_SLS)

MEd_SLS = 10.7 kNm/m

Cover to tension reinforcement c = h - d - φv / 2 = 33.0 mm

Ratio of steel to concrete modulii αe = Es / Ecm = 5.7

Area of reinft in concrete units As,eff = 2 × αe × Asv = 2854 mm2/m

Combined area of steel/conc in conc units Aeff = b × h + As,eff = 202854 mm2/m

Reinforcement ratio per face ρ = Asv /(b × d) = 0.002

Neutral axis depth with pure bending xb = d × [-2×αe×ρ + √(4×αe2×ρ2 + 2×αe×ρ×(1+d’/d))] = 21.2 mm

Second moment of area of cracked section Ic = b×xb3/3 + αe×ρ×b×d×[(xb-d’)2 + (d-xb)2] = 32228709 mm4/m

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-C09

Section

Shear wall SW16, RC wall design

Sheet No.

5 of 5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

M Chidiac

Date

01/01/2019

Strain in tension face steel due to bending εsb = MEd_SLS × (xb - d) / (Ecm × Ic) = -0.00134

Strain in comp face steel due to bending εsb’ = MEd_SLS × (xb - d’) / (Ecm × Ic) = -0.00015

Strain due to axial load εaxial = NEd_SLS / (Aeff × Ecm) = 0.00003

Resultant strain in tension face steel εs = εsb + εaxial = -0.00130

Resultant strain in comp face steel εs’ = εsb’ + εaxial = -0.00011

Stress in tension steel σs = min(fyd, abs(Es × εs)) = 261.0 MPa

Depth to neutral axis x = [(εs’ × d) - (εs × d’)] / (εs’ - εs) = 24.9 mm

Effective depth of concrete in tension hc,ef = min(2.5×(h-d), (h-x)/3, h/2) = 58.4 mm

Effective area of concrete in tension Ac,eff = hc,ef × b = 58368 mm2/m

Load duration factor kt = 0.4

Reinforcement ratio ρp,eff = Asv / Ac,eff = 0.004

Mean value of conc tensile strength fct,eff = fctm = 3.51 MPa

Difference between reinft and concrete strains εdiff = max([σs-kt×fct,eff×(1+αe×ρp,eff)/ρp,eff]/Es, 0.6×σs/Es) = 0.00078

Maximum crack spacing sr,max = 1.3 × (h - x) = 227.6 mm

Crack width wk = sr,max × εdiff = 0.178 mm

Allowable crack width wk_max = 0.3 mm

PASS - The maximum crack width is less than the maximum allowable

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-TW1

Section

Temporary Works – Propping of Crosswall SW5

Sheet No.

1

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

A Munoz

Date

01/01/2019

Temporary works design in accordance with BS5975:2008+A1:2011

Fundamental basic wind velocity vbmap = 25.5m/s

Site altitude A = 15m

Distance to shoreline ds = 5km

Probability factor cprob = 0.83

Seasonal factor cseason = 0.98 January worst case

Reference level z = 14.7m conservatively ignore any reduction due to hdis

Combined exposure factor cezcet = 2.722

Topographical factor Twind = 1.0

Wind factor Swind = Twind × (vbmap / 1m/s) × (1 + A / 1000m) = 25.9

Peak velocity pressure qp = (0.613 × (cprob)2 × cseason × cezcet × (Swind) 2) ×1N/m2 = 0.75kN/m2

Force coefficient cf = 1.8

Wind load Fw = cf × qp = 1.36kN/m2

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-TW1

Section

Temporary Works – Propping of Crosswall SW5

Sheet No.

2

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

A Munoz

Date

01/01/2019

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-TW1

Section

Temporary Works – Propping of Crosswall SW5

Sheet No.

3

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

A Munoz

Date

01/01/2019

Crosswall SW5

Height of wall panel hp = 2545mm

Length of wall panel lp = 6120mm

Number of props np = 2

Connection to slab, position from wall a = 2000mm

Height to prop position on panel hprop = 2445mm

Angle of prop to horizontal φp = atan(hprop / a) = 51 Prop angle ok

Max ratio of load taken by one prop rp = 0.63

Prop design

Moment applied to wall M = Fw × (hp × lp) × hp / 2 = 26.9kNm

Length of prop b = √(hprop2 + a2) = 3159mm

Load on prop Wp = ((((M / hprop) / np) / a) × b) / (1/np) × rp = 11.0kN

A-Plant Number 2 push pull prop capacity at 3159mm extension is > 30kN Prop capacity ok

See attached manufacturers data below.

Design of fixing cast into wall panel for prop head

M16 solid rod socket - tension and shear capacity safe working loads for the cast in fixings are based on a 75mm edge

distance and 30N/mm2 concrete cube strength. See attached manufacturers data below.

All cast in prop fixings have a minimum edge distance of 100mm, 50N/mm2 concrete cube strength and are anchored within

the reinforcement cage.

Wind direction putting prop in tension

Tension load on prop connection Fhw = (M / hprop) / np / (1/np) × rp = 6.9kN

Tension capacity M16 solid rod socket Tc = 17kN Fixing capacity ok

Wind in any direction

Shear load on prop connection Fvw = tan(φp) × Fh = 10.5kN

Shear capacity M16 solid rod socket Vc = 11kN Fixing capacity ok

Design of fixing to ground floor slab for prop base

Use 150mm long M16 Excalibur screw bolt. See attached manufacturers data below.

Minimum embedment 120mm

Minimum edge distance 160mm

Wind direction putting prop in tension

Tension load on prop connection Fhs = Fvw = 10.5kN

Tension capacity 16mm Excalibur bolt C20/25 Tc = 12.8kN Fixing capacity ok

Wind in any direction

Shear load on prop connection Fvs = Fhw = 6.9kN

Shear capacity 16mm Excalibur bolt C20/25 Vc = 52.4kN Fixing capacity ok

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-TW1

Section

Temporary Works – Propping of Crosswall SW5

Sheet No.

4

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

A Munoz

Date

01/01/2019

Project

Bellevue Apartments, Belfast

Calc No.

19-0101-TW1

Section

Temporary Works – Propping of Crosswall SW5

Sheet No.

5

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

A Munoz

Date

01/01/2019

Project

University of Ulster Job Ref.

15-0810

Section

Eurocode Live Load Reduction Information Sheet No.

1 of 2

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

Project

University of Ulster Job Ref.

15-0810

Section

Eurocode Live Load Reduction Information Sheet No.

2 of 2

Calc. by

M Magill

Date

01/01/2019

Revision

Date

Checked by

R Escriva

Date

01/01/2019

LIFTING SYSTEMS DESIGN CRITERIA 01

LIFTING SYSTEMS DESIGN CRITERIA

CONTENTS

Lifting Systems Design Criteria 1-3

Applied Load on Each Anchor 1-6

www.cfsfixings.com 0301

LIF

TIN

G S

YS

TE

MS

DE

SIG

N C

RIT

ER

IA

LIFTING SYSTEMS DESIGN CRITERIA

We have four main systems available for the lifting of precast concrete units. The reasons for selection may be technical, economic, or may be due to the lifting equipment already owned.

CFS can supply all the accessories you need including lifting loops, clutches and recess formers for each of these systems.

All the lifting sockets have Rd thread suitable for the building site environment.

Threaded Sockets

These are usually used for light to medium-weight units, they are easy to install in the concrete element and may be recessed if required.

Wavy Tail anchors are particularly easy to fix, High Load Wavy Tail type anchors may require no further reinforcement (for more information please contact CFS). Tube and flat plate sockets are also available, which depend on separate reinforcement.

Quick Lift System

This is an alternative quick lift option for lifting light to medium-weight precast concrete.

Spherical Head Anchors

These anchors may be used for the great concrete products such as staircase units, beams, slabs, walls, culverts and pipes. Spherical head anchors are recessed into the concrete and may require no additional reinforcement, depending on the application.

Cast-in Loops

These lifters require no further accessories as the loop is attached directly to the crane hook.

They are economic where smaller numbers are required, as you do not have to buy a lifting clutch.

They can be used for units where the area around the lifting point is not visible in their permanent condition, as the loop is cast into the top of the concrete.

www.cfsfixings.com 0501

LIF

TIN

G S

YS

TE

MS

DE

SIG

N C

RIT

ER

IA

www.cfsfixings.com0401

Selection of type within an anchor system

You must consider if the anchor is to be used in the edge of walls as (1), in slabs (2) or in beams (3), and also whether the unit will need to be tilted using the anchor, or simply be used for vertical lifting.

With these factors in mind, review the different types of anchors within this catalogue to decide which is most suitable for your application. If in doubt, please contact us for advice.

Load Cases

Lifting of unit must be considered from the demoulding to the final position on site. The load cases may have different direction of action which must be considered as the anchors have different capacities in axial, angled and shear lifting.

1

2

3

Typically there are six possible load cases that may be critical:

1. Demoulding by vertical lift from formwork at precast yard 2. Demoulding by tilting to vertical from formwork at precast yard 3. Handling vertically at precast yard 4. Tilting onto transport or storage at precast yard 5. Tilting from transport or storage on site 6. Handling vertically on site

Typically handling at the precaster is with low strength concrete, but in a more controlled manner. On site the concrete is more mature, but may receive rougher treatment.

Axial Lift Angled Lift up to a spread of 90°, or

45° from the vertical

Shear Lift

Threaded Socket pressed on steel rebar

The “straight” and “long wavy tail” versions are suitable for use in narrow walls, e.g. precast concrete thin wall structures. It can carry very high axial and shear loads. In thicker walls it is often more economic to use the “short wavy tail” version.

Threaded sockets in stainless steel with friction-welded steel rebar

The technically sophisticated solution:

• no bare steel at the base of the socket

• no further corrosion protection measures required

• friction welding is an established means of jointing for engineered structures

• with metric thread

• economic use of stainless steel

Threaded sockets with cross hole

A steel reinforcing bar is passed through the hole to anchor the socket. Owing to the flexible anchorage options, these sockets can be used in the most diverse components - walls, slabs, panels, pipes, etc.

Sockets with plates and bolts

Owing to their relatively small depth, these sockets are ideal for fitting in slab-type elements perpendicular to the plane of the element.

The end plate increases the anchorage effect.

Schroeder lifting sockets are available with Rd and M threads.

Long

wav

y ba

r

Sho

rt w

avy

bar

Str

aigh

t bar

www.cfsfixings.com 0701

LIF

TIN

G S

YS

TE

MS

DE

SIG

N C

RIT

ER

IA

www.cfsfixings.com0601

Dynamic Factors

The dynamic process of lifting a unit adds load to the anchors. The magnitude of this dynamic effect is determined by the choice of lifting equipment, the length and type of cable or chain, and the hoisting speed.

Cables made of steel or synthetic fibre have a damping effect that increases with cable length. The table below provides typical values that you can use. If you are unsure as to which factor to apply please consult CFS.

Lifting Equipment Typical Dynamic Impact Factor, ψ

Tower crane, Overhead crane, Portal crane

1.2 a

Mobile Crane 1.3

Lifting and moving on flat terrain 2.0-2.5

Lifting and moving on rough terrain 3-4

Demoulding Adhesion to Formwork

Adhesion forces between the formwork and the concrete vary according to the type of formwork used.

The following may be taken as a guide:

Formwork Type Adhesion coefficient, qadh (kN/m2)

Oiled steel formwork 1

Varnished timber formwork 2

Rough formwork 3

Fadh = qadh x A Fadh = Adhesion Force [kN]

qadh = Adhesion forces [kN/m2]

A = Surface area in contact with the formwork prior to lifting [m2]

Heavily profiled panels cause more adhesion. Please contact CFS for advice if required.

a In precasting factories and if specific provisions are made at the building site, lower values may be appropriate

APPLIED LOAD ON EACH ANCHOR

The way in which a unit is lifted influences the load that is applied to the anchors. For each load case that applies to your unit, the following factors must be considered:

Weight of the Unit, Fv

This should be the unfactored weight.

Typically:

FG = V x γ FG = self weight [kN]

V = Volume [m³]

γ = specific weight of the precast element [kN/m³]

Typically γ =25 kN/m³

Number of lifting points, N

Two legged slings are statically determinate. N=2

Three legged slings are statically determinate provided the anchors are not in one line. N=3

Four legged slings are statically indeterminate. It must be assumed that only two anchors are holding the load at any one time. N=2

A spreader beam or tri-plate can make a four legged sling statically determinate. N=4

The use of two anchors is usual for beams and upright panels, and four anchors installed symmetrically to the load centre is recommended for horizontal slabs.

Position of the Anchors

If the anchors cannot be placed symmetrically to the centre of gravity, the load on the anchors must to be calculated according to simple static analysis.

Spread Angle Spread Coefficient

α β z

0° 0° 1

15° 7.5° 1.01

30° 15° 1.04

45° 22.5° 1.08

60° 30° 1.16

75° 37.5° 1.26

90° 45° 1.41

Chain Angles

If no spreader beam is used, the spread angle α depends on the arrangement and length of the suspending cable.

The resulting horizontal component increases the tensile force on the anchor.

www.cfsfixings.com0801

Demoulding Vertically (Loadcase 1) – Axial or Angled Lift

E1 = (FG + Fadh ) x z E = Action (kN)

N FG = Weight of Unit (kN)

Fadh = Adhesion Force (kN)

z = Spread Coefficient

N = Number of Lifting Points

Demoulding by Tilting (Loadcase 2) – Shear Lift

E2 = (FG + Fadh ) x z E = Action (kN)

2N FG = Weight of Unit (kN)

Fadh = Adhesion Force (kN)

z = Spread Coefficient

N = Number of Lifting Points

In this situation half the weight is resting on the formwork.

Handling Vertically (Loadcases 3 and 6) – Axial or Angled Lift

E3 or E6 = FG x ψ x z E = Action (kN)

N FG = Weight of Unit (kN)

ψ = Dynamic Impact Factor

z = Spread Coefficient

N = Number of Lifting Points

Tilting (Loadcases 4 and 5) with Shear Lift

E4 or E5 = FG x ψ x z E = Action (kN)

2N FG = Weight of Unit (kN)

ψ = Dynamic Impact Factor

z = Spread Coefficient

N = Number of Lifting Points

In this situation half the weight is resting on the formwork.

CALCULATION OF THE ACTION FOR EACH LOAD CASE

Capacity of anchors

The capacity of each anchor (R) is determined by several factors. These include concrete strength, anchor distance to edges and available reinforcement.

The capacities under commonly occurring situations are found in the tables in each section of this catalogue.

The tables provided within this catalogue provide the capacity, or load resistance of each anchor in most conditions encountered.

If you have a situation outside of the conditions in this catalogue, please contact CFS with a drawing and description of your circumstances and we will provide advice.

For each load case, ensure that R ≥ E R = Capacity (kN)

E = Action (kN)

*Loadcase 1 must be compared with Loadcase 3. Sometimes calculation with dynamic impact factor might be higher. Higher value must be chosen for the lifting system.

*Loadcase 2 must be compared with Loadcase 4. Sometimes calculation with dynamic impact factor might be higher. Higher value must be chosen for the lifting system.

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

1 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

BLOCK BC, LEVEL 09 PRECAST BEAM L09-BM-T06

RC BEAM ANALYSIS & DESIGN (EN1992)

RC MEMBER ANALYSIS & DESIGN (EN1992-1-1:2004)

In accordance with EN1992-1-1:2004 incorporating Corrigenda January 2008 and the UK national annex Tedds calculation version 3.0.12

ANALYSIS Tedds calculation version 1.0.23

Geometry

Geometry (m) - Concrete (C40 2500 Basalt) - R 500x1200

Span Length (m) Section Start Support End Support

1 14.93 R 500x1200 Pinned Pinned

R 500x1200: A = 6000 cm2, Iy = 7200000 cm4, Iz = 1250000 cm4, Ay = 5000 cm2, Az = 5000 cm2

Concrete (C40 2500 Basalt): Density 2500 kg/m3, Youngs 42.2645547 kN/mm2, Shear 17.6102311 kN/mm2, Thermal 0.00001 C-1

Loading

Self weight included

Permanent - Loading (kN/m,kN)

Imposed - Loading (kN/m)

ROSTEK - Loading (kN)

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

2 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Load combination factors

Load combination

Se

lf W

eig

ht

Per

ma

ne

nt

Imp

os

ed

RO

ST

EK

1.35G + 1.50Q + 1.50RQ (Strength) 1.35 1.35 1.05 1.00

1.0G + 1.0Q + 1.0RQ (Service) 1.00 1.00 1.00 1.00

1.0G + 1.02Q (Quasi) 1.00 1.00 0.30 1.00

1.35G + 1.5Q + 1.5RQ (Strength) 1.25 1.25 1.50 1.00

1.35G + 1.5Q + 1.5RQ (Strength) 1.35 1.35 1.50 1.00

Member Loads

Member Load case Load Type Orientation Description

Beam Permanent UDL GlobalZ 4.5 kN/m at 0 m to 14.93 m

Beam Permanent Point load GlobalZ 51.5 kN at 13.99 m

Beam Permanent UDL GlobalZ 4.38 kN/m at 3.7 m to 12.04 m

Beam Permanent VDL GlobalZ 14.1 kN/m at 12.04 m to 8.44 kN/m at 14.93 m

Beam Permanent Point load GlobalZ 5.5 kN at 3.7 m

Beam Permanent Point load GlobalZ 5.5 kN at 12.04 m

Beam Permanent VDL GlobalZ 11.9 kN/m at 0 m to 16.88 kN/m at 3.7 m

Beam Permanent VDL GlobalZ 8.44 kN/m at 10.485 m to 5.63 kN/m at 12.04 m

Beam Permanent UDL GlobalZ 8.44 kN/m at 3.7 m to 10.485 m

Beam Imposed UDL GlobalZ 1.8 kN/m at 0 m to 14.93 m

Beam Imposed UDL GlobalZ 2.81 kN/m at 3.7 m to 12.04 m

Beam ROSTEK Point load GlobalZ 22.2 kN at 0.6 m

Beam ROSTEK Point load GlobalZ 22.2 kN at 14.3 m

Results

Reactions

Load combination: 1.35G + 1.50Q + 1.50RQ (Strength)

Node Force Moment

Fx Fz My

(kN) (kN) (kNm)

1 0 387.6 0

2 0 438.4 0

Load combination: 1.0G + 1.0Q + 1.0RQ (Service)

Node Force Moment

Fx Fz My

(kN) (kN) (kNm)

1 0 298.3 0

2 0 336.2 0

Load combination: 1.0G + 1.02Q (Quasi)

Node Force Moment

Fx Fz My

(kN) (kN) (kNm)

1 0 281.2 0

2 0 318.1 0

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

3 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Load combination: 1.35G + 1.5Q + 1.5RQ (Strength)

Node Force Moment

Fx Fz My

(kN) (kN) (kNm)

1 0 373.2 0

2 0 420.8 0

Load combination: 1.35G + 1.5Q + 1.5RQ (Strength)

Node Force Moment

Fx Fz My

(kN) (kN) (kNm)

1 0 398.6 0

2 0 450 0

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

;

Concrete details - Table 3.1. Strength and deformation characteristics for concrete

Concrete strength class; C40/50

Aggregate type; Basalt

Aggregate adjustment factor - cl.3.1.3(2); AAF = 1.2

Characteristic compressive cylinder strength; fck = 40 N/mm2

Mean value of compressive cylinder strength; fcm = fck + 8 N/mm2 = 48 N/mm2

Mean value of axial tensile strength; fctm = 0.3 N/mm2 (fck/ 1 N/mm2)2/3 = 3.5 N/mm2

Secant modulus of elasticity of concrete; Ecm = 22 kN/mm2[fcm/10 N/mm2]0.3 AAF = 42265 N/mm2

Ultimate strain - Table 3.1; cu2 = 0.0035

Shortening strain - Table 3.1; cu3 = 0.0035

Effective compression zone height factor; = 0.80

Effective strength factor; = 1.00

Coefficient k1; k1 = 0.40

Coefficient k2; k2 = 1.0 (0.6 + 0.0014 / cu2) = 1.00

Coefficient k3; k3 = 0.40

Coefficient k4; k4 = 1.0 (0.6 + 0.0014 / cu2) = 1.00

Partial factor for concrete -Table 2.1N; C = 1.50

Compressive strength coefficient - cl.3.1.6(1); cc = 0.85

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

4 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Design compressive concrete strength - exp.3.15; fcd = cc fck / C = 22.7 N/mm2

Compressive strength coefficient - cl.3.1.6(1); ccw = 1.00

Design compressive concrete strength - exp.3.15; fcwd = ccw fck / C = 26.7 N/mm2

Maximum aggregate size; hagg = 14 mm

Monolithic simple support moment factor; 1 = 0.25

Reinforcement details

Characteristic yield strength of reinforcement; fyk = 500 N/mm2

Partial factor for reinforcing steel - Table 2.1N; S = 1.15

Design yield strength of reinforcement; fyd = fyk / S = 435 N/mm2

Nominal cover to reinforcement

Nominal cover to top reinforcement; cnom_t = 35 mm

Nominal cover to bottom reinforcement; cnom_b = 35 mm

Nominal cover to side reinforcement; cnom_s = 35 mm

Fire resistance

Standard fire resistance period; R = 120 min

Number of sides exposed to fire; 3

Minimum width of beam - EN1992-1-2 Table 5.5; bmin = 200 mm

Beam - Span 1

Rectangular section details

Section width; b = 500 mm

Section depth; h = 1200 mm

PASS - Minimum dimensions for fire resistance met

WARNING

Section is greater than or equal to 1000mm and requires additional skin reinforcement to control cracking on the sides of

the beam in accordance with EN1992-1-1 clause 7.3.3(3). This is beyond the scope of this calculation.

Moment design

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

5 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Zone 1 (0 mm - 3733 mm) Positive moment - section 6.1

Design bending moment; M = abs(Mm1_s1_z1_max_red) = 1091.0 kNm

Effective depth of tension reinforcement; d = 1112 mm

Redistribution ratio; = min(Mpos_red_z1 / Mpos_z1, 1) = 1.000

K = M / (b d2 fck) = 0.044

K' = (2 cc / C) (1 - ( - k1) / (2 k2)) ( ( - k1) / (2 k2))

= 0.207

K' > K - No compression reinforcement is required

Lever arm; z = min(0.5 d [1 + (1 - 2 K / ( cc / C))0.5], 0.95

d) = 1056 mm

Depth of neutral axis; x = 2 (d - z) / = 139 mm

Area of tension reinforcement required; As,req = M / (fyd z) = 2375 mm2

Tension reinforcement provided; Layer 1 - 6 20, Spacing - 50mm, Layer 2 - 6 20

Area of tension reinforcement provided; As,prov = 3770 mm2

Minimum area of reinforcement - exp.9.1N; As,min = max(0.26 fctm / fyk, 0.0013) b d = 1014 mm2

Maximum area of reinforcement - cl.9.2.1.1(3); As,max = 0.04 b h = 24000 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width; wk = 0.3 mm

Design value modulus of elasticity reinf – 3.2.7(4); Es = 200000 N/mm2

Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm2

Stress distribution coefficient; kc = 0.4

Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) 0.35 / 500 mm, 0.65), 1) = 0.86

Actual tension bar spacing; sbar = (b - (2 (cnom_s + m1_s1_z1_v) + m1_s1_z1_b_L1 Nm1_s1_z1_b_L1)) /

(Nm1_s1_z1_b_L1 - 1) + m1_s1_z1_b_L1 = 78.8 mm

Maximum stress permitted - Table 7.3N; s = 337 N/mm2

Steel to concrete modulus of elast. ratio; cr = Es / Ecm = 4.73

Distance of the Elastic NA from bottom of beam; y = (b h2 / 2 + As,prov (cr - 1) (h - d)) / (b h + As,prov (cr - 1)) =

588 mm

Area of concrete in the tensile zone; Act = b y = 294134 mm2

Minimum area of reinforcement required - exp.7.1; Asc,min = kc k fct,eff Act / s = 1054 mm2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; MQP = max(1 abs(Mm1_s1_z2_neg_quasi), abs(Mm1_s1_z1_pos_quasi)) =

747.6kNm

Permanent load ratio; RPL = MQP / M = 0.69

Service stress in reinforcement; sr = fyd As,req / As,prov RPL = 188 N/mm2

Maximum bar spacing - Tables 7.3N; sbar,max = 265.4 mm

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Zone 1 (0 mm - 3733 mm) Negative moment - section 6.1

Design bending moment; M = max(1 abs(Mm1_s1_max_red), abs(Mm1_s1_z1_min_red)) = 362.3 kNm

Effective depth of tension reinforcement; d = 1147 mm

Redistribution ratio; = 1 = 1.000

K = M / (b d2 fck) = 0.014

K' = (2 cc / C) (1 - ( - k1) / (2 k2)) ( ( - k1) / (2 k2))

= 0.207

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

6 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

K' > K - No compression reinforcement is required

Lever arm; z = min(0.5 d [1 + (1 - 2 K / ( cc / C))0.5], 0.95

d) = 1090 mm

Depth of neutral axis; x = 2 (d - z) / = 143 mm

Area of tension reinforcement required; As,req = M / (fyd z) = 765 mm2

Tension reinforcement provided; 4 20

Area of tension reinforcement provided; As,prov = 1257 mm2

Minimum area of reinforcement - exp.9.1N; As,min = max(0.26 fctm / fyk, 0.0013) b d = 1046 mm2

Maximum area of reinforcement - cl.9.2.1.1(3); As,max = 0.04 b h = 24000 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width; wk = 0.3 mm

Design value modulus of elasticity reinf – 3.2.7(4); Es = 200000 N/mm2

Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm2

Stress distribution coefficient; kc = 0.4

Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) 0.35 / 500 mm, 0.65), 1) = 0.86

Actual tension bar spacing; sbar = (b - (2 (cnom_s + m1_s1_z1_v) + m1_s1_z1_t_L1 Nm1_s1_z1_t_L1)) /

(Nm1_s1_z1_t_L1 - 1) + m1_s1_z1_t_L1 = 131.3 mm

Maximum stress permitted - Table 7.3N; s = 295 N/mm2

Steel to concrete modulus of elast. ratio; cr = Es / Ecm = 4.73

Distance of the Elastic NA from bottom of beam; y = (b h2 / 2 + As,prov (cr - 1) (h - d)) / (b h + As,prov (cr - 1)) =

596 mm

Area of concrete in the tensile zone; Act = b y = 297879 mm2

Minimum area of reinforcement required - exp.7.1; Asc,min = kc k fct,eff Act / s = 1219 mm2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; MQP = max(1 abs(Mm1_s1_z2_pos_quasi), abs(Mm1_s1_z1_neg_quasi)) =

246.4kNm

Permanent load ratio; RPL = MQP / M = 0.68

Service stress in reinforcement; sr = fyd As,req / As,prov RPL = 180 N/mm2

Maximum bar spacing - Tables 7.3N; sbar,max = 275.1 mm

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Minimum bar spacing (Section 8.2)

Top bar spacing; stop = (b - (2 (cnom_s + m1_s1_z1_v) + m1_s1_z1_t_L1 Nm1_s1_z1_t_L1)) /

(Nm1_s1_z1_t_L1 - 1) = 111.3 mm

Minimum allowable top bar spacing; stop,min = max(m1_s1_z1_t_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Bottom bar spacing; sbot = (b - (2 (cnom_s + m1_s1_z1_v) +

m1_s1_z1_b_L1 Nm1_s1_z1_b_L1)) / (Nm1_s1_z1_b_L1 - 1) = 58.8 mm

Minimum allowable bottom bar spacing; sbot,min = max(m1_s1_z1_b_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Zone 2 (3733 mm - 11198 mm) Positive moment - section 6.1

Design bending moment; M = abs(Mm1_s1_z2_max_red) = 1449.3 kNm

Effective depth of tension reinforcement; d = 1112 mm

Redistribution ratio; = min(Mpos_red_z2 / Mpos_z2, 1) = 1.000

K = M / (b d2 fck) = 0.059

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

7 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

K' = (2 cc / C) (1 - ( - k1) / (2 k2)) ( ( - k1) / (2 k2))

= 0.207

K' > K - No compression reinforcement is required

Lever arm; z = min(0.5 d [1 + (1 - 2 K / ( cc / C))0.5], 0.95

d) = 1051 mm

Depth of neutral axis; x = 2 (d - z) / = 152 mm

Area of tension reinforcement required; As,req = M / (fyd z) = 3171 mm2

Tension reinforcement provided; Layer 1 - 6 20, Spacing - 50mm, Layer 2 - 6 20

Area of tension reinforcement provided; As,prov = 3770 mm2

Minimum area of reinforcement - exp.9.1N; As,min = max(0.26 fctm / fyk, 0.0013) b d = 1014 mm2

Maximum area of reinforcement - cl.9.2.1.1(3); As,max = 0.04 b h = 24000 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width; wk = 0.3 mm

Design value modulus of elasticity reinf – 3.2.7(4); Es = 200000 N/mm2

Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm2

Stress distribution coefficient; kc = 0.4

Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) 0.35 / 500 mm, 0.65), 1) = 0.86

Actual tension bar spacing; sbar = (b - (2 (cnom_s + m1_s1_z2_v) + m1_s1_z2_b_L1 Nm1_s1_z2_b_L1 +

m1_s1_z1_b_L1 Nm1_s1_z1_b_L1)) / ((Nm1_s1_z2_b_L1 + Nm1_s1_z1_b_L1) - 1) +

m1_s1_z2_b_L1 = 78.8 mm

Maximum stress permitted - Table 7.3N; s = 337 N/mm2

Steel to concrete modulus of elast. ratio; cr = Es / Ecm = 4.73

Distance of the Elastic NA from bottom of beam; y = (b h2 / 2 + As,prov (cr - 1) (h - d)) / (b h + As,prov (cr - 1)) =

588 mm

Area of concrete in the tensile zone; Act = b y = 294134 mm2

Minimum area of reinforcement required - exp.7.1; Asc,min = kc k fct,eff Act / s = 1054 mm2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; MQP = abs(Mm1_s1_z2_pos_quasi) = 985.4kNm

Permanent load ratio; RPL = MQP / M = 0.68

Service stress in reinforcement; sr = fyd As,req / As,prov RPL = 249 N/mm2

Maximum bar spacing - Tables 7.3N; sbar,max = 189.2 mm

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Deflection control - Section 7.4

Reference reinforcement ratio; m0 = (fck / 1 N/mm2)0.5 / 1000 = 0.00632

Required tension reinforcement ratio; m = As,req / (b d) = 0.00570

Required compression reinforcement ratio; 'm = As2,req / (b d) = 0.00000

Structural system factor - Table 7.4N; Kb = 1.0

Basic allowable span to depth ratio ; span_to_depthbasic = Kb [11 + 1.5 (fck / 1 N/mm2)0.5 m0 / m + 3.2

(fck / 1 N/mm2)0.5 (m0 / m - 1)1.5] = 22.247

Reinforcement factor - exp.7.17; Ks = min(As,prov / As,req 500 N/mm2 / fyk, 1.5) = 1.189

Flange width factor; F1 = 1 = 1.000

Long span supporting brittle partition factor; F2 = 1 = 1.000

Allowable span to depth ratio; span_to_depthallow = min(span_to_depthbasic Ks F1 F2, 40 Kb) =

26.448

Actual span to depth ratio; span_to_depthactual = Lm1_s1 / d = 13.426

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

8 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

PASS - Actual span to depth ratio is within the allowable limit

Minimum bar spacing (Section 8.2)

Top bar spacing; stop = (b - (2 (cnom_s + m1_s1_z2_v) + m1_s1_z2_t_L1 Nm1_s1_z2_t_L1)) /

(Nm1_s1_z2_t_L1 - 1) = 111.3 mm

Minimum allowable top bar spacing; stop,min = max(m1_s1_z2_t_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Bottom bar spacing; sbot = (b - (2 (cnom_s + m1_s1_z2_v) +

m1_s1_z2_b_L1 Nm1_s1_z2_b_L1 + m1_s1_z1_b_L1 Nm1_s1_z1_b_L1)) /

((Nm1_s1_z2_b_L1 + Nm1_s1_z1_b_L1) - 1) = 58.8 mm

Minimum allowable bottom bar spacing; sbot,min = max(m1_s1_z2_b_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Zone 3 (11198 mm - 14930 mm) Positive moment - section 6.1

Design bending moment; M = abs(Mm1_s1_z3_max_red) = 1109.0 kNm

Effective depth of tension reinforcement; d = 1112 mm

Redistribution ratio; = min(Mpos_red_z3 / Mpos_z3, 1) = 1.000

K = M / (b d2 fck) = 0.045

K' = (2 cc / C) (1 - ( - k1) / (2 k2)) ( ( - k1) / (2 k2))

= 0.207

K' > K - No compression reinforcement is required

Lever arm; z = min(0.5 d [1 + (1 - 2 K / ( cc / C))0.5], 0.95

d) = 1056 mm

Depth of neutral axis; x = 2 (d - z) / = 139 mm

Area of tension reinforcement required; As,req = M / (fyd z) = 2414 mm2

Tension reinforcement provided; Layer 1 - 6 20, Spacing - 50mm, Layer 2 - 6 20

Area of tension reinforcement provided; As,prov = 3770 mm2

Minimum area of reinforcement - exp.9.1N; As,min = max(0.26 fctm / fyk, 0.0013) b d = 1014 mm2

Maximum area of reinforcement - cl.9.2.1.1(3); As,max = 0.04 b h = 24000 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width; wk = 0.3 mm

Design value modulus of elasticity reinf – 3.2.7(4); Es = 200000 N/mm2

Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm2

Stress distribution coefficient; kc = 0.4

Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) 0.35 / 500 mm, 0.65), 1) = 0.86

Actual tension bar spacing; sbar = (b - (2 (cnom_s + m1_s1_z3_v) + m1_s1_z3_b_L1 Nm1_s1_z3_b_L1)) /

(Nm1_s1_z3_b_L1 - 1) + m1_s1_z3_b_L1 = 78.8 mm

Maximum stress permitted - Table 7.3N; s = 337 N/mm2

Steel to concrete modulus of elast. ratio; cr = Es / Ecm = 4.73

Distance of the Elastic NA from bottom of beam; y = (b h2 / 2 + As,prov (cr - 1) (h - d)) / (b h + As,prov (cr - 1)) =

588 mm

Area of concrete in the tensile zone; Act = b y = 294134 mm2

Minimum area of reinforcement required - exp.7.1; Asc,min = kc k fct,eff Act / s = 1054 mm2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; MQP = max(1 abs(Mm1_s1_z2_neg_quasi), abs(Mm1_s1_z3_pos_quasi)) =

757.9kNm

Permanent load ratio; RPL = MQP / M = 0.68

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

9 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Service stress in reinforcement; sr = fyd As,req / As,prov RPL = 190 N/mm2

Maximum bar spacing - Tables 7.3N; sbar,max = 262.1 mm

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Zone 3 (11198 mm - 14930 mm) Negative moment - section 6.1

Design bending moment; M = max(1 abs(Mm1_s1_max_red), abs(Mm1_s1_z3_min_red)) = 362.3 kNm

Effective depth of tension reinforcement; d = 1147 mm

Redistribution ratio; = 1 = 1.000

K = M / (b d2 fck) = 0.014

K' = (2 cc / C) (1 - ( - k1) / (2 k2)) ( ( - k1) / (2 k2))

= 0.207

K' > K - No compression reinforcement is required

Lever arm; z = min(0.5 d [1 + (1 - 2 K / ( cc / C))0.5], 0.95

d) = 1090 mm

Depth of neutral axis; x = 2 (d - z) / = 143 mm

Area of tension reinforcement required; As,req = M / (fyd z) = 765 mm2

Tension reinforcement provided; 4 20

Area of tension reinforcement provided; As,prov = 1257 mm2

Minimum area of reinforcement - exp.9.1N; As,min = max(0.26 fctm / fyk, 0.0013) b d = 1046 mm2

Maximum area of reinforcement - cl.9.2.1.1(3); As,max = 0.04 b h = 24000 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width; wk = 0.3 mm

Design value modulus of elasticity reinf – 3.2.7(4); Es = 200000 N/mm2

Mean value of concrete tensile strength; fct,eff = fctm = 3.5 N/mm2

Stress distribution coefficient; kc = 0.4

Non-uniform self-equilibrating stress coefficient; k = min(max(1 + (300 mm - min(h, b)) 0.35 / 500 mm, 0.65), 1) = 0.86

Actual tension bar spacing; sbar = (b - (2 (cnom_s + m1_s1_z3_v) + m1_s1_z3_t_L1 Nm1_s1_z3_t_L1)) /

(Nm1_s1_z3_t_L1 - 1) + m1_s1_z3_t_L1 = 131.3 mm

Maximum stress permitted - Table 7.3N; s = 295 N/mm2

Steel to concrete modulus of elast. ratio; cr = Es / Ecm = 4.73

Distance of the Elastic NA from bottom of beam; y = (b h2 / 2 + As,prov (cr - 1) (h - d)) / (b h + As,prov (cr - 1)) =

596 mm

Area of concrete in the tensile zone; Act = b y = 297879 mm2

Minimum area of reinforcement required - exp.7.1; Asc,min = kc k fct,eff Act / s = 1219 mm2

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment; MQP = max(1 abs(Mm1_s1_z2_pos_quasi), abs(Mm1_s1_z3_neg_quasi)) =

246.4kNm

Permanent load ratio; RPL = MQP / M = 0.68

Service stress in reinforcement; sr = fyd As,req / As,prov RPL = 180 N/mm2

Maximum bar spacing - Tables 7.3N; sbar,max = 275.1 mm

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Minimum bar spacing (Section 8.2)

Top bar spacing; stop = (b - (2 (cnom_s + m1_s1_z3_v) + m1_s1_z3_t_L1 Nm1_s1_z3_t_L1)) /

(Nm1_s1_z3_t_L1 - 1) = 111.3 mm

Minimum allowable top bar spacing; stop,min = max(m1_s1_z3_t_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

10 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

Bottom bar spacing; sbot = (b - (2 (cnom_s + m1_s1_z3_v) +

m1_s1_z3_b_L1 Nm1_s1_z3_b_L1)) / (Nm1_s1_z3_b_L1 - 1) = 58.8 mm

Minimum allowable bottom bar spacing; sbot,min = max(m1_s1_z3_b_L1 ks1, hagg + ks2, 20mm) = 20.0 mm

PASS - Actual bar spacing exceeds minimum allowable

Shear design

Angle of comp. shear strut for maximum shear; max = 45 deg

Strength reduction factor - cl.6.2.3(3); v1 = 0.6 (1 - fck / 250 N/mm2) = 0.504

Compression chord coefficient - cl.6.2.3(3); cw = 1.00

Minimum area of shear reinforcement - exp.9.5N; Asv,min = 0.08 N/mm2 b (fck / 1 N/mm2)0.5 / fyk = 506 mm2/m

Zone 1 (0 mm - 3733 mm) shear - section 6.2

Design shear force at support ; VEd,max = max(abs(Vz1_max), abs(Vz1_red_max)) = 399 kN

Min lever arm in shear zone; z = 1056 mm

Maximum design shear resistance - exp.6.9; VRd,max = cw b z v1 fcwd / (cot(max) + tan(max)) = 3550 kN

PASS - Design shear force at support is less than maximum design shear resistance

Design shear force at 1112mm from support; VEd = 326 kN

Design shear stress; vEd = VEd / (b z) = 0.616 N/mm2

Angle of concrete compression strut - cl.6.2.3; = min(max(0.5 Asin(min(2 vEd / (cw fcwd v1),1)), 21.8 deg),

45deg) = 21.8 deg

Area of shear reinforcement required - exp.6.8; Asv,des = vEd b / (fyd cot()) = 284 mm2/m

Area of shear reinforcement required; Asv,req = max(Asv,min, Asv,des) = 506 mm2/m

Shear reinforcement provided; 4 8 legs @ 300 c/c

Area of shear reinforcement provided; Asv,prov = 670 mm2/m

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing - exp.9.6N; svl,max = 0.75 d = 834 mm

Zone 13733

4 × 8 legs @ 300 c/c

Zone 27465

4 × 8 legs @ 300 c/c

Zone 33733

4 × 8 legs @ 300 c/c

Project

University of Ulster

Job No.

15-0810

Calculation No.

GBD-CRH-BC-09-SC-Y-190-0025

Sheet No.

11 of 11

Calc. by

M Magill

Date

31/05/2018

Revision

B

Date

18/04/2019

Checked by

R Escriva

Date

18/04/2019

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Zone 2 (3733 mm - 11198 mm) shear - section 6.2

Design shear force at support ; VEd,max = max(abs(Vz2_max), abs(Vz2_red_max)) = 190 kN

Min lever arm in shear zone; z = 1051 mm

Maximum design shear resistance - exp.6.9; VRd,max = cw b z v1 fcwd / (cot(max) + tan(max)) = 3532 kN

PASS - Design shear force at support is less than maximum design shear resistance

Design shear force within zone; VEd = 190 kN

Design shear stress; vEd = VEd / (b z) = 0.361 N/mm2

Angle of concrete compression strut - cl.6.2.3; = min(max(0.5 Asin(min(2 vEd / (cw fcwd v1),1)), 21.8 deg),

45deg) = 21.8 deg

Area of shear reinforcement required - exp.6.8; Asv,des = vEd b / (fyd cot()) = 166 mm2/m

Area of shear reinforcement required; Asv,req = max(Asv,min, Asv,des) = 506 mm2/m

Shear reinforcement provided; 4 8 legs @ 300 c/c

Area of shear reinforcement provided; Asv,prov = 670 mm2/m

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing - exp.9.6N; svl,max = 0.75 d = 834 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Zone 3 (11198 mm - 14930 mm) shear - section 6.2

Design shear force at support ; VEd,max = max(abs(Vz3_max), abs(Vz3_red_max)) = 450 kN

Min lever arm in shear zone; z = 1056 mm

Maximum design shear resistance - exp.6.9; VRd,max = cw b z v1 fcwd / (cot(max) + tan(max)) = 3550 kN

PASS - Design shear force at support is less than maximum design shear resistance

Design shear force at 1112mm from support; VEd = 312 kN

Design shear stress; vEd = VEd / (b z) = 0.591 N/mm2

Angle of concrete compression strut - cl.6.2.3; = min(max(0.5 Asin(min(2 vEd / (cw fcwd v1),1)), 21.8 deg),

45deg) = 21.8 deg

Area of shear reinforcement required - exp.6.8; Asv,des = vEd b / (fyd cot()) = 272 mm2/m

Area of shear reinforcement required; Asv,req = max(Asv,min, Asv,des) = 506 mm2/m

Shear reinforcement provided; 4 8 legs @ 300 c/c

Area of shear reinforcement provided; Asv,prov = 670 mm2/m

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing - exp.9.6N; svl,max = 0.75 d = 834 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

A92

A92

A91

A91

A90

A90

AJAJ

AIAI

AIaAIa

A08

A08

A09

A09

A10

A10

A11

A11

A12

A12

A13

A13

A14

A14

A53

A53

A54

A54

A55

A55AY10

AY12

AY12

AY11

-

---

-

---

-

---

1

9011

6000 6000 6000 6000 6000 6000

500

500

500

500

500

500

500

500

500

500

500

500

500

500

300

300

1000

1000

1000

1000

1000

1000

1000

1000

1543

0

1519

0

4226

8975

125 125 125 125

250250

125 250 125

500

250250

500

250250

500

250250

500

250250

500

250250

500

215

7500

7500

215

GC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube

Insitu Beam to be Notched locallyto allow for installation ofPrecast Beam

OPE

Solid slab flooringsee Drg. GBD-CRH-BC-09-DR-Y-190-9012

250 2750 3000 250 2750 250 1185 4565

12

9011

3

9010

125 250 125 125 250 125 250125 125 250 125 250 125 250 125

175

200

125

500

175

200

125

500

175

200

125

500

175

200

125

500

175

200

125

175

200

125

175

200

125

175

200

125

175

200

125

175

200

125

5

9011

-

---

6

9011

7

9011

400

2526

050

400

285

50

400

2526

05050

100mm Dia. for RainWater Pipe

100mm Dia. for RainWater Pipe

100mm Dia. for RainWater Pipe

1800

250 125250 125

GC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube GC25 - 25mm

Electrical Conduit TubeGC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube GC25 - 25mm

Electrical Conduit TubeGC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube

-

---

5838

7004

Precast Gable beam

2750 250250 2500 250250 2500 250250 2500 250250 2500 250250 2500 250250 2500 250

3000 3000 3000 3000 3000 3000 3000

100mm Dia. for RainWater Pipe

1800

1800

1800

100mm Dia.for Rain Water Pipe

1585

1519

0

1543

0

240

1519

0

1543

0

240

400

400

400

400

400

260

2540

0

100mm Dia. for RainWater Pipe

100mm Dia. for RainWater Pipe

100mm Dia. for RainWater Pipe

1250

1250

1250

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel Hilti HAC-50 106/300F

Cast-in channelHilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel Hilti HAC-50 106/300F

Cast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel Hilti HAC-50 106/300F

Cast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

2262 738

Hilti HAC-50 106/300FCast-in channel

Monorail

Monorail

Monorail

635

635

635

635

635

635

635

635

635

635

635

635

200

200

200

200

200

200

200

200

200

200

200

200

200

200

200

200

635 200

2875

3

9012

2

9011

Hilti HAC-50 106/300FCast-in channel

425

260

2305

5410

5410

2305

5412

5408

2065

2305

5412

5408

2065

5854

5365

2065

Hilti HAC-70 175/300FCast-in channel

Hilti HAC-70 175/300FCast-in channel

Hilti HAC-70 175/300FCast-in channel

Hilti HAC-60 148/300FCast-in channel

To be cast into In-Situbelow notch in T11 PC

beam (By Others)

Hilti HAC-60 148/300FCast-in channe

To be cast into In-Situ(By Others)

Hilti HAC-60 148/300FCast-in channel

To be cast into In-Situ(By Others)

3

9011

6505

2859

2608

3458

800

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

Hilti HAC-50 106/300FCast-in channel

300500

170 205 125

170 205 125

GC25 - 25mmElectrical Conduit Tube

GC25 - 25mmElectrical Conduit Tube

300

300

300

300

300

300500

2700

2700

2700

2700

2327

1

9014

5

9014

-

---

600

205

125

EQ EQ

4

9014

9

9014

GC25 - 25mmElectricalConduit Tube

2065

5No. RSA Type 10'sfixed to PC beam T10with M20 sockets@300mm centers(By Creagh)

1No. RSA Type 10Bfixed to PC beam T10with M20 sockets@300mm centers(By Creagh)

2No. RSA Type 10A'sfixed to PC beam T10with M20 sockets@300mm centers(By Creagh)

4

9012

11

9014

12

9014

320 310 225 1025

GC25 - 25mmElectrical Conduit Tube

4

9010

EXPANSION JOINT DETAIL REQIURED

5

9010

A09 A10 A11 A12 A13

LEVEL 0940230.00 LEVEL 09 PLANT

40110.00

LEVEL 09 PARAPET41210.00

SSL LEVEL 0939780.00

FCL LEVEL 0838990.00

-

---

-

---

980

120

330

750

40

2220

1200

1200

6000 6000 6000 6000

450

3000 3000 3000 3000 3000 3000 3000 3000

Solid slab 135mm

6

9011

7

9011

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

625

100mm DIA. Holefor Water Pipe

Precast Gable beam -Typoligy and details of Beamto be agreedwith the Design Team

225

625

575

Structural topping 65mm

250250 2500 250250 2500 250250 2500 250250 2500 250250 2500 250250 2750 2750 250250 2500 250250

500 500 500 500 500 500 500500

200x150x12 RSA

3

9011

AIAI

500

125 250 125

5012

520

0

550

325

2+2 no. Ø71mm sleeves cast intoinsitu structure at each precast beam

bearing point as shown.

Sleeves in In-Situ to be grout filled,sleeves in PC beam to be left ungrouted

around reinforcment to allow for expansion detail.

SEE SECTION DET. B on drawing 9011

Ø40 mm reinf. dowel groutedinto sleeves in In-Situ only.Beam will be placed over protruding barsto align with sleeves in PC, to be leftungrouted for expansion detail

2No. 14mm thick 100x250mmCiparall slide bearing Neoprenepads on underside of PC beam

100

250 250

AIaAIa

12

9011

5

9014

2 no. Ø71mm sleeves cast intoinsitu structure at each precast beam

bearing point as shown.Ø40 mm reinf. dowel groutedinto sleeves once beams are fitted

25mm Tolerance Gapbetween PC beams

to be grout filled after fitting

170 205 125

500

125

SEE SECTION DET. D on drawing9011 for further information

NOTES:

Copyright. All Rights Reserved.This work is copyright and cannot be produced or copied in any form or by any means(graphic, electronic or mechanical including photocopying) without the written permissionof the originator. Any license, express or implied, to use this document for any purposewhatsoever is restricted to the terms of the agreement or implied agreement between theoriginator and the instructing party.

Levels and contours are relative to an Ordnance Survey Datum

Figured dimensions in millimetres.

DRAWING

PROJECT NO.

REVISION

SCALE @A0

DRAWING NO.

PROJECT

CLIENT

ISSUED:

DRAWN BY: CHECKED BY:

PROJECT STAGE: APPROVED BY:

Rosemount House, 21-23 Sydenam Road,Belfast, Northern Ireland

Tel: +44 (0)28 9045 5531Fax: +44 (0)28 9045 8940Web: www.laganconstructiongroup.com

BLOCK:

02/08/2019 16:19:53

Ulster University BC

Block BC - Level 09 Precast Beams

15-810

GBD- CRH- BC- 09- DR- Y- 190- 9010

BL MM

BC

Stage 5 STW

H

Level 09 Precast Beams

Level 09 - Precast Beams - 1:50

3D KEY VIEW

Section 3-9010 - 1:50

A 16/01/19 APPROVAL ISSUE

REVISION SCHEDULE

NO. DATE DESCRIPTION

As indicated

B 09/04/19 APPROVAL ISSUE

Note:

Precast Gable Beam, currently is under detailed design andstudy.

Beam

L09-BM-T01

Volume (mc) Weight (T)

L09-BM-T02

L09-BM-T03

L09-BM-T04

L09-BM-T05

L09-BM-T06

L09-BM-T07

L09-BM-T08

L09-BM-T09

8.800

8.760

21.560

21.462

7.43 18.20

4.75 11.63

2.00 4.90

8.760 21.462

8.800 21.560

8.760 21.462

8.800 21.560

L09-BM-T10 7.73 18.94

C 14/05/19 APPROVAL ISSUE

Gable Beam 14.351 35.16

D 06/06/19 APPROVAL ISSUE

E 07/06/19 APPROVAL ISSUE

F 27/06/19 CONSTRUCTION ISSUE

G 15/07/19 CONSTRUCTION ISSUE

1 : 204

LEVEL 09 PLAN BEAM - Expansion JointDetail

1 : 205

LEVEL 09 PLAN BEAM - PC ConnectionDetail

H 02/08/19 CONSTRUCTION ISSUE

Project

Grand Union

Job Ref.

18-0856

Section

Simple Mock Up Lifting Anchor Design

Sheet No.

1 of 2

Calc. by

M Magill

Date

14/12/2018

Revision

Date

Checked by

D Sagias

Date

14/12/2018

Lifting Anchor Design

Wall panel SP-T01 self weight wp = 41.2kN

Chain angle factor, 60° fch = 1.16

Dynamic factor fdy = 1.3

Capacity of CFS-FSW 7.5-35 Wc = 75kN (concrete strength >= 15N/mm2)

Factored load Wf = wp fch fdy = 62.1kN

Minimum number of lifters required nm = 1

Number of lifters provided na = 2

80% of load on 1No. lifter Wl = Wf 0.8 = 49.7kN Lifter capacity ok

NOTE: to avoid using multiple lifting clutches provide 2No. CFS-FSW 7.5-35 lifters in all wall panels.

Project

Grand Union

Job Ref.

18-0856

Section

Simple Mock Up Lifting Anchor Design

Sheet No.

2 of 2

Calc. by

M Magill

Date

14/12/2018

Revision

Date

Checked by

D Sagias

Date

14/12/2018

Project

Pfeifer Waved Tail Anchors - long

Job Ref.

Section

Design Details for Wall Panels

Sheet no./rev.

1 of 4

Calc. by

M Magill

Date

19/06/2013

Revision

A

Date

20/06/2013

Checked by

C McNicholl

Date

20/06/2013

Pfeifer Waved Anchors – Long

The following information applies to Pfeifer Long Waved Anchors only, for Short Waved Anchors refer to

Pfeifer documentation.

Engineer to confirm lifter size and number required per panel for pitching and lifting.

Detailer to determine centre of gravity (CofG) on panel and position lifters equidistant from CofG unless

advised otherwise by engineer. Detailer to observe lifter edge and spacing dimensions Table 4. If edge and/or

spacing dimensions can’t be achieved, the detailer is to liaise with the engineer to determine a solution.

Detailer to show pitching reinforcement on the drawings as per Table 3.

Note the minimum thickness of panel that will work with the specified reinforcement.

The reduced panel thickness is not thick enough to receive standard pitching reinforcement, see Table 4.

Engineering input is required where the reduced panel thickness occurs. Either specific pitching

reinforcement is designed to suit the reduced panel thickness or an alternative lifting method is specified by

the engineer.

Detailer to check the length of the anchor does not clash with openings, doors, windows, M&E etc.

The detailer is to put a HAZARD note on all GA’s showing that the panel must only be pitched with mould face

down / fill face up – copy 3D sketch from production details

Site to be made aware of lifting procedure – tool box talk by Project Manager

Table 1 – Minimum Surface Reinforcement

Project

Pfeifer Waved Tail Anchors - long

Job Ref.

Section

Design Details for Wall Panels

Sheet no./rev.

2 of 4

Calc. by

M Magill

Date

19/06/2013

Revision

A

Date

20/06/2013

Checked by

C McNicholl

Date

20/06/2013

Figure 1- Anchor Dimensions

Table 2 – Anchor Data

Project

Pfeifer Waved Tail Anchors - long

Job Ref.

Section

Design Details for Wall Panels

Sheet no./rev.

3 of 4

Calc. by

M Magill

Date

19/06/2013

Revision

A

Date

20/06/2013

Checked by

C McNicholl

Date

20/06/2013

Figure 2 – Pitching Reinforcement Cast in Detail

Table 3 – Pitching Reinforcement Data

Figure 3 – Pitching Reinforcement Bending Details

Project

Pfeifer Waved Tail Anchors - long

Job Ref.

Section

Design Details for Wall Panels

Sheet no./rev.

4 of 4

Calc. by

M Magill

Date

19/06/2013

Revision

A

Date

20/06/2013

Checked by

C McNicholl

Date

20/06/2013

Figure 4 – Spacing of lifters

Table 4 – Minimum Dimensions for Lifters