ap chemistry lab manual - molebus (allchem) - · web viewap chemistry lab manual. lab notebook...

158
5/23/2022 Page 1 of 158 AP Chemistry Lab Manual Lab Notebook Guidelines......................................2 QRS lab......................................................5 Qualitative Analysis of the Group III Cations................6 How Much Zinc is in a penny?................................11 Predicting Products of Chemical Reactions...................12 Redox Titration: The Standardization of Potassium Permanganate................................................13 The EMF Activity Series.....................................15 Heat of Fusion for Ice......................................19 Additivity of Heats of Reaction: Hess’s Law................21 Heat of Combustion of a metal-an inquiry based approach.....23 VSEPR and Molecular Geometry................................25 Formation of a Coordination Complex of Copper (II)..........26 Kinetics of a Reaction -- An Iodine Clock..................28 Where did the Crystal Violet go?............................30 Chemical Equilibrium: Finding a Constant, Keq or Kc.........35 Entropy of a Reaction.......................................37 Catalytic Converter—Hot Copper Catalysis....................38 Equilibrium and Le Châtelier's Principle....................40 Strong Acid Strong Base Titration...........................43 Titration of a weak acid....................................45 Determination of the Ka of Weak Acids.......................46 Determination of the Ksp of an Ionic Compound...............49 Buffer Laptop Palooza.......................................51 Preparation and Properties of Buffer Solutions..............53 Corrosion Cells.............................................56 Polyatomic Ions.............................................59 Molecular Geometry..........................................60 Rules of Writing Equations..................................62 AP Chemistry Syllabus.......................................64 Class Rules.................................................66 Description of Content Covered..............................67 End of Year Review..........................................70 Solution Practice...........................................79 Redox Practice..............................................80 Thermochemistry: Standard Heats of Formation Worksheet......82 Gas laws practice...........................................83 8 and 9 Practice worksheet..................................85 Equilibrium and Entropy Practice............................89 Ch. 10 questions............................................92 Chapter 11 Practice.........................................92 Kinetics part I.............................................94

Upload: ngoque

Post on 06-Mar-2018

249 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 1 of 116AP Chemistry Lab ManualLab Notebook Guidelines..........................................................................................................2QRS lab......................................................................................................................................5Qualitative Analysis of the Group III Cations...........................................................................6How Much Zinc is in a penny?................................................................................................11Predicting Products of Chemical Reactions............................................................................12Redox Titration: The Standardization of Potassium Permanganate.......................................13The EMF Activity Series.........................................................................................................15Heat of Fusion for Ice..............................................................................................................19Additivity of Heats of Reaction: Hess’s Law.........................................................................21Heat of Combustion of a metal-an inquiry based approach....................................................23VSEPR and Molecular Geometry............................................................................................25Formation of a Coordination Complex of Copper (II)............................................................26Kinetics of a Reaction -- An Iodine Clock.............................................................................28Where did the Crystal Violet go?............................................................................................30Chemical Equilibrium: Finding a Constant, Keq or Kc..........................................................35Entropy of a Reaction..............................................................................................................37Catalytic Converter—Hot Copper Catalysis...........................................................................38Equilibrium and Le Châtelier's Principle.................................................................................40Strong Acid Strong Base Titration..........................................................................................43Titration of a weak acid...........................................................................................................45Determination of the Ka of Weak Acids.................................................................................46Determination of the Ksp of an Ionic Compound...................................................................49Buffer Laptop Palooza.............................................................................................................51Preparation and Properties of Buffer Solutions.......................................................................53Corrosion Cells........................................................................................................................56Polyatomic Ions.......................................................................................................................59Molecular Geometry................................................................................................................60Rules of Writing Equations.....................................................................................................62AP Chemistry Syllabus............................................................................................................64Class Rules...............................................................................................................................66Description of Content Covered..............................................................................................67End of Year Review.................................................................................................................70Solution Practice......................................................................................................................79Redox Practice.........................................................................................................................80Thermochemistry: Standard Heats of Formation Worksheet..................................................82Gas laws practice.....................................................................................................................838 and 9 Practice worksheet......................................................................................................85Equilibrium and Entropy Practice...........................................................................................89Ch. 10 questions.......................................................................................................................92Chapter 11 Practice..................................................................................................................92Kinetics part I..........................................................................................................................94Kinetics part II.........................................................................................................................97Accessing Prior Knowledge Acids and Bases.......................................................................100pH PRACTICE......................................................................................................................101Ka and Kb practice................................................................................................................102Titration Curve Practice.........................................................................................................103Chapter 14 and 15 practice:...................................................................................................110Ksp practice. Keep me but put all answers in your notes.....................................................112Electrochem practice.............................................................................................................114

Page 2: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 2 of 116

Page 3: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 3 of 116

Lab Notebook GuidelinesYou must have a composition notebook or the notebook from Chem I as a lab notebook. A lab notebook should be used to explain lab procedures, record all lab data, and show how calculations are made. You may also use the notebook to discuss the results of an experiment and to explain the theories involved.

A record of lab work is an important document which will show the quality of the lab work that you have done. You may need to show your notebook and your lab reports to the Chemistry Department at a college or university in order to obtain credit for the lab part of an AP Chemistry class. As you record information in your notebook, keep in mind that someone who is unfamiliar with your work may be using this notebook to evaluate your lab experience in chemistry. When you explain your work, list your data, calculate values and answer questions, be sure that the meaning will be obvious to anyone who reads your notebook.

Guidelines for the notebook:1. Write your name and class on the front cover.2. In black or blue ink, number all the right hand pages on the lower right corner if they are

not already numbered.3. Save the first 2 pages for a Table of Contents. This should be kept current as you

proceed. Each time you write up a lab, place the title and page numbers where the lab report begins in the Table of Contents.

4. Write in ink. Use only the right hand pages.5. If you make a mistake, DO NOT ERASE OR SCRIBBLE. Just draw ONE LINE through

your error, and continue. It is expected that some errors will occur. A lab notebook is a working document, not a perfect, error-free, polished product. Errors should be corrected by drawing one line through the mistake, and then proceeding with the new data.

6. Do not use the first person or include personal comments.Prelab Instructions:

1. On most every lab you will have prelab instructions. If it has you read, read carefully as there will often times be a quiz over that content. If there are questions you are supposed to answer, do them on a separate sheet of paper and hand them in as your ticket into lab. If there is a code word in the procedure or weird instructions be prepared to follow them.

2. Some labs will be full write-ups and some will be data and calculations only. You must always answer questions if they are in the lab manual. You must get your data stamped in your lab notebook before you leave the lab.

Lab Reports (Lab reports will be worth 50 points)Include the following information in your lab reports. Label each section

1. Title – The title should be descriptive. Experiment 5 is not a descriptive title.2. Date and lab station – This is the date you performed the experiment and lab station.3. Purpose – A brief statement of what you are attempting to do. Must be a sentence.4. Procedure – A shortened description of the method you are using. You may refer to

the lab manual for specific instructions, but you should include a brief statement of the method. Do not include lengthy, detailed directions. A person who understands chemistry should be able to read this section and know what you are doing.

5. Reactions: Write a balanced reaction including states of matter for any reactions. If there are no reactions omit this section.

Page 4: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 4 of 1166. Data- Record all your data directly into your lab notebook on the right-hand pages.

Organize your data in a neat, orderly form. Label all data very clearly. Use correct sig figs and always include proper units. Underline, use capital letters or use any device you choose to help organize this section well. Space things out – don’t try to cram everything on one page. A data table must have a label and a title. e.g. – Table 1: Density Values for Sugar Solutions.

7. Calculations and Graphs- You should show how calculations are carried out. Give the equation used and show how your values are substituted into it. Give the calculated values. If graphs are included, make the graphs an appropriate size. Label all axes and give each graph a title. If experiments are not quantitative, this section may be omitted.

8. Conclusions – Make a simple statement concerning what you conclude from the experiment. This is not a place to give your opinion of the lab and whether or not it was “fun”. It is not your job to review the lab like you would if you saw a movie.

9. Experimental error – If there is a known value for something you are doing in lab, calculate the experimental error.

10. Error Analysis – What are some specific sources of error, and how do they influence the data? Do they make the values obtained larger or smaller than they should be? Which measurement was the least precise? Instrumental error and human error exist in all experiments, and should not be mentioned as a source of error unless they cause a significant fault. Significant digits and mistakes in calculations are NOT a valid source of error. In writing this section it is sometimes helpful to ask yourself what you would do differently if you were to repeat the experiment and wanted to obtain better precision.

11. Questions – Answer any questions included in the lab directions. Answer in such a way that the meaning of the question is obvious from your answer.

Reporting Lab DataGraphing Data1. All graphs should have a descriptive title (“Graph” is not a title) and a label. e.g. –

Graph A: Density of Solutions with Varying Sugar Concentrations.2. Both the vertical and horizontal axes should both have labels and units clearly

marked. Use a ruler to draw the axes.3. The scales chosen should reflect the precision of the measurements. For example, if

temperature is known to be ±0.1ºC, you should be able to plot the value this closely. Don’t have each block of the graph equal to 10ºC.

4. There should be a table in which the data values are listed. Don’t put data in a graph unless you have first listed it in a table.

5. The controlled or independent variable is placed on the horizontal axis. The dependent variable is graphed on the vertical axis.

6. There should be an obvious small point on the graph for each experimental value. It is not necessary to include the coordinates of each point since they will be in the data table.

7. A smooth line should be drawn that lies as close as possible to most of the points. Do NOT draw a line connecting one point to the next as in a dot-to-dot drawing. If the line is a straight line, use a ruler to draw it.

8. If a computer program is used to draw the graph, the rules still apply.Accuracy

Accuracy is a measure of how close an experimental value is to a value which is accepted as correct. The measure of the accuracy of an experimental value is reported as Percent Error.

Page 5: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 5 of 116

Data Tables1. All data tables must be neatly organized. Numbers should be aligned by decimal

point. Appropriate units must always be used.2. Data should be appropriately spaced out so that there is room for corrections or

annotations about the data.3. All data must be in your lab notebook and initialed by the teacher before you leave

the lab.

Page 6: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 6 of 116

QRS labReactions and explanations only, no full writeup.In this lab, there are three flasks labeled Q, R, and S. Each flask contains one of the following solutions: 0.1 M Pb(NO3)2, 0.1 M NaCl, or 0.10 M K2CO3. Two other flasks are labeled X and Y. One of these flasks contains 0.1 M AgNO3 and the other contains 0.1 M BaCl2.

Mix each of the solutions with each of the other and record all observations. For all precipitates which form, you must write a balanced equation and net ionic equation and identify the precipitate. You will need to wait until you have identified the solutions to write the equations. As you carry out the reactions you must use as little solution as possible. Part of your grade is the way in which you are observed performing the reactions. Frugality is key. You must explain how you reasoned out the solution’s identity.

Page 7: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 7 of 116

Qualitative Analysis of the Group III Cations No writeup. Only data sheet.Discussion A known solution of the Group III cations (Cr3+, Al3+, Fe3+, Mn2+) and an unknown solution containing some combination of ions will be analyzed. Group III contains those cations whose hydroxides do not precipitate under highly acidic conditions. Under basic conditions, however, the Group III cations will precipitate as the hydroxides.

Cr3+ (aq) + 3OH-(aq) Cr(OH)3(s) Al3+(aq) + 3OH-(aq) Al(OH)3(s)Fe3+(aq) + 3OH-(aq) Fe(OH)3(s) Mn2+(aq) + 2OH-(aq) Mn(OH)2(s)

The pH is then raised with NaOH and hydrogen peroxide is added to further oxidize the precipitates. The Fe(OH)3 (s) remains the same, the Mn(OH)2(s) becomes MnO2(s), the Cr(OH)3(s) oxidizes to the chromate ion CrO4

2-(aq) and the Al(OH)3(s) complexes with more hydroxide ion to form Al(OH)4

-(aq).

MSDS2M NH4Cl solution

Irritating to body tissues. Avoid all body tissue contact.

6M Ammonia

Liquid and vapor are strongly irritating to skin, eyes, and mucous membranes. Vapor extremely irritating to eyes. May cause blindness. Toxic by ingestion or inhalation. When heated to decomposition, emits toxic fumes of NH3 and NOx.

6M NaOH Moderately toxic by ingestion and skin absorption. Corrosive to body tissues. Causes severe eye burns. Avoid all body tissue contact.

3% H2O2 Slightly toxic by ingestion or inhalation. Irritant to skin, eyes and respiratory tract. Avoid prolong body contact. Hydrogen peroxide will decompose rapidly when exposed to almost any substance.

3M H2SO4 Moderately toxic by ingestion. Corrosive to eye, skin, and all other body tissues. Avoid all body tissue contact. Very considerable heat generated when diluted with water.

6M HNO3 Corrosive; will cause severe damage to eyes, skin and mucous membranes. Moderately toxic by ingestion and inhalation. Strong oxidizer. Avoid contact with acetic acid and readily oxidized substances.

0.5M KSCN Slightly toxic by ingestion. Irritating to body tissues. Avoid all body tissue contact. Contact with acids or heat may liberate poisonous hydrogen cyanide gas.

PbO2 Moderately toxic by ingestion or inhalation. Irritating to body tissues. Avoid all body contact. Oxidizer. Lead and lead compounds are possible carcinogens.

6M HC2H3O2 Substance not considered hazardous. However, not all health aspects of this substance have been thoroughly investigated.

0.1 M Pb(C2H3O2)2

Moderately toxic by ingestion and skin absorption. Eye and skin irritant. Possible carcinogen. Avoid ingestion, inhalation and skin absorption. Chronic exposure to inorganic lead via inhalation or ingestion can result

Page 8: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 8 of 116in accumulation in and damage to the soft tissues and bones.

Procedure Obtain a Group III known sample which contains all of the ions. You will get a Group III unknown solution (which may contain any or all of these cations) after you have completed the known. All glassware should be cleaned, rinsed and rinsed with distilled water before starting the lab.Step Notes1. Place 1-2 mL of solution to be tested in a small test tube.2. Add 1 mL of 2 M ammonium chloride solution to the sample in the test tube and stir. Add 6 M aqueous ammonia to the sample dropwise until the solution is just barely basic (remove a drop of the solution with a stirring rod and touch the drop to a strip of pH test paper). 3. Add about 3 mL of distilled water to wash the precipitate. Mix thoroughly, centrifuge, decant and discard water.4. Add ~ 2mL 6M NaOH to the residue and mix.

5. Add 10 drops 3% H2O2 and mix immediately. Boil several minutes to remove excess H2O2. If solution is green, add more H2O2. (yellow is okay) Look for separation of precipitate and supernatant. Centrifuge, decant and obtain residue 2 for step 6, and decantate 2 for step 12. Do not discard. If necessary, recentrifuge decantate 2 until absolutely clear or filter into another test tube.6. Add 1-2 mL 3M H2SO4 to residue 2. Mix.

7. Add 5-6 drops 3%H2O2 to hasten the process. Mix thoroughly. If it doesn’t dissolve, heat for a few minutes until all the solid dissolves.8. Dilute solution to a total of 4 mL with distilled water and divide the solution into 2 parts to be tested for Fe3+ ions in step 9 and Mn2+ ions in step 10.9. Add 1-2 drops 0.5M KSCN to one test tube from part 6. A blood red solution indicates the presence of Fe3+ ions.10. To the other half of the solution from step 6, add ~ 1mL 6M HNO3 and mix. 11. Add solid PbO2 equivalent to 1/10 the volume of the liquid. Mix well and Boil for 2-3 minutes and let stand for 3 minutes. If Mn2+ ions are present, the solution will turn a pink to dark purple color. If test is negative, add another small portion of acid, mix and Boil solution. Centrifuge.12. Dilute decantate 2 from step 4 to ~ 4mL with distilled water and divide into two parts to be tested for Al3+ in step 13 and CrO4

2- in step 14.13. Add ~ 2mL 2M NH4Cl to the first half of decantate from step 12. DO NOT MIX. Place in Boiling water for 5 minutes. Look closely for a fluffy, translucent solid in the top layer which indicates the presence of Al3+ ions. If uncertain about the aluminum test, centrifuge. If other ions are present,

Page 9: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 9 of 116the decantate may not be clear and a halo effect may be seen around the precipitate. The iron and manganese hydroxides will spin down first because of the greater densities and the aluminum hydroxide will be on top.14. Add 6M HC2H3O2 to second half of decantate from step 9 until acidic to litmus paper. Add 1-2 drops 0.1 M Pb(C2H3O2)2. Let stand for 3 minutes. A white or yellow precipitate is a positive test for CrO4

2- ions.

Page 10: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 10 of 116Unknown #__________ Station #______________Name(s)________________________________________________________

Presence of Aluminum ion Yes No

Presence of Chromium ion Yes No

Presence of Iron ion Yes No

Presence of Manganese ion Yes No

Al3+, Cr3+, Fe3+, Mn2+

NH4ClNH4OH

Residue 1 Decantate 1

Fe(OH)3, Mn(OH)2, Cr(OH)3, Al(OH)3

H2SO4(aq)H2O2

Fe3+ Mn2+

KSCN HNO3(aq)PbO2

MnO4-

Pink/purple

Fe(SCN)2+

blood red

NaOH(aq)H2O2

discard

CrO42-, Al(OH)4

-

Decantate 2Residue 2

HC2H3O2

Pb(C2H3O2)2

NH4Cl

Al(OH)3

Translucent flecks

PbCrO4

yellow or white

Group III Cation Analysis

Page 11: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 11 of 116

Page 12: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 12 of 116

How Much Zinc is in a penny?Full writeupDiscussion

Up until 1982 pennies were made with mostly copper. The history of the penny shows a plethora of changes in composition and sizes but I digress. If you are interested, google it. In an effort to save money the treasury started putting a zinc core with a thin copper skin around it. In this lab you will scratch away the thin copper on an edge to expose the zinc. You’ll then soak it in acid overnight to dissolve the zinc. You will then choose a salt that you can use to precipitate out the zinc and calculate the mass of zinc in a penny.

ProcedureWrite your own. Pick an acid, 6 M HCl, 6M H2SO4, or 6M HC2H3O2.Write out a procedure to dissolve the zinc and then choose a salt from the storeroom that you can dissolve in water and add to the dissolved zinc to precipitate it out.You must get your procedure approved by your teacher.

Collect your data and look up the actual value online. Cite your source when you report the expected mass of the zinc. Calculate a percent error.

Questions:1. Why not use iron? Iron’s cheap.2. Name 2 other salts that you could have used to precipitate out the zinc.

Page 13: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 13 of 116

Predicting Products of Chemical ReactionsOnly reactions and data.Discussion:It is not always easy to predict the product of a chemical reaction. Often, a reaction must be carried out and the products analyzed in order to determine what formed. However, frequently a very good prediction can be made if one analyzes the type of reaction that occurs.When writing ionic equations, soluble ionic compounds that are strong electrolytes are written as separated ions. Since strong acids and bases ionize totally in water, their formulas are also written as separated ions. Weak acids and bases are written as molecular compounds. Even though a weak acid such as acetic acid does ionize slightly in water, the percent of ionization is very small. Only the formulas of the major species are shown in the net ionic equation. Solids, gases, and nonionic liquids, whether dissolved or nor, are written as neutral, molecular formulas. See your notes about types of reactions.Procedure: Carry out the reactions as described. Create a data table in which you describe the reactants, products, and any indication that a reaction has occurred. Identify the type of reaction. Write a net ionic equation for the reaction. It is not necessary to balance the reaction.1. Mix 1 mL of 0.1M sodium chloride with 1 mL of 0.1M silver nitrate. Save the product

for step 22. Centrifuge the precipitate from step 1. Decant and discard the decantate. Add 1 mL of

6M ammonia to the precipitate and agitate. 3. Add 2 mL 6M hydrochloric acid to the solution from 3. Test with litmus to be sure the

solution is acidic. If not acidic, add 1 more mL of the acid.4. Add a tiny bit of calcium oxide to distilled water. Test with litmus.5. Put 10 mL of 0.1M potassium iodide solution in a 50 mL beaker. Using a 9 volt battery

as a power source and graphite electrodes, allow an electric current to pass through the solution for two minutes. Test the solution near the electrodes with litmus.

6. Place a small amount of sodium hydrogen carbonate in a test tube. Add 1 mL of 0.1 M acetic acid.

7. Place 2 mL of oxalic acid solution in a test tube. Make a loose ball of a small piece of aluminum foil (2 cm square) and drop it into the solution. Use a stirring rod to push it under the solution. Wait five minutes and observe.

8. Place 1 mL of 0.1M sodium phosphate in a test tube, add 5 mL of 0.1 M hydrochloric acid. Feel the outside of the tube for evidence of a reaction.

9. Place 2 mL of 0.1 M sulfuric acid in a test tube. Add a small spatula of solid sodium bicarbonate.

10. Place 2 mL of 0.1M iron III nitrate in a test tube. Add several drops of 0.1M potassium thiocyanate solution.

11. Place 2.0 mL of 0.1 M aluminum nitrate in a test tube. Dropwise, with agitation, add 2 mL of 1.0M sodium hydroxide.

12. Place 1 mL of 0.1 M copper II sulfate in a test tube with 3 mL of 0.1 M sodium hydroxide solution.

13. Place 2.0 mL of 0.1M iron III nitrate in a test tube. Add 2.0 mL of 0.1M ammonia.14. Place 1.0 mL of 0.1 M barium hydroxide in a test tube. Add 5 mL of 0.1 M sulfuric acid.15. Place 5 mL of 0.1M silver nitrate in a test tube. Add a small coil of copper wire.

Observe after 5 minutes.16. Place 5 mL of 3% hydrogen peroxide in a test tube. Add a small amount of solid

manganese IV oxide.

Page 14: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 14 of 116

Redox Titration: The Standardization of Potassium PermanganateFull writeupDiscussion:Oxalate is commonly used as a primary standard for determining the concentration of many strong oxidizers used in oxidation/reduction analyses. In this experiment, oxalic acid will be used to determine the concentration of potassium permanganate.

Oxalic acid is a strong electrolyte that dissociates completely in water. The oxalate ion, C2O4

2-, will react quantitatively with permanganate ion, MnO4-, in the presence of strong

acid according to the following equation:

MnO4- (aq) + C2O4

2- (aq) Mn2+ (aq) + CO2 (g)

The numerical value of Keq for the equilibrium is very large. (The reaction goes totally toward the right, very little to the left) When reaction conditions are anywhere near optimum (in terms of pH and temperature) the reaction can be considered to be quantitative.Prelab: 1. Balance the equation above. 2. Identify what is oxidized and what is reduced.3. Identify the oxidizing agent and the reducing agent.

MSDS:KMnO4 Irritating to body tissues. Avoid all body tissue contact.Sodium oxalate Moderately toxic by ingestion and inhalation. Corrosive to body

tissues. Avoid contact with all body tissues.Sulfuric acid Moderately toxic by ingestion. Corrosive to eye, skin, and all other

body tissues. Avoid all body tissue contact. Very considerable heat generated when diluted with water.

Procedure1. Transfer 200mL of water to a 400mL (or larger) beaker. Place the beaker on a hot plate.2. Add 40mL of 6.0M sulfuric acid to the water while stirring with a glass rod. 3. Turn on the hot plate. Monitor the temperature with a thermometer. You will need to heat

the acid solution to about 80oC to 90oC. Continue with the procedure while the acid solution is heating. (This removes CO2 from the water)

4. Use an analytical balance to mass 0.134g to 0.149g (NO MORE!) of reagent grade sodium oxalate in a weigh boat. Record the mass of sodium oxalate to the nearest 0.001g.

5. Transfer the sodium oxalate sample to the acid solution. You may use a water bottle to facilitate the transfer if necessary. Stir until dissolved.

6. Rinse a buret with a few milliliters of the potassium permanganate solution. Dispose of the rinsing down the sink.

7. Fill the buret with the permanganate solution above the zero mark. Drain the buret until the liquid level is below the zero mark and to clear most of the air from the tip of the buret. Mount the buret in a buret clamp on a ring stand and position the buret over the acid/oxalate solution.

Page 15: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 15 of 1168. Once the temperature of the acid/oxalate solution has reached the desired 80oC to 90oC

range turn off the hot plate.9. Rapidly add ~5mL of the permanganate titrant and stir the solution to stir until the purple

color disappears.10. Continue the titration dropwise with constant stirring. Position the buret’s stopcock so that

the permanganate titrant drips at a moderate pace. Do not allow the titrant to pour rapidly beyond the first five mLs.

11. As the titration approaches its equivalence point the purple color from the permanganate will persist longer and longer before it disappears.

12. Slow the rate of titration as the equivalence point is approached.13. Immediately stop the titration when you believe the equivalence point is reached. The

equivalence point is defined as the point in the titration where the color from the titrant persists for 30 seconds. A perfect titration will yield a faint pink solution that persists for 30 seconds.

14. If the color fades before the 30 second requirement add more titrant one drop at a time until the 30 second requirement is reached.

15. Once you are satisfied the equivalence point has been reached record the volume of titrant.16. Run another trial mixing another sample of oxalic acid to verify your results.17. Calculate the molarity of the permanganate solution. Be sure to show all calculations in the

calculations area.18. Post your molarity on the class result sheet hanging in the lab.19. Your percent error is done using the average molarity for the class as the accepted value.

Clean-up: 1. Pour the remainder of the permanganate back into the stock bottle. 2. Rinse the buret with some tap water, rinse again with a hydrogen peroxide solution

located in the fume hood and then rinse twice with distilled water. 3. Wash the beaker with soap, rinse, rinse and distilled rinse. Put on a paper towel at your

station to dry.

Conclusion: In your conclusion describe why it was necessary to add the sulfuric acid. Research some redox reactions that happen in your body and discuss the value of redox reactions in life.

Page 16: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 16 of 116

The EMF Activity Series Full writeupDiscussion: The activity series of metals is a table of metals arranged in the order of their decreasing tendency to lose electrons and enter into chemical reactions. The table of metals is arranged in the order of decreasing electropositive character. These reactions are redox reactions where one metal ion is reduced to its elemental state and another more active metal is oxidized to an ionic state. For example, 2Na + Fe+2 2Na+ + Fe.Although hydrogen has many physical and chemical properties that are similar to nonmetals, it frequently functions chemically as a metal, and for this reason, it is included in the activity series of metals. Its placement indicates that the metals preceding it will displace it from non-oxidizing acids. The metals that are found uncombined in nature in large amounts are those that are less active than hydrogen, whereas those metals that are more active than hydrogen are not usually found in the free state. Two metals that are exceptions are metallic iron and nickel found in meteorites. The normal test of the chemical activity of an element is its displacing power. If the metal can displace another metal from a compound, it may be considered to be more chemically active than the metal it displaces. The relative activity of a metal may be determined by observing: 1 - metal reactivity with water: cold, warm, or hot; 2 - metal reactivity with acids: hydrogen producing acids and non-hydrogen producing acids: 3 - metal activity with bases; and 4 - metal reactivity with salt solutions. It should be noted that the more finely divided the state of the metals-powdered form rather than large lumps-the more surface area is exposed, and the greater the activity of the metal. If the reaction is heated, the reactivity of the elements and compounds tend to increase. Halogens can also be organized according to their ability to displace other halogens. In the reaction between a free halogen X2 and a halide ion Y-, the free halogen gains electrons is reduced to its halide ion X2 + 2e- 2X-. The original halide ion is oxidized to the free halogen state. 2Y- Y2 + 2e-. The most reactive halogen is the one most easily reduced (most hungry for the electron). To determine if a reaction occurs, a method is needed to identify which halogen is present. Halogens dissolve in the nonpolar solvent mineral oil forming different colored solutions. Mineral oil does not dissolve in water, but when shaken with an aqueous halogen solution, the halogen is extracted from the water into the mineral oil. The color of the mineral oil indicates which halogen is present.Prelab:Read the entire discussion and procedure.

MSDS:0.1 M Fe(NO3)3 Corrosive to body tissues by contact and inhalation. Avoid contact with

skin, eyes and mucous membranes.0.1 M AgNO3 Moderately toxic by ingestion. Irritating to body tissues. Avoid all body

tissue contact.0.1 M CuSO4 Mildly toxic by ingestion. Irritant to skin, eyes and mucous membranes.

Avoid contact with body tissues.0.1 M Zn(NO3)2 Slightly toxic by ingestion. Corrosive to body tissues. Avoid all body

tissue contact.Copper Irritant to body tissues as dust. Avoid contact with nitric acid, emits

toxic fumes of nitrogen oxides.Lead Lead as a powder or dust is toxic by ingestion or inhalation. Lead and

lead compounds are possible carcinogens. Avoid ingestion and

Page 17: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 17 of 116inhalation. Emits highly toxic fumes of Pb when heated. Chronic exposure to inorganic lead via inhalation or ingestion can result in accumulation in and damage to the soft tissues and bones.

Magnesium Substance not considered hazardous. However, not all health aspects of this substance have been thoroughly investigated.

Zinc Substance not considered hazardous. However, not all health aspects of this substance have been thoroughly investigated. Inhalation of zinc dust may cause lung irritations. Zinc dust can spontaneously combust when in contact with moisture.

Calcium Corrosive solid. Avoid body tissue contact. Violent reaction with water may evolve explosive hydrogen gas. Flammable solid.

Sodium Highly corrosive solid, avoid all body tissue contact. Will severely burn skin, eyes, or internal tissues. Reacts violently with water releasing hydrogen gas, which will ignite and explode in air.

6M HCl Toxic by inhalation and ingestion. Severe corrosive to all body tissues, especially skin and eyes. Avoid all body contact.

NaBr solution Possible body tissue irritant.NaCl solution Substance not considered hazardous. However, not all health aspects of

this substance have been thoroughly investigated.KI solution Substance not considered hazardous. However, not all health aspects of

this substance have been thoroughly investigated.Cl2 water Toxic by inhalation and ingestion. Very irritating to mucous

membranes. This is a weak solution of chlorine gas and water. Chlorine gas will slowly leave solution.

Br2 water Highly toxic by ingestion and inhalation. Severe skin irritant; may cause burns and irreversible eye damage. Strong oxidizer, heat of reaction may ignite combustibles on contact. Will react with water or steam to produce toxic and corrosive fumes. Extremely hazardous substance.

Your lab report must include net ionic equations for each single replacement reaction that occurs. Leave plenty of room before the data section.Procedures:

1. For each section below, follow the instructions and perform the reactions. 2. Describe each reactant and product. 3. If no reaction occurs, write N.R. 4. Arrange test tubes in the test tube rack in order as in table 1.

Part 1Reactions of metals with salt solutions

1. Place 1 to 2 mL of each of the following solutions into the designated number of test tubes: iron (III) nitrate - 4, silver nitrate - 4, copper (II) sulfate – 4, and zinc nitrate – 4.

2. Obtain the number of strips of each metal as indicated: copper -4, lead - 4, magnesium - 4, and zinc - 4. Place a strip of metal into each test tube as indicated by the table. Allow the solution with metal to sit for at least 15 minutes. At the end of 15 minutes, record all changes in the solution and metal in each of the test tubes. If no reaction occurs within 20 minutes, write N. R. rather than a description.

3. While waiting for the reactions in the salt solutions to occur, set up the reactions for metals in acid solutions and metals in water.

Page 18: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 18 of 116

Reactions of metals with acid

Place 1 -2 mL of 6M HCl in each of the designated test tubes. Place a strip of each metal into separate test tubes of acid. Observe immediately for any sign of a reaction occurring. Record your observations of the changes.

Reactions of metals with water

Place 1-2 mL of water into 3 separate test tubes along with 1 drop of phenolphthalein. Place a strip of magnesium into one of the test tubes, a chunk of calcium into one of the test tubes and a piece of sodium into the other test tube. At Record observations of any reactions and the changes in the color. A pink color indicates a base meaning a reaction has occurred..

Table 1 Cu Pb

Mg Zn Na Ca Mg

HCl (aq) Water

Fe(NO3)3 (aq)

AgNO3(aq)CuSO4(aq)Zn(NO3)2

Part 2 Activity Series for some halogensIf you notice a really strong smell that bothers you, do the following steps in the fume hood.1. As a reference, a rack of test tubes has been set up for you at the front of the room. They

indicate what color the mineral oil changes when combined with either each halogen or the halide ions.

2. Set up 6 test tubes in a test tube rack according to the following table. Tube Contents1. NaBr + Cl2

2 KI + Cl2

3 NaCl + Br2

4 KI + Br2

5 NaCl + I2

6 NaBr + I2

3. Each tube gets a mL of each solution. Cork each and shake to mix. Add 1 mL of mineral oil to each, cork and shake to mix.

4. When the mineral oil layer has separated, determine its color and whether a reaction has occurred. For example in tubes 1 and 2, if the color of the chlorine appears in the mineral oil layer than no reaction has occurred. If either the bromine or iodine color appears in the mineral oil layer, then there was a reaction. Record your observations.

Clean Up

After all observations are made, empty the test tubes into the corner of the sink, rinse with water, remove the metal to a paper towel at your lab station, wash each test tube, rinse with tap water and do a final rinse with distilled water. Turn the clean test tubes upside down in

Page 19: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 19 of 116the test tube rack and leave for the next class.

CONCLUSIONS:

1. According to the tests done in lab, list the metals and hydrogen from most active to least active. Be sure to also include those metals and hydrogen that were in ionic form in the solutions used. In your conclusion give evidence from your results for your conclusion.

2. According to the tests done in lab, list the halogens from most active to least active. In your conclusion give evidence from your results for your conclusion.

3. Were there any tests for the activities of the metals and hydrogen that did not agree with the order of activity according to the EMF activity series? If there were disagreements, why do you think that happened?

4. No error analysis or % error

Page 20: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 20 of 116

Heat of Fusion for Ice Data and Calculations and question onlyDiscussion:Melting and freezing behavior are among the characteristic properties that give a pure substance its unique identity. As energy is added, pure solid water (ice) at 0°C changes to liquid water at 0°C. The equation we will use is q=mct where q is heat measure in joules.In this experiment, you will determine the energy (in joules) required to melt ice. You will then determine an experimental value for the molar heat of fusion for ice (in kJ/mol) and compare it to the accepted value. Excess ice will be added to warm water, at a known temperature, in a Styrofoam cup. Heat from the warm water will be used to warm the ice to its melting point, 0oC, to melt the ice, and then to warm the resulting liquid to some temperature above 0oC.

The heat balance for the system can be defined by the following equation: (c(ice) •t •mice) Heat absorbed by the ice + (miceHf) Heat it takes to melt the ice+ (c(water) • t •m (water from melt)) Heat absorbed by the melted icec(water) •t •m(hot water) Heat lost by the hot waterwhere c is specific heat capacity (one value for liquid water another for ice) , m is mass in grams, Hf is the heat of fusion for ice, and t is the change in temperature (each t should be unique) . The minus sign is used on the left because heat is being lost. For liquid water, c is 4.18 J/g°C. For ice, c is 2.03J/goC

Prelab:1. Calculate the amount of heat necessary to heat 15.00 g ice from -20 to 0 °C.2. Calculate the mass of water when 7700. J of heat is added to water at an initial

temperature of 29° which increases 69 degrees.

MSDS:Ice It’s cold

Procedure1. Fill a 250mL beaker about 2/3 full and place it on a hotplate. Turn the hotplate control to

full. The water will need to heat to above 70oC.2. Obtain a Styrofoam cup for use as a calorimeter and obtain a second Styrofoam cup filled

with ice. 3. Use a digital thermometer to measure the initial temperature of the ice. This value can

range from –20oC to 0oC depending on how long the ice has been out of the freezer. Record this value on the data sheet as “initial ice temperature.”

4. Once the water is hot, use a 100-mL graduated cylinder to transfer 100.0 mL of the hot water to the styrofoam cup. Use a balance to determine the mass of the water. Use beaker tongs and/or “hothand” glove to make the transfer. Place the thermometer in the Styrofoam cup containing the hot water and allow the temperature reading to stabilize. Record the temperature reading as “initial hot water temperature.”

5. When ready, start adding ice to the hot water. Stir the mixture continuously with the thermometer. Continue to add ice as the ice melts to maintain a significant excess of ice.

6. Once the temperature goes below 10oC quickly remove any remaining ice from the Styrofoam cup. Record the minimum observed temperature as the “final system temperature.”

7. Record the mass of the water after the melt.

Page 21: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 21 of 116

Data and Calculations

Be sure to collect the following data.

Initial ice temperatureInitial hot water temperature, t1

Final system temperature, t2

Change in temperature of the hot water, tChange in temperature of melted water, tChange in temperature of ice before melting, tFinal water massInitial water massMass of melt

SHOW YOUR CALCULATIONS for the following:Mass of ice melted

Heat released by the hot water as it cooled

Heat gained by solid ice as it warmed from its initial temp to its melt temp

Heat gained by liquid melt as it warmed from its melt temp to final system temp

J/g ice melted (heat of fusion)

kJ/mol ice melted (molar heat of fusion)

Percent error (6.03 kJ/mol is the accepted value)Questions:

1. Research the heat of fusion of paraffin wax. How would it be useful for a homeowner’s wall to be filled with blocks of paraffin wax?

2. Go to this website, what kinds of PCM’s are used in gloves? http://www.textileworld.com/Articles/2004/March/Features/Phase_Change_Materials.html

Page 22: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 22 of 116

Additivity of Heats of Reaction: Hess’s LawFull writeupIn this experiment, you will use a Styrofoam-cup calorimeter to measure the heat released by three reactions. One of the reactions is the same as the combination of the other two reactions. Therefore, according to Hess’s Law, the heat of reaction of the one reaction should be equal to the sum of the heats of reaction for the other two. This concept is sometimes referred to as the additivity of heats of reaction. The primary objective of this experiment is to confirm this law. The reactions we will use in this experiment are: (Write equations for each one including state of matter for Prelab)

(1) The dissolution of solid sodium hydroxide. H1 = ?

(2) Solid sodium hydroxide reacts with aqueous hydrochloric acid. H2 = ?

3) Solutions of aqueous sodium hydroxide and hydrochloric acid react. H3 = ?

You will use a Styrofoam cup as a calorimeter. For purposes of this experiment, you may assume that the heat loss to the calorimeter and the surrounding air is negligible. Even if heat is lost to either of these, it is a fairly constant factor in each part of the experiment, and has little effect on the final results.

MSDS:NaOH Highly toxic by ingestion, inhalation, or skin absorption.

Extremely corrosive to body tissues. Causes severe eye burns. Avoid all body tissue contact.

0.50 M and 1.0 M HCl Toxic by inhalation and ingestion. Severe corrosive to all body tissues, especially skin and eyes. Avoid all body contact.

ProcedureReaction 11. Measure out 100.0 mL of water into the Styrofoam cup. Place the thermometer into the

solution. Allow the temperature reading to stabilize and record the temperature as the “initial temperature.” Be sure to record the mass of the water.

2. Weigh out about 2 grams of solid sodium hydroxide, NaOH, and record the mass to the nearest 0.001 g. Since sodium hydroxide readily picks up moisture from the air, it is necessary to weigh it and proceed to the next step without delay. Caution: Handle the NaOH and resulting solution with care.

3. Add the NaOH to the water in the Styrofoam cup and swirl the cup to aid dissolution. Monitor the temperature increase. Record the maximum temperature as the “final temperature.”

4. Rinse and dry the thermometer and Styrofoam cup. Dispose of the solution in the beaker in the fume hood.

Reaction 25. Repeat the steps for reaction 1, using 50.0 mL of 1.0 M hydrochloric acid added to 50.0

mL of distilled water instead of water. Use approximately the same amount of solid NaOH as before. Caution: Handle the HCl solution and NaOH solid with care. Record the mass of the water before you add the solid NaOH.

Reaction 36. Run another trial using 50.0 mL 1.0 M HCl in place of water and 50.0 mL 1.0 M NaOH

in place of solid NaOH. Record the initial temperature of the HCl and the final temperature of the mixture. Record the mass of the two solutions together.

Page 23: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 23 of 116Processing Data

1. Determine the temperature change, t, for each reaction.2. Calculate the heat released by each reaction, q,(Convert joules to kJ in your final answer.)3. Calculate moles of NaOH used in each reaction. 4. Use the results of the Step 4 and Step 5 calculations to determine H/mol NaOH in each

of the three reactions.5. Use Hess’s law. 1 and 2 should add up to 3. Use 3 as the accepted value. Calculate

percent error.6. Record your value on the class data sheet in the lab. Report your data and the class

average data.

Conclusion:Using terms of KMT, describe why temperatures of the solutions increased. Describe why it doesn’t matter how much reactant you use when calculating H. Describe why Hess’s Law is useful. Compare your data to the class average.

Page 24: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 24 of 116

Heat of Combustion of a metal-an inquiry based approachData and Calculations and questions only

Discussion:In this experiment you will use Hess’ Law of the additivity of reaction heats to determine the heat of reaction for a reaction that is difficult to measure directly – the combustion of either magnesium or zinc. The combustion of a metal with a 2+ oxidation state is represented by the following equation:

M (s) + ½ O2 (g) MO (s)This equation can be obtained by creatively combining equations (1), (2), and (3).

(1) MO (s) + 2HCl (aq) (2) M (s) + 2HCl (aq) (3) H2 (g) + ½ O2 (g) H2O (l)

The heats of reaction for equations (1) and (2) will be determined in this experiment. H/mol for reaction (3) is –285.8 kJ/mol.

Prelab: Find the for each reactant in equations 1, 2 and 3. Read all lab procedures.

MSDS:MgO Inhalation may cause respiratory irritation. Slight eye irritant.

HCl Highly toxic by inhalation and ingestion. Severe corrosive to all body tissues, especially skin and eyes. Avoid all body contact.

Mg Flammable solid. Substance not considered hazardous. However, not all health aspects of this substance have been thoroughly investigated.

Zn Inhalation of zinc dust may cause lung irritations. Zinc dust can spontaneously combust when in contact with moisture.

ZnO Moderately toxic by ingestion and inhalation. Body tissue irritant. Avoid all body tissue contact.

PROCEDUREPart I MO + HCl1. Look up the specific heat of 6M HCl. You will need approx. 1 ±0.5g g of MO and

approximately 100 g ± 50 g of 6M HCl2. Determine the mass you will use of the MO and the HCl. Write a procedure that will

determine the H for the reaction #1 above per mole of MO.3. Do the stoichiometry necessary to find the limiting reactant and amount of excess

reagent remaining.4. Have your teacher approve both the stoichiometry and the procedure you wrote.

After approval perform your experiment and collect the data.

Part II Hydrochloric Acid Plus M1) You will need approx. 0.5 ±0.25g g of M and approximately 100 g ± 25 g of 6M HCl2) Determine the mass you will use of the M and the HCl. Write a procedure that will

determine the H for the reaction #2 above per mole of M.3) Do the stoichiometry necessary to find the limiting reactant and amount of excess reagent

remaining.4) Have your teacher approve both the stoichiometry and the procedure you wrote. After

approval perform your experiment and collect the data.

Page 25: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 25 of 116Processing the Data1. Calculate T for each reaction. 2. Calculate the heat using mcat3. Calculate the moles of MO and M used. 4. Calculate the H per mole of MO for the first reaction and the H per mole of

M for the second reaction. Record these values on the data sheet.5. Determine the heat of combustion for the metal by rearranging the equations

1-3 above using Hess’s law. Show the correct rearrangement as part of the calculations. 6. Determine the percent error for your experimental result. Look up the heat of

reaction for oxidation of zinc or magnesium and use that as the theoretical.7. Share your data with your classmates and do a 2nd percent error using the class

average for your metal as the expected.

Questions: 1. Research magnesium decoy flares and describe how modern

Stinger missile systems can tell the difference between aircraft engines and these flares.2. Describe the difference between the H for each metal and

describe why one metal would have a higher H than the other.

Page 26: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 26 of 116

VSEPR and Molecular GeometryCopy this table in your lab notebook, no formal writeupDesign the Lewis structure and its molecular geometry on a scratch piece of paper and then draw it in the correct orientation in your lab notebook. Decide whether the molecule is polar or non polar. Not the bond but the molecule.

Formula Lewis Structure Bonding Pairs

Lone Pairs Molecular Geometry

Polar?

(Y/N)1 CH4

2 NH3

3 H2O4 CO2

5 SO3

6 SO32-

7 H2CO8 HCN9 BrF3

10

I3-

11

C2H4

12

XeF2

13

SO42-

14

PBr3

15

CH3+

16

BH4-

17

AsCl5

18

BrF5

19

SF6

20

ClO3-

21

O3

22

Thiocyanate

23

IF4+

24

NO

Page 27: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 27 of 116

Page 28: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 28 of 116

Formation of a Coordination Complex of Copper (II)Written observations in lab notebookDiscussionThe class of substances referred to as coordination compounds generally contains a central metal atom, to which a fixed number of molecules or ions (called ligands) are coordinately covalently bonded in a characteristic geometry. Coordination complexes are very important in both inorganic and biological systems. For example, the molecule heme in the oxygen-bearing protein hemoglobin contains coordinated iron atoms. Chlorophyll, the molecule that enables plants to carry on photosynthesis, is a coordination compound of magnesium.

In general, coordination compounds contain a central metal ion that is bound to several other molecules or ions by coordinate covalent bonds. For example, the compound to be synthesized in this experiment, tetramminecopper (II) sulfate, consists of a copper (II) ion surrounded by four coordinated ammonia molecules. The unshared pair of electrons on the nitrogen atom of the ammonia molecule is used in forming the coordinate bond to the copper (II) ion. In other words, the ammonia acts as a lewis base to the copper’s lewis acid.

One property of most transition metal coordination compounds that is especially striking is their color. Generally the coordinate bond between the metal ion ad the ligand is formed using empty low-lying d-orbitals of the metal ion. Transitions of electrons within the d orbitals correspond to wavelengths of visible light, and generally these transitions are very intense. Coordination complexes of metal ions are some of the most beautifully colored chemical substances known; frequently they are used as pigments as paints.

Prelab: Read the procedure; write the formula for tetraaminecopper (II) sulfate.

MSDS:CuSO4 Mildly toxic by ingestion. Irritant to skin, eyes and mucous membranes. Avoid

contact with body tissues.NH4OH Liquid and vapor are strongly irritating to skin, eyes, and mucous membranes.

Vapor extremely irritating to eyes. May cause blindness. Moderately toxic by ingestion or inhalation.

Et-OH Toxic by ingestion and inhalation. Body tissue irritant. Avoid all body tissue contact. Denatured with isopropanol and methanol. Not for human consumption.Flammable liquid.

Procedure:1. Weigh out approximately 1.0 g of copper II sulfate pentahydrate. Record the mass.2. Dissolve the copper salt in approximately 10 mL of distilled water in a beaker or

flask. Stir thoroughly to make certain that all the copper salt has dissolved before proceeding. Record the color of the solution at this point.

3. Transfer the copper solution to the exhaust hood and with constant stirring; slowly add 5 mL of concentrated ammonia. The first portion of ammonia added will cause a light blue precipitate of copper II hydroxide to form. But upon adding more ammonia, this precipitate will dissolve as the ammonia complex forms. Record the color of the mixture after all of the ammonia has been added.

4. To decrease the solubility of the tetramminecopper (II) complex, add approximately 10 mL of ethyl alcohol with stirring. A deep blue solid should precipitate. Code word “cinnabon”

5. Allow the precipitate to stand for 5 minutes and then filter the precipitate.6. While in the filter paper, wash the precipitate with 2-5 mL portions of alcohol and

stir.

Page 29: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 29 of 1167. Remove the filter paper and allow the filter paper to dry.

Clean up: Filtrate can be put down the sink with excess water. Dried precipitate can be thrown into the garbage can. Clean all glassware with soap and water, rinse, rinse distilled rinse. Wash hands before leaving the lab.

Page 30: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 30 of 116

Kinetics of a Reaction -- An Iodine ClockFull writeupDiscussion:Bisulfite ion and iodate ion react to form elemental iodine and sulfate ion according to the following equation:

HSO3- + IO3

- I2 + SO42- + H+ + H2O

This reaction is believed to have a two step mechanism as follows:

Step 1 IO3- + HSO3

- I- + SO4-2 + H+

Step 2 I- + H+ + IO3- I2 + H2O

In this kinetics experiment the student will study the effect of reactant concentration of the rate of the reaction. The student will measure the time required for the reaction to produce the product iodine. The experiment will be conducted in three trials and each trial will be duplicated. The first trial will serve as a baseline for comparison. In the second trial, the student will reduce the iodate concentration by half leaving the bisulfate concentration the same as in the baseline trial and determine the effect on reaction time. In the third trial, the student will reduce the bisulfate concentration by half leaving the iodate concentration the same as in the baseline trials. The student will use the data to compute the reaction order for each of the two reactants. If the order of each reactant is known the student can deduce which of the steps in the mechanism is the slowest; that is, which step is the rate-determining step.

The rate of this reaction can be defined by the following equation:

Rate = k[IO3-]x[HSO3

-]y

Where: k is a temperature dependent rate constant[IO3

-] is the initial concentration of iodate[HSO3

-] is the initial concentration of bisulfiteand x and y are the reaction orders of iodate and bisulfite respectively

The reaction order values for a set of reactants are totally unrelated to the stoichiometric coefficients. In all cases reaction order values must be determined experimentally. On edmodo there is a link to a video and a paper handout of how to solve for the exponents if you don’t remember how to do logs.Prelab: Read all the procedures and be ready to hand me a slip of paper 3 cm square with your name on it in order to get into the lab.MSDS:KIO3 Substance not considered hazardous. However, not all health aspects of this

substance have been thoroughly investigated.NaHSO3 Mild body tissue irritant. Avoid contact with body tissues.Starch Substance not considered hazardous. However, not all health aspects of this

substance have been thoroughly investigated.

Page 31: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 31 of 116

Procedure

1. Obtain three 100 or 150mL beakers and label them “KIO3”, “NaHSO3”, and “Starch”.2. Obtain ~75mL of the 0.04M KIO3 solution, ~75mL of the 0.04M NaHSO3 in 0.04M

H2SO4 solution, and about 50mL of the starch solution in the labeled beakers.3. Follow the trial table below to prepare the reaction mixture for each trial. Use syringes to

measure out the correct amount of each solution. A clean 100mL graduated cylinder can be used for water and starch measurements. The water and starch may be combined in the 100mL graduated cylinder during measurements. Add the contents of the graduated cylinder to an Erlenmeyer flask and then add the KIO3. Always add the KIO3 last when you start the timer. Notice the total volume for each trial is 100mL

4. In each trial the water, starch, and NaHSO3 should be added to a beaker. One student must then start the timer when the KIO3 is added. . For each trial record the time in seconds required for the solution to change after the KIO3 is added.

5. After each trial, dispose of the reaction mixture in the sink and rinse the beaker thoroughly with tap water.

6. You need to calculate the concentration of each chemical for each of the three trials, the exponents for the rate law (they will be decimals, don’t round) and the value of k.

Cleanup: Take all the syringes apart, rinse with water and lay on a paper towel at your station to dry. Rinse all the glassware twice with tap water and leave at your station to dry.

TrialWater Starch NaHSO3 in

H2SO4

KIO3 (always add last)

1a 75mL 5mL 10mL 10mL

1b 75mL 5mL 10mL 10mL

2a 80mL 5mL 10mL 5mL

2b 80mL 5mL 10mL 5mL

3a 80mL 5mL 5mL 10mL

3b 80mL 5mL 5mL 10mL

Conclusion:1. Which of the steps in the proposed mechanism is the rate determining step? Why?2. Given your experimentally determined values for the reaction orders x and y, what

would be the expected reaction time if the following solution were timed: 20mL KIO3, 5mL NaHSO3, 5mL starch, and 70mL water?

Page 32: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 32 of 116

Where did the Crystal Violet go?Full WriteupCentral ChallengeThe purpose of this laboratory activity is to determine the rate law for the reactionof crystal violet (CV) and sodium hydroxide (NaOH). In Part 1 of the investigation, you will prepare dilutions of a stock CV solution to generate a Beer’s law calibration curve for CV.In Part 2 of the investigation, you will perform a reaction of CV with NaOH while monitoring in real time the concentration of CV remaining. This laboratory investigation will illustrate a variety of science concepts because determining the rate law for the reaction of CV with NaOH requires you to use graphical analysis and a simplifying approximation that leads to a pseudo-rate law while also integrating prior chemistry knowledge involving spectroscopy, Beer’s law, solution dilution, calibration curves, and chemical kinetics.Context for This InvestigationIf you’re making something, you might think making it to last would always be a good thing. But what if you’re making a pesticide with known detrimental impacts on human health? Then you may only want it to stay intact for a few days after it has been applied to crops before it decomposes into what often are less harmful products. If its molecules stay intact for too long, the pesticide can persist in the environment and build up in drinking water. In 2000, over 20 million kilograms of the pesticide 1,3-dichloropropene (1,3-D) were applied to crops in the United States. Scientists investigated the rate of decomposition of 1,3-D in acidic, basic, and neutral solutions as well as in soil. For each case, they generated plots of the amount of intact 1,3-D persisting versus time and found that the reaction could be characterized as pseudo first-order. Knowing the order of the reaction allowed them to determine the half-life of intact 1,3-D. In acidic media, they found that the half-life for the decomposition of 1,3-D was about eight days, but in the presence of excess NaOH the half-life was reduced to about four days. Experimentally determined data like this is vital to the ability of society to use chemicals wisely in improving food production, while not endangering the end consumers or the people who work with the chemicals during the growing process. The Beer’s law employs the use of a colorimeter (or spectrophotometer) to obtain a calibration curve that is used to convert raw absorption data from a colorimeter (or spectrophotometer) to molar concentration of a chemical in solution. In this investigation, you will first use a colorimeter (or spectrophotometer) to generate a calibration curve for a chemical (CV) and then use the colorimeter (or spectrophotometer) to follow the change in the concentration of CV as it reacts with NaOH. By recording these changes through time and analyzing them graphically, you will be able to obtain the rate law of the reaction, which may be used to predict the behavior of the system under different experimental conditions without doing the actual experiments.PreLab questions Day 11. Answer the following questions about the selection of a wavelength for your experiment.

a. Based on the absorption spectrum of 25 μM crystal violet in Figure 1 and taking into account the considerations that follow, what wavelength should you use for the Beer’s law calibration curve and subsequent reaction of CV with NaOH? Please explain your answer.

b. Simulate the instrument readings you will get in Part 1 of the experiment by doing the following: Trace Figure 1 onto your own paper. Draw a vertical line at the wavelength you have chosen, intersecting the absorbance curve at that wavelength. Where your vertical line intersects the absorbance curve is the absorbance value your instrument should read for the stock 25 μM CV solution. Keeping in mind Beer’s law from Equation 1, and being mindful that the wavelength and path length are fixed, draw X’s

Page 33: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 33 of 116on your vertical line where you expect the absorbance values will be for the diluted solutions you prepare in Question 2. Use appropriate ratios of concentrations to determine where on the vertical line to make your marks.

2. A calibration curve requires the preparation of a set of known concentrations of CV, which are usually prepared by diluting a stock solution whose concentration is known. Describe how to prepare 10. mL of a 5-, 10-, 15-, and 20- μM CV solution using a 25 μM CV stock solution.

3. During the reaction of CV with NaOH, do you expect the colorimeter’s (or spectrophotometer’s) absorbance reading to change? How do you expect it to change if such a change is anticipated (i.e., increase, decrease, or no change) as the reaction proceeds? Explain your reasoning.

4. Answer the following questions for a reaction of CV with NaOH in these two scenarios: a solution with a 1:1 NaOH:CV mole ratio and a solution similar to what you will be using with a 1000:1 NaOH:CV mole ratio.a. Using your prior knowledge of reaction stoichiometry, what is the final percentage of

each reactant remaining if each reaction went to completion? Show work and reasoning to justify your answer.

5. Using the kinetics chapter in your textbook and websites like “Chemical Kinetics – Integrated rate laws” http://www.chm.davidson.edu/vce/kinetics/IntegratedRateLaws.html, describe the graphical analysis that can be done to determine the order (considering only 0th, 1st, or 2nd order) and the value of the pseudo-rate constant, k*, of a chemical reaction from concentration data collected through time.

6. Based on your answer to Questions 3–5, design an experiment for the reaction of CV with NaOH and describe the subsequent data analysis to accomplish the Central Challenge, the determination of the value of (i) w, the order with respect to CV and (ii) k*, the pseudo-rate constant found in the rate law in Equation 3. For simplicity, use 10. mL for the combined volume of CV and NaOH because it is a bit more than enough to fill cuvettes appropriately.

7. Answer the following questions after examining Figure 3 to address the issue of when to stop collecting data.a. For early parts of the three different reactions in Figure 3, all three curves seem

relatively linear with different slopes. But as the reactions progress through time, at roughly what concentration level would you say some graphs start to look nonlinear?

b. Given that you don’t yet know the order of the reaction of CV with NaOH, how might Figure 3 help you to decide when to stop collecting data? Hint: Think in terms of percent completion instead of concentration.

Explanation to help your understanding: Read before you come to class.For a fixed concentration of solute and a fixed path length (e.g., fixed cuvette width), the amount of light absorbed by a solution varies directly with the absorptivity constant of the solute. Figure 1 below shows the visible light absorbance spectrum of CV for a fixed, 25 μM, concentration of CV and a fixed, 1.0 cm, path length. Because concentration and path length are both kept constant, Figure 1 reveals how the absorptivity constant for CV varies with the wavelength of light passing through the solution. Figure 1 was generated by a spectrophotometer.A colorimeter is an instrument which, like a spectrophotometer, measures how much light is absorbed when passed through a sample but does so for only a few, predetermined wavelengths of light set by the manufacturer.

Page 34: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 34 of 116

Figure 1. The visible spectrum of a 25 μM CV solutionIf we still keep the path length fixed, but now choose only one particular wavelength of light to pass through the solution, thereby fixing the absorptivity constant, students can then observe how the absorbance of light at that wavelength changes as they change the concentration of CV. Under these conditions, Beer’s law describes a straight-line relationship for a graph of absorbance versus solute concentration whose slope is simply the product of the molar absorptivity constant and path length.In the reaction of CV and sodium hydroxide (see Figure 2), the dye’s color will fade as it reacts with sodium hydroxide. A colorimeter (or spectrophotometer) will be used to follow the disappearance through time of CV by measuring the absorbance of a solution of CV during its reaction with NaOH. The raw absorbance measurements from the colorimeter (or spectrophotometer) can be transformed to molar concentration of CV via the use of a Beer’s law calibration curve.

Figure 2. Chemical structures in the reaction in this laboratory activityThe net ionic equation for the reaction can be written asCV+ (aq) + OH–(aq) → CVOH (aq)

Page 35: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 35 of 116rate = k [CV+]w [OH–]z Equation 2where k is the rate constant while w and z are the order of the reaction with respect to CV+ and OH-, respectively. Under certain experimental conditions (see prelab Question 4), the rate law in Equation 2 simplifies to the following equation:rate = k* [CV+]w Equation 3 where k* = k [OH–]z Equation 4and k* is the pseudo-rate constant. Equation 3 is referred to as the pseudo-rate law, since it is an approximation to Equation 2, the actual rate law, and significantly simplifies the analysis.A differential rate law describes the rate of a chemical reaction as a function of the concentration of the reactants, while an integrated rate law describes the concentration of a reactant as a function of time; both types of rate laws are related to each other by the use of calculus. Equation 3 is a differential rate law, in which a graphical analysis of the corresponding integrated rate law can be used to determine the value of the parameters in Equation 3 using least-squares linear regression analysis. The degree or extent of linear fit may be evaluated using the coefficient of determination (or square of the correlation coefficient), i.e., it may be used to identify the graph that has a linear relationship.Figure 3 shows concentration data plotted versus time for three different hypothetical chemical reactions. From plots like these and knowledge of integrated rate laws found in your text or at online resources, one can determine the exponents in the rate law equation.

Page 36: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 36 of 116Figure 3. Concentration data plotted versus time for three different hypothetical chemical reactions — 0th order (blue line), 1st order (red line), and 2nd order (yellow line)All reactions have the same numerical value for their initial reactant concentration and the rate constant.

ProcedureThe prelab questions guide you to consider different factors involved in designing an experiment to address the Central Challenge, the determination of the rate law given in Equation 2, rate = k [CV+]w [OH-]z, for the reaction between CV and NaOH. Prelab Question 4 addresses the issue of how to ensure that Equation 3 (rate = k* [CV+]w) is a valid approximation to Equation 2. The analysis described in prelab Question 6 requires that you know the concentration of CV throughout the course of the reaction. The concentration of CV can be obtained from raw absorbance data by applying the Beer’s law calibration curve formula you obtained previously. Prelab Question 6 asks you to design an experiment to determine the value of w and k* found in Equations 3 and 4. Both w and k* can be determined by making appropriate plots of your data from the reaction of CV with NaOH and checking for linear relationships.

Use your answer to prelab Question 8 to decide during the experiment when to stop collecting absorbance data to get the clearest distinction between 0th-, 1st-, and 2nd-order reactions during your postlab graphical analysis.

Page 37: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 37 of 116

Chemical Equilibrium: Finding a Constant, Keq or KcFull writeupIntroductionThe purpose of this lab is to experimentally determine the equilibrium constant, Kc, for the following chemical reaction:

Fe3+(aq) + SCN–(aq) FeSCN2+(aq) (red)

iron(III) thiocyanate Iron III thiocyanate complexWhen Fe3+ and SCN- are combined, equilibrium is established between these two ions and the FeSCN2+ ion. In order to calculate Kc for the reaction, it is necessary to know the concentrations of all ions at equilibrium: [FeSCN2+]eq, [SCN–]eq, and [Fe3+]eq. Since the complex is intensely colored, its concentration is conveniently measured using a spectrophotometer. You will prepare several mixtures containing different initial amounts of iron III nitrate and potassium thiocyanate and will then use a spectrophotometer to measure the absorbance as an indication of the concentration of the red product. From the initial concentrations of the reactants taken in each mixture and the concentration of the product present at equilibrium in each mixture, you can calculate the concentration of the reactants at equilibrium and thus the Kc.

Prelab: Read the entire lab procedure, and use a graphing program to build and print a calibration curve as the procedure directs you to do. To enter the lab you must place your printed graph on top your head and whisper “Doctor Who” to get inMSDS:Fe(NO3)3 Corrosive to body tissues by contact and inhalation. Avoid contact with skin,

eyes and mucous membranes. Acidified with Nitric acid.

KSCN Slightly toxic by ingestion. Irritating to body tissues. Avoid all body tissue contact. Contact with acids or heat may liberate poisonous hydrogen cyanide gas.

Procedure

Clean your test tubes, beakers and syringes and rinse with distilled water. Label the test tubes with a sharpie #1-5 and the beakers Fe3+ and SCN-. Obtain approx 35 mL of the 0.002M iron III nitrate solution and 25 ml of the 0.002M potassium thiocyanate solution in the beakers.

Fill your test tubes according to the following table: Add Fe3+ and SCN-, rinse grad cylinders well and then use syringes to add water to tubes.

Test tube

mL Fe3+ mL SCN- mL distilled water

1 5.00 1.50 3.50

2 5.00 2.00 3.00

3 5.00 2.50 2.50

4 5.00 3.00 2.00

5 5.00 3.50 1.50

Page 38: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 38 of 116Calibrate the spectrophotometer as you have done previously using distilled water as a blank.

Record the absorbance for each test tube at a wavelength of 450 nm, transferring the sample to the cuvette and rinsing the cuvette between readings.

Prepare a standard solution with 9 mL of 0.200 M Fe(NO3)3(aq) (note this is different than before) and 1 mL 0.002 M KSCN. Record the absorbance of that solution.

Using the following data, construct a calibration curve. It must be a scatter plot with a line of best fit. There is a podcast that illustrates the process using excel.

[Iron III thiocyanate complex] M Absorbance

3.088 x 10-5 0.152

6.176 x 10-5 0.307

9.264 x 10-5 0.443

1.235 x 10-4 0.587

1.544 x 10-4 0.752

1.853 x 10-4 0.891

1. Find the concentration of the Iron III thiocyanate complex for tubes 1-5 using the calibration curve or the following equation: Abs(sample) x 0.000200 M = [complex ion]Abs(standard)

2. Calculate the initial concentrations of [Fe3+] and [SCN-] present in each of the 5 tubes.3. Calculate the equilibrium concentrations of [Fe3+] and [SCN-] present in each of the 5

tubes.Calculate a Keq for each tube; calculate an average Keq and the standard deviation.Record your values for Keq for each tube on the class data sheet.

Cleanup: Throw away any disposable pipets. Wash all glassware with soap, rinse 2X with tap water and once with distilled water. Put all glassware at your lab station to dry.

Conclusion: Compare your data to the class average data. Discuss conditions under which the Keq would be different than the ones you found in lab using the same quantities as identified in the lab.

Page 39: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 39 of 116

Entropy of a ReactionNO WRITEUP REQUIREDDiscussion:An endothermic process or reaction absorbs energy in the form of heat (endergonic processes or reactions absorb energy, not necessarily as heat). Examples of endothermic processes include the melting of ice and the depressurization of a pressurized can. In both processes, heat is absorbed from the environment. You could record the temperature change using a thermometer or by feeling the reaction with your hand. The reaction between citric acid and baking soda is a highly safe example of an endothermic reaction, commonly used as a chemistry demonstration. Do you want a colder reaction? Solid barium hydroxide octahydrate reacted with solid ammonium thiocyanate produces barium thiocyanate, ammonia gas, and liquid water. This reaction gets down to -20°C or -30°C, which is more than cold enough to freeze water. It's also cold enough to give you frostbite, so be careful! Here's what you need to use this reaction: 15g barium hydroxide octahydrate 9g ammonium thiocyanate (or could use ammonium nitrate or ammonium chloride) 50-ml beaker Neutral litmus paperstirring rod Prelab:

1. Read the discussion and procedure. Be prepared to answer these questions.2. Explain how this reaction increases entropy.3. Is the change in enthalpy for the reaction going to be positive or negative? Explain

your reasoning.4. Why are you using litmus?

Procedure1. Pour the barium hydroxide and ammonium thiocyanate into the beaker. 2. Stir the mixture. 3. The odor of ammonia should become evident within about 30 seconds. If you hold a

piece of dampened litmus paper over the reaction you can watch a color change showing that the gas produced by the reaction is basic.

4. Liquid will be produced, which will freeze into a slush as the reaction proceeds. 5. If you set the flask on a damp block of wood or piece of cardboard while performing the

reaction you can freeze the bottom of the flask to the wood or paper. You can touch the outside of the flask, but don't hold it in your hand while performing the reaction.

6. After the demonstration is completed, the contents of the flask can be washed down the drain with water. Do not drink the contents of the flask. Avoid skin contact. If you get any solution on your skin, rinse it off with water

Page 40: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 40 of 116

Catalytic Converter—Hot Copper CatalysisDiscussion

Catalytic converters are used in automobiles to reduce emissions of unburned hydrocarbons. These unburned hydrocarbons result from incomplete combustion of the gasoline fuel. Catalytic converters contain rare metals such as platinum and rhodium that catalyze the combustion of hydrocarbons with the oxygen that remains in the engine’s exhaust stream. This combustion generates heat that, in turn, makes the continued combustion of the unburned hydrocarbons more efficient.

In this demonstration you will observe the catalyzed combustion of a hydrocarbon, namely 2-propanol, sometimes called isopropyl alcohol, on the surface of a metal catalyst. A hot copper penny is used to provide the reaction surface.

2-propanol can react with oxygen to form acetone and water according to the following equation:

2CH3CHOHCH3 + O2 2CH3COCH3 + H2O (equation 1)

This reaction is thermodynamically permitted but very slow even at elevated temperatures. To make the reaction go a catalyst is needed. Hot copper(II)oxide will do the trick. When a pre-1982 penny (almost entirely pure copper) is heated in a burner flame copper(II)oxide forms on the surface of the penny according to the following equation:

2Cu + O2 + heat 2CuO (equation 2)

When the hot copper(II)oxide is introduced into 2-propanol vapor with oxygen present the following exothermic reaction occurs:

CH3CHOHCH3 + CuO CH3COCH3 + Cu + H2O + heat (equation 3)

The liberated copper metal reacts further with oxygen to make copper(II)oxide which reacts further with 2-propanol and so forth and so on. The heat generated by the reaction described by equation 3 is adequate to provide the heat needed by the reaction described by equation 2. This series of reactions proceed at an acceptable rate as long as the temperature of the penny is high enough.

Pre-Lab Questions

1. Many states conduct periodic emissions tests on vehicles. These tests should not be conducted when the engine is cold but only after the engine has been started and allowed to warm to normal operating temperature. Speculate on why this is so.

2. One of the first devices used to combat automobile pollution was an “air pump.” This pump would deliver outside air directly into the exhaust manifold of a running engine. Speculate on how this helped to reduce the emission of unburned fuel molecules.

Materials

15mL 2-propanol (off-the-shelf rubbing alcohol), 250mL beaker and a watch glass to cover, Bunsen burner, striker, pre-drilled copper penny (pre-1982), 6” 14 gauge copper wire, hotplate with ceramic top, thermometer, wire mesh, ruler.

Page 41: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 41 of 116

Procedure

Safety note: A fire is very unlikely if the 2-propanol is kept away from open flames. Just to be safe, fill a 250mL or larger beaker with water to use as an emergency fire extinguisher if flames break out.

1. Prepare the reaction chamber according to the following diagram. You will need the 250mL beaker, the penny, the copper wire, the wire mesh, and a ruler.

The penny is to be suspended 2cm above the bottom of the beaker. The copper wire is directed thru the wire mesh and bent at a 90o angle to hold the penny in the proper location.

2. Remove the wire mesh (with the penny and copper wire attached) from the beaker. Put the beaker on a hot plate and add 15mL of 2-propanol to the beaker. Turn the hot plate on a very low setting to allow the 2-propanol to warm. Cover with the watch glass and monitor the temperature with a thermometer. Do not allow the liquid to exceed 50oC.

3. While the 2-propanol is warming light a Bunsen burner and begin heating the penny. Use tongs to hold mesh-wire-penny apparatus in place during the heating. The goal is to heat the penny red hot.

4. Once the penny is red hot AND the 2-propanol is heated to 45o to 50oC, remove the beaker from the hotplate and suspend the penny in the vapor space over the warmed 2-propanol.

5. The reaction should begin immediately. Record all observations. The reaction is more obvious if observed in a darkened room. The reactions produce enough heat to keep the penny red hot for 2 to 3 minutes.

Page 42: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 42 of 116

Equilibrium and Le Châtelier's PrincipleFull writeupDiscussion:Le Châtelier's Principle states that: If an equilibrium system is subjected to a stress, the system will react to remove the stress. To remove a stress, a system can only do one of two things: form more products using up reactants, or reverse the reaction and form more reactants, using up products. In this experiment you will form several equilibrium systems. Then, by putting different stresses on the systems, you will observe how equilibrium systems react to a stress.Before you carry out each section, write an equation and predict which way you think the equilibrium will shift when a given step is performed. Record your predictions in a data table before entering lab. Then, carry out the reaction to verify your prediction. Be very precise when you record your observations.Prelab: Read all lab directions before coming to lab. Write a purpose, procedure and build a data table including your reactions and prediction for each part of the procedure IN YOUR LAB NOTEBOOK.MSDS:NaCl Very slightly toxic by ingestion. Dust may cause minor irritation to

mucous membranes upon inhalation.HCl Highly toxic by inhalation and ingestion. Severe corrosive to all body

tissues, especially skin and eyes. Avoid all body contact.Bromothymol blue Substance not considered hazardous. However, not all health aspects of

this substance have been thoroughly investigated.NaOH Highly toxic by ingestion, inhalation, or skin absorption. Extremely

corrosive to body tissues. Causes severe eye burns. Avoid all body tissue contact.

Fe(NO3)3 Corrosive to body tissues by contact and inhalation. Avoid contact with skin, eyes and mucous membranes.

KSCN Slightly toxic by ingestion. Irritating to body tissues. Avoid all body tissue contact. Contact with acids or heat may liberate poisonous hydrogen cyanide gas.

Ethanol Toxic by ingestion and inhalation. Body tissue irritant. Avoid all body tissue contact. Denatured with isopropanol and methanol. Not for human consumption.Flammable liquid.

CoCl2 Irritant to body tissues. Moderately toxic by ingestion. Prolonged exposure may cease production of red blood cells. Avoid ingestion, inhalation and skin absorption. Cobalt and cobalt compounds are possible carcinogens.

AgNO3 Moderately toxic by ingestion. Irritating to body tissues. Avoid all body tissue contact.

Procedure1. Equilibrium in a Saturated SolutionYou will investigate the equilibrium in saturated sodium chloride solution:

Page 43: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 43 of 1161. Obtain some saturated NaCl solution from the solution in the beaker on the stirrer in

the fume hood. To this saturated solution of NaCl, add some Cl- ions in the form of concentrated HCl Record the results.

2. An Acid-Base Indicator EquilibriumAcid-base indicators are large organic molecules that can gain and lose hydrogen ions to form substances that have different colors. The reaction of the indicator bromothymol blue can be Illustrated as follows:HIn(aq) H+(aq ) + In-(aq)yellow blueIn this reaction HIn is the neutral indicator molecule, and In- is the indicator ion after the molecule has lost a hydrogen ion. Equilibrium reactions can easily be forced to go in either direction. At this point you have hopefully been reading along. The code word is “monkey”Reactions like this are said to be reversible.

1. Fill a small test tube about half-full of distilled water. Add several drops of bromothymol blue indicator solution. Add 5 drops of 0.1 M HCl and stir. Note the color of the indicator.

2. Next add 0.1 M NaOH drop by drop with stirring until no further color change occurs. Again, note the color. See if you can add the right amount of acid to this test tube to cause the solution to be green in color after it is stirred (half of the indicator is blue and half is yellow).

3. A Complex Ion EquilibriumAn equilibrium system can be formed in solution with the following ions:Fe3+(aq) + SCN-(aq) FeSCN2+(aq)colorless colorless red-brownThe iron ion (Fe3+) and the thiocyanate ion (SCN-) are both colorless; however, the ion that forms from their combination, the FeSCN2+ ion, is colored a dark red-brown. It is the color of this ion that will indicate how the equilibrium system is being affected.

1. Pour about 25 mL of 0.0020 M KSCN solution (a source of SCN- ion) into a beaker. Add 25 mL of distilled water and 5 drops of 0.20 M Fe(N03)3 solution. Swirl the solution and note the following: the color of the KSCN solution, the color of the Fe(NO3)3 solution, and the color of the resulting complex ion.

2. You will stress the equilibrium system that has resulted in several ways. Pour equal amounts of the solution from the beaker into four test tubes. The solution in the first test tube will be the reference solution.

3. To the second test tube add 2-3 crystals of solid KSCN. Describe the results.4. To the third test tube add 6 drops of Fe(N03)3 solution. Stir and describe the results.5. To the fourth test tube add drops of 0.1M NaOH, a few at a time. Stir and note the

results.

4. An Equilibrium with Cobalt Complex IonsIn this section we will investigate the equilibrium between two different complex ions of cobalt. The reaction is endothermic:

Co(H2O)62+(aq) + 4 Cl-(aq) CoCl4

2-(aq) + 6 H20(l) H = +50 kJ/molPink blue

1. Measure about 10 mL of ethanol into a beaker.2. Examine solid cobalt (II) chloride, noting both its color and the formula of the

compound. Dissolve a small amount of cobalt (II) chloride (about half the size of a pea) in the beaker of ethanol. The solution should be purple. If it is pink, add a little concentrated HCl until it is purple.

Page 44: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 44 of 1163. Put about 2 mL of the alcoholic cobalt solution into each of three small test tubes. To

one of the test tubes, add 3 drops of distilled water, one drop at a time with stirring, noting what happens with each drop. Add 3 drops of distilled water to each of the other two test tubes. Make a note of the effect of this stress on the system.

4. The first test tube is the control. To the second test tube, add 5 drops of concentrated HCl, 12 M, one drop at a time with stirring. Note the results.

5. To the third test tube add a few crystals of solid sodium chloride. Stir and note the results.

6. Put the remainder of alcoholic cobalt solution from the beaker into the fourth and fifth test tube. To the fourth test tube add 10 drops of 0.1 M silver nitrate solution, one drop at a time. Silver and chloride ions combine to form a precipitate of AgCl. Note the color of the solution as the chloride ions precipitate. You may wish to let the precipitate settle to observe the solution color more easily.

7. Immerse the fifth test tube in some hot water (about 60° C) and record any color change.

8. Lastly, chill the fifth test tube in an ice bath to see if the color change in the previous step is reversible.

Conclusion:Explain each of your observed results in terms of Le Chatelier’s principle and equilibrium.Explain the effect of the temperature change on the cobalt equilibrium taking into account the H listed.No % error or error analysis.

Page 45: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 45 of 116

Strong Acid Strong Base TitrationData onlyDiscussion:

One method a chemist can use to investigate acid-base reactions is a titration. A pH titration is performed by either adding small, accurate amounts of standard base to an acid of unknown concentration or adding small, accurate amounts of standard acid to a base of unknown concentration. In this lab, you will add standard base to an unknown solution of hydrochloric acid to determine its molarity. The pH is recorded methodically and is plotted versus the volume of base added to the acid solution. The equivalence point occurs when the acid and base in solution are stoichiometrically equivalent. This equivalence point will be very useful in determining the concentration of the acid.Prelab-

1. Read the lab procedure. 2. Build a data table to collect data.3. On a separate sheet of paper which will be your ticket into lab calculate the pH of a

solution of 20.0 mL of 1.5 M HCl and 15.0 mL of 1.0 M NaOH to which 65 mL of water has been added. Show your work. Define end point, equivalence point and strong acid.

MSDS:HCl Highly toxic by inhalation and ingestion. Severe corrosive to all body tissues,

especially skin and eyes. Avoid all body contact.NaOH Moderately toxic by ingestion and skin absorption. Corrosive to body tissues.

Causes severe eye burns. Avoid all body tissue contact.Procedure:1. Turn the pH meter on2. (Optional) Standardize the pH meter with pH 4 and pH 7 buffers. Your instructor can

show you how this is done.3. Using a 25 mL volumetric pipet, transfer exactly 25mL of unknown HCl solution into a

250 mL beaker and dilute it with approximately 75 mL of distilled water.4. Wash a 50mL buret by rinsing three times with about 5 mL of the 0.100 M NaOH

solution.5. Fill the buret past the 0.00 mL mark with the 0.100 M NaOH solution. Drain the excess

into a waste beaker until the buret reads below 0. Be sure all air is removed from the tip of the buret.

6. Clamp the buret in place using a buret clamp and ring stand.7. Immerse the tip of the pH probe in the HCl solution and stir the solution. Allow the pH

reading to stabilize.8. Record the pH of the solution at the initial volume in the first row of the data table.9. Begin adding the NaOH solution from the buret in ~1 mL intervals. After each addition

of base, allow the pH reading to stabilize, and record the pH and the volume from the buret on the data sheet. As the titration approaches the equivalence point the pH will begin to increase more rapidly. Once you observe this reduce the volume of the NaOH additions to 0.5mL then 0.2mL until you reach a pH of about 8 to 9. Above pH 9, return to the 1 mL additions.

10. Continue the titration until all 50.0 mL of NaOH has been added or a pH of 12 is obtained.

11. To clean up, dump all solutions down the drain with lots of water

Page 46: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 46 of 11612. Prepare a graph using excel on the laptops of pH vs. mL of NaOH. You will save this

on your U drive for the next lab.13. From the graph, determine the equivalence point.

Page 47: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 47 of 116

Titration of a weak acidData, Graph and Calculations Only

Introduction:

Vinegar is composed mostly of acetic acid and water. In this experiment, the amount of acetic acid will be found by means of a titration. In a titration, the concentration of an unknown substance can be found by comparing it to another substance of known concentration. In this titration, a solution of sodium hydroxide will be added to a vinegar solution to determine the percent of acetic acid in the vinegar.

Often a titration endpoint is marked by the change in color of an indicator. Although this method is widely used, it is not always necessary. In many cases, a pH meter can be used to determine the endpoint. The pH of the solution is monitored as titrant is added. When the pH has passed through a region of rapid change and then leveled off, the data collected is graphed. The end point is determined graphically, and other information may also be read from the shape of the graph.MSDS:Vinegar Substance not considered hazardous. However, not all health aspects of this

substance have been thoroughly investigated. Not for human consumption.NaOH Moderately toxic by ingestion and skin absorption. Corrosive to body tissues.

Causes severe eye burns. Avoid all body tissue contact.

Procedure:

1. The strong acid strong base titration was a good warmup to this lab. It is critical you get the concentration correct. Assume all of your glassware is dirty and needs to be washed and rinsed. Clean a 50 mL buret and rinse three times with about 5 mL of the 1.0 M NaOH solution.

2. Fill the buret past the 0.00 mL mark with the NaOH solution and deliver the excess into a waste beaker until the volume is at or below the 0.00 mL mark. Make sure that the buret tip has no air bubbles.

3. Pipet 25.00 mL of vinegar into a 250 mL beaker and add 40 mL of distilled water from a graduated cylinder.

4. Stir the vinegar/water solution with the pH meter and allow the reading to stabilize.5. Record the pH of the solution at the initial volume (0.00 mL of 1.0M NaOH) in the first

row of the data table.6. Begin adding the NaOH solution slowly from the buret, stopping at frequent intervals to

record the buret reading and the pH on the data sheet. Collect data at intervals of ~0.2 pH units or 2 mL, whichever occurs first. Be particularly alert as you pass pH 5.3 as the pH begins rising quite rapidly just beyond this point.

7. Continue the titration until about 50.00 mL of NaOH has been added from the buret OR the pH has leveled off to a very slow increase (above pH=11).

8. Prepare a graph (same graph as before) using excel on the laptops of pH vs mL of NaOH. It should be the same graph you generated for titration of a strong acid. You will end up with two lines, one for the strong acid and one for the weak acid. Be sure each line is a different color. Submit your graph to edmodo. Be sure to submit the graph for each person. You must include the graph in your lab writeup.

9. From the graph, determine the equivalence point. Using the mL of NaOH at the equivalence point, use the equation MAVA=MBVB..

10. Calculate the pKa of acetic acid using your graph. Look up the accepted pKa of acetic acid and calculate a percent error.

Page 48: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 48 of 116

Determination of the Ka of Weak AcidsFull writeupDiscussion:Acids are substances that donate hydrogen ions. They vary in their ability to ionize from strong acids which ionize 100% to extremely weak acids which hardly ionize at all. The dissociation constant is the value of the equilibrium constant which indicates the acid’s strength.The modern Bronsted definition of an acid relies on the ability of the compound to donate H+ to other substances. When an acid dissolves in water, it donated hydrogen ions to water molecules to form the hydronium ion. It is shown by the general equationHA(aq) + H2O(l) ↔A-(aq) + H3O+(aq).The Keq for an acid is called the Ka. The equation for Ka is as follows.

Not all acids are created equal. The Ka for a strong acid is extremely large. The Ka for a weak acid is much less than one. Polyprotic acids contain more than one ionizable hydrogen. Ionization of a polyprotic acid occurs in a stepwise manner, where each step is characterized by it own equilibrium constant (Ka1, Ka2, Ka3). The second removal of a hydrogen always occurs to a much smaller extent than the first and so Ka2 is always significantly smaller than Ka1. Acid Formula Ka1 Ka2 pKa1 pKa2

Iodic HIO3 1.7 x 10-1 0.77Sulfurous H2SO3 1.7 X 10-2 6.4 x 10-8 1.77 7.19Acetic HC2H3O2 1.8x10-5 4.74Carbonic H2CO3 4.3 x 10-7 5.6x10-11 6.37 10.25Hypochlorous HClO 3.0x10-8 7.52Hydrocyanic HCN 4.9x10-10 9.31Table 1

The Ka can be determined experimentally by measuring the hydronium ion concentration in a dilute solution of the weak acid. This procedure is most accurate when the solution contains equal molar amounts of the weak acid and its conjugate base. Consider acetic acid as an example, acetic acid and the acetate anion represent a conjugate acid-base pair. Write the Ka expression for acetic acid below.

If the acetic acid concentration and acetate ion are equal, they can be canceled out in the equation. Write the expression for Ka with the canceled terms removed below.

In this experiment, solutions are prepared in which the molar concentrations of an unknown acid and its conjugate base are equal. The pH of these solutions are then equal to the pKa. Most of the unknowns are salts of polyprotic acids that still contain an ionizable hydrogen. Sodium bisulfate, for example, is a weak acid salt. The HSO4

- ion is a weak acid. The Keq for ionization of HSO4

- corresponds to Ka2 for sulfuric acid.Write the equilibrium expression for both deprotonations of sulfuric acid below as well as the reversible equations.

Page 49: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 49 of 116Prelab: Phosphoric acid is triprotic. Ka1 = 7.5 x10-3, Ka2=6.2x10-8 and Ka3=4.2x10-13.

1. Write the equation for the first ionization reaction of phosphoric acid with water.2. Write the equilibrium constant expression, Ka1, for this reaction.3. What would the pH of a solution be when [H3PO4] = [H2PO4

-]?4. Phenolphthalein would not be an appropriate indicator to use to determine Ka1 for

phosphoric acid. Why not? Choose a suitable indicator from the following color chart.

pHIndicator 1 2 3 4 5 6 7 8 9 10 11Phenolphthalein Colorless Pink RedMethyl Red Red Orange YellowOrange IV Orange Peach

5. What would be the pH of a solution prepared by combining equal quantities of sodium dihydrogen phosphate and sodium hydrogen phosphate?

6. Sufficient strong acid is added to a solution containing Na2HPO4 to neutralize one half of it. What will be the pH of this solution? Explain.

NOTE: The lab manual must be filled in to this point and shown to the instructor before you are allowed in the lab.Procedure

1. Label two weigh boats #1 and #2.2. Obtain an unknown weak acid and record the unknown designation in your data table.3. Measure out a small quantity (0.15 – 0.20g) of the unknown into each weigh boat. It

is not necessary to know the exact mass.4. Using a graduated cylinder, precisely measure 50.0 mL of distilled water into a 150

mL beaker.5. Transfer the sample from weigh boat #1 to the water in the beaker and stir to dissolve.6. Using a graduated cylinder, precisely transfer 25.0 mL of the acid solution prepared

in step 5 into an 125 mL Erlenmeyer flask.7. Add 3 drops of phenolphthalein to the acid solution.8. Using a pipet, add 0.1 M sodium hydroxide solution dropwise to the flask. Gently

swirl the flask while adding the sodium hydroxide solution.9. Continue adding sodium hydroxide dropwise and swirling the solution until a faint

pink color persists throughout the solution for at least 5 seconds. This is called the endpoint. At this point the solution in the beaker contains ½ the original amount of acid, essentially all of which is in the acid form, HA. The Erlenmeyer flask contains an equal amount of the conjugate base A-.

10. Add the contents of the beaker to the contents of the flask. Now the acid and conjugate base concentration are the same.Record the pH using the pH meter.

11. Pour the contents down the sink. Rinse, rinse and distilled rinse the glassware.12. Repeat the procedure with the contents of weigh boat #2.13. Obtain two samples of a second, different unknown weak acid and determine the pH

using the procedure above.Calculations:Average the pH readings for trials #1 and #2 for each unknown and calculate the average pKa.

Page 50: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 50 of 116

The following table lists the identities of the unknowns in this experiment. Complete the table by calculating the pKa for each acid.Weak acid Formula Ka pKaPotassium dihydrogen phosphate

KH2PO4 6.2 x 10-8

Potassium hydrogen sulfate KHSO4 1.0 x 10-2

Potassium hydrogen phthalate KHC8H4O4 3.9 x 10-6

Potassium hydrogen tartrate KHC4H4O6 4.6 x 10-5

Acetylsalicylic acid 2-CH3CO2C6H4COOH 3.2 x 10-4

Conclusion:Identify the unknown acids based on pKa. Comment on the precision of the pKa determinations.

Questions1. Why was it not necessary to know the exact mass of each acid sample?2. Why was it not necessary to know the exact concentration of the sodium hydroxide

solution?3. Why was it necessary to measure the exact volume of distilled water used to dissolve

the acid as well as the exact volume of solution transferred from the beaker to the Erlenmeyer flask?

Page 51: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 51 of 116

Determination of the Ksp of an Ionic CompoundData and Calculations and error comparisonDiscussion:An equilibrium constant is a measure of how far a reaction proceeds to completion. A Ksp is an equilibrium constant that permits the calculation of the amount of a slightly soluble ionic compound that will dissolve in water. The equilibrium exists between the aqueous ions and the undissolved solid. At this point it is considered saturated with that particular solute. Take lead II chloride as an example. The equation for lead chloride dissolving is PbCl2(s) ↔Pb2+(aq) + 2Cl-(aq).Write the solubility product expression here:

Knowledge of the Ksp of a salt is useful in determining the concentration of ions of the compound in a saturated solution. This allows you to control a solution so that precipitation of a compound will not occur, or to find the concentration needed to cause a precipitate to form. In this experiment, you will determine the Ksp of calcium hydroxide.

Prelab:The compound silver chromate is not very soluble in water. 1. Write the equation for the dissociation of silver chromate.2. Write the Ksp expression3. If one has a solution of 0.10 M silver nitrate and it is diluted by a factor of two, what is

the new concentration?4. The dilution of 0.10 M silver nitrate by a factor of two is carried out 5 times. What is the

concentration now?5. The value for the Ksp of silver chromate is 1.1 x 10-12. In a saturated solution of silver

chromate, the [Ag+] is found to be 2.5 x 10-4 M. What must the chromate ion concentration be? Show your work.

Procedure:1. Arrange a microplate so that you have 12 wells across from left to right.2. Put 5 drops 0.10 M calcium nitrate in well #1 in the first row. Hold the pipet vertically

when dispensing. Make sure no bubbles are in the pipet. Discard the first drop as it may contain an air bubble.

3. Place 5 drops of distilled water in each of the wells #2 through #12 in the first row.4. Next, add 5 drops of 0.10 M calcium nitrate to well #2.5. Use an empty transfer pipet to mix the solution by sucking in the solution and blowing it

out several times. The solution in this well, #2, is now 0.050 M in Ca2+ ion.6. Use your empty pipet to remove the solution from well #2 and put 5 drops in well #3.7. Put the remaining solution in the pipet back in well #2.8. Mix the solution in well #3 as before.9. Continue this serial dilution procedure, adding 5 drops of the previous solution to the 5

drops of distilled water in each well down the row until you fill the last one, #12.10. Mix the solution in well #12 and discard five drops.11. Determine the concentration of solution in each well.12. Place 5 drops of 0.10 M NaOH in each of the wells. When the NaOH is added to each

well, the initial concentrations of the reactants are halved, as each solution dilutes the other.

Page 52: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 52 of 11613. Use an empty pipet to mix each of these combined solutions by drawing each solution

into the pipet and squirting it back into the well.14. Wait 4 minutes for ppt to form.15. At one point the concentration of both ions becomes too low to have any ppt form.

Assume that the first well with no precipitate is a saturated solution.16. Repeat the steps except using a serial dilution of 0.10 M NaOH in each well and then

adding 5 drops of 0.10 M Ca(NO3)2 to each well.

Find the first well with no precipitate and record that well as the [Ca2+]. The [OH-] will be 2x that of the calcium ion. Plug those values into the Ksp expression and find a value for Ksp of calcium hydroxide.Find the first well with no precipitate from step 16 and record that as the [OH-]. The [Ca2+] will be half of the [OH-]. Plug those into the Ksp expression and find the Ksp of calcium hydroxide. Compare the two results.

Error analysis. Search the web for the accepted Ksp value of calcium hydroxide and compare to your value.

Page 53: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 53 of 116

Buffer Laptop PaloozaAll work and answers on your own paper.Follow the link on edmodo OR http://www.chem.iastate.edu/group/Greenbowe/sections/projectfolder/flashfiles/acidbasepH/pHbuffer20.html

 Activity 1. What is the pH of a 0.10 M HC3H5O3(aq), lactic acid, solution? Ka = 1.4 x 10-4. pH = __________. (Show ice table)

 Write a chemical equation that illustrates what happens when pure HC3H5O3 is placed in water.

 What is the pH of a 0.10 M NaC3H5O3(aq), sodium lactate, solution? pH = _________________.

 Write a chemical equation that illustrates what happens when solid NaC3H5O3 is placed in water.

 Without using the computer simulation , predict what happens to the pH of 0.10 M HC3H5O3(aq) solution when enough NaC3H5O3(s) is added so that the initial concentration of the NaC3H5O3(aq) is 0.10 M?

The pH of the solution [increase decrease no change] ?

 Use the computer simulation to check your prediction. Was your prediction correct? 

Explain why the pH changes when NaC3H5O3(aq) is added.

Use the computer simulation to add different concentrations and amounts of NaC3H5O3(aq) and HC3H5O3(aq) to each other. Make at least two other solutions. Record what solutions you mixed and the resultant pH.

 

Activity 2. Use the computer simulation to mix the following solutions. Compare the pH of the solutions.

a. 100.0 mL 0.500 M HC3H5O3(aq) / 100.0 mL 0.500 M NaC3H5O3(aq) pH = _____________

b. 100.0 mL 0.100 M HC3H5O3(aq) / 100.0 mL 0.500 M NaC3H5O3(aq) pH = _____________

c. 100.0 mL 0.500 M HC3H5O3(aq) / 100.0 mL 0.100 M NaC3H5O3(aq) pH = _____________

 Activity 3. Using the computer simulation, choose two solutions that when mixed will create a 1.0L buffer solution with the designated pH. Record what two solutions you mixed, what the concentrations were, and the amounts.

a. pH = 4.74 (using acetic acid as one of the components) Ka = 1.8 x 10-5

Page 54: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 54 of 116b. pH = 5.00 (using acetic acid as one of the components)c. pH = 9.25. (using ammonia as one of the components) Kb = 1.8 x 10-5

d. pH = 8.00 (using ammonia as one of the components).

 Activity 4. Choose one of the solutions you created in Activity 3. Test this solution to see if it is a buffer solution by going to "Part II" of the program. How will you know that it is a buffer?

 Write an equation that shows what happens when acid is added to your solution.

 Write an equation that shows what happens when base is added to your solution.

 Activity 5. Calculate the pH of a solution created by mixing 200.0 mL of 0.400 M acetic acid and 200.0 mL of 1.00 M sodium acetate. Hint: The instant the two solutions are mixed what are the initial concentrations of each? Use the computer simulation to confirm your calculation. Build an ice table below to support your calculation.

Page 55: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 55 of 116

Preparation and Properties of Buffer SolutionsFill in the blank spots in the discussion and prelab prior to lab.Calculations and sample provide the basis for your grade. No writeup.Discussion:Buffered solutions are solutions that change pH only slightly with the addition of an acid or base. An important example of a buffered solution is human blood. Many biochemical processes take place within a narrow range of pH values, so it is important to maintain a constant blood pH. In blood, this pH range is between 7.35 and 7.45. The main buffer system in blood is the carbonic acid –hydrogen carbonate buffer system. Carbonic acid, H2CO3, and the hydrogen carbonate ion, HCO3

-, are an acid base pair. Fill in the missing parts of the equation.H+(aq) + ___________ ↔H2CO3(aq)↔ H2O(l) + __________

When the body removes CO2 by respiration, the equilibrium shifts to the right and hydronium ions are absorbed. In normal blood the ratio of bicarbonate to carbonic acid is 20:1. This means that the buffer has a high capability to neutralize additional acid, but little ability to neutralize additional base.In order to accomplish the feat of acting as an acid or a base, a buffer must contain both an acidic and a basic component. These two components should not neutralize each other, but be available to neutralize hydrogen or hydroxide ions from other sources. One way to carry this out is to combine a weak acid-base conjugate pair, such as acetic acid and acetate ions, or ammonium ions and ammonia. Acetic acid-acetate ion buffer can be prepared in several ways. One can combine a solution of acetic acid and sodium acetate; one can start with a solution of acetic acid and neutralize some of it with sodium hydroxide or you can begin with a solution of sodium acetate and partially neutralize it with hydrochloric acid. By varying the type of weak acid or base and changing the concentration ratio of the conjugate acid-base pairs, buffers can be made for any pH value.Write the equation for the dissociation of a weak acid HA below.

Write the Ka expression for the equation.

Solve for [H+] in the Ka expression.

The expression shows that the [H+] is dependent on Ka and the ratio of acid and conjugate base pair. It is possible to calculate quantities needed to prepare a solution of a known pH by choosing an acid whose dissociation constant is somewhere near the desired [H+] and by solving the equation to find the correct ratio of acid/conjugate base. If the concentration of acid and conjugate base are equal then pH = pKa.

The Henderson Hasselbalch equation can be our friend here.

Page 56: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 56 of 116Since Ka x Kb = 1.0 x 10-14, pKa + pKb=14Substitute into the Henderson-Hasselbach equation for pKa in the expression above and write the new equation for the pH of a basic buffer.

Prelab:1. If the pH of a solution is 3.50, calculate the [H+].2. Fill in below with the missing conjugate acid or base.

Conjugate acid Conjugate BaseHC2H3O2

CN-

HSO4-

CO32-

3. Acetic acid has a Ka of 1.8 x 10-5. How many grams of sodium acetate would have to be added to 100. mL 0.10M acetic acid to prepare a buffer with a pH of 4.50?

Procedure:Part I1. Place 20 mL of distilled water in a 100 mL beaker. Test the pH using a pH meter and

record.2. Add one drop of 0.1 M HCl, stir and test the pH and record.3. Repeat with a second and third drop of HCl.4. Repeat steps 1-3 with 20 mL of 0.1 M NaCl instead of water.5. Repeat steps 1-3 with 20 mL of distilled water and 0.1 M NaOH instead of HCl.6. Repeat steps 1-3 with 20 mL of 0.1 M NaCl instead of water and 0.1M NaOH instead of

HCl.Part II 7. To prepare a buffer use a graduated cylinder to add 10 mL of 0.1 M acetic acid and 10

mL of 0.1M sodium acetate to a 100 mL beaker.8. Measure the pH of the buffer solution and record.9. Add one drop of 0.1 M HCl, stir and test the pH and record.10. Repeat with a second and third drop of HCl.11. Prepare a fresh sample of the buffer as in step 7.12. Repeat using drops 0.1 M sodium hydroxide.13. Prepare a buffer by combining 10 mL of 0.1 M ammonia and 10 mL of 0.1 M ammonium

chloride in a 100 mL beaker.14. Repeat the process of drops of HCl and NaOH as described above preparing fresh buffer

each time.Part III 15. Weigh out 1.8 to 2.0 g of a solid acid sample given to you.16. Dissolve the acid in 150 mL of distilled water in a 250 mL Erlenmeyer flask.17. Pour 75 mL of this solution into a second 250 mL Erlenmeyer flask, add 2 drops

phenolphthalein and titrate with 0.2 M NaOH. Record the volume of the titrant used.18. In the first flask you have a weak acid and in the second flask you have a solution of the

sodium salt of the weak acid (i.e. the conjugate base). Make the concentrations of the two solutions the same by adding the same volume of distilled water to flask one as the volume of NaOH you added to flask two.

19. Combine 10 mL of the weak acid in flask 1 with 10 mL of the conjugate base in flask 2, mix and measure and record the pH. Calculate the pKa of the acid.

Page 57: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 57 of 11620. I will assign you the pH of a buffer to prepare. Calculate the volume of weak acid and

conjugate base that you need to prepare 50 mL of a buffer of the assigned pH. Assume the concentrations of the weak acid and conjugate base are equal. Thus we can assume

Write down your calculations and bring your sample to me to be tested.

Cleanup:All glassware gets washed, rinsed.All solutions can go down the sink with water.

Page 58: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 58 of 116

Corrosion CellsData onlyDiscussion:When two dissimilar metals are placed into electrical contact with each other and with a conducting solution a galvanic corrosion cell is formed. Electrons flow from the most active (least noble) metal to the least active (most noble) metal. The most active metal is said to be oxidized. This oxidation process results in the metal’s atoms being converted to cations which enter the conducting solution. If the cell is allowed to continue to exist the most active metal will eventually dissolve away due to oxidation. This uncontrolled oxidation of the most active metal is generally referred to as galvanic corrosion. The least active metal serves as a surface for a reduction reaction to take place. The nature of this reduction reaction is difficult to predict without detailed knowledge of the composition of the conducting solution and the identity of the least active metal. As the electrons flow from the most active metal to the least active metal an electrical potential is generated. The potential generated by metals of similar activity will be quite small while the potential generated by metals of strongly divergent activity can be quite large. Given a voltmeter to supply the electrical connection between the most active and least active metal we can measure the potential generated by the corrosion cell and derive an activity series based upon experimental results. The voltmeter will display a positive reading when the black lead is connected to the most active metal and the red lead is connected to the least active metal. Conversely, the voltmeter will display a negative reading when the black lead is connected to the least active metal and the red lead is connected to the most active metal.

ProcedureAssembling and Testing the CBL Voltmeter1. Plug in the power adapter to a 110VAC outlet and to the power connection on the CBL. 2. Connect the voltage probe into the CH1 slot on the CBL.3. Depress the ON/HALT key on the CBL to turn on the system.4. Depress the MODE key to initialize real time sampling on the CBL. The CBL should be

flashing a potential reading of about 2.0 volts. If this is not the case there is a problem with the CBL system. Consult with your teacher before proceeding.

5. Touch the voltage probe leads together. The reading should drop to just a few millivolts. If this is not the case there is a problem with the CBL system. Consult with your teacher before proceeding.

Preparing the Voltaic Cell Kit for Measurements

6. Obtain a voltaic cell kit, remove the connector collar, and add KCl solution to the glass container to a depth of about 1cm.

7. Obtain a set of 7 metal specimens. Note each specimen is stamped for identification: CO (copper), brass, iron, lead, zinc, Ni (nickel), AL (aluminum)

8. Clamp the nickel specimen to one of the posts on the connector collar and set the connector collar on the glass container. Nickel will be used as a reference for all measurements in part 1.

9. Connect the black tip of the voltage probe to the post attached to the nickel specimen and the red tip to the other post. The system is now ready for measurements.

Page 59: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 59 of 116

Measurements, Part 1

10. Attach the brass specimen to the post where the red voltage probe is connected. Be sure the bottom of the brass specimen reaches the KCl solution.

11. Allow the voltage reading to stabilize and record the value on the data sheet.12. Repeat steps 10 and 11 for each of the remaining metal specimens. Record each voltage

reading on the data sheet.13. Based on the observed potential readings draw up an activity series, including nickel,

arranged in order from least active to most active. Write down the potential reading associated with each metal. The value for nickel will be zero since it was used as a reference.

Part 2, Predictions and Measurements

14. Based on the activity series developed in Part 1, predict the potential readings that would result from lead being used as the reference coupled with each of the other metals. Write your predictions in the table located on the data sheet.

15. Perform a second series of measurements with Lead as the reference and record the results on the table.

Cleanup

1. Once all measurements have been completed dispose of the KCl solution and rinse and dry the metal specimens.

2. Disassemble the CBL system and re-package the components.

Page 60: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 60 of 116Part 1 Experimental Activity Series

Red Black Potential Reading

Brass NickelAluminum NickelCopper NickelZinc NickelIron NickelLead Nickel

Part 2

Red Black PredictedPotentialReading

Measured Potential Reading

Brass LeadAluminum LeadCopper LeadZinc LeadIron LeadNickel Lead

Activity Metal Potential Reading

Least Active

Most Active

Page 61: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 61 of 116

Polyatomic IonsAmmonium NH4

+

Acetate C2H3O2- or CH3COO-

Arsenate AsO43-

Borate BO33-

Bromate BrO3-

Carbonate CO32-

Chlorate ClO3-

Chromate CrO42-

Cyanide CN-

Dichromate Cr2O72-

Dihydrogen phosphate H2PO4-

Hydrogen carbonate (bicarbonate) HCO3-

Hydrogen phosphate HPO42-

Hydrogen sulfate (bisulfate) HSO4-

Hydroxide OH-

Iodate IO3-

Nitrate NO3-

Oxalate C2O4-2

Permanganate MnO4-

Peroxide O22-

Phosphate PO43-

Silicate SiO32-

Sulfate SO42-

Thiocyanate SCN-

Thiosulfate S2O32-

Page 62: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 62 of 116

Molecular GeometryUsing Lewis Structures, the VSEPR and Valence Bond TheoriesPhysical and Chemical properties depend on the geometry of a molecule. BP = Bonding Pairs, LP = Lone Pairs

Electron Pair Geometry: AX2(2 BP)

Molecular Geometry: Linear Electron Pair Geometry: AX3 (3BP or 2BP + 1LP)

Molecular Geometry: AX3 Trigonal Planar Molecular Geometry: AX2E1 Bent/Angular

Electron Pair Geometry: AX4 [4BP or (3BP + 1LP) or (2BP + 2LP)]

Molecular Geometry: AX4

Tetrahedral Molecular Geometry: AX3E1

Trigonal PyramidalMolecular Geometry: AX2E2

Bent/Angular

Electron Pair Geometry: AX5 [5BP or (4BP + 1 LP) or (3BP + 2LP) or (2BP + 3LP)]

Molecular Geometry:

AX5

Trigonal Bipyramidal

Molecular Geometry:AX4E1

See-saw

Molecular Geometry:AX3E2

T-structure

Molecular Geometry:AX2E3

Linear

Page 63: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 63 of 116

In AX5: More electronegative atoms in the axial positions, (bond will be a bit longer), and lone pairs and double bonds in the equatorial position, see see-saw, T- and linear-structures.

Electron Pair Geometry AX6 [6 BP or (5BP + 1 LP) or (4BP + 2LP)]

Molecular Geometry: AX6

OctahedralMolecular Geometry: AX5E1

Pyramidal PlanarMolecular Geometry: AX4E2

Square Planar

To predict molecular geometry, find the nuclei of the atoms in three dimensional space, after defining the electron pair geometry from eg AX3E2 as AX3+2 = AX5, remember the distortions.Distortions in bond angles are influenced by (1) the lone pairs on the central atom and (2) the size of atoms, eg

H2O OF2 OCl2

HOH 104.5 ° FOF 103 ° ClOCl 111 °

With lone pairs on the central atom, the bond angle will not be the AX4 109.5 °. The HOH bond will be smaller than the standard 109.5 °, because of the larger volume of the two lone pairs on the oxygen atom, but in OF2 the more electronegative F atoms will draw the lone pairs closer to the OF single bonds, influencing the bond angle more. The ClOCl bond angle is measured as 111 °, larger than the expected 109 °, because of the larger chlorine atoms, they move away from each other, repulsion of the electronic charges on the large atoms.

Page 64: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 64 of 116

Rules of Writing EquationsSynthesis (Use Gas Ion Chart)1. Combination of elements.

2Ag (s) + Cl2(g) 2AgCl(s)

2. A metal oxide plus water yields a base.Na2O(s) + H2O(l) 2NaOH(aq)

3. A non-metal oxide plus water yields an acid.SO3(g) + H2O(l) H2SO4(aq)N2O5(g) + H2O(l) 2HNO3(aq)

4. A non-metal oxide plus metal oxide yields a salt.MgO(s) + CO2(g) MgCO3(s)

Decomposition (Use Gas Ion Chart)1. A base when heated decomposes into a metal oxide plus water.

2LiOH(aq) Li2O(s) + H2O(l)

2. An acid when heated decomposes into a non-metal oxide plus water.

2H3PO4(aq) P2O5(s) + 3H2O(l)

3. Metallic carbonates decompose into a metal oxide and carbon dioxide.

CaCO3(s) CaO(s) + CO2(g)

4. Metallic chlorates decompose into a metallic chloride and oxygen.2KClO3(s) 2KCl(s) + 3O2(g)

5. Some compounds decompose with electricity or just simply decompose into their basic elements.

electricity2H2O(l) 2H2(g) + O2(g)

Single Replacement Reactions (Use activity series)1. A metal will replace a less active metal in a compound.

Al(s) + 3AgNO3(aq) Al(NO3)3(aq) + 3Ag(s)

2. Some metals will replace the H in water to produce a metallic hydroxide and hydrogen gas.

2Na(s) + 2H2O(l) 2NaOH(aq) + H2(g)

3. Some metals will replace the H in acid to produce a salt and hydrogen gas.Mg(s) + 2HCl(aq) MgCl2(aq) + H2(g)

4. A halogen (VIIA) will replace a less active halogen in a compound.

Page 65: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 65 of 116F2(g) + CaBr2(aq) Br2(g) + CaF2(aq)

Double Replacement Reaction States of matter are important. Use the solubility rules.1. An acid and a base yield a salt and water.

H2SO4(aq) + 2NaOH(aq)Na2SO4(aq) + 2H2O(l)

2. A salt and an acid yield a different salt and a different acid.HNO3(aq) + NaCl(aq) NaNO3(aq) + HCl(aq)

3. A salt and a salt yield a salt and a salt.CuSO4(aq) + NaClO4(aq)Na2SO4(aq) + Cu(ClO4)2(aq)

4. Some compounds decompose when made in double replacement reactions If carbonic acid is made it decomposes into water and carbon dioxide gas. If ammonium hydroxide is made it decomposes into water and ammonia (NH3)

gas. If sulfurous acid is made it decomposes into water and sulfur dioxide gas.

Gas Ion ChartGas IonSO2 SO3

2-

SO3 SO42-

CO2 CO32-

N2O3 NO2-

N2O5 NO3-

P2O3 PO33-

P2O5 PO43-

H2O OH-

NH3 NH4+

Solubility Rules All sodium, potassium, ammonium, and nitrate salts are soluble in water.

Activity Series of Metals

Most Active Least ActiveLi Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb As Bi Cu Hg Ag Pt Au

Page 66: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 66 of 116

AP Chemistry SyllabusRoom N216 

Email: [email protected]

School voicemail: 772-2547 ext 651

Home phone: 772-8044 (Please call only if absolutely necessary, no calls past 9pm)

Course DescriptionChemistry is the study of the properties, composition, structure, and behavior of matter.  A detailed list of topics to be studied is described below in the "Course Content Outline."  The instructor will use a variety of teaching methods including lecture, demonstrations, laboratory exercises, and written assignments (both in-class and homework). 

Pre-entry Standards and ExpectationsIn order to achieve a minimum passing grade for this course, a student must be able to follow and apply basic safety requirements, collect and analyze data, manipulate laboratory equipment and apparatus, perform laboratory work, prepare and interpret graphs, perform mathematical calculations using algebra, prepare written reports, communicate effectively both orally and in writing, solve problems, read, study, and complete assignments.  Students must be prepared to devote at least as much time to study and completing assignments outside of class as the time spent in class.

Many students find Chemistry to be the first class in which they’ve ever had to study. Most students cannot expect to make A’s or B’s without going home nightly, looking over the material covered and doing some self diagnostics asking themselves “Do I understand this concept” or “Can I work this problem”. If you will identify weaknesses in your understanding and ask the next day, you will stay current. It is also necessary to access edmodo and take notes from the podcasts so we can make better use of time.

I am assuming you are knowledgeable about the concepts covered in Chemistry I and I will expect you to use those skills. I will only be doing minor review on the content covered in Chemistry I.

Supplementary Materials:

It is suggested that you purchase an AP Chemistry prep manual printed by Princeton Review or Cliff’s. Be sure to purchase one for the 2014 redesigned curriculum. Use this as a supplement of problems and concepts.

There will also be podcasts posted to edmodo and/or mediacast and/or youtube and/or dropbox for you to download and watch. You can also obtain the vodcasts on a DVD to take home and copy over to your computer or on a DVD to play in a DVD player. We will be employing a flipped classroom approach this year. Students will be responsible for watching video content as their homework and the majority of the time in class will be spent discussing lab results, working problems and building mastery. This approach makes the student responsible for their own education and moves the teacher from someone who pours knowledge into their head to a coach or facilitator who is available to help the student in their quest for success.

Page 67: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 67 of 116GradingYou will be graded on chapter questions, worksheets, written laboratory activities, assigned reports, projects, tests and in-class activities. At times, you will earn grades for doing assignments in class. If you choose to do the assignment as instructed, you will earn a good grade. If not, you will earn a bad grade.

No late work or unexcused absence work will be accepted.

Tests will be a combination of multiple choice and free response to mimic the AP exam. A large part of Chemistry is problem solving and you will be expected to show a proficiency in that skill.

Your grade each nine weeks will be calculated as follows:

30% Daily Grades

Labs- lab quizzes, lab reports and conduct in lab. Labs must be done in a lab notebook approved by the instructor. See the lab manual in print or online for information on lab grading and format.

Effort- Being prepared, listening, participation, etc.

Homework and classwork – Your homework will be taking notes and looking at content on podcasts. Students will be quizzed on their notes and content and problems will be graded for accuracy in class.

70% Tests Tests will be timed. The AP exam is a timed exam and it is important for students to develop time management skills.

Test Corrections

In order to reinforce concepts missed on tests, students will be allowed to come in before and after school and make corrections to the test. Students may come in the morning and/or afternoon communicated to the class by the teacher. Students who come in the morning may come at 7:20 and must get a pass from Mr. Elegante the day before. Students staying after school may stay from 3:30 – 4:20. There will not be makeup days for test corrections. In order to do test corrections, students must come with their notes from the podcasts. A student who has not taken the time to watch the podcasts and take notes will not get to do test corrections. Students must provide the correct answer, a description of why the other choices are incorrect and an explanation of why the student missed that particular question. If the work is incomplete or is not done to the standards set by Mr. Elegante, points will not be awarded back to the student. Students can earn ¼ of the points missed back on their test grade. No points will be earned back on free response questions, only the multiple choice and mathematical computations parts of a test. The student may use their text and are encouraged to seek help from Mr. Elegante and classmates when doing corrections. No corrections will be done at home.

You may come see me any time before or after school to see about your grades.

Grades will be entered into the INOW system allowing parents and students to access grades using the internet.

Make-ups. You need to schedule a makeup time with Mr. Elegante before or after school. Makeups will begin at 7:15 AM before school or directly after school. It is the responsibility of the student to ask for a hall pass for make-up tests.  If a test is missed due to an excused absence, the student will have two weeks after the absence to make it

Page 68: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 68 of 116up.  Students who arrive late for a make-up test may NOT receive extra time to finish the test and any uncompleted sections will be counted as incorrect. 

End of Term Exam. The end of term exam is a comprehensive test given at the end of the semester, which counts for 20% of the course grade. The final exam is a scaled down version of an AP exam with multiple choice and free response portions as well as a lab component.

Class Rules

In addition to the Student Code of Conduct and academic conduct policies found in the BJHS Student Handbook, please observe the following rules:

1. Always have a notebook, a pen or pencil, an issued textbook, and a calculator.2. Always be attentive and follow directions.3. Always go immediately to your seat when the tardy bell rings, listen for directions,

and be ready to begin work.4. Never create distractions when someone is addressing the class or the teacher, or

during a test or assignment.5. Never touch the person or belongings of others.6. Never throw anything.7. Never abuse restroom breaks by using them unnecessarily.8. For some assignments, such as tests, a grade of "zero" (0) will be assigned, and

parents/legal guardians will be notified for the following unauthorized behavior:a. Any form of communication between students (talking, passing notes, using

signals, etc.),b. Having access to any unauthorized materials (notes, books, etc.),c. Submitting and attempting to receive credit for work performed by someone

other than yourself (by copying, plagiarizing, etc.).

The National AP Chemistry Exam Students will take the national AP Chemistry Exam on Monday May 5, 2014.  Most, but not all colleges will grant some form of credit or advanced placement for a minimum score on the exam.  Student should contact the individual institutions they are interested in attending to find out their most current policies regarding their acceptance or use of AP grades. There is a link on edmodo that helps you find this information.Bob Jones has joined the A+ College Ready Program. This program provides professional development for AP instructors, funding to purchase lab equipment, $100 gift card to any student who makes a qualifying score (3, 4 or 5) on an AP exam in Science, Math or English. The program also provides student study session on January 25, March 8 and April 26 at Huntsville High School from 8:30 – 2:30. These sessions bring in top notch AP teachers to review material with the students, provide lunch to the students and door prizes. I encourage all students to attend these Saturday sessions. I’ll be there if I am not doing a review session for another school system.

TextChemistry by Zumdahl and Zumdahl, 6th ed., Houghton Mifflin Company, 2003.

Page 69: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 69 of 116

Description of Content CoveredIntroductory and review concepts (½ week)Primarily completed during Chemistry I or PreAP Chemistry. It is assumed you know the following topics in depth.1. Measurement topics2. Atomic theory3. Symbols and formulas4. Periodic table5. Ionic and covalent bonds6. Nomenclature7. Reactions

7.1. Types of Reactions7.2. Solubility Rules7.3. Balancing equations

8. Stoichiometry8.1. Percent composition8.2. Empirical formulas8.3. Solutions8.4. Mole relationships

8.4.1. percent (%) yield8.4.2. Limiting reagents

9. Gas Laws9.1. Ideal gases9.2. Boyle’s law, Charles’ law and Gay-Lussac’s Law9.3. Dalton’s law of partial pressure9.4. Ideal Gas Law and Combined Gas Law

10. Electronic Structure10.1. Evidence for the atomic theory10.2. Atomic masses10.3. Atomic number and mass number10.4. Electron energy levels: atomic spectra, quantum numbers, atomic orbitals,

hybridized orbitals10.5. Periodic relationships10.6. Lewis structures

11. Arrhenius theory11.1. Properties of acids and bases11.2. Acid base neutralization

12. Lowry-Brønsted theory12.1. Amphiprotic species12.2. Relative strengths of acids and bases12.3. Polyprotic acids

13. Lewis acids and bases. Comparison of all three definitions.

Types of Chemical Reactions and Solution Stoichiometry(1 week)Chapter 41. Oxidation reduction reactions

1.1. Oxidation number1.2. Electron transport

Page 70: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 70 of 1162. Stoichiometry

2.1. Net ionic equations2.2. Balancing equations including redox2.3. Mass-volume relationships with emphasis on the mole

Thermochemistry (1.5 weeks)Chapter 63. Thermal energy, heat, and temperature4. Calorimetry5. Enthalpy changes6. Hess’s Law

Chemical Thermodynamics (1 ½ weeks) Chapter 161. State functions2. Laws of thermodynamics3. Relationship of change of free energy to equilibrium constants

Electrochemistry ( 1 ½ weeks)Chapter 171. Galvanic cells and cell potentials2. Electrolytic cells3. Electrochemistry: electrolytic and galvanic cells; Faraday’s laws; standard half-cell

potentials; Nernst equation; prediction of the direction of redox reactions

The Kinetic-Molecular Theory and States of Matter (1 week)Chapters 5, 101. Gas Laws

1.1. RMS velocity1.2. Graham’s law

2. Kinetic-Molecular theory2.1. Avogadro’s hypothesis and the mole concept2.2. Kinetic energy of molecules2.3. Deviations from ideality

3. Liquids and solids3.1. Liquids and solids comparisons3.2. Changes of state3.3. Structure of solids including lattice energies

Bonding and Molecular Structure (1 ½ weeks)Chapters 8 and 91. Binding forces

1.1. ionic1.2. covalent1.3. metallic including alloys1.4. hydrogen bonding1.5. Van der Waals

2. Relationships to states, structure, and properties of matter3. Polarity of bonds, Electronegativities4. VSEPR

Page 71: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 71 of 1164.1. Geometry of molecules and ions4.2. Structural, geometric, optical, and conformational isomerism of:

4.2.1. Organic molecules4.2.2. Coordination complexes

5. Polarity of molecules6. Relation of molecular structure to physical properties7. Complex Ions

7.1. Names and structures of complex ions7.2. Bonding in coordination systems7.3. Formation of complex ions (reactions).7.4. Practical applications

Solutions and Colloids (1 week)Chapter 111. Types of solutions2. Factors affecting solubility3. Raoult’s law4. Nonideality of solutions

Chemical Kinetics (1 week)Chapter 121. Rate of reaction2. Order of the reaction3. Factors that change the rate of the reaction

3.1. Temperature3.2. Concentration3.3. Nature of substance3.4. Catalysts

4. Relationship between the rate-determining step and the reaction mechanism

Equilibrium (1 week)Chapter 131. Concept of dynamic equilibrium including Le Chatelier’s principle2. Equilibrium constants and the law of mass action

Weak Ionic Equilibrium (1 weeks)Chapter 151. Weak acids and bases

1.1. pH1.2. pOH1.3. Buffer systems1.4. Hydrolysis

2. Solubility Product2.1. Factors involving dissolution2.2. Molar solubility

Page 72: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 72 of 116

End of Year Review

Atomic Structure:Atomic Number = # of protons = # of electrons in a neutral atomMass Number = protons and neutrons (Isotopes)

Mass #-238U Protons=92 Electrons 92Atomic # 92 Neutrons=238-92=146

Electron Configurations:

1. Order of filling: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s2

2. Atoms gain or lose electrons to obtain a filled octet a) when transition metals lose electrons, they lose from the “s” sublevel first

ex. Fe: 1s22s22p63s23p64s23d6 Fe3+ : 1s22s22p63s23p63d5

b) metals get oxidized (lose electrons) to form cations (pos.) while nonmetals get reduced (gain electrons) to form anions (neg.).

4. Oxidation states vs. group # (Group # = highest possible oxidation state)

Group: 1= +1 14 = +4 (Except Carbide =C-4) 17 = -1 2 = +2 15 = -3 18 = 0

3 = +3 16 = -2

Transition metals have multiple oxidation states but (+2) is the most common b/c of “s” sublevel being lost first.

*Hund’s rule: diamagnetic: No unpaired electrons Pauli Exclusion Principle paramagnetic: unpaired electrons Shielding Effects (penetration) ferromagnetic: Fe, Co, Ni Heisenberg Uncertainty Principle

Periodic Trends:

I. Atomic Size(radius) : On Periodic Table Increases ←↓

a) decreases left to right b/c electrons are in same energy level therefore they do not add size but nuclear charge increases pulling electron cloud in more tightly

b) increases going down in a group b/c adding more energy levels Greater difference in size between energy levels 1,2, & 3 than between 4,5,6, & 7 b/c energy levels are not evenly spaced.

(Transition metals are all nearly the same size)

Page 73: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 73 of 116II. Ionization Energy = inversely related to size (the bigger the atom, the lower the

ionization energy)a) exceptions to trend occur when electrons are in filled or ½ filled sublevel

Between groups IIA and IIIA - Increased shielding by "s" electrons

b) Between groups VA and VIA - Increased electron ↔ electron repulsions because of electrons beginning to pair up in "p" orbitals

c) ions become very stable (high I.E.) once they obtain a noble gas config.

Intermolecular Forces4 types of substances

1. Ionic: metal w/ nonmetala) High melting & boiling points b/c of high lattice energy binding ions together1. Coulumb’s Law: ΔH = Kq1q2 (q1 & q2 = charges on ions)

(lattice energy) r

2. As the product of the charges increases, the electrostatic attraction increases, therefore higher melting and boiling points

3. The bigger the ions, the lower the electrostatic attractions, therefore the lower melting and boiling points.

b) Do not conduct electricity in the solid state b/c the ions are held rigidly in place. they do conduct in the liquid (molten) and aqueous states b/c the ions dissociate and are free to move.

c) Brittle and therefore neither malleable nor ductile

d) Form large crystals-no molecules

2. Metallic: Like metal atoms bonded together a) conduct electricity in the solid and liquid states b/c of the “sea of free-floating

valence electrons.”

b) Malleable and ductile b/c (see part a)

c) Vary wide variety of melting points and boiling points. From Hg = liquid to W = solid w/ highest melting point (Generally the melting point is greater than 300o C and therefore solids at room temperature)

d) Insoluble in H2O

e) Mixture of metals is called an “Alloy”

3. Covalent Network (Large crystals of nonmetals covalently bonded to one another). a) only Cdiamonds, Cgraphite, SiO2, SiC

\Allotropes/ (Quartz) b) Do not conduct electricity (except Graphite)

Page 74: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 74 of 116

c) Diamonds = sp3 3d crystal-very hard Graphite = sp2 2d crystal-forms loose layers

d) insoluble in H2O

e) High melting and boiling points and therefore solids at room temperature

4. Covalent Molecular: nonmetal w/ nonmetal a) nonmetals bond with each other to form molecules

b) molecules are held together by weak intermolecular forces called van der Waals forces

1. London Forces: Increases with the number of electrons in the molecule. (size of the molecule)

a) The weakest of intermolecular forcesb) The only force of attraction between nonpolar moleculesc) Also called: Dispersion, Induced Dipole, Instantaneous Dipole

2. Dipole-Dipole: The attraction between oppositely charged portions of polar molecules.

a) The greater the dipole moment (a measurement of the molecule’s polarity) the stronger the D.P. –D.P. attraction.

b) Stronger than London forces

3. Hydrogen Bonds: H atom must be attached directly to a N, O, or F.a) Strongest of the 3 intermolecular forces but covalent network and ionic bonds are still much stronger

Bonding*Lewis Dot Structure: #valence electrons = group number

*Atoms want to achieve a stable octet noble gas configuration *exceptions to rule: Be, Al, B - form stable molecules w/ 6 e- around central atom

*Resonance- occurs when molecule can have more than 1 possible structure (always has double bonds/triple bonds)

Ex. O=N-O ↔ O-N=O (bond order = 1½ )

*all the bonds are actually the same length (average of the 2 bonds) *Double bonds and Triple Bonds bond length: single(longest) → double → triple(shortest)

Diatomic elements: H2, O2, N2, Cl2, F2, I2, Br2

*all form single bonds except: O2 (double bond) O=O N2 (triple bond) N≡N*Sigma and Pi bonds-

Page 75: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 75 of 116first bond between any two atoms=sigma bond (strongest)second and third bonds = pi bondsbond order = strength of bond (single, double, triple)

*Polar vs. Nonpolarpolar: bond that acquires positive and negative ends(has lone pair, asymmetrical)nonpolar: shared pair of electrons is equally shared, no net displacement

(symmetrical- no lone pair on central atom) *No dipole moment

*Likes Dissolve Likes Polar dissolves only into polar (*Water is Polar) Ionic dissolves into polar

Nonpolar dissolves only into nonpolar

*Electronegativity-measure of ability of an atom to attract electrons to itself most electronegative element: F, least: Fr

*structural isomers- appear to have same structure but are different ex. C2H5OH and CH3OCH3

^ ^ Hydrogen Bond No H bond

*VSEPR theory (valence shell electron pair repulsion) -bonding and nonbonding pairs repel to obtain the farthest distances between each other molecular shapes: see handout in this document

*Hybridization: s, p, and d orbitals can be mixed to form new sets of orbitals

Hybrid Orbitals Required (Could Have) 2 sp linear AX2 triple, double, or single bonds 3 sp2 trigonal planar AX3 double bonds, or single bonds 4 sp3 tetrahedral AX4 single bonds *Add up exponents to see how many bonds

Differences in Boiling Points

-for covalent compounds, always look for Hydrogen bonding-also look for London Forces (vary w/ # of electrons ex. bigger molecules have higher B.P.)-For ionic compounds: Coulombs Law ΔH= KQ1Q2

r lattice energy-energy holding oppositely charged ions together

-Heat of Vaporization-energy needed to vaporize something at its boiling point (Latent heat) -varies with strength of attractive force

- Heat of Fusion - energy needed to melt a substance at its melting point. (Latent Heat)

Page 76: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 76 of 116

GasesGas Laws:1 atm = 760mm Hg (torr)1. Boyle’s Law: P1V1 = P2V2

Pressure & volume are inversely proportional

2. Charles’ Law: V1/T1 = V2/T2

Volume is directly proportional to temperature

3. Gay Lussac’s Law: P1/T1 = P2/T2 Pressure is directly proportional to temperature (T is in Kelvin)

4. Avogadro’s Law: N1/V1 = N2/V2

Moles of gas is directly proportional to volume

5. Ideal Gas Law: PV = nRT R = universal gas constant = 0.0821 (L*atm)/(k*mol) Another form: MM = (dRT)/P (dirty P)(molar mass = MM, density = d)

6. Dalton’s Law of Partial Pressure: PT = P1 + P2 + P3 … Partial Pressure of a gas = X(Ptotal) (X = mole fraction of gas)(P = total pressure) PT = XAP˚ A + XBP˚ B

(ideal solution with more than one volatile compound)

STP = 1atm, 273K1 mol gas = 22.4L gasR = 0.0821 (L*atm)/(mol*K) = 8.314 Joules/(mol*K)

Ideal Gases versus Real Gases

2 assumptions of ideal gas:o no attractive forces between moleculeso molecules are infinitely small

Real Gases behave ideally at:o High temperatureo Low pressure

Page 77: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 77 of 116Thermodynamics

- thermodynamics – science of heat & work- ΔH = enthalpy change (heat transferred) - ΔH = (Hproducts – Hreactants)

- ΔS = entropy (measure of randomness) increase in entropy =>solid → liquid → gas(least entropy) (most entropy)

- ΔG = ΔH – TΔSWhen ΔH = TΔS (and both ΔH and

ΔS are positive/negative) Then ΔG = O (meaning at equilibrium)

- ΔG = - RTlnKR = 8.314K = equilibrium constant

Kinetics

- reaction mechanisms – detailed pathways taken by atoms and molecules as a reaction proceeds

- factors that affect reaction rates:1.) concentration of reactants2.) temperature3.) catalysts4.) orientation of molecules

- Rate Equation (Law): rate = K[A]x[B]y

K = rate constant; ‘x’ and ‘y’ can only be determined by experimental dataΔrate = (Δ[conc]) x

◊ Rate Law dependent upon ◊ Slowest Step ◊ of reaction mechanisms

- Order of Reaction is sum of the exponents (x + y …)

- If concentration of reactant is increased, the rate is usually increased (unless the exponent is 0 – not involved in rate law)

Negative value Positive valueΔH Exothermic Endothermic

ΔS Entropy decrease Entropy increase

ΔG Spontaneous Non Spontaneous

Less than 1 Greater than 1K Non Spontaneous

(reactant favored)Spontaneous (product favored)

Slow Rates Fast Rates▪ strong bonds in reactant molecules

▪ catalyst▪ high temp.▪ high [reactant]▪ low activation energy

Page 78: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 78 of 116

▪ catalyst lowers activation energy

▪ temp increase allows more molecules to overcome EA

▪ 2 criteria for a mechanism: 1.) steps must add up stoichiometricly. 2.) rate law of rate def’n step = rate law.

Equilibrium

▪ K does not change unless temp. changesEquilibrium expression for:

aA + bB ↔ cCdD

K = [C]c[D]d ([products]/[reactants]) [A]a[B]b

Page 79: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 79 of 116▪ only gases and aqueous included in equilibrium expression

Kc = equilibrium constant of concentrationKp = equilibrium constant of pressure

Kp = Kc(RT) ΔnΔn = total moles gaseous product – total moles gaseous reactantR = 8.31

K = 1 at equilibrium when [prod.] = [reactants], RARE

K > 1 product favored (spontaneous)K < 1 reactant favored (non spontaneous)Q = Reaction Quotient

Q > K reactant favored (non spontaneous)Q < K product favored (spontaneous)Q = K at equilibrium

Le Chatelier’s Principle – a change in any of the factors that determine equilibrium conditions of a system cause the system to change in such a manner to counteract the effect of the change▪ factors that effect equilibrium:

1. change in concentration2. change in temp3. change in volume4. addition of catalyst

2A + B ↔ C + D Shifts1.) Add A / Remove D →2.) Remove B / Add C ←3.) Increase Volume ← (Shifts to side w/ greater moles of gas)4.) Decrease Volume → (Shifts to side w/ fewer moles of gas)

If endothermic reaction, X + H → Y1.) Add heat, Shifts right2.) Remove heat, Shifts left

If Exothermic X → Y + H1.) Add heat, Shifts left2.) Remove heat, Shifts right

Electrochemistry

Oxidation Reduction- lose electrons - gain electrons- metals get oxidized - non metals get reduced- occurs at ANODE - occurs at CATHODE- cations formed - anions formed- has a negative Ecell - has a positive Ecell

- E˚ cell = Ered - Eox

˚ indicates standard conditions (25˚C, 1.0 atm)▪ if Ecell ( + ) spontaneous

( - ) non spontaneous

Page 80: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 80 of 116

- Common Oxidizing Agents :KMnO4 → Mn2+

K2Cr2O7 → Cr3+

Concentrated HNO3 → NO2

Dilute HNO3 → NOH2O2 → H2O + O2

Getting reduced → ← Getting oxidizedSalt Bridge – device used for maintaining balance of ion

charges in the cell compartments

- 1 Coulomb = current (amps) * time (seconds)- 1 Faraday = 96,500 coulombs = 1mol e-

- Nernst Equation: E = E˚ - [(0.0257V)/n]*lnQ at 25˚C

Cathode(-) Anode(+)

Page 81: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 81 of 116

Solution Practice1. A 20.0 g sample of HF is dissolved in water to give 2.0 x 102 mL of solution. The

concentration is?2. How many grams of NaCl are contained in 350. mL of a 0.250 M solution of sodium

chloride?3. What volume of 18.0 M sulfuric acid must be used to prepare 15.5 L of 0.195 M

H2SO4?4. Write the net ionic equation for the reaction of calcium bromide and sodium

phosphate.5. Which of the following is NOT a weak acid?

a. HCNOb. HBrc. HFd. HNO2

e. HCN6. You have exposed electrodes of a light bulb in a solution of sulfuric acid such that the

light bulb is on. You add a dilute solution and the bulb grows dim. Which of the following could be in the solution? Explain your anwer.

a. Ba(OH)2

b. NaNO3

c. K2SO4

d. Ca(NO3)2

e. Huh?7. What precipitates when you combine sodium sulfide and copper II chloride solutions?8. You have 75.0 mL of a 2.50 M solution of sodium chromate. You also have 125 mL

of a 2.50 M solution of silver nitrate. a. Calculate the concentration of sodium ion when the two are added together. b. Calculate the concentration of chromate ion. c. Calculate the concentration of silver ion.

Page 82: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 82 of 116

Redox Practice

Acid1. I¯ (aq) + ClO¯(aq) ¾ I3¯(aq) + Cl¯(aq) 2. As2O3 (s) + NO3¯ (aq) ¾ H3AsO4 (aq) + NO (g) 

3. Br¯ (aq) + MnO4¯ (aq) ¾ Br2 (l) + Mn2+ (aq)

4. Cr2O72−(aq) + HNO2(aq)   Cr3+(aq) + NO3

−(aq)

5. MnO4–(aq) + C2O4

2–(aq) CO2(g) + Mn2+(aq)

Base1. Al(s) + MnO4¯ (aq) ¾ MnO2(s) + Al(OH)4¯ (aq) 2. NO2¯ (aq) + Al(s) ¾ NH3(aq) + AlO2¯ (aq) 3. Cr(s) + CrO4

2-(aq) ¾ Cr(OH)3(s) Note: Cr(OH)3 is found in BOTH half reactions!

1.... Li3N(s) + ... H2O(l) ...Li+(aq) + ...OH-(aq) + ...NH3(g)When the equation above is balanced and all coefficients reduced to lowest whole-number terms, the coefficient for OH-(aq) is

2. …Cr2O72-(aq) + …H2S(g) + …H+(aq) …Cr3+(aq) + …S(s) + …H2O(l)

When the equation above is correctly balanced and all coefficients are reduced to lowest whole-number terms, the coefficient for H+(aq) is

3. 2 MnO4-(aq) + 10 Br-(aq) + 16 H+ (aq) 2 Mn2+(aq) + 5Br2(aq) + 8 H2O(l)

How many electrons are transferred in the reaction represented by the balanced equation above?4. ...H+(aq) + ...NO2

-(aq) + ...Cr2O72-(aq) ...Cr3+(aq) + ...NO3

-(aq) + ...H2O(l)When the equation above is balanced and all coefficients are reduced to lowest whole number terms, the coefficient for H2O(l) is

Page 83: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 83 of 116AP Calorimetry worksheet 1. It takes 78.2 J of heat to raise the temperature of 45.6 g of lead by 13.3˚C. Calculate the

specific heat of the lead.

2. It takes 585 J of heat to raise the temperature of 125.6 g of mercury from 20˚C to 53.5˚C. Calculate the specific heat of the mercury.

3. A 30 gram sample of water at 280K is mixed with 50 grams of water at 300K. Calculate the final temperature of the mixture assuming no heat is lost to the surroundings.

4. A 15 gram sample of nickel metal is heated to 100˚C and then dropped into 55 grams of water, initially at 23˚C. Assuming that all the heat lost by the nickel is gained by the water calculate the final temperature of the nickel- water mixture. The specific heat of nickel is 0.444 J/g˚C.

5. A 28.2 gram sample of a metal is heated to 99.8˚C and then placed in a coffee-cup calorimeter containing 150.0 grams of water at 23.5˚C. After the metal cools, the final temperature of the metal-water mixture is 25˚C. Calculate the specific heat of the metal, assuming no heat escapes to the surroundings or is transferred to the calorimeter.

6. A 46.2 gram sample of copper is heated to 95.4˚C and then placed in a calorimeter containing 75.0 grams of water at 19.6˚C. The final temperature of the copper-water mixture is 21.8˚C. Calculate the specific heat of copper, assuming that all the heat lost by the copper is gained by the metal.

7. A coffee-cup calorimeter initially contains 125 grams of water at 24.2˚C. 10.5 grams of potassium bromide, also at 24.2˚C is added to the water. After the KBr dissolves, the final temperature of the mixture is 21.1˚C. Calculate the heat of dissolving the salt in J/g and kJ/mol. Assume that the specific heat and density of the solution is the same as that of water, and that no heat is transferred to the surroundings or calorimeter.

8. In a coffee-cup calorimeter, 100 mL of 1.0M NaOH solution and 100 mL of 1.0M HCl solution are mixed. Both solutions were originally ate 24.6˚C.

After the reaction, the final temperature of the solution is 31.3˚C. Assuming that the solution has the density and specific heat of water, calculate the heat of neutralization of HCl by NaOH. Assume no heat is lost to the surroundings or calorimeter.

9. In a coffee-cup calorimeter, 50 mL of 0.1M AgNO3and 50 mL of 0.1 M HCl are mixed together. The equation for the net ionic reaction is:

Ag+1 + Cl-1 ----- > AgCl The two solutions were initially at 22.6˚C and the final temperature is 3.4˚C. Calculate the heat that accompanies this reaction in kJ/mole of AgCl formed. Assume that the combined solution has the density and specific heat of water.

Page 84: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 84 of 116

Thermochemistry: Standard Heats of Formation WorksheetUse the standard molar heat of formation table to calculate H for:

1. 2 NO(g) + O2(g) ---> 2 NO2(g) 

2. NaOH(s) + HCl(g) ----> NaCl(s) + H2O(g)

3. 2 CO(g) + O2(g) ---> 2 CO2(g)

4. CH4(g) + 2 O2(g) ---> CO2(g) + 2 H2O(l) 

5. 2 H2S(g) + 3 O2(g) ---> 2 H2O(l) + 2 SO2(g) 

6. f) SO2(g) + ½ O2(g) ---> SO3(g)

7. CaO(s) + H2O(l) ---> Ca(OH)2(s)

8. N2(g) + 3 H2(g) ---> 2 NH3(g)

9. C6H6(l) + 1½ O2(g) ---> 6 C(s) + 3 H2O(l) 

10. NH3(g) + HCl(g) ---> NH4Cl(s) 

Page 85: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 85 of 116

Gas laws practice. You can keep me as your own but you really need to do the work and all on a separate sheet, don’t you think?

1. Is a gas in its standard state at 298 KA) LithiumB) NickelC) BromineD) UraniumE) Fluorine2. A hot-air balloon rises. Which of the following is the best explanation for this observation?A) The pressure on the walls of the balloon increases with increasing temperature.B) The differences in temperature between the air inside and outside the balloon produces

convection currents.C) The cooler air outside the balloon pushes in on the walls of the balloon.D) The rate of diffusion of cooler air is less than that of warmer air.E) The air density inside the balloon is less than that of the surrounding air.3. A rigid metal tank contains oxygen gas. Which of the following applies to the gas in the tank when additional oxygen is added at constant temperature?A) The volume of the gas increasesB) The pressure of the gas decreasesC) The average speed of the gas molecules remains the sameD) The total number of gas molecules remains the sameE) The average distance between the gas molecules increases4. W(g) + X(g) Y(g) + Z(g)Gases W and X react in a closed, rigid vessel to form gases Y and Z according to the equation above. The initial pressure of W(g) is 1.20 atm and that of X(g) is 1.60 atm. No Y(g) or Z(g) is initially present. The experiment is carried out at constant temperature. What is the partial pressure of Z(g) when the partial pressure of W(g) has decreased to 1.0 atm?

5. Equal numbers of moles of He(g), Ar(g), and Ne(g) are placed in a glass vessel at room temperature. If the vessel has a pinhole sized leak, which of the following will be true regarding the relative values of the partial pressures of the gases remaining in the vessel after some of the gas mixture has effused?A) PHe < PNe < PAr

B) PHe < PAr < PNe

C) PNe < PAr < PHe

D) PAr < PHe < PNe

E) PHe = PNe = PAr

6. Which of the following gases deviates most from ideal behavior?A) SO2

B) NeC) CH4

D) N2

E) H2

7. Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas.

1. Which contains the largest number of particles?2. In which flask are the molecuels least polar and therfore most ideal in behavior?3. In which flask do the molecules have the highest average velocity?

10. The valve between a 5L tank containing a gas at 9 atm and a 10 L tank containing a gas at 6 atm is opened. Calculate the final pressure in the tanks.

Page 86: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 86 of 11611. A 4.40 g piece of solid carbon dioxide is allowed to sublime in a balloon. The final volume of the balloon is 1.00 L at 300. K. What is the pressure of the gas?12. Calculate the root mean square velocity for the oxygen molecules in a sample of oxygen gas at 25.0C.13. It is found that 250. mL of gas at STP has a mass of 1.00 g. What is the molar mass?14. Order the following in increasing rate of effusion:

F2, Cl2, NO, NO2, CH4

15. Which of the following would have a higher rate of effusion than C2H2?CH4, Cl2, O2, CO2, N2

16. Given the following equation; Na(s) + O2(g) → Na2O(s)How many grams of Na are required to react with 2.5L of O2 at 755 torr and 15°C?

17. A sealed flask contains a gas with pressure P. If the number of moles of the gas is doubled, the absolute temperature is doubled and the volume of the container is quadrupled, what is the new pressure in terms of P?

18. In the unbalanced equation, NO(g) + O2(g) → NO2(g)If 30g each of NO and O2 are reacted to completion in a 10L sealed container at 20°C,

what is the final pressure in the container? (NOTE: This is a limiting reagent problem!)

19. If a quantity of chlorine gas occupies 12L at STP, what volume will it need to occupy if the pressure is halved and the temperature is decreased by 30K?

20. 20g each of Helium and an unknown diatomic gas are combined in a 1500mL container. If the temperature is 298K, and the pressure inside is 86.11atm, what is the unknown gas?

21. If 4 moles of gas are added to a container that already holds 1 mole of gas, how will the pressure change within the container?

22. A breathing mixture used by deep-sea divers contains helium, oxygen, and carbon dioxide. What is the partial pressure of oxygen at 1 atmosphere if PHe=609.5 mmHg, Pcarbon dioxide = 0.5 mmHg?

23. If a balloon containing 1,000L of gas at 50. C and 760 mmHg rises to an altitude where the pressure is 380mmHg and the temperature is 10. C, what is the new volume of the balloon (in L)?

24. What is the pressure exerted by 32g of O2 in a 20-L container at 30.0 C? 25. The gaseous product of a reaction is collected in a 25.0L container at 27.0 C. The

pressure in the container is 3.0atm and the gas has a mass of 96.0g. What is the molar mass of the gas?

26. What volume of H2O gas can be produced from 20.0g of oxygen and excess hydrogen at 150.0 C and .5atm?

27. In an experiment, it takes an unknown gas 1.5 times longer to diffuse than the same amount of oxygen gas, O2. Find the molar mass of the unknown gas.

Page 87: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 87 of 116

8 and 9 Practice worksheet

1. In the gaseous phase, which of the following diatomic molecules would be the most polar?A) NaFB) CsClC) CsFD) NaClE) LiF

2. Which of these is an isoelectronic series?A) Na+, K+, Rb+, Cs+B) K+, Ca2+, Ar, S2C) Na+, Mg2+, S2, ClD) Li, Be, B, C

3. Which of the following statements concerning lattice energy is false?A) MgO has a larger lattice energy than LiF.B) MgO has a larger lattice energy than NaF.C) The lattice energy for a solid with 2+ and 2 ions should be two times that for a

solid with 1+ and 1 ions.D) It is often defined as the energy released when an ionic solid forms from its ions.

4. Using the following data reactionsH2(g) + Cl2(g) 2HCl(g) H =-184 kJ/molBond energy of H2 = 432 kJ/molBond energy of Cl2 = 239 kJ/mol

calculate the energy of an H–Cl bond.

5. This molecule contains a carbon atom with trigonal planar geometry.A) CH3CHOB) CO2C) CH3ClD) C2H6

6. NCl3 what is the geometry?

7. XeF5+ what is the geometry?

8. What type of geometry does the OXeF2 molecule have?

Page 88: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 88 of 1169. Which of the following molecules contains a central atom with sp2 hybridization?A)

B)

C)

D)

E)

10. Consider the molecule

What is the hybridization of all the atoms (except H)

11. The hybridization of Se in SeF2 is

12. Which of the following groups contains no ionic compounds?A) HCN, NO2, Ca(NO3)2

B) KOH, CCl4, SF4

C) PCl5, LiBr, Zn(OH)2

D) NaH, CaF2, NaNH2

E) CH2O, H2S, NH3

13. The electron pair in a C-F bond could be consideredA) closer to C because carbon has a larger radius and thus exerts greater control over

the shared electron pair.B) closer to F because fluorine has a higher electronegativity than carbon.C) centrally located directly between the C and F.D) closer to C because carbon has a lower electronegativity than fluorine.E) an inadequate model since the bond is ionic.

14. Which of the following ionic compounds has the smallest lattice energy, i.e., the lattice energy least favorable to a stable lattice?A) BaOB) CsIC) MgOD) NaClE) LiF

Page 89: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 89 of 116

15. Which of the following arrangements is in order of increasing size?A) S2 < Cl < K+ < Ca2+ < Ga3+

B) Ga3+ < Ca2+ < S2 < Cl < K+

C) Ga3+ < S2 < Ca2+ < Cl < K+

D) Ga3+ < Ca2+ < K+ < Cl < S2

E) Ga3+ < Ca2+ < S2 < K+ < Cl

16. Given the following bond energies (the first c=o bond should be a single bond)C CC=CC=OC=OC HO HO O

347 kJ / mol614 kJ / mol358 kJ / mol799 kJ / mol413 kJ / mol463 kJ / mol146 kJ / mol

estimate H for the reaction H2O2 + CH3OH H2CO + 2H2O.

17. This molecule is the most polar.A) CH3CHOB) CO2

C) CH3ClD) C2H6

18. Select the best Lewis structure for acetone, CH3COCH3. What is wrong with the other four choices?A)

B)

C)

Page 90: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 90 of 116D)

19. In the cyanide ion (CN), the nitrogen has a formal charge of

20. Choose the electron dot formula that most accurately describes the bonding in CS2. (Hint: Consider formal charges.)A)

B)

C)

D)

E)

21. Which of the following has an incomplete octet in its Lewis structure?A) IClB) F2

C) SO2

D) NOE) CO2

Page 91: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 91 of 116

Equilibrium and Entropy Practice1. Which of the following statements is true?A) Catalysts are an effective means of changing the position of an equilibrium.B) The concentration of the products equals that of reactants and is constant at

equilibrium.C) When two opposing processes are proceeding at identical rates, the system is at

equilibrium.D) An endothermic reaction shifts toward reactants when heat is added to the reaction.

2. Consider the chemical system CO + Cl2 COCl2; K = 4.6 109 L/mol. How do the equilibrium concentrations of the reactants compare to the equilibrium concentration of the product?

3. For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed in a 6.00-L container.

A(g) + 2B(g) C(g) At equilibrium, the concentration of A is 0.300 mol/L. What is the concentration of B at equilibrium?

4. A 10.0-g sample of solid NH4Cl is heated in a 5.00-L container to 900C. At equilibrium the pressure of NH3(g) is 1.20 atm.

NH4Cl(s) NH3(g) + HCl(g)The equilibrium constant, Kp, for the reaction is:

5. Consider the following reaction (assume an ideal gas mixture):NOBr(g) NO(g) + Br2(g)

A 1.0-liter vessel was initially filled with pure NOBr, at a pressure of 4.0 atm, at 300 K. After equilibrium was established, the partial pressure of NOBr was 2.5 atm. What is Kp for the reaction?

6. A sample of solid NH4NO3 was placed in an evacuated container and then heated so that it decomposed explosively according to the following equation:NH4NO3(s) N2O(g) + 2H2O(g)

At equilibrium the total pressure in the container was found to be 3.20 atm at a temperature of 500C. Calculate Kp.

7. Consider the following reaction:HF(g) H2(g) + F2(g) (K = 1.00 102)

Given 1.00 mole of HF(g), 0.500 mole of H2(g), and 0.750 mole of F2(g) are mixed in a 5.00-L flask, determine the reaction quotient, Q, and the net direction to achieve equilibrium.

Page 92: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 92 of 1168. Consider the following equilibrium:

NOCl(g) NO(g) + Cl2(g)with K = 1.6 105. 1.00 mole of pure NOCl and 1.00 mole of pure Cl2 are replaced in a 1.00-L container. Calculate the equilibrium concentration of NO(g).

9. Consider the following equilibrium:2H2(g) + X2(g) 2H2X(g) + energy

Addition of argon to the above equilibrium will have what effect on equilibrium?

10. For which process is S negative?A) evaporation of 1 mol of CCl4(l)B) mixing 5 mL ethanol with 25 mL waterC) raising the temperature of 100 g Cu from 275 K to 295 KD) grinding a large crystal of KCl to powderE) compressing 1 mol Ne at constant temperature from 1.5 atm to 2.5 atm

11. Which of the following result(s) in an increase in the entropy of the system? (could be more than one)

I. (See diagram shown.) II. Br (g) Br (l)

III. NaBr(s) Na (aq) + Br (aq)IV. O K) O (373 K) V. NH (1 atm, 298 K) NH (3 atm, 298 K)

2 2+

2 2

3 3

(298

12. For a nonspontaneous exothermic process, which of the following must be true?A) S must be positive.B) S must be negative.C) G must be positive.D) Two of these must be true.

13. For the process CHCl3(s) CHCl3(l), H = 9.2 kJ/mol and S = 43.9 J/mol/K. What is the melting point of chloroform?

14. When a stable diatomic molecule spontaneously forms from its atoms, what are the signs of H, S, and G?

Page 93: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 93 of 116

Option A Option B Option C Option D Option E

H S G

15. The reaction2H2O(g) 2H2(g) + O2(g)

has a positive value of G. Which of the following statements must be true?A) The reaction is slow.B) The reaction will not occur. [When H2O(g) is introduced into a flask, no O2 or H2

ill form even over a long period of time.]C) The reaction is exothermic.D) The equilibrium lies far to the right.E) None of these is true.

16. Given the following free energies of formation:

C H (g) 209.2 kJ / molC H (g) / mol

f

2 2

2 6

G

32.9 kJcalculate Kp at 298 K for C2H2(g) + 2H2(g) C2H6(g)

17. Given the following data, calculate the normal boiling point for formic acid (HCOOH).

kJ mol (J / mol K)HCOOH(l) 410 130HCOOH(g) 363 251

fH S ( / )

18. Given that Gf for NH3 = 16.67 kJ/mol, calculate the equilibrium constant for the

following reaction at 298 K:N2(g) + 3H2(g) 2NH3(g)

Page 94: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 94 of 116

Ch. 10 questions1. What are Dipole dipole forces? Give an example.2. What are the 2 factors that decide how strong hydrogen bonds are?3. Describe London dispersion forces?4. What is an instantaneous dipole?5. How is a dipole induced?6. What governs the amount of surface tension?7. Distinguish between cohesion and adhesion.8. What kind of meniscus does mercury have and why?9. What makes liquids viscous?10. Explain the difference in viscosity between gasoline and grease.11. Define lattice and unit cell, amorphous solid and regular solid.12. What is a diffractometer.13. Write the Bragg equation and describe what it is used for?

Chapter 11 Practice Answers in your notes but keep this sheet for reference.

1. A solution of hydrogen peroxide is 30.0% H2O2 by mass and has a density of 1.11 g/cm3. The molarity of the solution is:

2. The term “proof” is defined as twice the percent by volume of pure ethanol in solution. Thus, a solution that is 95% (by volume ethanol is 190 proof. What is the molarity of ethanol in a 92 proof ethanol/water solution?

density of ethanol = 0.80 g / cm

density of water = 1.0 g / cmmol. wt. of ethanol = 46

3

3

3. What is the effect of adding 1 mol of glucose vs 1 mol of magnesium chloride on the vapor pressure of an aqueous solution?

4.What is the molality of a solution of 50.0 g of propanol (CH3CH2CH2OH) in 152 mL water, if the density of water is 1.0 g/mL?

5. How many milliliters of 18.4 M H2SO4 are needed to prepare 600.0 mL of 0.10 M H2SO4?6. A 20.0-g sample of methyl alcohol (CH3OH, molar mass = 32.0 g/mol) was dissolved in 30.0

g of water. The mole fraction of CH3OH is:7. Which of the following concentration measures will change in value as the temperature of a

solution changes? Explain whyMolarity, mass percent, molality, mole fraction

8. What is the mole percent of ethanol (C2H5OH) in 180 proof vodka, which consists of 71.0 g of ethanol for every 10.0 g of water present?

9. If 2.00 g of helium gas and 4.00 g of oxygen gas are mixed together what is the mole fraction of helium in the solution?

10. A correct statement of Henry’s law is:the concentration of a gas in a solution is directly proportional to pressure.the concentration of a gas in solution is independent of pressure.the concentration of a gas in solution is directly proportional to the mole fraction of solvent.the concentration of a gas in solution is inversely proportional to temperature.

11. hexane (C6H14) and chloroform (CHCl3)

Page 95: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 95 of 116Describe the deviation with respect to Raoult’s Law. Use the following choicesrelatively ideal, positive deviation, negative deviation,

12. acetone (C3H6O) and waterDescribe the deviation with respect to Raoult’s Law. Use the following choicesrelatively ideal, positive deviation, negative deviation,

13. hexane (C6H14) and octane (C8H18)Describe the deviation with respect to Raoult’s Law. Use the following choicesrelatively ideal, positive deviation, negative deviation,

14. The vapor pressure of water at 25.0C is 23.8 torr. Determine the mass of glucose (molar mass = 180 g/mol) needed to add to 500.0 g of water to change the vapor pressure to 23.1 torr.

15. 150 g of NaCl completely dissolves (producing Na+ and Cl ions) in 1.00 kg of water at 25.0C. The vapor pressure of pure water at this temperature is 23.8 torr. Determine the vapor pressure of the solution.

16. At 40C, heptane has a vapor pressure of 92.0 torr and octane has a vapor pressure of 31.2 torr. Assuming ideal behavior, what is the vapor pressure of a solution that contains twice as many moles of heptane as octane?

17. A solution is prepared from 31.4 g of a nonvolatile, nondissociating solute and 85.0 g of water. The vapor pressure of the solution at 60C is (142 torr). The vapor pressure of water at 60C is 150. torr. What is the molar mass of the solute?

18. A solution contains 1 mole of liquid A and 3 mol of liquid B. This solution has a vapor pressure of 314 torr at 25C. At 25C, liquid A has a vapor pressure of 265 torr and liquid B has a vapor pressure of 355 torr. Which of the following is true?This solution is ideal.More information is needed to answer this question.This solution exhibits a positive deviation from Raoult’s Law.This solution exhibits a negative deviation from Raoult’s Law.

19. Solutions of benzene and toluene obey Raoult’s law. The vapor pressures at 20C are:benzene, 76 torr; toluene, 21 torr What is the mole fraction of benzene in a solution whose vapor pressure is 50 torr at 20C?

Page 96: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 96 of 116

Kinetics part I1. The average rate of disappearance of ozone in the reaction 2O3(g) 3O2(g) is found to be 9.0

10-3 atm over a certain interval of time. What is the rate of appearance of O2 during this interval?

2. Consider the following rate law: Rate = k[A]n[B]m

How are the exponents n and m determined?3. The following data were obtained for the reaction of NO with O2. Concentrations are in

molecules/cm3 and rates are in molecules/cm3 s.[NO] [O ] Initial Rate

1 10 1 10 2.0 102 10 1 10 8.0 103 10 1 10 18.0 101 10 2 10 4.0 101 10 3 10 6.0 10

0 2 018 18 16

18 18 16

18 18 16

18 18 16

18 18 16

What is the correct rate law?

4. The reaction of (CH3)3CBr with hydroxide ion proceeds with the formation of (CH3)3COH.(CH3)3CBr(aq) + OH(aq) (CH3)3COH(aq) + Br(aq)

The following data were obtained at 55C.[(CH ) CBr] [OH ] Initial Rate

Exp. (mol / L) (mol / L) (mol / L s)1 0.10 0.10 1.0 102 0.20 0.10 2.0 103 0.10 0.20 1.0 104 0.30 0.20

3 3 0 0

3

3

3

?

What will the initial rate (in mol/L s) be in Experiment 4?

5. For a reaction in which A and B react to form C, the following initial rate data were obtained:[A] [B] Initial Rate of Formation of C

(mol / L) (mol / L) (mol / L s)0.10 0.10 1.000.10 0.20 4.000.20 0.20 8.00

What is the rate law for the reaction?What is the value of k?What is the order with respect to A?What is the order with respect to B?What is the overall order of the reaction?

6. Tabulated below are initial rate data for the reaction

Page 97: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 97 of 1162Fe(CN)6

3 + 2I 2Fe(CN)64 + I2

InitialRun [Fe(CN) ] [I ] [Fe(CN) ] [I ] Rate (M / s)

1 0.01 0.01 0.01 0.01 1 102 0.01 0.02 0.01 0.01 2 103 0.02 0.02 0.01 0.01 8 104 0.02 0.02 0.02 0.01 8 105 0.02 0.02 0.02 0.02 8 10

6 0 0 6 0 2 05

5

5

5

5

3 4

What is the rate law?What is the overall order of the reaction?

7. A general reaction written as 1A + 2B C + 2D is studied and yields the following data:[A] [B] Initial [C] /

0.150 M 0.150 M 8.00 10 mol / L s0.150 M 0.300 M 1.60 10 mol / L s0.300 M 0.150 M 3.20 10 mol / L s

0 03

2

2

t

What is the order of the reaction with respect to B?

8. A general reaction written as 1A + 2B C + 2D is studied and yields the following data:[A] [B] Initial [C] /

0.150 M 0.150 M 8.00 10 mol / L s0.150 M 0.300 M 1.60 10 mol / L s0.300 M 0.150 M 3.20 10 mol / L s

0 03

2

2

t

Determine the initial rate of C production if [A] = 0.200 M and [B] = 0.500 M

9. Consider the following data concerning the equation:H2O2 + 3I + 2H+ I3 + 2H2O

[H O ] [I ] [H ] rate I. 0.100 M 5.00 10 M 1.00 10 M 0.137 M / sec II. 0.100 M 1.00 10 M 1.00 10 M 0.268 M / secIII. 0.200 M 1.00 10 M 1.00 10 M 0.542 M / secIV. 0.400 M 1.00 10 M 2.00 10 M 1.084 M / sec

2 2+

4 2

3 2

3 2

3 2

Write the rate law for the reaction

10. The rate expression for a particular reaction is rate = k[A][B]2. If the initial concentration of B is increased from 0.1 M to 0.3 M, the initial rate will increase by what factors?

11. The kinetics of the reaction A + 3B C + 2D were studied and the following results obtained, where the rate law is

Page 98: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 98 of 116

[ ]A = [A] [B]

tk n m

For a run where [A]0 = 1.0 103 M and [B]0 = 5.0 M, a plot of ln [A] versus t was found to give a straight line with slope = 5.0 102 s1.For a run where [A]0 = 1.0 103 M and [B]0 = 10.0 M, a plot of ln [A] versus t was found to give a straight line with slope = 7.1 102 s1.

What is the value of n?

12. For the reaction 2N2O5(g) 4NO2(g) + O2(g), the following data were collected:t (minutes) [N O ] (mol / L)

0 1.24 1010. 0.92 1020. 0.68 1030. 0.50 1040. 0.37 1050. 0.28 1070. 0.15 10

2 52

2

2

2

2

2

2

The order of this reaction in N2O5 is?The concentration of O2 at t = 10. minutes is

Page 99: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 99 of 116

Kinetics part II1. Determine the molecularity of the following elementary reaction: O3 O2 + O.

2. The decomposition of ozone may occur through the two-step mechanism shown:step 1 O O + Ostep 2 O + O 2O

3 2

3 2

The oxygen atom is considered to be a(n)

3. The following questions refer to the reaction 2A2 + B2 2C. The following mechanism has been proposed:

step 1 (very slow) A + B R + Cstep 2 (slow) A + R C

2 2

2

What is the molecularity of step 2?

4. The following questions refer to the reaction 2A2 + B2 2C. The following mechanism has been proposed:

step 1 (very slow) A + B R + Cstep 2 (slow) A + R C

2 2

2

Which step is “rate determining”?

5. The following questions refer to the reaction 2A2 + B2 2C. The following mechanism has been proposed:

step 1 (very slow) A + B R + Cstep 2 (slow) A + R C

2 2

2

According to the proposed mechanism, what should the overall rate law be?

6. The decomposition of N2O5(g) to NO2(g) and O2(g) obeys first-order kinetics. Assuming the form of the rate law is

Rate N O N O2 5

[ ] [ ]2 5

tk

where k = 3.4 105 s1 at 25C.What is the initial rate of reaction at 25C where [N2O5]0 = 5.0 102 M?

7. If the reaction 2HI H2 + I2 is second order, what graph will yield a linear plot?

8. The reaction 2NO + O2 2NO2 obeys the rate law

[ ]O = [NO] [O ].obsd

22

2

tk

Which of the following mechanisms is consistent with the experimental rate law?A) NO + NO N2O2 (slow)

N2O2 + O2 2NO2 (fast)B) O2 + O2 O2 + O2· (slow)

O2 + NO NO2 + O (fast)

Page 100: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 100 of 116O + NO NO2 (fast)

C) 2NO N2O2 (fast equilibrium)N2O2 NO2 + O (slow)NO + O NO2 (fast)

D) NO + O2 NO3 (fast equilibrium)NO3 + NO 2NO2 (slow)

E) none of these9. The questions below refer to the following diagram:

Why is this reaction considered to be exothermic?

10. The questions below refer to the following diagram:

At what point on the graph is the activated complex present? If the reaction were reversible, would the forward or the reverse reaction have a higher activation energy?

12. The reaction 2H2O2 2H2O + O2 has the following mechanism?H O + I H O + IO

H O + IO H O + O + I2 2 2

2 2 2 2

The catalyst in the reaction is:

13. When ethyl chloride, CH3CH2Cl, is dissolved in 1.0 M NaOH, it is converted into ethanol, CH3CH2OH, by the reaction

CH3CH2Cl + OH CH3CH2OH + ClAt 25C the reaction is first order in CH3CH2Cl, and the rate constant is 1.0 103 s1. If the activation parameters are A = 3.4 1014 s1 and Ea = 100.0 kJ/mol, what will the rate constant be at 40C?

Page 101: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 101 of 11614. 2002-54Which of the following must be true for a reaction for which the activation energy is

the same for both the forward and the reverse reactions?A) S for the reaction is zero.B) A catalyst is present.C) The reaction order can be obtained directly from the balanced equation.D) H for the reaction is zero.E) The reaction order is zero.

15. 2 2 2 2NO O NOg g g( ) ( ) ( ) 2002-27A possible mechanism for the overall reaction represented above is the following.(1) NO NO N Og g g( ) ( ) ( ) 2 2 slow(2) N O O NOg g g2 2 2 22( ) ( ) ( ) fastWhich of the following rate expressions agrees best with this possible mechanism?A) Rate k N O O [ ][ ]2 2 2

B) Rate = k[NO]2

C)Rate k NO

O

[ ][ ]2

D) Rate k NO O [ ] [ ]2 2

E)Rate k NO

O

[ ][ ]

2

2

16.The graph above is indicative of what type of reaction?

17. The rate law for a reaction is found to be Rate = k[A]2[B]. Which of the following mechanisms gives this rate law? I. A + B E (fast) E + B C + D (slow) II. A + B E (fast) E + A C + D (slow)III. A + A E (slow) E + B C + D (fast)

Page 102: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 102 of 116

Accessing Prior Knowledge Acids and Bases1. Define acids and bases from three viewpoints, Arrhenius, Bronsted Lowry and Lewis2. What do the [H+] and [OH-] always multiply together to equal?3. What do pH and pOH always add up to?4. Write the formulas/names for the follwing:5. Nitric acid  6. Hydrocyanic acid  7. Chloric acid  8. Acetic acid  9. Hydrobromic acid  10. Sulfurous acid  11. Chlorous acid  12. Boric acid  13. Hydrochloric acid  14. Phosphoric acid  15. Nitrous acid  16. Hydrofluoric acid  17. Perchloric acid  18. Hydroiodic acid  19. Phosphorous acid  20. Carbonic acid  21. Sulfuric acid  22. Formic acid (the formate ion is COOH-)23. Thiocyanic acid24. HClO4  25. HCOOH  26. H3PO4  27. HCl  28. H3BO3  29. H2SO4  30. HNO2  31. HI  32. CH3COOH  33. HF  34. H3PO3  35. HCN  36. HClO3  37. H2CO3  38. H2SO3  39. HClO2  40. HNO3

41. HBr42. H2S2O3

Page 103: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 103 of 116pH PRACTICE

1. Write the pH of each solution above the [H+]’s. pH = -log[H+]

2. Label the “Z” diagram as “Acidic”, “Basic” and “Neutral.”

3. Knowing that the [H+] x [OH-] always equals 1 x 10-14, fill in the [OH-] for each of the five solutions in the “Z” Diagram. (1 x 10-14 is called the Dissociation Constant for water, Kw) (1 x 10-14 = 10 x 10-15)

4. Write the “pOH” of each solution below the [OH-]’s.

5. pH + pOH always equals _______.

6. A solution of acid has [H+] = 3.0 x 10-3 M

a. Calculate the [OH-] ________

b. Calculate the pH _________ the pOH _________7. A solution of base has an [OH-] = 4.25 x 10-5 M

a. Calculate the [H+] _________

b. Calculate the pH _________ the pOH _________

8. Calculate the pH’s of the following solutions:2.53 x 10-2M HCl pH =

2.53 x 10-4M HCl pH =

2.53 x 10-5M HCl pH =

A pH with 3 significant figures is written with ____ numbers after the decimal place.

Page 104: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 104 of 116

Ka and Kb practice 1. Benzoic acid, HC6H5CO2, is an organic acid whose sodium salt, NaC6H5CO2, has long

been used as a safe food additive to protect beverages and many foods against harmful yeasts and bacteria. The acid is monoprotic. Write the equation for its Ka.

2. The [H+] of a 0.10 M solution of cyanic acid (HCNO) is found to be 0.0010 M. Calculate the Ka for cyanic acid. HCNO↔H+ + CNO-

3. If 1.22 grams of benzoic acid, HC6H5CO2, is dissolved in 1.0 L of water, the [H+] is found to be 8.0 x 10-4M.  Calculate the Ka for benzoic acid. HC6H5CO2↔H+ + C6H5CO2

-

4. A 0.0050 M solution of butyric acid,  HC4H7, has a pH =4.0, calculate Ka. HC4H7O ↔ H+ + C4H7O2

-

5. Determine the [OH-] and the [H+] of a 0.20 M solution of formic acid. The Ka = 1.8 x 10-4. HCOOH ↔ H+ + HCOO-

6. HCN has an initial molarity of 0.50 M, with a Ka value of 3.7 x 10-8. Calculate its pH at equilibrium.

7. Ethylamine (C2H5NH3) is a weak Bronsted-Lowry base.  If it has an initial molarity of 0.24M and a Kb of 5.6 x 10-4, calculate its pH at equilibrium.

8. A chemist adds 0.75 moles of NH3 to enough water to make 0.50 liters of solution. .Kb of ammonia is 1.8 x 10-5. Determine the pH of this solution at equilibrium.

9. Hydrazine, N2H4, has been used as a rocket fuel. Like ammonia, it is a Bronsted base. A 0.15 M solution has a pH of 10.70. What is the Kb for hydrazine?

10. Nicotinic acid, HC2H4NO2 is a B vitamin. It is also a weak acid with Ka=1.4 x 10-5. What is the [H+] and the pH of a 0.010 M solution?

Page 105: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 105 of 116

Titration Curve Practice

1) First, identify the type of titration simply by looking at the titration curvea. is it a strong acid being titrated with a strong base?b. is it a strong base being titrated with a strong acid?c. is it a weak acid being titrated with a strong base?d. is it a weak base being titrated with a strong acid?e. is it a weak base being titrated with a weak acidf. If an acid is being titrated, is it a mono-, di-, or tri-protic acid

2) You need to fill in the blanks at the top of each titration curve in the following manner: a. fill in the first blank with the type of solution being titrated (what is in the

beaker/flask being analyzed)b. fill in the second blank with the titrant (the solution being delivered from the buret

Example: if a weak acid was in the beaker and it was being titrated with a strong base from the buret, you would write: Weak acid/Strong Base

Then…1) Analyze each curve to find the equivalence point(s)2) Using the equivalence point(s);

a. Determine the Ka(’s) or Kb(‘s), when applicableb. Use your text to identify an effective indicator that could be used to show the

endpoint in a titration c. Determine the concentration of the sample being titrated, assuming the titrant is

0.100 M and that 10.0 mL of sample was titrated each time.

Page 106: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 106 of 116

____________ ________ - __________ _______ titration

Page 107: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 107 of 116____________ ________ - __________ _______ titration

Page 108: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 108 of 116____________ ________ - __________ _______ titration

Page 109: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 109 of 116____________ _______ - _________ _______ Titration

Page 110: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 110 of 116____________ ________ - __________ _______ titration

Page 111: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 111 of 116

____________ ________ - __________ _______ titration

Page 112: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 112 of 116

Chapter 14 and 15 practice: In your group be sure to show all work associated with the problem. If you would like to see the answer, you must first show me the work to the problem.

1. 2NH3 NH4+ + NH2-

In liquid ammonia, the reaction represented above occurs. In the reaction NH4+ acts as

2. At 25C, aqueous solutions with a pH of 8 have a hydroxide ion concentration, [OH-], of

3.

What part of the curve corresponds to the optimum buffer action for the acetic acid/acetate ion pair?

4. How can 100. mL of sodium hydroxide solution with a pH of 13.00 be converted to a sodium hydroxide solution with a pH of 12.00?

5. Mixtures that would be considered buffers include which of the following?I. 0.10 M HCl + 0.10M NaClII. 0.10MHF + 0.10M NaFIII. 0.10M HBr + 0.10M NaBrA) I onlyB) II onlyC) III onlyD) I and IIE) II and III

6. Ascorbic acid, H2C6H6O6(s) is a diprotic acid with Ka1=7.9x10-5 and Ka2=1.6 x10-12. In a 0.005M aqueous solution of ascorbic acid, which of the following species is present in the lowest concentration?A) H2O(l)B) H3O+(aq)C) H2C6H6O6(aq)D) HC6H6O6

-(aq)E) C6H6O6

-2(aq)7. In a saturated solution of Zn(OH)2 at 25°C, the value of [OH-] is 2.0 x 10-6 M. What is the

value of the solubility product constant, Ksp, for Zn(OH)2 at 25°C?8. For the stepwise dissociation of aqueous H3PO4, which of the following is not a conjugate

acid–base pair?A) H2PO4

and PO43

B) HPO42 and PO4

3

C) H3PO4 and H2PO4

D) H3O+ and H2OE) H2PO4

and HPO42

Page 113: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 113 of 1169. What is the Ka expression for HOCl?

10. Calculate the [H+] in a solution that has a pH of 2.30.11. Consider the reaction HNO2(aq) + H2O(l) H3O+(aq) + NO(aq). Which species is the

conjugate base?12. Calculate the pH of 0.250 M HNO3(aq).13. For weak acid, HX, Ka = 1.0 106. Calculate the pH of a 0.10 M solution of HX.14. Determine the molarity of a solution of the weak acid HClO2 (Ka = 1.10 102) if it has a pH

of 1.25.15. Calculate the pOH of a 0.10 M solution of Ba(OH)2.16. What is the pH of a 0.45 M KCl solution?17. solid sodium carbonate (Na2CO3)

Use the following choices to describe an aqueous solution made from this substance.Acidic, neutral, basic or cannot tell

18. solid ammonium perchlorate (NH4ClO4)For NH4

+, Ka = 5.6 1010; for ClO4, Kb 1021.

Use the following choices to describe an aqueous solution made from this substance.Acidic, neutral, basic or cannot tell

19. The pH of a 1.0 M sodium acetate solution is:A) 7.0B) less than 7.0C) not enough information is givenD) greater than 7.0

20. A 1.0-liter solution contains 0.25 M HF and 0.60 M NaF (Ka for HF is 7.2 104)What is the pH of this solution?

21. Calculate the pH of a solution that is 0.5 M in HF (Ka = 7.2 104) and 0.6 M in NaF.22. For a solution equimolar in HCN and NaCN, which statement is false?

A) This is an example of the common ion effect.B) The [H+] is equal to the Ka.C) Addition of NaOH will increase [CN and decrease HCND) Addition of more NaCN will shift the acid dissociation equilibrium of HCN to the

left.E) The [H+]is larger than it would be if only the HCN was in solution.

23. How many moles of solid NaF would have to be added to 1.0 L of 1.90 M HF solution to achieve a buffer of pH 3.35? Assume there is no volume change. (Ka for HF = 7.2 104)

24. What is the molarity of a sodium hydroxide solution if 25.0 mL of this solution reacts exactly with 22.30 mL of 0.253 M sulfuric acid?

25. A 10-mL sample of tartaric acid is titrated to a phenolphthalein endpoint with 20. mL of 1.0 M NaOH. Assuming tartaric acid is diprotic, what is the molarity of the acid?

26. If 25 mL of 0.75 M HCl are added to 100 mL of 0.25 NaOH, what is the final pH?

Page 114: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 114 of 116

Ksp practice. Keep me but put all answers in your notes.

1. How many moles of solid NaF would have to be added to 1.0 L of 1.90 M HF solution to achieve a buffer of pH 3.35? Assume there is no volume change. (Ka for HF = 7.2 104)

2. Calculate the pH of a solution made by mixing 100.0 mL of 0.300 M NH3 with 100.0 mL of 0.100 M HCl. (Kb for NH3 is 1.8 105).

3. Find the solubility (in mol/L) of lead chloride (PbCl2) at 25C. Ksp = 1.6 105

4. Solubility Products (Ksp)BaSO 1.5 10CoS 5.0 10PbSO 1.3 10AgBr 5.0 10

49

22

48

13

Which of the compounds is the most soluble (in moles/liter)?5. You have a solution consisting of 0.10 M Cl and 0.10 M CrO4

2. You add 0.10 M silver nitrate dropwise to this solution. Given that the Ksp for Ag2CrO4 is 9.0 1012, and that for AgCl is 1.6 1010, which of the following will precipitate first?A) silver chromateB) cannot be determined by the information givenC) silver nitrateD) silver chloride

6. The solubility of CaSO4 in pure water at 0C is 1 gram per liter. The value of the solubility product is

7. The molar solubility of PbI2 is 1.5 103 M. Calculate the value of Ksp for PbI2.8. Calculate the concentration of chromate ion, CrO4

2, in a saturated solution of CaCrO4. (Ksp = 7.1 104)

9. Calculate the concentration of the silver ion in a saturated solution of silver chloride, AgCl (Ksp = 1.6 1010).

10. The molar solubility of BaCO3 (Ksp = 1.6 109) in 0.10 M BaCl2 solution is:11. It is observed that 7.5 mmol of BaF2 will dissolve in 1.0 L of water. Use these data to

calculate the values of Ksp for barium fluoride.12. The Ksp of AgI is 1.5 1016. Calculate the solubility in mol/L of AgI in a 0.30 M

NaI solution.13. The molar solubility of AgCl (Ksp = 1.6 1010) in 0.0020 M sodium chloride at

25C is:14. Silver chromate, Ag2CrO4, has a Ksp of 9.0 1012. Calculate the solubility in mol/L

of silver chromate.15. The solubility of mol/L of Ag2CrO4 is 1.3 104 M at 25C. Calculate the Ksp for this

compound.16. Calculate the concentration of Al3+ in a saturated aqueous solution of Al(OH)3 (Ksp =

2 1032) at 25C.17. The Ksp for PbF2 is 4.0 108. If a 0.050 M NaF solution is saturated with PbF2, what

is the Pb2+. in solution?

Page 115: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 115 of 11618. Chromate ion is added to a saturated solution of Ag2CrO4 to reach 0.10 M CrO4

2. Calculate the final concentration of silver ion at equilibrium (Ksp for Ag2CrO4 is 9.0 1012)

19. In a solution prepared by adding excess PbI2(s) Ksp = 1.4 108. to water, the I. at equilibrium is:

Page 116: AP Chemistry Lab Manual - MOLEBUS (ALLCHEM) - · Web viewAP Chemistry Lab Manual. Lab Notebook Guidelines 2. QRS lab 5. Qualitative Analysis of the Group III Cations 6. How Much Zinc

5/6/2023 Page 116 of 116

Electrochem practice

1. Which energy conversion takes place in a galvinic cell?2. Which of the following reactions is possible at the anode of a galvinic cell

A) Zn --> Zn2+ + 2e-

B) Zn2+ + 2e- --> ZnC) Zn2+ + Cu -->Zn + Cu2+

D) Zn + Cu2+ --> Zn2+ + Cu3. A block of Pt is immersed in a solution which has 0.50 M Br2 and 0.10 M Br-. A block of chromium

is immersed in a solution of 0.20 M Cr3+. The wires are connected to a voltmeter. a. What type of cell is this?b. What is Eo for this cell c. What is E for this cell at 25oCd. How many moles of electrons are involved in the reaction?

7. Consider a galvanic cell with a zinc electrode immersed in 1.0 M Zn2+ and a silver electrode immersed in 1.0 M Ag+.

a. Calculate E0 for this cell b. Which of the electrodes in the anode? c. Calculate delta G d. Calculate K for the cell

11. Consider a galvanic cell with a zinc electrode immersed in 0.050 M Zn2+ and a silver electrode immersed in 10.00 M Ag+.

Calculate Q for the cell. E for the cell at these non standard conditions. Assume Temp is 25oC

12. An antique car bumper is to be chrome plated. The bumper is dipped into acid dichromate solution and the bumper serves as the cathode of the electrolytic cell. The dichromate deposits solid chromium onto the surface of the bumper. If the current is 10 amperes, how long does it take to deposit 1.00 x 102 g of Cr(s)

13. What quantity of coulombs is required to reduce 40.0 g of CrCl3 to chromium metal?14. If a constant current of 5.0 amperes is passed through a cell containing Cr3+ for 1.0 hour, how many

grams of Cr will plate out on the cathode?15. How many seconds would it take to deposit 21.40 g of silver from a solution of silver nitrate using a

current of 10.00 amperes?