do spatially homogenizing and heterogenizing … · do spatially homogenizing and heterogenizing...

27
DO SPATIALLY HOMOGENIZING AND HETEROGENIZING PROCESSES AFFECT TRANSITIONS BETWEEN ALTERNATIVE STABLE STATES? THOMAS A. GROEN, CLAUDIUS. A.D.M. VAN DE VIJVER AND FRANK VAN LANGEVELDE

Upload: others

Post on 23-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • DO SPATIALLY HOMOGENIZING AND HETEROGENIZING PROCESSES AFFECT TRANSITIONS BETWEEN ALTERNATIVE STABLE STATES?

    THOMAS A. GROEN,

    CLAUDIUS. A.D.M. VAN DE VIJVER AND

    FRANK VAN LANGEVELDE

  • ALTERNATIVE STABLE STATES

    Critical condition

    e.g. grazing pressure

    Ecosyste

    m S

    tate

    e.g

    . am

    ount

    of gra

    ss b

    iom

    ass

    +

    +

    -

    -

  • EFFECT OF HETEROGENEITY ON THESE DYNAMICS

    HeterogeneousHomogeneous

  • IMPACT OF HOMOGENIZING PROCESSES

    No exchange Moderate exchange Strong exchange

    space

    bio

    mass

    Homonegizing processes

    e.g. diffusion

  • SPATIAL PROCESSES

    But what about heterogenizing processes?

    Heterogenizing processes Homogenizing processes

    Fires

    Grazing

    Facilitation

    Disturbances

    Dispersal(Intraspecific)

    Competition

  • WHAT HAPPENS WITH BOTH HETEROGENIZING AND HOMOGENIZING PROCESSES AT THE SAME TIME?

    Weak

    Hom

    ogenis

    ation

    Str

    ong

    Hom

    ogenis

    ation

    Strong

    Heterogenisation

    Weak

    Heterogenisation

    ?

    ?

  • EXAMPLE ECOSYSTEM: SAVANNAS

    Source: http://biology.unm.edu/litvak/Juniper%20Savanna/Juniper%20Savanna.html

  • EXAMPLE ECOSYSTEM: SAVANNAS

    Wide variety in physiognomy

    Mainly grass dominated (= homogeneous)

    Mixture of both (=heterogeneous)

    Mainly wood dominated (=homogeneous)

    Heterogenizing processes

    Fires

    Grazing

    Homogenizing process(es)

    Plant dispersal

  • SAMPLE ECOSYSTEM

    𝑑𝑊

    𝑑𝑡= 𝑟𝑊 𝑤𝑡

    𝑢𝑊

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠+ 𝑤𝑠 −𝑑𝑤𝑊 − 𝑐𝑤𝐵𝑊 − 𝑘𝑤𝑛𝑎𝐻𝑊

    𝑑𝐻

    𝑑𝑡= 𝑟𝐻𝑤𝑡

    𝐻

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠−𝑑𝐻 𝐻 − 𝑐𝐻𝐺𝐻 − 𝑘𝐻𝑛𝐻

    W = woody biomass

    H = Herbaceous biomass

    Growth Mortality Herbivory Fire

    -

    - +

    +

  • POSITIVE FEEDBACK

    Grass

    Biomass

    Fire

    Intensities

    Wood

    Biomass

  • NON-SPATIAL MODEL

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • BI-STABILITY WHEN GRAZING INCREASES

    5 10 15 20 25

    05

    01

    50

    25

    03

    50

    Grazer biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • MAKE THE MODEL SPATIAL

    Discretize the fire

    n = [0,1] ↔ (0) V (1)

    Make fire occurrence function of available grass

    Add diffusion as representation of “ dispersion of grasses”

  • MAKE MODEL SPATIAL: DISCRETIZE FIRE

    Discretize fire process

    n = [0,1] ↔ (0) V (1)

    Fire frequency was set to 0.5

    Two implementations:

    Regular: 01010101010101010101010101 (avg=0.5)

    Random: 00111011100000111011001001 (avg=0.5)

    𝑑𝑊

    𝑑𝑡= 𝑟𝑊 𝑤𝑡

    𝑢𝑊

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠+ 𝑤𝑠 −𝑑𝑤𝑊 − 𝑐𝑤𝐵𝑊 − 𝑘𝑤𝑛𝑎𝐻𝑊

    𝑑𝐻

    𝑑𝑡= 𝑟𝐻𝑤𝑡

    𝐻

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠−𝑑𝐻 𝐻 − 𝑐𝐻𝐺𝐻 − 𝑘𝐻𝑛𝐻

  • DISCRETE FIRE: REGULAR PATTERN

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • DISCRETE FIRE: RANDOM PATTERN

    01

    50

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    100 200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • MAKE MODEL SPATIAL:FIRE PATCHES AND GRASS DISPERSION

    Have fires of various

    patch sizes

    Ensure always 0.5 total fire

    chance

    [Locations with high grass

    biomass had higher chance to

    “ignite”]

    Dispersion of plant biomass

    simulated with simple diffusion

    approach

    Diffusion coefficient determines

    how fast dispersion goesspace

    bio

    mass

    Grass biomass

    Chance t

    o ignite

    Hete

    roge

    niz

    ing

    Hom

    og

    en

    izin

    g

  • EXAMPLE SIMULATION

  • dH

    = 0

    dH

    = 1

    e-0

    7d

    H =

    1e

    -06

    dH

    = 1

    e-0

    5d

    H =

    1e

    -04

    dH

    = 0

    .00

    1

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    PATTERN IN THE LAST TIME STEP

    NNumber of patches

    Rate

    of d

    ispers

    ion

    2 8 50 200 1250

    1 1

    0-3

    1 1

    0-4

    1 1

    0-5

    1 1

    0-6

    1 1

    0-7

    0

  • DID THIS CHANGE THE HETEROGENEITY?

    dH

    = 0

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    7

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    6

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    5

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    4

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 0

    .001

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250NNumber of patches

    2 8 50 200 1250

    Rate

    of dis

    pers

    ion

    1 1

    0-3

    1 1

    0-4

    1 1

    0-5

    1 1

    0-6

    1 1

    0-7

    0LagS

    em

    i V

    ariance

  • HOW DOES THIS RELATE TO OUR HYPOTHESISW

    eak

    Hom

    ogenis

    ation

    Str

    ong

    Hom

    ogenis

    ation

    Strong

    Heterogenisation

    Weak

    Heterogenisation

    ?

    ?

  • RESULTING DYNAMICS

    seq(0, 25, 0.5)

    media

    nN

    o d

    iffu

    sio

    n (d

    H=

    0)

    2 large patches

    Gra

    ss b

    iom

    ass (

    g m

    2)

    0100

    200

    300

    400

    0 5 10 15 20 25

    seq(0, 25, 0.5)

    media

    n

    0100

    200

    300

    400

    0 5 10 15 20 25

    1250 small patches

    seq(0, 25, 0.5)

    media

    nW

    ith d

    iffu

    sio

    n (d

    H=

    0.0

    01)

    0 5 10 15 20 25

    0100

    200

    300

    400

    Grazer density (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

    seq(0, 25, 0.5)

    media

    n

    0 5 10 15 20 25

    0100

    200

    300

    400

    Grazer density (g m2)

    5 10 15 20 25

    05

    01

    50

    25

    03

    50

    Grazer biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • CONCLUDING REMARKS

    In general “adding space” makes the

    transitions more gradual

    More complex responses than anticipated

    Small “crashes” (at level of a system) are still

    possible

    Questionable whether these can be “predicted”

    from first principles

    Perhaps need to test if “crashes” remain at

    n=0.25

  • THANK YOU

  • SIMULATIONS WOULD FIRST SETTLE PATTERNS, AND THEN CHANGE HERBIVORE DENSITY

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    0 100 200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • dH

    = 0

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    7

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    6

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    5

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    4

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 0

    .001

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    Lag over time

  • dH

    = 0

    200 300 400 500

    050

    100

    150

    200

    WH

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    7

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    6

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    5

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    4

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 0

    .001

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 5000

    50

    100

    150

    200

    W

    H

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    Phase planes of woody biomass (X-

    axis) and grass biomass (Y-axis)