distributed revisiting: an analytic for retention of ...relevant, normative ideas together, as...

27
(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101. http://dx.doi.org/10.18608/jla.2015.22.7 ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 75 Distributed Revisiting: An Analytic for Retention of Coherent Science Learning Vanessa Svihla and Michael J. Wester University of New Mexico, Albuquerque, USA [email protected] Marcia C. Linn University of California, Berkeley, USA ABSTRACT: Designing learning experiences that support the development of coherent understanding of complex scientific phenomena is challenging. We sought to identify analytics that can also guide such designs to support retention of coherent understanding. Based on prior research that distributing study of material over time supports retention, we explored revisiting previously studied material as an analytic. We tested ways to operationalize revisiting: as a general propensity to revisit previously studied material; as a propensity to revisit specific curricular steps; as a general propensity to distribute study by revisiting previously studied material on different days; and as a propensity to distribute study by revisiting specific steps on different days. The specific steps identified as central to the learning design included a static illustration and a dynamic visualization. We modelled revisiting in a sample of 664 students taught by seven different teachers using a Web-based Inquiry Science Environment unit. Analysis of log files and regression modelling revealed that a general propensity to revisit did not predict retention. Revisiting the dynamic visualization better supported retention than revisiting static material, but only for distributed revisiting. Our findings suggest that revisiting can be a useful analytic when aligned with the framework guiding learning design. Keywords: Learning design, revisiting, distributed practice, knowledge integration, inquiry science Editor’s Note: As part of the Special Section on Learning Analytics & Learning Theory this article is followed by a short commentary on pp. 102-106 that discusses the challenges it faced and successes it achieved in drawing on and contributing to theory use in learning analytics. 1 RATIONALE Lockyer, Heathcote, and Dawson (2013) suggest a symbiotic relationship between learning design and learning analytics, with the former providing a lens to understand pedagogical aims and the latter as evidence that can be used to evaluate the design; this approach is compelling because data are collected passively and in-situ. The learning design necessarily informs the pedagogical aims, as without this, deciphering the relevance of particular data signals is challenging. As a result, much of learning analytics has focused on student progress and time spent on a task.

Upload: others

Post on 12-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

75

Distributed Revisiting: An Analytic for Retention of Coherent Science Learning

VanessaSvihlaandMichaelJ.Wester

UniversityofNewMexico,Albuquerque,[email protected]

MarciaC.Linn

UniversityofCalifornia,Berkeley,USA

ABSTRACT: Designing learning experiences that support the development of coherentunderstandingof complex scientific phenomena is challenging.We sought to identify analyticsthatcanalsoguidesuchdesignstosupportretentionofcoherentunderstanding.Basedonpriorresearchthatdistributingstudyofmaterialovertimesupportsretention,weexploredrevisitingpreviously studied material as an analytic. We tested ways to operationalize revisiting: as ageneral propensity to revisit previously studied material; as a propensity to revisit specificcurricular steps; as a general propensity to distribute study by revisiting previously studiedmaterialondifferentdays;andasapropensitytodistributestudybyrevisitingspecificstepsondifferent days. The specific steps identified as central to the learning design included a staticillustration and a dynamic visualization. We modelled revisiting in a sample of 664 studentstaughtbysevendifferentteachersusingaWeb-basedInquiryScienceEnvironmentunit.Analysisoflogfilesandregressionmodellingrevealedthatageneralpropensitytorevisitdidnotpredictretention. Revisiting thedynamic visualizationbetter supported retention than revisiting staticmaterial,butonly fordistributed revisiting.Our findings suggest that revisitingcanbeausefulanalyticwhenalignedwiththeframeworkguidinglearningdesign.Keywords: Learning design, revisiting, distributed practice, knowledge integration, inquiryscience

Editor’sNote:AspartoftheSpecialSectiononLearningAnalytics&LearningTheorythisarticle isfollowedbyashortcommentaryonpp.102-106thatdiscussesthechallengesitfacedandsuccesses itachievedindrawingonandcontributingtotheoryuseinlearninganalytics.

1 RATIONALE Lockyer,Heathcote,andDawson (2013)suggestasymbiotic relationshipbetween learningdesignandlearning analytics,with the formerproviding a lens to understandpedagogical aims and the latter asevidencethatcanbeusedtoevaluatethedesign;thisapproachiscompellingbecausedataarecollectedpassively and in-situ. The learning design necessarily informs the pedagogical aims, as without this,decipheringtherelevanceofparticulardatasignalsischallenging.Asaresult,muchoflearninganalyticshasfocusedonstudentprogressandtimespentonatask.

Page 2: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

76

There is evidence that spending more time on task can support learning and retention (Barbera &Reimann,2013;Cotton,1990).Usingamountoftimeasametricforlearningisappealingbecauseit isrelatively easy to measure. However, what students do during time spent studying also matters. Todevelopamorenuancedmetric,weconsider findings fromstudiesofdistributedpractice,oneof themostwell-documentedfindingsfromlaboratorystudiesofrecall;numerousstudiesshowthatrestudyof material, distributed in time, supports learning (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006;Delaney,Verkoeijen,&Spirgel,2010;Donovan&Radosevich,1999;Janiszewski,Noel,&Sawyer,2003).In this study, we explore themetric of revisiting— how andwhat students spontaneously revisit ininquirysciencematerials—andhowitrelatestotheirretention.Wespecificallyexplorewaysrevisitingcan be a useful analytic for guiding the design of technology-enhanced learning experiences whenretentionofcoherentunderstandingofcomplexscientificphenomenaisthelearninggoal.Thisrespondstocallsforlearninganalyticstoguidelearningdesign(Ferguson,2012).2 LITERATURE REVIEW WebeginbydiscussingtheKnowledgeIntegrationframeworkthatguidedourlearningdesign(Figure1).Wereviewliteratureondistributedpracticetoexplainwhywesoughtrevisitingasarelevantmetricforretention.Wethendiscussresearchonstaticanddynamicvisualizationsforlearninginquiryscience,aswecomparetheseastargetsforstudents’spontaneousrevisitinginweb-basedlearningenvironments.

Figure1.Modelforretentionofcoherentunderstandingofcomplexphenomena,informedbythe

KnowledgeIntegrationframeworkandresearchondistributedpractice.Theleft-handfigurerepresentsasingleactivitywithinaunit.Intheright-handfigure,thearrowsindicatethatstudents

candirectlyrevisitdifferentstepswithinanactivity.

2.1 Knowledge Integration Framework Guiding Learning Design We use the term learning design (Laurillard, 2012; Lockyer et al., 2013) to describe the pedagogicalapproach—KnowledgeIntegration—instantiatedinaWeb-basedInquiryScienceEnvironment(WISE)(Slotta&Linn,2009)unit.Learningdesignsaimtobereusableoradaptableacrosscontexts,andWISE

Page 3: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

77

unitsaccomplishthisbyprovidingprofessionaldevelopmentforteachersandprovidingtoolsthatallowteacherstoadaptunitsfortheirclassrooms;thisadaptationcommonlycontinuesintotheclassroomasteachers implement units differently,with some teachersweavingother resources, quizzes, labs, andactivities into the unit, and others taking a guiding role, offering additional instruction only whenstudentsseekhelp.WISEunitsprovideguidanceto teachersandstudentsaboutwhat theyshoulddoandwhentodoit,andtheresourcesrequiredtocarryouttheactivities,whichareprimarilysimulation-based.The Knowledge Integration framework (Kali, 2006; Linn& Eylon, 2011) drawson extensive classroomresearchtoidentifywaystoguidestudentstointegratetheirdiverseandoftenconflictingideasaboutcorethemes,suchasenergytransferandtransformationacrosssciencedisciplines(Svihlaetal.,2010).Werefer to theprocessbywhichstudentsdevelopacoherentunderstandingofsciencethat involvesgeneratingideas,addingnewideas,comparinganddistinguishingtheirnewandpriorideas,andlinkingrelevant,normativeideastogether,asknowledgeintegration(Kali,Linn,&Roseman,2008).WISEunits scaffold students using an inquirymap (Figure 2) to support them in developing coherentunderstandingofscienceideas(Linn,2006).Eachunitcomprisesactivitiesofmultiplesteps(listedalongthe left side). Activities first elicit students’ ideas. Next, activities introduce students to new ideas(commonlydescribedintheKnowledgeIntegrationframeworkas“addingideas”).Finally,activitieshelpstudentsdistinguishandevaluatebetweentheirinitialideasandnewlyaddedideas.Inmanyactivities,this is accomplished through sequences in which students make predictions, interact with dynamicvisualizations,thenreflectontheirobservations.Forinstance,intheunitcalledGlobalClimateChange(GCC)(Svihla&Linn,2012a),studentslearnaboutthegreenhouseeffectandtheroleofenergytransferand energy transformation in climate change. They investigate NetLogo visualizations (Wilensky &Reisman,2006)representingtheearthandatmosphere,andvariablesinvolvedinclimatechange.

Figure2.InquirymapfortheWISE4environment.Activitiesfivethroughsevenarevisible;activity

sevenisexpandedtoshowitcomprisessevensteps.

Page 4: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

78

Usingthe inquirymap,studentscanrevisitpriorstepsthroughouttheunit; this ispartofthe learningdesign, as one goal of the knowledge integration framework is to promote the ability of students tomonitortheirownlearningbyknowingwhentheyneedmoreinformation(Chiu,2010).Moregenerally,recognizingthevalueofrevisitingisconsistentwithrecognizingtheneedtostopandexplainatexttooneself,aprocesscalled“generatingself-explanations” (Chi,Bassok, Lewis,Reimann,&Glaser,1989).Some research suggests that students are able to judge when it is advantageous to distribute theirlearning over time (Popham, 2009). However, studies of self-explanation show that some studentsspontaneouslyseektoexplainconundrumswhileothersdonot(Slotta&Chi,2006)andthatindividualsdifferintheirpropensitytoupdatetheirmemories(Bjork,1978).Forthisreason,someauthorsofWISEunits structure revisiting, such as by forcing students to revisit earlier steps based on non-normativeresponses.However,understandingstudents’spontaneousrevisitingpatternsandtheirrelationshiptoretention of coherent understanding could help guide learning designs beyond simple checks. Forinstance,priorresearchhasdemonstratedthatdistributingstudyovertimebettersupportsretention;thus,understandinghowstudents revisit stepsover timecouldguidenewdesignpatterns thatbettersupportretention.2.2 Revisiting as Distributed Practice to Support Retention 2.2.1 RevisitingasDistributedPracticeSupportsLearningStudentsmightrevisitasteptohelpclarifytheirideas,makingrevisitingaformofdistinguishingideas,as advocated in the knowledge integration framework (Svihla & Linn, 2012b; Zhang & Linn, 2011).However, revisiting could also be unproductive, aswhen students reread text, addingmulti-colouredunderliningbutnotgainingmoreinsightintothematerial(Bjork&Bjork,2009).Therearemanyreasonswhyastudentmightdecidetorevisitastep;yet,anyrevisitingprovidesanopportunitytorestudy.Thus,ageneralpropensitytorevisitpreviouslystudiedmaterialcouldconferanadvantageforretention.Students develop more durable, integrated understanding when they distribute their study in time,ratherthanwhentheymasstheirpractice.Forinstance,considertwostudentsstudyingforachemistrytest.Diegoreviewsthematerialfor10minuteseachday,forsevendays.Marioreviewsthematerialfor70 minutes the day before the test. Hundreds of studies (e.g., as reviewed in Cepeda et al., 2006;Delaneyetal.,2010;Donovan&Radosevich,1999;Janiszewskietal.,2003)wouldpredictDiegowilldobetterontheexambecausehedistributedhisstudyover time.These findingsheld for repetitionandinduction tasks (Kornell, Castel, Eich, & Bjork, 2010) and abstraction and generalization tasks (West,2011).Classroomstudiesandstudieswitheducationallyrelevantmaterialshaverecentlybecomemorecommon, finding benefits to distributed study of scientific prose (Roediger & Karpicke, 2006), maps(Carpenter&Pashler, 2007),history facts (Carpenter, Pashler,&Cepeda,2009), vocabulary (Bloom&Shuell,1981;Seabrook,Brown,&Solity,2005;Sobel,Cepeda,&Kapler,2010),multiplicationfacts(Rea&Modigliani,1985), statisticsconcepts (Budé, Imbos,Wiel,&Berger,2011;Smith&Rothkopf,1984),

Page 5: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

79

middle school biology concepts (Reynolds & Glaser, 1964), university medical education (Kerfoot,Kearney,Connelly,&Ritchey,2009),andelementaryscience(Vlach&Sandhofer,2012).However,many of these studies occurred over a relatively short period, raising the need for furtherresearchunder real-worldand longer timeframeconditions (Cepedaetal.,2006;Dunlosky&Rawson,2012).Partiallytakinguptheseconcerns,recentresearchhasdocumentedtheutilityandgeneralityoflearning analytics approaches to distributedpractice, finding, for instance, that learningmanagementsystems can provide usable information about distributed practice (Andergassen, Mödritscher, &Neumann, 2014;Mödritscher, Andergassen,&Neumann, 2013). These studies show that distributingstudyacrosstimeandoverdayssupportslearningforarangeoftopics,particularlywhenstudentsareable to integrate ideas across a course of study (Andergassen et al., 2014). However, questions stillremain about how to support students to revisit previously studied content effectively to lead toretention of integrated understanding, which may depend on more than simple revisiting to recallpreviouslystudiedmaterial(Dunlosky&Rawson,2012).2.3 Retention of Integrated Understanding Researchershavevariedthelengthoftimebetweenthefinalstudysessionandthedelayedpost-test—called the retention interval (Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012). Several studies ofretention have produced reversal effects from immediate post-test to delayed post-test (Bird, 2010;Rawson,2012;Rawson&Kintsch,2005). In thesestudies,distributedstudysessionsdonotappear tobenefitperformanceonthe immediatepost-test,buttheydoondelayedpost-tests.For instance, inastudyinvolvingcalculatingthenumberofpermutationsforsequences,studentsfirstlearnedhowtodoaproblem,andtheneithercompletedtenpracticeproblemsinoneclusteredsessionorintwosessionsoneweekapart.Post-testresultsshowednodifference,butthedelayedpost-testgivenfourweekslatershowedgreaterretentionforthoseinthedistributedgroup(Rohrer&Taylor,2006).Likewise,inastudyofexpositorytextscontrastingamassedconditionwithadistributedconditionwithaone-weekgapbetweenactivities,anadvantagewasfoundafteralongerretentioninterval.Studentswere tested for reading comprehension either immediately upon completion or after a two-dayretention interval (Rawson&Kintsch, 2005). Those in themassed conditionperformedbetter on theimmediate test, but those in the distributed condition performed better after a two-day retentioninterval. To explain why this might occur, researchers explored whether the long or short retentionintervalwould lead tomore integrated ideas (Rawson,2012).Rawson tested this ideaby focusingonspecific post-test question types (free and cued recall), predicting that longer gaps between studysessions and a longer retention interval would depend “more heavily on the degree of integration”(Rawson,2012,p.873).Analysisshowedthatparticipantswithlongergapsbetweenstudysessionswerelikeliertorecallthemainandimportantideasovertheunimportantideas.Thestudentsexperiencinga

Page 6: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

80

longerretention intervalperformedsignificantlyhigheronthecuedrecallquestionsbyrecallingmoreideasafterthedelay.Thus,thebenefitsofrevisitingpreviouslystudiedmaterialmightnotshowuponimmediatepost-tests.A delayed post-test is likelier to detect the potential benefit of distributed study. This presents apotential challenge to the design of adaptive learning systems, unless retention is a priority of thedesigners.2.4 Revisiting What? Whilewecannotalwaysdetectwhystudentschoosetorevisitpreviouslystudiedmaterial,wecaneasilyexplorewhat they revisit, and test revisiting as a diagnostic for retention of coherent understanding.WISE units include various curricular step types, such as text, static illustrations, and dynamicvisualizations.Basedonpriorresearch,weknowthatstudentscanlearnaboutabstractorinvisiblephenomena—likeheattransferandtransformation—fromdynamicvisualizations(e.g.,Cook,2006;Marbach-Ad,Rotbain,& Stavy, 2008). While there is continued controversy about how and when static versus dynamicvisualizationssupportlearning(Tversky,Morrison,&Betrancourt,2002),thereissubstantialsupportfortheiruseinlearning(Höffler&Leutner,2007),particularlywhenstudentinteractionswithvisualizationsarescaffolded(Hegarty,2004;Tverskyetal.,2002).Inourpriorresearch,wehavefoundthatstudentsdo learn fromdynamic visualizations designed to support knowledge integration (Ryoo& Linn, 2010,2012; Svihla & Linn, 2012a). This typically means that students are first asked to make predictions,interactwithadynamicvisualization,andthenreflectonwhattheylearned.When supporting students to learn about a complex phenomenon, we have also added staticillustrations to help students connect their prior experiences to the phenomenon and notice salientfeatureswhentheyinteractwiththedynamicvisualizations.Forinstance,intheGlobalClimateChangeunit,weaddedastaticillustration(Figure3,left)priortothedynamicvisualization(Figure3,right).Thiswasaddedbasedonanalysisofvideodataandlogfiledatafrominitialtestingofthelearningdesign.Thiscombinationsupportedthe initialdevelopmentofcoherentunderstandingofclimatechangeandenergy transformation as an importantmechanism for the greenhouse effect (Svihla & Linn, 2012a);here we explore how students’ spontaneous revisiting of these relates to retention of thisunderstanding.

Page 7: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

81

Figure3.Onleft,thestaticcurriculumstepinwhichstudentsseeasimplemetaphorforenergy

transformationasanadvanceorganizer.Ontheright,adynamicvisualizationstep,inwhichstudentsfirstseeascreenshotsuggestingvariousexperimentsandthencantestouttheirownideaswiththe

visualization.The static illustration contains informationaboutenergy transformation in thegreenhouseeffect andcompares it to phase changes inwater. The dynamic visualization contains information about energytransformation in the greenhouse effect, and additionally allows students to relate this to globaltemperature. In contrast to the static illustration, the information is not presented directly; studentsmust explore the visualization to uncover this information. Thus, the dynamic visualization containsmore information than thestatic illustration,but the information isavailableonly through interactionwiththedynamicvisualization.3 RESEARCH PURPOSE Weinvestigatedstudents’spontaneousrevisitingofpriorstepsasaformofself-distributedlearning.Wetestedvarioustypesof revisitingofearliersteps intheunitwitha largesampleofstudentstaughtbyseveralteachers.Wealsoexamineddurationofinstruction.Weinvestigatedthefollowingquestions:1. Howdoesdurationofinstructionexplainvarianceinretentionofintegratedknowledge?2. Howdodurationof instructionandspecificwaystooperationalizerevisitingasananalyticexplain

varianceinretentionofintegratedknowledge,withrevisitingdefinedaspropensityto:a)revisitpriorstepsingeneral;

Page 8: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

82

b)revisitspecificsteps—astaticillustrationoradynamicvisualization;c)distributestudyingeneralbyrevisitingstepsacrossdays;d)distributestudybyrevisitingspecificsteps—astaticillustrationoradynamicvisualization—acrossdays.

We hypothesized that propensity to distribute study by revisiting specific steps would best predictretention.We furtherpredicted that restudyof themorecomplexdynamicvisualizationwouldbettersupportretention.Operationalizingrevisitinginthiswaybestalignstoourlearningdesign.4 METHODS 4.1 Instructional Materials Students studied a previously tested WISE unit called Global Climate Change (GCC) (Svihla & Linn,2012a). This unit teaches students about the greenhouse effect and the role of energy transfer andenergytransformationinclimatechange.4.2 Participants Participantswere835grade6students(664studentscompletedallmeasures)taughtbysevendifferentteachers at three culturally diverse middle schools. All teachers taught the unit in five to sevenconsecutiveclassperiods.Datawere collectedduring two consecutive school years. Each teacherwas assigned an ID (Table 1).Three teachers provided data for both years. Three of the teachers taughtmultiple class periods perday, resulting in larger sample sizes for those teachers.Wedefinean implementationas includingallclassperiodstaughtbyateacherinagivensemester.Intotal,tenimplementationsareincludedinthestudy,withthreeteacherscontributingtwoimplementations.Meantotaltimespentstudyingtheunitrangedfrom133to301minutes.4.3 Assessments We used Knowledge Integration assessments alignedwith the unit. The assessment items have beenshowntohavegoodpsychometricpropertiesandtobevalid indicatorsofknowledge integration (Liu,Lee,Hofstetter,& Linn, 2008; Liu, Ryoo, Linn, Sato,& Svihla, 2015). Retentionwasmeasuredusing adelayedpost-test (M=12.88,SD=2.06)administeredameanof23days following instruction (Table1).Teachersgavethedelayedpost-testtofittheirparticularschedules,resultinginretentionintervalsthatvaried from4 to 40 days. The delayed post-test included six Knowledge Integration items (maximumpossiblescoreof21)drawnfromalongerassessmentthatadditionallycoveredothertopicsaspartofaprojectinvestigatingcumulativelearning(Liuetal.,2015;Svihlaetal.,2010).Theitemsincludedinthe

Page 9: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

83

delayed post-test assessed students’ understanding of energy transfer by radiation, energytransformation,andtheroleenergytransformationplaysinthegreenhouseeffect;thesesameconceptsaretaughtinthecurriculumstepsinFigure3.Thedelayedpost-testscoresappearrelativelylowinpartbecause energy transfer and transformationwere challenging items, intended to detect growth overmultipleyears.Table1.Descriptivestatisticsforeachimplementation,includingretentioninterval,delayedpost-test

scores,andtotalminutesspentontheunit

Year TeacherIDRetentioninterval(days)

nDelayedPost-test

scoreTotalminutes

M SD M SD2010 0 31 79 14.44 2.64 215.73 24.672010 1 17 28 15.00 2.80 229.69 36.382010 2 15 60 13.45 2.59 187.23 48.072010 3 23 27 13.89 3.07 184.19 21.112011 0 4 93 12.19 1.66 205.06 45.662011 1 12 52 13.02 1.59 300.75 68.942011 2 26 91 12.36 1.42 235.73 59.192011 4 24 26 12.31 1.19 222.47 49.432011 5 15 26 12.04 1.08 95.78 17.902011 6 40 182 12.36 1.26 132.62 25.24

5 ANALYSIS 5.1 Data Coding StudentresponsesweresavedbytheWISE4systemandscoredusingvalidatedKnowledgeIntegrationrubrics (Svihla& Linn, 2012a). Two raters coded a subset of items; any discrepancieswere discusseduntilconsensuswasreached.TobesuccessfulonKnowledgeIntegrationitems,studentsmustexhibitacoherent,connected,normativeunderstanding (Table2).Notethatbecausethe lowestpossiblescoreper question is 1, tests containingmultiple questions have aminimum score equal to the number ofitems(asopposedto0).

Page 10: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

84

Table2.KnowledgeIntegrationscores,levels,anddescriptionsKnowledgeIntegration

score

Level Description

1 Irrelevant Doesnotanswerthequestionbeingasked,orchosenottoanswer

2 Non-normative Containsnon-normativeideasorlinks,vagueideas,orscientificallyinvalidconnectionsbetweenideas

3 Partiallink UnelaboratedconnectionsusingrelevantfeaturesORScientificallyvalidconnectionsnotsufficienttosolvethe

problem.4 Fulllink Onescientificallycompleteandvalidconnection5 Complexlink Twoormorescientificallycompleteandvalidconnections

5.2 Log File Analysis TheWISEsystemlogsstudentprogressthroughunits,providingtimestampsofthestudents’activityinsequence in an exportable Excel file (Figure 4). All student dyads associated with a teacher’simplementation are exported into a single file. To reliably document student revisiting, we used anAppleScript (excel2csv.app) toextract student logs into individual .csv files.We thenusedMATLAB toextractdataaboutrevisitingpatternsandtiming.Thisprocessresulted ina .csv file foreachteacher’simplementation.

Figure4.ScreenshotofanExcelworkbookcontaininglogfiledatafromoneteacher’simplementation

oftheGlobalClimateChangeunit.Thefirstcolumninthespreadsheetprovidesthesequence(Figure4).Thesecondcolumnidentifiesthenumberandtitleofthestepthedyadvisited.Thethirdandfourthcolumnsprovideinformationabout

Page 11: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

85

the step type and prompts. The fifth, sixth, and seventh columns provide time and date informationabouteachvisit.Theeighthcolumnshowsstudentwork,makingitpossibleforresearcherstoidentifywhenstudentsmadechangestotheiranswers.Thus,severalvariablesareeasilycomputed.Wecomputedthetotaltime(durationofstudy)eachdyadspent on the unit. To explore revisiting, we computed several variables (Tables 3 and 4). We firsteliminatedvisitslastinglessthanfivesecondssincethesegenerallyresultedfromstudentsclickingthe“Next” or “Back” buttons in rapid succession. Rapid clicking was also observed during classroomobservationsand invideosof implementationwhenstudentsquicklyclicked throughsteps to reachadesiredstep.Basedonpastresearchshowingthatstudentsdifferintheirpropensitytoupdatetheirmemories(Bjork,1978),wecomputedarevisitingdispositionvariable,definedastheaveragenumberofvisitsmadetostepsacross theunit (Tables3and4).Thus, ifadyadvisitedeverystep in theunit twice, theywouldreceiveascoreoftwo.Wealsohypothesizedthatwhilestudentsdifferinpropensitytoupdatetheirmemories,theycouldalsodifferinwhattheychosetorevisit.WeviewedthespecificcurriculumstepsinFigure3aslikelytargetsofrestudybasedonclassroomobservations.Thesetwosteps inparticulararethecentralfocusoftheunit.Theyalsoprovideaninterestingcontrast.PreviousstudiesofdynamicvisualizationsembeddedinWISE units have provided evidence that students often learn more from them compared to staticillustrations.Weanticipateddifferenceswhendyadsrevisitedoneortheotherbecauseofdifferencesinthe typeof step (dynamic versus static) and the amountof information in each step (both containedinformation about the role of energy transformation in the greenhouse effect, but only the dynamicvisualization related that to changes in global temperature). We calculated variables for the totalnumberofvisitstoeachofthesesteps.Basedonpastresearch,wealsowantedtotestthebenefitforlongerlagsbetweenrevisits.Forinstance,basedonameta-analysis, longer intervalsbetweenstudysessionsbettersupportmorecomplextasks(Donovan&Radosevich,1999).Thissuggeststhatimmediaterevisits(e.g.,thoseoccurringonthesameday)torecentlyviewedmaterialsmaynotleadtolongerretentionofcoherentunderstanding.Thus,wecomputedadistributeddispositionvariablebasedonthenumberofdayseachdyadvisitedeachstep.This was calculated as the average number of days students visited each step throughout the unit.Studentswhovisitedeachstepononeandonlyonedaywouldhaveascoreofone,whereasthosewhovisitedeachstepontwodayswouldhaveascoreoftwo.Wealsocomputeddistributedvisitvariablesforthesamespecificsteps—thedynamicvisualizationandthestaticillustration.Wepredictedanadvantagewhenstudentsvisitedthesestepsonmorethanonedaybecausethevisitswouldbemoredistributedintime.

Page 12: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

86

Table3.Variablescomputedtoexplorerevisiting

Typeofrevisiting Calculatedas JustificationRevisiting disposition:General disposition torevisit

Calculated as average number ofvisits across all steps.Both same-dayandacross-dayvisitstoastepcounted.

Students differ in their propensityto update their memories (Bjork,1978).

Number of visits tostaticillustration.

Calculatedasthetotalnumberofvisitstothestaticcurriculumstep.

Students vary in propensity toupdate their memories (Bjork,1978), but what they choose torevisit could correspond to whattheyretain.

Number of visits todynamicvisualization.

Calculatedasthetotalnumberofvisitstothedynamicvisualization.

Distributing disposition:Disposition to revisitstepsacrossdays

Calculated as average number ofdaysadyadvisitedeachstep.

Students can judge when it isadvantageous to distribute theirlearning over time (Popham,2009).

Number of days visitedstaticillustration

Calculatedasthetotalnumberofdays a dyad visited the staticillustration.

Students can judge when it isadvantageous to distribute theirlearning over time (Popham,2009), but what they choose torevisit could correspond to whattheyretain.

Number of days visiteddynamicvisualization

Calculatedasthetotalnumberofdays a dyad visited the dynamicvisualization.

Table4.Descriptivestatisticsforeachtypeofrevisitingvariable

Year

Teache

rID Revisiting

disposition

Visitstostatic

illustration

Visitstodynamic

visualization

Distributingdisposition

Daysvisitedstatic

illustration

Daysvisiteddynamic

visualizationM SD M SD M SD M SD M SD M SD

2010 0 1.97 0.57 1.31 0.98 3.73 2.86 1.18 0.33 1.18 0.77 1.94 1.282010 1 1.76 0.24 1.25 0.51 3.64 1.98 1.10 0.11 1.05 0.23 1.46 0.52010 2 1.8 0.56 1.32 0.83 3.08 2.15 1.11 0.32 1.11 0.52 1.61 0.82010 3 1.78 0.4 1.40 0.62 3.40 2.77 1.16 0.11 1.07 0.25 1.2 0.412011 0 2.15 0.56 1.21 0.49 3.04 2.67 1.00 0.14 1.06 0.31 1.32 0.772011 1 2.54 0.59 5.95 2.67 9.27 4.15 1.40 0.22 2.49 0.74 2.53 0.792011 2 1.56 0.44 1.60 1.01 2.88 2.09 0.89 0.42 1.25 0.59 1.69 0.922011 4 2.29 0.74 3.36 2.23 6.5 4.25 1.39 0.38 2 0.86 2.21 0.962011 5 1.56 0.21 3.90 1.82 5.76 3.26 0.97 0.10 2 0.38 2 02011 6 1.46 0.3 1.15 0.66 2.28 1.86 0.98 0.15 1.01 0.31 1.07 0.39

Page 13: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

87

5.3 Regression Modelling of Revisiting Practices We initially modelled delayed post-test scores using Hierarchical Linear Modelling (HLM), but thenumberofparticipantswastoolowduetomissingdata.Calculationsofintra-classcorrelationindicatedthat less than 5% of the variance in delayed scores was explained by clustering. Other research hassuggested that in such cases, multi-level modelling is not warranted (Lee, 2000). Based on thesefindings,weproceededwithordinaryleastsquaresregressionmodelling.We know from prior work that students need sufficient time to develop coherent understanding ofcomplexphenomenalikeclimatechange.Wethereforefirstmodelledretentionusingtimespentontheunit.Wetestedvariouscontextualvariables(e.g.,gender,teacher,school)notdetailedhere.Wefoundthattheydidnotexplainsignificantvariance.We proceeded to add, then remove, the revisiting variables stepwise, resulting in four models thattestedrevisiting:• Model2:Revisitingdisposition;• Model3:Revisitingthestaticillustrationanddynamicvisualization;• Model4:Distributingdisposition;• Model5:Distributedrevisitingofthestaticillustrationanddynamicvisualization.Addingallvariablesatoncewouldhaveresultedinmulticollinearity,asthestep-specificvariableswouldnothaveexplainedvariabilitynotalreadyexplainedbythedispositionvariables.Collinearitytolerancesranged from .56 to .85, suggesting that although the number of total visits to the two specific steps(r=.59)andnumberofdaysthespecificstepswerevisited(r=.57)weresignificantlycorrelatedtoeachother,thiswasnotanissueinthestepwiseapproach.6 RESULTS OF REGRESSION MODELLING A simple linear regression was calculated to predict delayed post-test scores based on duration ofinstruction (M=198minutes,SD=65minutes).Thedelayedpost-testscorehadameanof12.88acrossclassesandastandarddeviationof2.06.Asignificantregressionequationwasfound(F(1,662)=12.99,p<.001)(Model1,Table5,Figure5).Spendingmoretimeontheunitintotalpredictedhigherscoresonthedelayedpost-test,withanincreaseinthedelayedpost-testscoreof.004foreachadditionalminutespent.Thiswasstatisticallysignificantbutaccountedforasmallamountofvarianceindelayedpost-testscores,r2=.02,p<.05.

Page 14: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

88

Figure5.Scatterplotshowingtherelationshipbetweentotaltimespentontheunitandscoresonthe

delayedpost-test.Trendlineshowsr2=.19.InModel 2, amultiple linear regressionwas calculated to predict delayed post-test scores based onduration of instruction and revisiting disposition (general propensity to revisit steps, both across andwithin days,M=1.81, SD=0.57). A significant regression equationwas found (F(2, 661)= 7.82,p<.001)(Model2,Table5).Spendingmoretimeontheunitintotalpredictedhigherscoresonthedelayedpost-test,withanincreaseinthedelayedpost-testscoreasbefore.Propensitytorevisitwasnotasignificantpredictor.Model2didnotexplainsignificantlymorevarianceindelayedpost-testscoresthanModel1,r2=.022,p>.05.InModel 3, amultiple linear regressionwas calculated to predict delayed post-test scores based onduration of instruction and propensity to revisit specific steps (static illustration:M=1.82, SD=1.80;dynamicvisualization:M=3.59,SD=3.16),bothacrossandwithindays.Asignificantregressionequationwas found (F(3, 660)= 5.89, p<.001) (Model 3, Table 5). Spending more time on the unit in totalpredicted higher scores on the delayed post-test, with an increase in the delayed post-test score asbefore.Eachadditionalvisittothestaticillustrationpredictedadecreaseinthedelayedpost-testscoreof0.119.Additionalvisitstothedynamicvisualizationwerenotasignificantpredictor.Model3didnotexplainsignificantlymorevarianceindelayedpost-testscoresthanModel1,r2=.026,p>.05.InModel4,amultiplelinearregressionwascalculatedtopredictdelayedpost-testscoresbasedontheduration of instruction and distributing disposition (general propensity to revisit steps across days,M=1.13,SD=0.26).Asignificantregressionequationwasfound(F(2,661)=7.34,p<.001)(Model4,Table5). Spendingmore timeon theunit in totalpredictedhigher scoreson thedelayedpost-test,withanincreaseinthedelayedpost-testscoreasbefore.Propensitytodistributestudybyrevisitingstepsacrossdayswasnotasignificantpredictor.Model4didnotexplainsignificantlymorevarianceindelayedpost-testscoresthanModel1,r2=.022,p>.05.

Page 15: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

89

InModel 5, amultiple linear regressionwas calculated to predict delayed post-test scores based ondurationof instructionandpropensitytodistributestudybyrevisitingspecificsteps(static illustration:M=1.27,SD=0.66;dynamicvisualization:M=1.54,SD=0.86)acrossdays.Asignificantregressionequationwas found (F(3, 660)= 10.59, p<.001) (Model 5, Table 5). Spending more time on the unit in totalpredicted higher scores on the delayed post-test, with an increase in the delayed post-test score asbefore.Eachadditionalvisittothestaticcurriculumsteppredictedadecreaseinthedelayedpost-testscoreof0.534.Eachadditionalvisittothedynamiccurriculumsteppredictedanincreaseinthedelayedpost-testscoreof0.430.Model5explainedsignificantlymorevariance inthedelayedpost-testscoresthanModel1,r2=.046,p<.05.

Table5.Modelsofscoresonthedelayedpost-test

UnstandardizedCoefficientsStandardizedCoefficients

B Std.Error β tModel1:Delayedpost-testscoresasafunctionoftotaltimespentontheunit

Intercept 12.084 0.238 50.67**Totalminutesforunit 0.004 0.001 .139 3.60**

Model2:Delayedpost-testscoresasafunctionoftotaltimespentontheunitandrevisitingdisposition

Intercept 12.224 0.257 47.61**Totalminutesforunit 0.004 0.001 .128 3.28**Averagenumberoftimeseachdyadvisitedstepsacrosstheunit

-0.301 0.186 -.083 -1.62

Model3:Delayedpost-testscoresasafunctionoftotaltimespentontheunitandrevisitingspecificsteps

Intercept 12.07 0.238 50.69**Totalminutesforunit 0.005 0.001 .156 3.69**Totalnumberofvisitstostaticcurriculumstep

-0.119 0.055 -.104 -2.15*

Totalnumberofvisitstodynamicvisualizationstep

0.035 0.032 .054 1.11

Model4:Delayedpost-testscoresasafunctionoftotaltimespentontheunitanddistributingdisposition

Intercept 12.420 0.352 35.24**Totalminutesforunit 0.005 0.001 .174 3.69**

Page 16: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

90

Averagenumberofdayseachdyadvisitedeachstep

-0.479 0.371 -.061 -1.29

Model5:Delayedpost-testscoresasafunctionoftotaltimespentontheunitanddistributingvisitstospecificsteps

Intercept 12.151 0.251 48.50**Totalminutesforunit 0.004 0.001 .130 3.15**Numberofdaysvisitedstaticcurriculumstep

-0.534 0.145 -.172 -3.67**

Numberofdaysvisiteddynamicvisualizationstep

0.430 0.113 .180 3.80**

Model1r2=.019,r2change**;Model2r2=.023,r2changeNS;Model3(comparedtoModel1)r2=.026,r2changeNS;Model4(comparedtoModel1)r2=.022,r2changeNS;Model5r2=.046,r2change**;*Significantatp<.05;**Significantatp<.017 DISCUSSION Our resultsareanchored to the realitiesofdoing research innaturalistic classrooms.Our findingsarecorrelational in nature, and reflect the messiness and complexities of doing research for and withcomplexsciencelearninginpublicschoolsettings.Insuchsettings,teachersprovidevariedinstructionalsupportsoutsidethelearningdesign,withsometeachersallowingthelearningdesigntodomostofthework, others creating worksheets based on the learning design, and others creating entire labs tocomplement what students are learning. Teachers implement the learning design and associatedmeasuresaccordingtoschedulesthattheythemselvesmaynothavemuchcontroloverasothertestingand school events intercede. These challenges prevent strict experimental control, particularly forlonger timescale interventions, yet it is important to study such interventions under real-worldconditions.Usingautomaticallycollectedlogdatastillprovidesanexcellentopportunitytoposetheoreticallydrivenresearchquestionsaboutlearning,evenundertheseconditions.However,resultsfromsuchapproachesare correlational in nature, and cannot rule out the possibility that some undetected variablemightcauseboththebehaviourandtheoutcome.We took advantage of the log file data to test questions related to self-directed learningbehaviours,namely,theamountoftimeastudentspentstudyingtheunitoverallandvarioustypesofrevisiting.Inourstudy,thelearninggainsweremodest,overall.Resultsacrossmodelsshowanadvantageforlongertimespentlearningtheunit,consistentwithgreateropportunitytolearnthematerial.Inouranalysis,wefoundasmalleffect fordurationof instruction.This isconsistentwiththevalueofspendingmoretimeoncomplex,inquiryactivitiesdocumentedinearlierstudiesofimplementationofWISEunits(Lee,

Page 17: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

91

Linn, Varma, & Liu, 2010). However, this finding is correlational. Itmay be that studentswho spendlonger do so because they knowhow tomake the extra timebenefit their learning. Simply requiringstudents to spend longermightnot result in increasedgains,as studentswhohave thepropensity tospend less time,might spend time reviewingmaterial shallowlyorwithoutpurpose, resulting in littlebenefitforlearning.Thus,understandingmoreaboutwaysstudentsdirecttheirrestudybehaviourcouldbeusefulinsupportinglearningandguidinglearningdesigns.Throughasequenceofmodels,wetestedvariouswaystooperationalizerevisitingasametric:first,asadispositiontorevisitingeneral;second,asapropensitytorevisitspecificmaterial;third,asadispositionto distribute study over time; and fourth, as a propensity to distribute study of material over time.Revisitingpreviouslystudiedmaterialsisacompellinganalyticbecauseitisboththeoreticallygroundedandrelativelyeasytodetect.Priorresearchhasshownthatrevisitingpreviouslystudiedmaterial—suchas rereadingapost inanonline forum—canbenefit learners (Wise,Hausknecht,&Zhao,2014),andthat repeated retrieval supports retention (Karpicke & Roediger, 2007). Likewise, repeated practiceacrossdaysandover time supports learning (Andergassenetal., 2014;Mödritscheretal., 2013).Ourfindings tell a more complicated story, suggesting that revisiting may not be as straightforward ananalyticasonemighthope.Pastresearchhasshownthatstudentsdifferintheirpropensitytoupdatetheirmemories (Bjork,1978), and can judgewhen it is advantageous todistribute their learningovertime (Popham,2009).Our sequenceofmodels suggests thathavingadisposition to revisitpreviouslystudied material — whether with a lag between sessions or not — might not explain variance inretention.By testing a sequenceofmodels that operationalized revisiting in different general and specificwaysaligned to researchon the valueofdistributed learninganda learningdesign,wewereable to showthat, as predicted, only distributed restudy of specific material supported retention. We found thatwhile revisiting a dynamic visualization supported retention, revisiting a static illustration did not. Ingeneral, students visited the dynamic visualization with greater frequency and variability than theyvisited the static illustration, both in general and in a distributed (across days)manner.Overall, theyvisited the dynamic visualization nearly twice as often, suggesting a general perception that learningfromthedynamicvisualizationrequiredmorevisits.Alternatively,thiscouldmeanthatstudentssimplyenjoyedplayingwiththedynamicvisualization,andreturnedtoitbecauseofthat.Studentsalsospentmore timeper visit on thedynamic visualization (M=134 seconds,SD=119) than the static illustration(M=42seconds,SD=33).Thesefindingsarenotsurprisingasthedynamicvisualizationtakestimetouseand interact with in order to access the information it contains. Further, the dynamic visualizationcontained additional information, relating energy transformation to global temperature, a detail notpresentinthestaticillustration.Thisdetailisimportantasithighlightsthatthiscomparisonisnotintendedtosupportinferencesabouttherelativevalueofdynamicversusstaticvisualizationsingeneral.Infact,westandbythedecisionto

Page 18: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

92

includethestaticillustration,asourpreviousresearchhasdemonstratedthatitsupportedstudentstoconnecttheirpriorexperiencesandideasandsupportedinitiallearningofarelativelyabstractconcept(Svihla & Linn, 2012a). In our sample, distributed restudy of the dynamic visualization positivelybenefitedretention,whereasmorefrequentrevisiting,ingeneraloracrossdays,ofthestaticillustrationpredictedlowerretention.WediscussthisfindinggroundedintheKnowledgeIntegrationframework.Revisiting the dynamic visualization is likely to elicit Knowledge Integration activities, such asdistinguishingamongalternative ideasand linking ideas.This isnot simplybecause it isadynamic,asopposedtostatic,visualization,butalsobecauseitcontainsmorecomplexinformationthatcannotbeaccessedwithoutinteractingwiththevisualization.Studentshadpreviouslymadeobservationswiththedynamic visualization, using it to test their predictions and initial ideas.When revisiting, thedynamicvisualization could cue memories of these, or students could conduct further tests, leading to newobservationsornewinsights.Theseaffordstudentstheopportunitytoevaluatetheirunderstandingandmake new links between ideas across activities. The significant advantage of revisiting the dynamicvisualization is consistentwith evidence for their valuewhen they are implementedwith guidance inonlineunits(McElhaney&Linn,2011;Ryoo&Linn,2012;Svihla&Linn,2012a),andalsoconsistentwithadifferentiationbetweensimplerecallingandmoreeffortfulrelearning(Rawson&Dunlosky,2011).However,itisimportanttonotethatpre-existingdifferences,suchasinstudents’priorknowledge,theirunderstandingofdynamicvisualizations,aswellasotherfactorsmayhave ledsomestudentsandnotothers to distribute their revisits across the different types of resources. Studentswho did not reallydevelop understanding from their initial work with the interactive simulation might not have beenpredisposedtorevisitit,relyinginsteadontheeasiertounderstandstaticvisualization.Futureresearchshould investigate such variables under varied conditions to determine whether forced revisitingproducesbenefitsforthosewholackthepropensitytorevisit.The significant disadvantage for revisiting the static illustration is consistentwith evidence thatwhenstudentsrereadtext,oftenaddingmulti-colouredunderlining,theydonotsucceedaswellastheirpeerswho test themselveson thematerialor seek linksamong ideas in the instructionalmaterials (Bjork&Bjork,2009).Theseresultsresonatewithotherstudiesshowingthatdurable,integratedunderstandingrequiresactive integrationofdiverse ideas rather than recallofdetails (Bransford,Brown,&Cocking,2000; Linn & Eylon, 2011) and benefits from self-monitoring ability (White & Frederiksen, 1998). Inaddition,theseresultsareconsistentwithresearchonspontaneousgenerationofexplanationsduringlearning. Basedonour findings,more research is needed to understandhow todesign supports thatencouragedeliberaterevisitingwhenlearnersarepermittedtodistributetheirownpractice.Findings also suggest that students who choose to revisit deceptively clear or less demandinginformation,suchasthemetaphorforenergytransformationratherthanmorecomplexanddifficulttointerpretideasindynamicvisualizations,donotmonitortheirownlearningeffectively.Whilewebelievethatthemetaphorsupportedstudentstodevelopaninitialunderstandingofenergytransformation,we

Page 19: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

93

alsothinkthatanoverrelianceonthissimpleexplanationdidnotsupportstudentstodevelopcoherent,integrated,durableunderstandingsofclimatechange.Furtherresearchisneededtounderstandhowtosupportstudentstofocustheirenergiesonrestudyingmaterialsthatcreatedesirabledifficulties;suchactivitiesmaymakelearningmoreeffortful,buttheyalsomakeitmoredurable.Ultimately,thevariablesinModel5significantlypredicteddelayedpost-testscores,butexplainedlittlevariationinthem.Anumberofothervariables—e.g.,pre-andpost-assessments,studentinterestlevelsinthetopic,otherrelatedinstructionnotdocumentedbyoursystem,differencesinimplementation—that we lackedmeasures for—might have better predicted delayed post-test scores. However, theobjectiveofourmodellingwasnot toaccount formaximumvariance indelayedpost-test scores,butrathertoexplorenuancedmodelsrelatedtoourresearchquestions.Wearguethatalthoughdistributedrevisitingofspecificstepsexplained littlevariance, it isstillan interestingmetric.Theamountof timeaccountedforbystudents’revisitstothesetwostepsissmall—amatterofonlyoneortwominutes.Thatthoseminutescanexplainanyvariabilityinscoresonatesttakendaystoweekslaterissurprisingyettheoreticallybackedbyanextensiveresearchbaseondistributedlearning.7.1 Limitations Thisresearchwasconductedinclassroomsinonlythreeschoolsandusedasingleinquiryunit,limitinggeneralizability.We focusedonKnowledge Integrationand the findingsmightnotgeneralize tootheroutcomemeasuresorlearningdesigns.Ourdesignwascomparative,lackinganexperimentalcontrol;assuch,ourfindingsaretentative.The relationships we found between revisiting and retention are correlational and could have beencausedby someother unmeasured variable; for instance, theremaybe some systematic reason thatleadcertainstudentstorevisitdynamicvisualizations,andleadotherstorevisitstatic illustrations.Forinstance, teachers might have encouraged students they viewed as smarter to revisit the dynamicvisualizations,andencouragedotherstorevisitthestatic illustrations. It isalsopossiblethat, liketimeontask,moreadeptstudentswerebetterabletojudgethatrevisitingthedynamicvisualizationwouldbehelpfultotheirlearning.Simplyforcingstudentstorevisitcomplexmaterialdoesnotmeantheywillknow what to do with it. Future studies could investigate this through randomized, systematiccomparisons, forcing some students to revisit material, and allowing others to direct their ownrevisiting.Thiswouldclarifywhether thevalueof revisiting is in therevisit itself,or in thedecisiontorevisit. Similarly, it would be helpful to better understand, through prompted recall or think-aloudprotocol,more about how studentsmake decisions to revisit specificmaterials. Alternatively, simplequestionsmight beposedwhen a revisit to a particular step is detected, allowing students to reflectbothonwhytheychosetorevisitandwhethertheyfounditbeneficialtodoso.Thiscouldleadtonewmetrics that might differentiate between reasons for revisiting. This would provide guidance for the

Page 20: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

94

creation of learning designs that aim to encourage students to make the decision to revisit specificmaterial,ratherthanforcingthemdownaparticularpath.Wedefinedrevisitingbasedonactivitiesdetectedinlogfiles.Studentscouldengageinotherformsofrevisitingthatourmethodsdonotdocument.Forinstance,teachersinsomeclassesmayhaveretaughtinformation,orprovidedstudysheetsandadditionalassessmentscoveringrelatedcontent.Althoughwefoundvariablesthatcouldsignificantlypredict thevariabilityofdelayedpost-testscores,other explanations should be entertained. For instance, the finding that spending longer on the unitpredictedhigherscorescouldbeareflectionofsomeotherunmeasuredvariable,suchasdifferencesinstudent persistence, or in teachers’ expectations of individual students. Thus, although this findingmirrorspreviousresearch,itshouldnotbeviewedasaprescriptivethatmoretimeisnecessarilybetter.Likewise, there may be other explanations for why students revisit a particular step; they may beprompted by a teacher based on a conversation not shared across the class, meaning that theconversationitselfmayhaveproducedthebenefit,ratherthantheopportunitytorestudy.7.2 Implications Combining learning analytics with learning design has previously helped guide the analysis of andrefinement of learning designs in learning management systems (Wise, 2014; Wise, Saghafian, &Padmanabhan,2012).Thiscombinationallowsresearcherstoplanandtest learningdesignsguidedbytheoriesoflearning(Lockyeretal.,2013;Wise,2014).Oursequenceofmodelsfocusedonretention,asopposedto initial learning,andthishas implicationsforlearningdesignerswhowishtoincorporaterevisitingasalearninganalytic.First,basedonresearchondistributedlearning,itislikelythatthebenefitofrevisitingmaynotbevisibleonanimmediatepost-test (Rohrer & Taylor, 2006). This means that detecting benefits on retention requires longer-terminvestmentsinthestudysites.Thiscanpresentchallenges,especiallyforresearchersworkinginschoolsalready beleaguered by the amount of testing. Such settings may prevent researchers fromimplementingadelayedpost-test,andthereforewouldpresentabarriertofurtheringthiswork.Wefoundthatrevisitingisapromisingyetcomplexlearninganalyticforpredictingretentionofcoherentunderstandingof complex scientific phenomena. Its value as an analyticwas increasedby theoreticalguidance forwhat is revisited.While revisitingas abroad, genericmetricdidnotpredict retention, amorenuancedapproachtorevisitingdid.ThismetricalignswiththeKnowledgeIntegrationframework,in that revisiting dynamic visualizations better supports the kind of effortful relearning needed forcoherentunderstandingandretentionofcomplexscientificphenomena.Thegreatervariabilityinvisitstothedynamicvisualization,comparedtothestaticillustration,suggestsimplications for instructors and for learning designers working with analytics. Not all students

Page 21: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

95

recognized the need to restudy the complex information in the dynamic visualization. Althoughtentative, our findings suggest that there may be a benefit to prompting students to restudy suchmaterial,eitherbytheinstructororbythelearningmanagementsystem.Furtherresearchisneededtocontrasttherelativebenefitsfromspontaneousandpromptedrestudy,however,aspromptedrestudymaynothavethesameeffect.Revisitingisavaluableandrelativelyeasytodetectanalyticforretentionthatcouldbeappliedtoothercontexts;however,itshouldbeappliedinanuancedmanner,informedbythetheoryoflearningguidingthelearningdesign.The finding that generic revisiting — even distributed across days — did not significantly predictretentionsuggeststwoimplicationsforlearningdesignersusinglearninganalytics.Thefirstispromising,inthat itsuggeststhatageneraldispositiontorevisit,something learningdesignershave littlecontrolover,mightnotbethatimportantasaconcern.However,withoutanadditionalmeasureofrevisitingasa disposition, this should be treated as tentative and explored further in other settings. The secondimplication is that anuanceddesignanddefinitionof revisiting is likelyneededand likely contextual.Genericrestudyofallmaterial—acommoninstructionalapproachweobservedinclassrooms—maynotbeasbeneficialforretentionasonewouldhope.Yet,thissuggeststhatthereismuchmoreworktobedonetounderstandhowtoapplyrevisitingasananalyticinspecificlearningdesigns,andthisstudycontributesandcontrastsarangeofwaystodoso.Given the relatively brief time required to prompt and carry out distributed restudy, either as aninstructororasalearningdesigner,ourfindingssuggestitmaybeaworthwhileinvestment.However,oneofthelessonsfromoursequenceofmodelsisthatnotallrevisitingisequallycapableofpredictingretention.Understandinghowto incorporatefindingsfromtheresearchondistributed learning intoaspecific learningdesign,andfurtherhowtouserevisitingasananalyticappearstorequireanuancedunderstanding of both the theory and the learning design. Based on our findings, we encourageinstructors and learningdesigners to focus theeffortsof distributed restudyon themost central andcomplexmaterialintheirlearningdesigns.The potential of revisiting as an analytic, at least as we have conceptualized and studied it, is mostpromisingforlearningtheoriesthataddresslong-termandlongitudinalapproachestolearning.Weseepotential in using such analytics to guide the learning designs that, for instance, support learningprogressions(Duncan&Hmelo-Silver,2009;Gunckel,Mohan,Covitt,&Anderson,2012;Shin&Stevens,2012)andcurricularstandardsbased(atleastinpart)onthem(e.g.,NGSSLeadStates,2013;NationalGovernorsAssociationCenterforBestPractices,&CouncilofChiefStateSchoolOfficers,2010).Insuchcontexts, revisiting as an analytic could help refine learning theory and learning designs by helpingresearchersmaintainfocusonbothinitiallearningsupportsandlonger-termretention.

Page 22: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

96

Addinganalytic tools to learningdesigns likeWISE couldalsohelp teacherspose, thenmonitor, long-termretentionquestions.ManyofourteacherswereinterestedinposingtheirownquestionsabouttheimpacttheirinstructionhadwhenusingWISE.Theywerecurious,forinstance,ifawhole-classdemoofaninteractivevisualization,afterstudentshadencountereditinpairs,couldimprovestudentretention.As many of them taught multiple sections, they sometimes ran informal comparisons, trying oneapproachwithone section and anotherwith another section. For instance, one teacher talked aboutusing a simple starter prompt with one section, and revisiting a specific question from the learningdesignwithanother section. Integratedanalytics tools couldcapitalizeon this interestandhelp themstructuremeaningfulinvestigations,includingprovidingguidancetolookbeyondshort-termgains.Sucha suite of tools could include options to help teachers select central concepts they planned to guidestudentstorevisitaswellasthosetheyobservedstudentsspontaneouslyrevisiting,asetofpromptstoencourageteacherstorecordnotesabouttheirinstruction inroomasawaytogatherinformationnotautomatically recorded, and automatically computed scores for revisiting. Such tools could elevateteaching practice by supporting teachers to pursue more easily what might otherwise be fleetingcuriosities.ACKNOWLEDGMENTS ThoughfundedbytheNSF(Grant#0822388),theviewsexpressedherearenotnecessarilythoseoftheNSF. Support was also provided by a grant from the first two authors’ institution.Wewould like toacknowledgetheteachersandstudentswhoparticipatedinthisresearch,andexpressthankstoothermembersof the research group for their feedback.Wealsowant to thank the anonymous reviewerswhosecommentshelpeduscraftamuchstrongermanuscript.REFERENCES Andergassen, M., Mödritscher, F., & Neumann, G. (2014). Practice and repetition during exam

preparationinblendedlearningcourses:Correlationswith learningresults.JournalofLearningAnalytics, 1(1), 48–74. Retrieved fromhttps://epress.lib.uts.edu.au/journals/index.php/JLA/article/view/3254

Barbera, E., & Reimann, P. (2013).Assessment and evaluation of time factors in online teaching andlearning.Hershey,PA:IGIGlobal.

Bird, S. (2010). Effects of distributed practice on the acquisition of second language English syntax.AppliedPsycholinguistics,31(4),635–650.http://dx.doi.org/10.1017/S0142716410000172

Bjork, E. L.,&Bjork,R. (2009).Making thingshardonyourself, but inagoodway:Creatingdesirabledifficultiestoenhancelearning.NewYork:WorthPublishers.

Bjork,R.A.(1978).Theupdatingofhumanmemory.InG.H.Bower(Ed.),Thepsychologyoflearningandmotivation(Vol.12,pp.235–259).NewYork:AcademicPress.

Page 23: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

97

Bloom, K. C., & Shuell, T. J. (1981). Effects of massed and distributed practice on the learning andretentionofsecond-languagevocabulary.TheJournalofEducationalResearch,74(4),245–248.http://dx.doi.org/10.1080/00220671.1981.10885317

Bransford,J.D.,Brown,A.L.,&Cocking,R.R.(Eds.).(2000).Howpeoplelearn:Brain,mind,experience,andschool.Expandededition.Washington,DC:NationalAcademyPress.

Budé,L.,Imbos,T.,Wiel,M.W.,&Berger,M.P.(2011).Theeffectofdistributedpracticeonstudents’conceptual understanding of statistics. Higher Education, 62(1), 69–79.http://dx.doi.org/10.1007/s10734-010-9366-y

Carpenter,S.K.,Cepeda,N.J.,Rohrer,D.,Kang,S.H.K.,&Pashler,H.(2012).Usingspacingtoenhancediverse forms of learning: Review of recent research and implications for instruction.EducationalPsychologyReview,24(3),369–378.http://dx.doi.org/10.1007/s10648-012-9205-z

Carpenter,S.K.,&Pashler,H. (2007).Testingbeyondwords:Using tests toenhancevisuospatialmaplearning. Psychonomic Bulletin & Review, 14(3), 474–478.http://dx.doi.org/10.3758/BF03194092

Carpenter,S.K.,Pashler,H.,&Cepeda,N.J.(2009).Usingteststoenhance8thgradestudentsʼretentionof US history facts. Applied Cognitive Psychology, 23(6), 760–771.http://dx.doi.org/10.1002/acp.1507

Cepeda,N.J.,Pashler,H.,Vul,E.,Wixted,J.T.,&Rohrer,D.(2006).Distributedpracticeinverbalrecalltasks:Areviewandquantitativesynthesis.PsychologicalBulletin,132(3),354–380.

Chi,M.T.H.,Bassok,M.,Lewis,M.W.,Reimann,P.,&Glaser,R.(1989).Self-explanations:Howstudentsstudy and use examples in learning to solve problems. Cognitive Science: A MultidisciplinaryJournal,13(2),145–182.http://dx.doi.org/10.1207/s15516709cog1302_1

Chiu, J. L. (2010). Supporting students’ knowledge integration with technology-enhanced inquirycurricula (Unpublished doctoral dissertation, UMI No. AAT 3413337). University of California,Berkeley.

Cook,M.P. (2006).Visual representations inscienceeducation:The influenceofpriorknowledgeandcognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091.http://dx.doi.org/10.1002/sce.20164

Cotton,K.(1990).Educationaltimefactors.Portland,OR:NorthwestRegionalEducationalLaboratoryDelaney,P.F.,Verkoeijen,P.P.J.L.,&Spirgel,A.(2010).Spacingandtestingeffects:Adeeplycritical,

lengthy,andattimesdiscursivereviewoftheliterature.PsychologyofLearningandMotivation,53,63–147.http://dx.doi.org/10.1016/S0079-7421(10)53003-2

Donovan,J.J.,&Radosevich,D.J. (1999).Ameta-analyticreviewofthedistributionofpracticeeffect:Nowyouseeit,nowyoudonʼt.JournalofAppliedPsychology,84(5),795–805.

Duncan, R., & Hmelo-Silver, C. (2009). Learning progressions: Aligning curriculum, instruction, andassessment. Journal for Research in Science Teaching, 46(6), 606–609.http://dx.doi.org/10.1002/tea.20316

Page 24: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

98

Dunlosky,J.,&Rawson,K.A.(2012).Despitetheirpromise,thereʼsstillalottolearnabouttechniquesthatsupportdurablelearning.JournalofAppliedResearchinMemoryandCognition,1(4),254–256.http://dx.doi.org/10.1016/j.jarmac.2012.10.003

Ferguson,R. (2012).Learninganalytics:Drivers,developmentsandchallenges. International JournalofTechnologyEnhancedLearning,4(5),304–317.http://dx.doi.org/10.1504/IJTEL.2012.051816

Gunckel,K.L.,Mohan,L.,Covitt,B.A.,&Anderson,C.W. (2012).Addressingchallenges indevelopinglearning progressions for environmental science literacy. In A. C. Alonzo & A.Wenk Gotwals(Eds.),Learningprogressionsinscience(pp.39–75).Rotterdam:SensePublishers.

Hegarty,M.(2004).Dynamicvisualizationsandlearning:Gettingtothedifficultquestions.LearningandInstruction,14(3),343–352.http://dx.doi.org/10.1016/j.learninstruc.2004.06.007

Höffler,T.,&Leutner,D.(2007).Instructionalanimationversusstaticpictures:Ameta-analysis.LearningandInstruction,17(6),722–738.http://dx.doi.org/10.1016/j.learninstruc.2007.09.013

Janiszewski,C.,Noel,H.,&Sawyer,A.G.(2003).Ameta-analysisofthespacingeffectinverballearning:Implicationsforresearchonadvertisingrepetitionandconsumermemory.JournalofConsumerResearch,30(1),138–149.http://dx.doi.org/10.1086/374692

Kali, Y. (2006). Collaborative knowledge building using the design principles database. InternationalJournal of Computer-Supported Collaborative Learning, 1(2), 187–201.http://dx.doi.org/10.1007/s11412-006-8993-x

Kali, Y., Linn, M. C., & Roseman, J. (2008). Designing coherent science education: Implications forcurriculum,instruction,andpolicy.NewYork:TeachersCollege,ColumbiaUniversity.

Karpicke, J.D.,&Roediger,H.L., III. (2007).Repeatedretrievalduring learning is thekeyto long-termretention. Journal of Memory and Language, 57(2), 151–162.http://dx.doi.org/10.1016/j.jml.2006.09.004

Kerfoot, B. P., Kearney,M. C., Connelly, D., & Ritchey,M. L. (2009). Interactive spaced education toassess and improve knowledge of clinical practice guidelines: A randomized controlled trial.AnnalsofSurgery,249(5),744–749.http://dx.doi.org/10.1097/SLA.0b013e31819f6db8

Kornell,N.,Castel,A.,Eich,T.,&Bjork,R.A.(2010).Spacingasthefriendofbothmemoryandinductionin young and older adults. Psychology and Aging, 25(2), 498–503.http://dx.doi.org/10.1037/a0017807

Laurillard,D.(2012).Thelearningdesigner:Supportingteachingasadesignscience.InR.Ørngreen(Ed.),ProceedingsoftheThirdDesignsforLearningConference(Dfl2012)(p.11).Copenhagen:AalborgUniversity. Retrieved fromhttp://pure.au.dk/portal/files/45188015/DfL2012_Conference_Proceedings.pdf

Lee,H.-S.,Linn,M.C.,Varma,K.,&Liu,O.L.(2010).Howdotechnology-enhancedinquiryscienceunitsimpact classroom learning? Journal of Research in Science Teaching, 47(1), 71–90.http://dx.doi.org/10.1002/tea.20304

Lee,V. (2000).Usinghierarchical linearmodeling to study social contexts: The caseof school effects.EducationalPsychologist,35(2),125–141.http://dx.doi.org/10.1207/S15326985EP3502_6

Page 25: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

99

Linn,M.C.(2006).Theknowledgeintegrationperspectiveonlearningandinstruction.InK.Sawyer(Ed.),The Cambridge handbook of the learning sciences (pp. 243–264). New York: CambridgeUniversityPress.

Linn,M.C.,&Eylon,B.-S. (2011).Science learningand instruction:Takingadvantageof technology topromoteknowledgeintegration.NewYork:Routledge.

Liu, O. L., Lee, H., Hofstetter, C., & Linn, M. C. (2008). Assessing knowledge integration in science:Construct, measures, and evidence. Educational Assessment, 13(1), 33–55.http://dx.doi.org/10.1080/10627190801968224

Liu,O.L.,Ryoo,K.,Linn,M.C.,Sato,E.,&Svihla,V.(2015).Measuringknowledgeintegrationlearningofenergy topics:A two-year longitudinal study. International Journal of Science Education37(7),1044–1066.http://dx.doi.org/10.1080/09500693.2015.1016470

Lockyer,L.,Heathcote,E.,&Dawson,S.(2013).Informingpedagogicalaction:Aligninglearninganalyticswith learning design. American Behavioral Scientist, 57(10),1439–1459. http://dx.doi.org/10.1177/0002764213479367

Marbach-Ad,G.,Rotbain,Y.,&Stavy,R.(2008).Usingcomputeranimationandillustrationactivitiestoimprovehighschoolstudentsʼachievementinmoleculargenetics.JournalofResearchinScienceTeaching,45(3),273–292.http://dx.doi.org/10.1002/tea.20222

McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional,unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7),745–770.http://dx.doi.org/10.1002/tea.20423

Mödritscher, F., Andergassen, M., & Neumann, G. (2013). Dependencies between e-learning usagepatterns and learning results.Proceedingsof the13th International ConferenceonKnowledgeManagement and Knowledge Technologies (i-KNOW ʼ13), (Article No. 24).http://dx.doi.org/10.1145/2494188.2494206

National Governors Association Center for Best Practices, & Council of Chief State School Officers.(2010).Commoncorestatestandardsformathematics.Washington,D.C.:Authors.

NGSSLeadStates.(2013).Nextgenerationsciencestandards:Forstates,bystates.RetrievedonOctober10,2015fromhttp://www.nextgenscience.org/

Popham,W.J. (2009).Assessment literacyforteachers:Faddishorfundamental?Theory intoPractice,48(1),4–11.http://dx.doi.org/10.1080/00405840802577536

Rawson, K. A. (2012). Why do rereading lag effects depend on test delay? Journal of Memory andLanguage,66,870–884.http://dx.doi.org/10.1016/j.jml.2012.03.004

Rawson,K.A.,&Dunlosky,J.(2011).Optimizingschedulesofretrievalpracticefordurableandefficientlearning: How much is enough? Journal of Experimental Psychology: General, 140(3), 283–302.http://dx.doi.org/10.1037/a0023956

Rawson,K.A.,&Kintsch,W. (2005).Rereadingeffectsdependon timeof test. JournalofEducationalPsychology,97(1),70–80.http://dx.doi.org/10.1037/0022-0663.97.1.70

Page 26: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

100

Rea,C.P.,&Modigliani,V. (1985).Theeffectofexpandedversusmassedpracticeontheretentionofmultiplication facts and spelling lists. Human Learning: Journal of Practical Research &Applications,4(1),11–18.

Reynolds,J.H.,&Glaser,R.(1964).Effectsofrepetitionandspacedreviewuponretentionofacomplexlearningtask.JournalofEducationalPsychology,55(5),297–308.

Roediger,H.L., III,&Karpicke, J. (2006).Test-enhanced learning:Takingmemory tests improves long-term retention. Psychological Science, 17(3), 249–255. http://dx.doi.org/10.1111/j.1467-9280.2006.01693.x

Rohrer,D.,&Taylor,K.(2006).Theeffectsofoverlearninganddistributedpractiseontheretentionofmathematicsknowledge.AppliedCognitivePsychology,20(9),1209–1224.

Ryoo, K., & Linn,M. C. (2010). Student progress in understanding energy concepts in photosynthesisusing interactive visualizations. In K. Gomez, L. Lyons, J. Radinsky (Eds.), Learning in theDisciplines:Proceedingsofthe9thInternationalConferenceoftheLearningSciences(ICLS2012)(Vol.2,pp.480–481).Chicago:ISLS.

Ryoo, K., & Linn, M. C. (2012). Can dynamic visualizations improve middle school studentsʼunderstandingofenergyinphotosynthesis?JournalofResearchinScienceTeaching,49(2),218–243.http://dx.doi.org/10.1002/tea.21003

Seabrook, R., Brown, G., & Solity, J. (2005). Distributed and massed practice: From laboratory toclassroom.AppliedCognitivePsychology,19(1),107–122.http://dx.doi.org/10.1002/acp.1066

Shin, N., & Stevens, S. Y. (2012). Development and validation of a scale to place students along alearningprogression.InJ.vanAalst,K.Thompson,M.J.Jacobson,P.Reimann(Eds.),TheFutureof Learning: Proceedings of the 10th International Conference of the Learning Sciences (ICLS2012)(Vol.2,pp.396–400).Sydney,Australia:ISLS.

Slotta, J., & Chi,M. (2006). The impact of ontology training on conceptual change: Helping studentsunderstand the challenging topics in science. Cognition and Instruction, 24(2), 261–289.http://dx.doi.org/10.1207/s1532690xci2402_3

Slotta, J.,&Linn,M.C. (2009).WISEscience:Web-based inquiry intheclassroom.NewYork:TeachersCollegePress.

Smith, S.,&Rothkopf, E. (1984).Contextual enrichmentanddistributionofpractice in the classroom.CognitionandInstruction,1(3),341–358.http://dx.doi.org/10.1207/s1532690xci0103_4

Sobel, H. S., Cepeda, N. J., & Kapler, I. V. (2010). Spacing effects in real world classroom vocabularylearning.AppliedCognitivePsychology,25(5),763–767.http://dx.doi.org/10.1002/acp.1747

Svihla,V.,Gerard,L.,Ryoo,K.,Sato,E.,Visintainer,T.,Swanson,H.,...Dorsey,C.(2010).Energyacrossthecurriculum:Cumulativelearningusingembeddedassessmentresults.InK.Gomez,L.Lyons,J.Radinsky(Eds.),LearningintheDisciplines:Proceedingsofthe9thInternationalConferenceoftheLearningSciences(ICLS2012)(Vol.2,pp.257–259).Chicago,IL:ISLS.

Svihla,V.,&Linn,M.C.(2012a).Adesign-basedapproachtofosteringunderstandingofglobalclimatechange. International Journal of Science Education, 34(5), 651–676.http://dx.doi.org/10.1080/09500693.2011.597453

Page 27: Distributed Revisiting: An Analytic for Retention of ...relevant, normative ideas together, as knowledge integration (Kali, Linn, & Roseman, 2008). WISE units scaffold students using

(2015). Revisiting for retention: An analytic for inquiry science learning. Journal of Learning Analytics, 2(2), 75–101.http://dx.doi.org/10.18608/jla.2015.22.7

ISSN1929-7750(online).TheJournalofLearningAnalyticsworksunderaCreativeCommonsLicense,Attribution-NonCommercial-NoDerivs3.0Unported(CCBY-NC-ND3.0)

101

Svihla,V.,&Linn,M.C.(2012b).Distributingpractice:Challengesandopportunitiesforinquirylearning.In J. van Aalst, K. Thompson, M. J. Jacobson, P. Reimann (Eds.), The Future of Learning:Proceedingsofthe10thInternationalConferenceoftheLearningSciences(ICLS2012)(Vol.2,pp.371–378).Sydney,Australia:ISLS.

Tversky,B.,Morrison,J.,&Betrancourt,M.(2002).Animation:Canitfacilitate?InternationalJournalofHumanComputerStudies,57(4),247–262.http://dx.doi.org/10.1006/ijhc.2002.1017

Vlach,H.A.,&Sandhofer,C.M.(2012).Distributinglearningovertime:Thespacingeffectinchildren’sacquisition and generalization of science concepts. Child Development 83(4), 1137–1144.http://dx.doi.org/10.1111/j.1467-8624.2012.01781.x

West, S. L. (2011). Anglo and Hispanic college studentsʼ performance and intent to graduate: Aprospective examination of risk factors in two theoretical models (Unpublished doctoraldissertation, Texas Tech University). Retrieved from Electronic Theses and Dissertations.Retrievedfromhttp://hdl.handle.net/2346/21574

White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making scienceaccessible to all students. Cognition and Instruction, 16(1), 3–118.http://dx.doi.org/10.1207/s1532690xci1601_2

Wilensky,U.,&Reisman,K.(2006).Thinking likeawolf,asheep,orafirefly:Learningbiologythroughconstructingandtestingcomputationaltheories—anembodiedmodelingapproach.CognitionandInstruction,24(2),171–209.http://dx.doi.org/10.1207/s1532690xci2402_1

Wise, A. F. (2014). Designing pedagogical interventions to support student use of learning analytics.Proceedingsofthe4thInternationalConferenceonLearningAnalyticsandKnowledge(LAKʼ14),203–211.http://dx.doi.org/10.1145/2567574.2567588

Wise,A.F.,Hausknecht,S.N.,&Zhao,Y.(2014).Attendingtoothers’postsinasynchronousdiscussions:Learners’online“listening”anditsrelationshiptospeaking. InternationalJournalofComputer-SupportedCollaborativeLearning,9(2),185–209.http://dx.doi.org/10.1007/s11412-014-9192-9

Wise,A.F.,Saghafian,M.,&Padmanabhan,P.(2012).Towardsmoreprecisedesignguidance:Specifyingandtestingthefunctionsofassignedstudentrolesinonlinediscussions.EducationalTechnologyResearchandDevelopment,60(1),55–82.http://dx.doi.org/10.1007/s11423-011-9212-7

Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamicvisualizations? Journal of Research in Science Teaching, 48(10), 1177–1198.http://dx.doi.org/10.1002/tea.20443