displacement damage defect - escies

15
1

Upload: others

Post on 13-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

1

Displacement Damage Defect :Improving NIEL scaling

C. Inguimbert, T. NunsONERA- DESP, Toulouse center, France

C. Boatella-poloCNES, Toulouse, France

3

Introduction : NIEL scaling

• NIEL fails sometimes to predict degradation rate due to displacement damages

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04

Effective Niel (MeV/g.cm²)

Rad

iatio

n-in

duce

d in

crea

se in

ther

mal

gen

erat

ion

rate

pe

r uni

t flu

ence

( ca

rrie

rs/c

m3 s

ec p

er p

artic

le/c

m²)

Heavy ions

neutrons, protons

electronsgammas

Kdark≈ 1.8 10+05 carriers/cm3.sec/ (MeV/g)

Quadratic variationJ. R. Srour, J. W. Palko " A framework for understanding displacement damage mechanisms in irradiated silicon devices," IEEE Trans. Nucl. Sci., vol. NS-53, no6, December 2006.G. P. Summers, E. A. Burke, P. Shapiro, S. Messenger, R.J. Walters , IEEE Trans. Nucl. Sci.., vol. 40, No. 6, pp. 1372-1379, December 1993.

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

NIEL (MeV/g.cm²)

Dam

age

fact

or (d

iffus

ion

leng

th)

p-type

n-type

Proton

Electron

Proton

C. Inguimbert, P. Arnolda, T. Nuns, G. Rolland IEEE Trans. Nucl. Sci., vol. NS-57, no4, 2010

4

Goal

• Improving Displacement Damage degradation prediction

• Improving NIEL

• Improving Monte Carlo transport codes

BCA hypothesis

Incorporating for displacement analysis the "improved BCA" method in a GEANT 4application

5

Outline

• Introduction

• NIEL improvement for silicon• Principle of the calculation• Comparison with measured defects introduction rates

• Conclusion

• Outlook

6

Amorphous pockets

• Competition between melting and diffusion of energy processes

• Importance of deposited energy density Santos & al. [5, 6]

• Collective motion that allows displacement damages generation below the traditional threshold (Td ~21 eV in Si)

dTEGntsdisplacemeofNumber )(4.0=

Size initial moving atoms

Size final pocket

1eV/atom 2eV/atom 5eV/atom[5] I. Santos, L. Marques, P. Lourdes, " Modeling of damage generation mechanisms in silicon at energies below the displacement threshold, " Physical Review B 74, 174115 (2006).[6] I. Santos, L. Marques, P. Lourdes, P. Lopez, " Molecular dynamics study of damage genertation mechanisms in silicon at the low energy regime, " Electron Devices, 2007 Spanish Conference on, pp. 37-40, 02 February 2007.

BCA

7

Amorphous pockets

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

PKA recoil energy (MeV)

Num

ber o

f dis

plac

emen

ts (c

ount

)

fsurv = 15%

1.617 eV

Kinchin PeaseTd,KP = 21 eV

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.01 0.1 1 10 100 1000

E protons (MeV)

NIE

L (M

eV/ g

.cm

²)

Proton in Si

Electron in Si

Classical NIEL

Effective Niel, Td,MD = 1.617 eV

C. Inguimbert, P. Arnolda, T. Nuns, G. Rolland IEEE Trans. Nucl. Sci., vol. NS-57, no4, 2010

Si PKA starting point

Stop position of a PKA

dz Q( ) ( ) ( ) dEENQ

dEd

dzQdN KPSiSi

KP ⋅⋅⋅⋅= ∫ −ση

( ) ( )QdGQdE =ν

u

KPMD b

dNdE

adN ⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅= ν

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04

Effective Niel (MeV/g.cm²)

Rad

iatio

n-in

duce

d in

crea

se in

ther

mal

gen

erat

ion

rate

pe

r uni

t flu

ence

( ca

rrie

rs/c

m3 s

ec p

er p

artic

le/c

m²)

Heavy ions

neutrons, protons

electronsgammas

Kdark≈ 1.8 10+05 carriers/cm3.sec/ (MeV/g)

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

NIEL (MeV/g.cm²)

Dam

age

fact

or (d

iffus

ion

leng

th)

p-type

n-type

Proton

Electron

Proton

8

Bibliographic data : defects introduction rates for electrons in silicon

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

0.1 1 10 100 1000

Incident electron energy (MeV)

Def

ect c

reat

ion

rate

(cm

-1)

Hamamatsu S1337 n-type Flicker [15], p-SiFlicker [15], n-Si Krinicky [17] n-SiAuret [34] n-Si Auret [34] p-SiGubskaya [35], p-Si Gubskaya[35], n-SiWertheim [36], n-Si Wertheim [36], p-SiCarter [37] n-Si Carter [37] p-SiHönniger [38], n-Si McKeighen [39] p-SiMcKeighen [39] n-Si Trauwaert [40] p-SiWada [41]n-Si Lugakov [42] n-SiNubile [43] p-Si Taylor [44]p-SiKimerling [45] p-Si Makhkamov [46] n-SiHemment [47] n-Si Rai-Choudury [48] n-SiLondos [49] n-Si Bleka [50],[51] n-SiZhalko-Titarenko [52] n-Si Khan [53] p-SiWalker [54] p -Si Walker [54] n-SiFuochi [55] n-Si Hazdra [56] n-Si

p-Si

n-Si

M. J. Beck, L. Tsetseris, M. Caussanel, R. D. Schrimpf, D. M. Fleetwood, and S. T. Plantelides, "Atomic scale Mechanisms for low-NIEL dopant-type dependent damage in Si, " IEEE Trans. Nucl. Sci., vol. NS-53, no6, pp. 1372-1379, December 2006.

9

New NIEL calculation

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.1 1 10 100 1000

Incident electron energie (MeV)

Def

ect c

reat

ion

rate

(cm

-1)

Flicker [16], p-Si Flicker [16], n-Si

Krynicki, [18] n-Si Carter, [38], p-Si

Carter, [38], n-Si Hazdra, [40], n-Si

Hönniger [41], n-Si Hemment [58] n-Si

Kinchin Pease Td,KP = 72 eV Effective NIEL Td,MD = 1.8 eV

Kinchin Pease, Td,KP = 21 eV Kinchin Pease, Td,KP=36 eV

Part of the curve very importantfor NIEL calculation of electrons

Normalisation

10

Defect introduction rate : comparison with experiments

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

0.1 1 10 100

Incident electron energy (MeV)

Def

ect c

reat

ion

rate

(cm

-1)

Hamamatsu S1337-BQ Flicker [15], n-SiFlicker [15], p-Si Auret [34] n-SiAuret [34] p-Si Gubskaya [35] n-Si Gubskaya [35] p-Si Wertheim [36], n-SiWertheim [36], p-Si Carter [37] n-SiCarter [37] p-Si Taylor [44] p-SiWalker [54] p-Si Walker [54] n-SiEffective NIEL [14] Td = 3eV Effective NIEL [14] Td = 1.6 eV (/10)

NIEL is divided by 10

[1 ohm.cm, 10 ohm.cm] 1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

0.1 1 10 100 1000

Incident electron energy (MeV)

Def

ect c

reat

ion

rate

(cm

-1)

Hamamatsu S1337 n-type Flicker [15], p-SiFlicker [15], n-Si Krinicky [17] n-SiAuret [34] n-Si Auret [34] p-SiGubskaya [35], p-Si Gubskaya[35], n-SiWertheim [36], n-Si Wertheim [36], p-SiCarter [37] n-Si Carter [37] p-SiHönniger [38], n-Si McKeighen [39] p-SiMcKeighen [39] n-Si Trauwaert [40] p-SiWada [41]n-Si Lugakov [42] n-SiNubile [43] p-Si Taylor [44]p-SiKimerling [45] p-Si Makhkamov [46] n-SiHemment [47] n-Si Rai-Choudury [48] n-SiLondos [49] n-Si Bleka [50],[51] n-SiZhalko-Titarenko [52] n-Si Khan [53] p-SiWalker [54] p -Si Walker [54] n-SiFuochi [55] n-Si Hazdra [56] n-Si

11

Scaling degradation rate

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

Classic or Experimental NIEL (MeV/g.cm²)

Dam

age

fact

or (d

iffus

ion

leng

th)

Electron

Protonn-type

p-type

12

Displacement Damage Dose profile

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

Depth (mm)

Non

Ioni

zing

Dos

e in

Si s

hiel

ded

with

Al (

Gy)

Standard & New NIEL, Protons (AP8min + solar f lare)

Standard NIEL, Protons (trapped + solar f lare),(AP8min+GOES average)

GPS orbit (20000km, 55°)mission duration 11 yearsstart in solar min september 1986geomagnetic model Jensen Cainsolar protons : JPL 91 80% confidence level stormy weather conditions

Standard NIEL

New NIEL

AE8 max

ONERA MEOworst case

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

Depth (mm)

Non

Ioni

zing

Dos

e in

Si s

hiel

ded

with

Al (

Gy)

Pole, electron

AE8max

Standard & new NIEL, Protons (AP8min + solarflare)Standard NIEL, Protons (trapped + solar f lare),(AP8min+GOES average)

Geostationary orbit (35780km, 63°)mission duration 11 yearsstart in solar min september 1986geomagnetic model Jensen Cainsolar protons : JPL 91 80% confidence level stormy weather conditions and earth shadow

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.01 0.1 1 10 100

Depth (mm)

Non

Ioni

zing

Dos

e in

Si s

hiel

ded

with

Al

(Gy/

year

)

New NIEL, electron

Standard NIEL, electron

New NIEL, Protons

Standard NIEL, Protons

One year in Jovian environment

X10

X2

Electron constraint reduced between a factor 2 and a factor 10

13

Conclusion

Demonstrated for silicon

• Non linear effects, for low energy PKAs, (amorphous pockets)

• MD simulation are used to calculate a new energy partition function for Silicon and new NIEL (Electrons)

• Mixing calculation and defect introduction rate measurements leads to a better degradation prediction

14

Otlook : Improved BCA approach

• Monte Carlo (GEANT 4) implementation

Collisional phase of the cascade(BCA)

Final Number of displacements

Displacement Threshold21 eV in silicon

Collisional phase of the cascade(BCA)

Hot atoms

Disordered atoms efficiency

Final Number of displacements

Displacement Threshold1 eV in silicon

Improving NIEL scaling methodExtending MD simulations for other materials (GaAs, InP, ...)In order to define a new energy partition function and new NIELs tables

15

Perspectives : GEANT4 User Interface

• Incorporating the Improved BCA approach within a GEANT 4 user Interface

• Our own G4 interface demonstrator

• Based on Input/Output file library