discrete time spatial models arising in genetics

Upload: nongdanamip-amipnongdan

Post on 09-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    1/29

    ELSEVIERDiscrete Time Spatia l Models Ar is ing in Genetics,Evolut ionary Game Theory , and Branching ProcessesJ . R AD CL IFF E AND L. RASSSchool o f M athematical Sciences, Queen Ma ry an d WesOqeld College,Universi ty of London, Mile End Road, L ond on E1 4N S, EnglandReceived 29 Decem ber 1995; revised 17 September 1996

    A B S T R A C TA saddle point method is used to obta in the speed of f i rs t spread of newgenotypes in genetic models and of new strategies in game theoretic models. I t isalso used to obtain the spe ed of the forw ard tail o f the distribution of farthest spre adfor branching process models. The technique is applicable to a wide range o f models.They include multiple allele and sex-linked models in genetics, multistrategy andbimatrix evolutionary games, a nd multitype an d de m ograp hic branching processes.The speed of propagat ion has been obta ined for genet ics models ( in s imple casesonly) by Weinberger [1, 2] and Lui [3-7], using exact analytical methods. The exact

    results were obtained only for two-allele, single-locus genetic models. The saddlepoin t meth od agrees in these very simple cases with the results obtaine d by using theexact analytic methods. Of course, i t can also be used in much more generalsituations far less tractable to exact analysis.The connection between genetic and game theoretic models is also brieflyconsidered, as is the extent to which the exact analytic methods yield results forsimple mod els in ga m e theory. Elsevier Science Inc., 1997

    1. I N T R O D U C T I O NA s a d d l e p o i n t m e t h o d h a s b e e n u s e d t o o b t a i n t h e s p e e d o f

    p r o p a g a t i o n f o r c e rt a in c o n t i n u o u s t i m e m o d e l s w h e n t h e s p a ti a l a s p e c tis d e s c r i b e d b y c o n t a c t d i s tr i b u ti o n s . T h e m a i n a r e a w h e r e t h e m e t h o dh a s b e e n a p p l i e d i s i n t h e m o d e l i n g o f e p id e m i c s . I t h a s a ls o b e e na p p l i e d t o c o n t a c t b r a n c h i n g p r o c e s s e s .

    T h e r e s u l t fo r a s i m p l e o n e - t y p e S ~ I e p i d e m i c m o d e l o n a l in e w a so b t a i n e d b y D a n i e l s [8]. A n a p p l i c a t i o n t o t h e s p a t ia l b i r th p r o c e s s i sg i v e n i n R e f . 9. A r i g o r o u s a p p r o a c h t o t h e s a d d l e p o i n t m e t h o d is g i v e ni n R e f . 10, i n w h i c h t h e s p e e d o f p r o p a g a t i o n f o r a n n - t y p e S ~ I ~ Rm o d e l is d e r i v e d . T h e r e s u l ts w e r e l a t e r e x t e n d e d t o c o v e r N - d i m e n -s i o n a l n o n s y m m e t r i c c o n t a c t d i s t r i b u t i o n s w h e n t h e i n f e c t i o n m a t r i x i sr e d u c i b l e [ 1 1 ] .

    M A T H E M A T I C A L B I O S C I EN C E S 140"101-129 (1997) Elsevier Science Inc., 1997655 Avenue o f the Americas, New York, NY 10010 0025-5564/97/$17.00P II S0025-5564(97)00154-X

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    2/29

    102 J. RA DC LIFFE AN D L. RAS SR i g o r o u s an a l y t i c a l t e ch n i q u es co n f i r m ed t h e sp eed s o f p r o p ag a t i o no b t a i n e d b y t h e s a d d l e p o i n t m e t h o d ; t h e s e r i g o r o u s t e c h n i q u e s w e r er e s t r i c t ed t o t h e ca se i n w h i ch t h e co n t ac t d i s t r i b u t i o n s a r e sy m m et r i c

    [12-151.T h e s a d d l e p o i n t m e t h o d h a s a l s o b e e n a p p l i e d t o o t h e r m o d e l s f o rw h i ch an ex ac t an a l y s i s i s l e s s t r a c t ab l e . T h ese m o d e l s i n c l u d e ep i -d em i cs a l l o w i n g a r e t u r n t o t h e su scep t i b l e s t a t e an d b i r t h s i n t o t h esy s t em [1 6, 1 7 ] . T h e m e t h o d g i ve s th e sp eed o f f ir s t sp r ead o f t h ef o r w ar d f r o n t o f i n f ec t i o n . F o r s t o ch as t i c co n t ac t b r an ch i n g p r o ces sm o d e l s , t h e sp eed a t w h i ch t h e e x t r em e t a il o f th e d i s t ri b u t io n f u n c t i o no f f a r t h e s t sp r ead m o v es o u t i n an y sp ec i f i ed d i r ec t i o n is g i v en i n R e f .17.T h i s p ap e r co n s i d e r s d is c r e t e t im e m o d e l s , w h i ch a r e m o r e ap p r o p r i -

    a t e f o r t h e m o d e l i n g o f g en e t ic s , ev o l u t io n a r y g am e t h eo r y , an d ce r t a i nb r an ch i n g p r o ces se s . A g a i n , co n t ac t d i s t ri b u t io n s a r e u sed t o m o d e l t h esp a ti a l a sp ec t . T h ey r ep r e s en t t h e d i s t an ce m o v e d b y i n d iv i d u a ls e i t h e ra t b i rt h o r a f t e r re a c h i n g m a t u r i t y p r i o r t o t h e p r o d u c t i o n o f t h e n e x tg en e r a t i o n . T h i s i s l i k e l y t o b e m o r e r ea l i s t i c t h an a l l o w i n g co n t i n u a ld i f fus ion dur ing the l i f e t ime o f an ind iv idua l .A s a d d l e p o i n t m e t h o d c a n b e u s e d f o r th e s e d i s c re t e ti m e m o d e l s .R esu l t s a r e o b t a i n ed f o r a g en e r a l m o d e l . T h i s is t h e n i n t e r p r e t ed i n t h eco n t ex t o f sp eci fi c m o d e l s u sed i n g en e t ic s , g am e t h eo r y , an d b r an ch i n gp r o ces se s, y ie l d i n g r e su lt s o n t h e sp ee d o f f ir s t sp r ead o f an a l le l e , ageno type , o r a s t r a t egy in an in i t i a l ly s t ab le popu la t ion , as wel l as thesp eed o f t h e f o r w ar d t a i l o f t h e d i s t r i b u t i o n o f f a r t h e s t sp r ead f o rb r an ch i n g p r o ces s m o d e l s . T h ese r e su lt s a r e sh o w n t o b e co n s i s t en t w i t ht h e r e su lt s f o r s i m p l e t w o - a ll e le , s in g l e- lo cu s g en e t i c m o d e l s co n s i d e r e dby Weinberger [1 , 2] and Lui [3 , 4 , 5 , 7] .T h e c o n n e c t i o n b e t w e e n g e n e t i c s a n d g a m e t h e o r e t i c m o d e l s is a ls ob r i e f l y co n s i d e r ed , a s i s t h e ex t en t t o w h i ch t h e ex ac t m e t h o d s y i e l dr e su lt s i n a s i m p l e g am e t h eo r y co n t ex t.2. T H E S A D D L E P O I N T M E T H O DF O R D I S C R E T E T I M E M O D E L S

    C o n s i d e r a n o n s p a t ia l d i s c r e te t i m e m o d e l o f t h e f o r mX ! e + l ) . ~ - f i [ X ( r a ) ] ,

    w h e r e X ~ m ) = { x ( r a ) } i is th e v a l u e o f th e i t h v a r ia b l e a t t h e m t h t i m ep o i n t . T h e v a r i ab l e s r ep r e sen t t h e p r o p o r t i o n s o f sp ec i f i c t y p es , w h e r et h e i n t e r p r e t a t i o n o f t y p e d e p e n d s u p o n t h e a p p l i c a t i o n . I n g e n e t i c s ,t y p es co r r e sp o n d t o sp ec if ic a ll e ll e s o r g en o t y p es ; w h e r ea s , i n ev o l u t i o n -a r y g am e t h eo r y , t y p es r e f e r t o i n d iv i d u a ls p l ay in g a g i v en s tr a teg y .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    3/29

    DISCRJZE TIME SPATIAL MODELS 103A spatial aspect that may be continuous or discrete is introduced. In

    the continuous-space models, individuals may be at any position r inRN. For discrete-space models, individuals may be at any site on theregular lattice Z N. Type j individu als at position r are allowed to moveto a new position s either at birth or upon maturity before giving rise tothe next generation. For spatial models therefore, xim(s) represents thevalue of xi at position s for generation m. Here xi(@+)(s) depends uponxjm)(r) and the contact distribution p(r) representing the vector dis-tance r moved, which may depend upon the type of individual.Consider a population containing n1 types, which is initially stablewith xi(s) = qi > 0 for i = 1,. ..,n,. Here vi = fi(n) for i = l,.. .,n, with{q}i = vi for i = 1,. . . , n, and {v}~=O for i=n,+l,...,n. New typesi=n,+l,..., n are introduced into a bounded region B of RN (or Z).Hence, if this is taken to form part of the zeroth generation, xi()(s) = ni>Ofor sGB and i=l,..., n,, and X))(S)= ni = 0 for s e B and i = n,+1 ,. . . , n. Then, for s far from region B, the approximate equationscorresponding to a wide range of models (examples of which are givenin Sections 3, 4, and 5) are given, for the continuous-space model, by

    for i=n,+l,..., n, where the rij are nonnegative, with their values andthose of the pii depending on the particular application. For thediscrete-space model, the integral is replaced by a summation over ZN.For the continuous-space model, we consider the speed of spread ofthe forward front for type i in a specified direction, with directioncosines (Y.Take 5 to be small and positive, and define s(m) so that

    / xi(u) du = 5.u: au 2%(m)For the discrete-space model, we consider the speed of spread of theforward front for type i in the direction of one of the coordinates of the

    lattice (which without loss of generality may be taken to be the firstcoordinate). This corresponds to using direction cosines (Y= (l,O, . . . ,O).For 6 small and positive, define s(m) to be the smallest integer suchthat C o tujl> s(mj~i(m)(~) G . Define t(m) to be the exact value of thesummation.In either case, the speed of first spread for type i individuals isc=lim ,,,Md/ml.

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    4/29

    104 J. RA DCLIFFE AND L. RASST h e va lue o f c f o r E q ua t i on ( 1) c a n be ob t a i ne d by u s ing t he s a dd l epoin t m e th od . Le t [e*

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    5/29

    DISCRETE TIM E SPATIAL MODELS 105F o r s i m p l i c it y , t h e d i s c u s s i o n i s c o n f i n e d t o t h e c a s e w h e r e (Y ij) i s

    n o n r e d u c i b l e , s o A ( A ) i s n o n r e d u c i b l e . T h e e x t e n s i o n t o t h e r e d u c i b l ec a s e c a n b e o b t a i n e d b y u s in g t h e a p p r o a c h i n R e f . 1 1.

    F i r s t , c o n s i d e r t h e d o m i n a n t t e r m i n [ A (A )]m L ( )(A ) f o r A = 0 r e a lw i t h A* < 0 < A . L e t p ( 0 ) a n d E ( 0 ) b e t h e P e r r o n - F r o b e n i u s r o o t a n dc o r r e s p o n d i n g i d e m p o t e n t o f A ( 0 ) . T h e n

    A ( 0 ) mL ( ) ( 0 ) = [ p ( O ) ] m E ( 0 ) L ( ) ( 0 ) .F r o m L e m m a s 1 a n d 4 i n R e f . 11 , 0 (A ) c a n b e d e f i n e d a s t h e

    e i g e n v a l u e o f A (A ) w i t h l a r g e s t r e a l p a r t [ w i th c o r r e s p o n d i n g i d e m p o -t e n t E ( ) 0 ] f o r A i n a n o p e n n e i g h b o r h o o d o f 0 , f o r a n y A* < 0 < A . I nt h is n e i g h b o r h o o d , p ( A ) is a n a ly t i c a n d

    e- ;~s(m){[A( A)] mE ()( A)} i =e-XS(m)+mlg[ ( ;O]{E(A) L()( A)}i.T a k e g ( A ) = - A s ( m ) + m a ( A ) , w h e r e a ( A ) = lo g [ p ( A )] . I n t h e f o l lo w -

    i ng l e m m a , R e [ g ( A ) ] i s s h o w n t o h a v e a s a d d l e p o i n t o n t h e r e a l l i n e .T h e O ( m ) u s e d i n t h e i n t e g r a t i o n i s t a k e n a s t h is s a d d l e p o i n t .L E M M A 1

    R e [ g ( A )] h a s a s a d d l e p o i n t o n t h e r e a l l in e a t A = 0 w h e r e 0 s a t i s f i e sthe re la t ion a ' ( O = [ s ( m ) / m ] .P r o o f C o n s i d e r t h e m a t r i x A (O + i y ) fo r y O . I t s ( i j ) t h en t ry i s

    y i jP i y ( O + i y ) and I 'YijP ij( O + iy )[ ~ 0 f o r a l l A* < 0 < A . N o t e t h a t g(O)--- ,oo as0 1 ' A a n d as 0 J, A*. H en ce g ( O ) i s a c o n v e x f u n c t i o n f o r a ll r e a l 0 s u c ht h a t A* < 0 < A a n d h a s a m i n i m u m a t a p o i n t s u c h th a t g ' ( O ) = 0 ; t ha ti s , such tha t a ' ( O ) = [ s ( m ) / m ] . T h i s p o i n t i s t h e s a d d l e p o i n t o f g ( h ) .T h e r e f o r e 0 = O ( m ) i s t a k e n t o b e t h e r e a l v a l u e s a t i s f y i n g a ' ( O ) =[ s ( m ) / m ] . B e c a u s e l im m _ . ~ [ s ( m ) / m ] = c , O ( m ) w i l l a l so t end to a l imi t00 a s m --->% w ith a ' ( O o ) = c .I t i s a s s u m e d t h a t t h e r e i s a l i m i t c w i t h 00 > 0 a n d , f o r s i m p l i c it y ,t h a t A ( 0 0 ) h a s d i s t i n c t e i g e n v a l u e s . T h e n e x t s t e p i s t o f i n d a n a p p r o x i -m a t i o n t o ~ f o r r n l a r g e. T o d o t h i s, w e r e q u i r e t h e f o l l o w i n g t h e o r e m ,t h e p r o o f o f w h i c h i s g i v e n i n t h e A p p e n d i x .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    6/29

    106 J. RADCLI FFE AND L. RASS

    T H E O R EM 1Given any 8 * > 0 t here ex i st s an M ,0 < 8 < 8" , such tha t E , a n d 8 , w i t h 0 < ~ < I a n d

    p 1O( m )e-g t tm) l ( 2zr _ 8 0 ( m ) + i y t O ( m ) + iy ] L( ) [O ( m ) [(m ) eg[O(m,+iy]_g[o(m,] lE + iY l} i d y< E m

    f o r m > M .H e n c e , f o r a n y p o s it iv e 8 a n d fo r m s u f fi c ie n t ly l a rg e ,~'0( m ) e -St o(m)l= ~ { E [ O ( m ) ] L ( ) [ O (m ) ]} i

    [ 8 O ( m ) eg[O(m)+iyl_g[o(m)ldyx j_ o N o w g[ O(m) + i y ] - g[ O(m)] = i yg '[O (m )] - ~ y2g"[ O (m )] fo r y smal l .A l s o g'[O(m)] = 0 fr o m L e m m a 1 . H e n c e~ O (m )e -gt(m>l= ~ -~ { E [ 0 (m ) ] L ( ) [O(m)]]iL~se-l /z '2'~a"t(m'ldy

    { E [ O ( m ) ] L ( ) [ O ( m ) ] } i 1~/2~ rd'[O (m )] vr-m "

    T h e r e f o r e w e o b t a ins ( m ) a[O(m)]= 1 l o g ( m )m O ( m ) 2 0 ( m ) m

    a n d h e n c ec = l i m s ( m ) = a ( 0 o )

    m~ o m 00 '

    w h e r e 00 i s s u c h th a t a ' (O o )= c .D e f i n e f ( ) 0 = [ a (A ) / A ] . N o t e t h a t f ' ( O o ) - - [ a '( 0 o ) - f (Oo)] /O o = O.A l s o

    f "( O o ) = d ' ( O o ) - f ' ( O O ) o o = " - - ~ oO ' d ' ( O )T h e r e f o r e f ( O o ) is t h e m i n i m u m o f f () O .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    7/29

    D I S C R E T E T I M E S P A T I A L M O D E L S 1 0 7H e n c e c = i n f , > o[a (A) /A] , p r o v i d e d t h a t t h i s i s p o s i t i v e . W h e n t h e

    i n f i m u m o f f ( A ) i s n o t p o s i t i v e , t h e n s ( m ) / m d o e s n o t t e n d t o ap o s i t iv e l im i t a s m ~ ~ . T h i s i m p l i e s t h a t, i f y o u m o v e a t a n y p o s i t iv es p e e d i n t h e s p e c i f i e d d ir e c t i o n , y o u w il l e v e n t u a l l y c r o s s t h e f o r w a r df ro n t. T h e s p e e d o f t h e f r o n t is t h e r e f o r e t a k e n t o b e z e r o .T h u s t h e s p e e d o f p r o p a g a t i o n o b t a i n e d b y us in g t h e s a d d l e p o i n tm e t h o d i s

    w he re a(A ) = log{ p[A(A)]} w ith {A( A)}0 = 7ijPij(A).C A S E 2 : D I S C R E T E S P A C E

    I n v e r t in g t h e L a p l a c e t r a n s f o r m i n E q u a t i o n ( 2) , f o r a s u i t a b l e c h o i c eo f O ( m ) with 0 < O ( m ) < A, g ives

    E xm)(u)a : { ' } 1 = v

    " tr - -"~- 2 -~ L : [ (m )+'Y]V{L (m )[O ( m ) + & ] } i dY= 2 , / r_ ' I r l 7r e - [ O ( m ) + i y ] v { P m [ O ( m ) + i y ] L ( o ) [ o ( m ) + i Y ] ) i d Y "

    H e n c e~ ( m ) = Y'~ x~m)(u )

    u : {u}1 ~ s ( m )1 ~ e -[e(m)+iy]s(m) { p m [ o ( m ) + ~ ] L ( ) [ O ( m ) + ~ ] } i d Y "

    A s i n C a s e 1 f o r c o n t i n u o u s s p a c e , A = O ( m ) is ta k e n t o b e t h e s a d d l ep o i n t o f g ( A ) = - A s ( m ) + m a ( A ) , w h e r e a ( A ) = l o g[ p ( A )] a n d O ( A ) i st h e e i g e n v a l u e o f A ( A ) w i t h l a r g e s t r e a l p a r t w i t h c o r r e s p o n d i n g i d e m -p o t e n t E ( A ). A g a i n , A ( A ) i s t a k e n t o h a v e d i s ti n c t e i g e n v a l u e s w h e nA = 0 0 = limm -~ O(m).

    W e n o w s ta te t h e t h e o r e m e q u i v a l e n t t o T h e o r e m 1. T h e p r o o ff o l lo w s i n a n a l m o s t i d e n t ic a l m a n n e r , e x c e p t t h a t a = ~r a n d t h ec o m p o n e n t 11 i s n o t r e q u i r e d . T h e p r o o f is t h e r e f o r e o m i t t e d .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    8/29

    108 J . RAD CLIFFE AND L. RASSTHEOREM 2

    Given any 6" > 0 there exists an M , ~ , an d 6, wi th 0 < ~ < 1 a nd0 < 8 < 8" , such tha t[1 t ~ ~ - - - - - ~ .-] ,e g[O(m)+iy]-g[O(m)]e_O (m)]e_g tO(m )l;~(m)_ 2_~ f 8 r l _ ~ ,-O(m)l- 8 [1 - e - (m) - 'y ]

    X {E[ O (m ) + ~1 L('[ O ( m ) + i y l } i d y I < ~:m1I

    f o r m > M .P r o c e e d i n g i n a si m i la r m a n n e r t o S e c t i o n 2 , w e o b t a i n

    l im m_.~o[s (m) /m ] = a(Oo) /O o an d hen ce c = max{0, inf~> 0[a (A)/A]} ,w he re a (A) = log{ o [A(A)]}. Th is con c ludes Ca se 2 .T h e r e s u l t o b t a i n e d f o r t h e s p e e d o f f ir s t s p r e a d i s t h e s a m e f o r b o t hc a s e s ( 1 a n d 2 ) a n d i s s u m m a r i z e d i n t h e f o l l o w i n g t h e o r e m .THEOREM 3

    The speed o f propagation obtained by us ing the saddle poin t m etho d isc = m a x [ 0 ' i n f a ( - ~ ]x > 0

    where a(3,) = log{ 0[A(A)]} with {A( A)} . = yijP~j(A).3. S E L E C T I O N - M I G R A T I O N M U L T I P L E A L L E L E

    G E N E T I C M O D E L SG e n e t i c m o d e l s a r e d i s c u s s e d i n R e f . 1 8 . D i s c r e t e t i m e c o n t a c t

    m o d e l s h a v e b e e n u s e d i n g e n e t ic s t o d e s c r i b e t h e s p a ti a l s p r e a d o f ag e n e w h e n t h e r e a r e t w o a l le l e s p r e s e n t . T h e n a l le l e ex t e n s i o n o f t h ism od e l i s d i scussed in Sec t ion 3 .1. A n exac t ana lys is o f the tw o-a l le lemode l i s g iven in Re fs . 1 -5 , 19 , and 20 .A s e l e c ti o n - m i g r a t i o n m o d e l w i t h s e x - li n k e d lo c u s , a g a in w h e n t h e r ea re tw o a l l ele s p re sen t , ha s be en ana lyzed b y Lu i [6, 7 ]. Th e re i s, aga in ,an n a l l e le ana logue , which i s cons ide red in Sec t ion 3 .2 .M o r e - g e n e r a l m o d e l s t h a t a l lo w t h e m i g ra t io n t o d e p e n d u p o n t h eg e n o t y p e c a n b e p o s t u l a t e d . S u c h m o d e l s a r e f o r m u l a t e d i n S e c t i o n s 3 .3and 3 .4 .T h e s a d d l e p o i n t m e t h o d i s a p p l i e d t o a l l t h e m o d e l s i n t h i s s e c t i o nt o g i v e t h e s p e e d o f f ir s t s p r e a d o f a n e w a l le l e ( g e n o t y p e ) i n apopu la t ion tha t i s in i t i a l ly s tab le . For the s imple ca se wi th two a l l e le s ,t h e r e s u lt s o b t a i n e d a r e e x a c t ly t h e r e s u lt s o b t a i n e d b y u s i n g th e e x a c ta n a ly t ic m e t h o d s o f t h e a u t h o r s r e f e r r e d t o a b o v e .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    9/29

    D I S C R E T E T I M E S PA T IA L M O D E L S 109T h e s a d d le p o i n t m e t h o d c a n b e a p p l ie d i n a f a ir ly o b v io u s w a y t o

    m o r e - c o m p l e x m o d e l s i n c lu d i n g se v e ra l l oc i. W e d o n o t p u r s u e t h isf u r t h e r , b e c a u s e t h e e x t e n s i o n i s c l e a r .3.1. A M U L T IP L E A L L E L E M O D E LT h e d y n a m i c s o f t h e m o d e l a r e d e s c r i b e d i n R e f . 1 f o r t w o a ll el e s. Ah a b i t a t t h a t h a s c o n s t a n t c a r r y i n g c a p a c i t y a t a l l p o i n t s o f R N o r a l lp o i n t s o f t h e N - d i m e n s i o n a l l a tt ic e Z N i s c o n s i d e r e d . C o n s i d e r t h ec o m p o s i t i o n o f th e a l le l e s f o r g e n e r a t i o n m a t p o s i ti o n s p r i o r t om a t i n g . L e t x ! m )(s ) b e t h e p r o p o r t i o n o f a ll e l e A i , f o r e a c h i = 1 . . . , n .R a n d o m m a t i n g oc c u r s a t e a c h p o s i ti o n s, t h e n u m b e r o f o ff s p ri n gb e i n g u n a f f e c t e d b y t h e g e n o t y p e . S u r v i v a l t o m a t u r i t y i s g o v e r n e d b yt h e f i tn e s s m a t r i x W a n d r e a p i n g o c c u r s t o r e d u c e t h e p o p u l a t i o n t o t h ec a r r y in g c a p a c i ty o f t h e h a b i t a t . M i g r a t i o n t h e n t a k e s p l a c e , w i t h p ( r )b e i n g t h e d e n s i t y f u n c t i o n ( p r o b a b i l it y ) in t h e c o n t i n u o u s ( d i s c re t e )s p a c e m o d e l c o r r e s p o n d i n g t o m i g r a t i o n b y a v e c t o r d i s t a n c e r i n R N( z N ) . A n e w g e n e r a t i o n i s t h e n p r o d u c e d a s b e f o r e , a n d t h e p r e c e d i n gg e n e r a t i o n d ie s. D e f i n e w ij = {W}ij.

    T h e e q u a t i o n s d e s c r i b i n g t h e c o n t i n u o u s - s p a c e p r o c e s s a r e g i v e nb e l o w . E q u i v a l e n t e q u a t i o n s a r e o b t a i n e d f o r t h e d i s c r e t e - sp a c e p r o c e s s .

    w h e r ex~m+ 1 ' (s ) = f n f i [x ( ~ ' ( r ) l P ( s - r ) d r ,

    x ~ ) ( r ) { W x ( ~ ) ( r ) } if i t x ( m ) ( r ) ] = [ x ( m , ( r ) ] , W x ( m , ( r )

    ( 4 )

    fo r i = 1 . . . . n . H e re [x('n ) (r )] i = x~m)(r) .C o n s i d e r t h e s p r e a d o f a s in g le n e w a l le l e w h e n i n t r o d u c e d i n t o a

    b o u n d e d r e g i o n B o f th e h a b i t a t b y m u t a t i o n o r i m m i g r a ti o n , t h is b e in gt a k e n t o f o r m p a r t o f th e z e r o t h g e n e r a t i o n . P r i o r t o t h is o c c u r r e n c e ,t h e p o p u l a t i o n c o n t a i n e d n I a ll e le s i n s ta b l e e q u i l i b r iu m , t h e r e b e i n g ap r o p o r t i o n ~/i o f a l l e l e A i f o r i = 1 . . . . , n 1 a t a l l p o s i t i o n s s . H e r e7 / / = { w * - l l } i / ( I ' W * - l l ) > 0 f o r i = 1 . . . . n l , w h e r e W * is t he p a r t o ft h e f i t n e s s m a t r i x r e l a t i n g t o t h e f i r s t n 1 a l le l e s. N o t e t h a t , w h e n t h e r e isa s t a b l e i n t e r i o r e q u i l i b r i u m f o r t h e n 1 a l l e l e m o d e l , n e c e s s a r i l y i t isu n i q u e a n d W * is n o n s i n g u l a r w i t h W * - 11 > 0. L e t t h e n e w a l le l e b eA , , w he re n = n 1 + 1 . D ef in e r/n = 0 a nd l e t {7/} /= r/i fo r i < n r T h en t hez e r o t h g e n e r a t i o n h a s x ( )(s ) -= 7 / f o r s ~ B .

    C o n s i d e r a p o s i t i o n s i n t h e f o r w a r d r e g i o n , f a r f r o m t h e r e g i o n Bw h e r e t h e n e w a l l e le A . w a s i n t r o d u c e d . T h e n x (m )(s) is s m a l l a n dx~m)(s) i s c l o se t o r/i fo r i = 1 . . . . n 1. In t he fo r w ard f ron t , E qu a t io n (4 )

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    10/29

    11 0f o r i = n m a y b e a p p r o x i m a t e d b y

    J . RA D CL I F F E A N D L . RA S S

    X ( D + 1 ) ( S ) = f R N p ( S - - r ) ( f n ( ~ ) + I )= l [ 0 { X } j ] x = [ x } m ) ( r ) - ~ j ] d r .(5 )

    N o w ,

    [ d fn (x ) ] = / 0{Wr/}n j n ,[ 0 { x } y J x ~ n [ 7 / ' W ~ / j = n .

    H e n c e w e o b t a in t h e f o l lo w i n g a p p r o x i m a t e e q u a t io n s , w h i c h a r e v a li di n th i s f o r w a r d r e g i o n :

    - f x(~m )(r){W r/}nx ~ m + I ) ( S ) - - J R N ~ 'W r / p ( s - r ) d r . ( 6 )

    E q u a t i o n ( 6) is j u s t a s p e c i a l c a s e o f E q u a t i o n ( 1) w h e n a s i n g le n e wt y p e i s i n t r o d u c e d . T h e e q u a t i o n h a s n = n 1 + 1 , 3 ,nn = { W '0 }n /(r /'W ~ 7 )a n d p , n ( s ) = p ( s ) . I f w e c o n s i d e r t h e s p e e d o f f ir s t s p r e a d c i n a s p e ci fi cd i r e c ti o n f o r t h e n e w a ll el e A n , th e n , f r o m T h e o r e m 3 ,

    c = m a x ( 0 , i n f l g [ P ( h ) ] + l g ( 3 , ) )X >0 A ' ( 7 )

    w h e r e P ( A ) i s t h e L a p l a c e t r a n s f o r m o f t h e p r o j e c t io n o f t h e m i g r a ti o nd i s t ri b u t io n p ( s ) i n t h e s p e c i f i e d d i r e c t io n a n d 3' = { W ~ } n / ( ff W T / ). T h es a m e r e s u l t i s o b t a i n e d f o r t h e d i s c r e t e - s p a c e p r o c e s s .S u p p o s e t h a t t h e r e a r e s e v e r a l n e w a ll el es . L e t c i b e t h e s p e e d o fs p r e a d i f o n l y a s i n g le a l le l e A i i s i n t r o d u c e d i n t o t h e o r i g i n a l s y s t e m .I ts s p e e d o f s p r e a d is g iv e n b y E q u a t i o n ( 7) w i th 3' =

    n l n l n 1Y'~jffilWijT~j/~.,kffilY'~]ffil"l'~kWjkT~j. N OW s u p p o s e t h a t w e t a k e n = n 1 + k a n di n t r o d u c e k n e w a ll e le s A n1 + 1 , .. -, A n i n t o t h e s y s t e m a t t h e s a m e t im e .L e t c = m a X ( n l + l) < r ~ n C r ; t h e n t h e a p p r o x i m a t io n i n t h e f o r w a r d fr o n tw i l l b e v a l i d o n l y f o r a l l e l e s A i w i t h c i = c ; t h a t i s , w i t h f a s t e s t s p e e d .T h i s c o r r e s p o n d s t o a l le l es A i , f r o m i = n I + 1 , . . . , n , f o r w h i c h Z , ~ L l w i j ~ l ji s a m a x i m u m . T h e v a l u e o f c is t h e s p e e d a t w h i c h _ a d i s t u r b a n c e t o t h ee q u i l i b r i u m i s f i r s t f e l t , t h i s d i s t u r b a n c e b e i n g c a u s e d b y t h e r e l a t i v e l yf i t t e s t n e w a l l e l e ( s ) .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    11/29

    DISCRETE TIME SPATIAL MODELS 111T h e c a s e n = 2 a n d n 1 = 1 w a s c o n s i d e r e d i n R e f s . 1 - 5 , 1 9, a n d 2 0 .E x a c t a n a l y t i c m e t h o d s w e r e u s e d , t h e p r o b l e m b e i n g s p l i t i n t o f o u rcases . T h e case w h en Wl~ = w2 = w22 i s exc lu de d, bec au se , in th i s c ase ,f x t " ) ( s ) d s - - f x ( )( s )d s f o r a l l m . T h e f i rs t c a se h a s W ll ~ W12 ~ W22 with

    a t l e a s t o n e i n e q u a l i t y s t r i c t , s o t h e f i t n e s s o f t h e h e t e r o z y g o t e i si n t e r m e d i a t e b e t w e e n t h e h o m o z y g o t e fi tn e ss e s. T h e s e c o n d ( a n d t h i rd )c a s e s c o r r e s p o n d e d t o t h e h e t e r o z y g o t e f i t n e s s b e i n g g r e a t e r t h a n ( o rl e ss t h a n ) b o t h h o m o z y g o t e f i tn e s s e s . T h e f o u r t h c a s e h a s w22 ~ w12W l l , w i t h a t l e a s t o n e i n e q u a l i t y s t ri c t, s o t h e h e t e r o z y g o t e i s a g a i ni n t e r m e d i a t e , b u t t h e h o m o z y g o t e c o r r e s p o n d i n g t o al le l e A 1 is m o r e f i tt h a n t h e h o m o z y g o t e c o r r e s p o n d i n g t o t h e n e w a l le l e A 2.I n t h e f ir st c as e , th e s p e e d o f p r o p a g a t i o n w a s o b t a i n e d , p r o v i d e d W l la n d w 2 2 a r e n o t e q u a l a n d1 ( 8 )

    T h e s p e e d o f p r o p a g a t i o n w a s o b t a i n e d f o r a l l v a l u e s o f t h e f i t n e s sp a r a m e t e r s c o v e r e d b y t h e s e c o n d c a s e. I n t h e f o u r t h c a s e , a ll e le 2 d i eso u t u n i f o r m l y in R N f o r t he g ive n in i t i a l c ond i t i ons t ha t x ( 2 ) ( s ) = 0 f o rs e~ B f o r s o m e b o u n d e d r e g i o n B . F o r t h e t h i r d c a s e , n o e x p r e s si o n w a sg i v e n f o r t h e s p e e d o f p r o p a g a t i o n ; n o r w a s a n y w a y g i v e n o f o b t a i n i n gi t. H o w e v e r , n o t e t h a t a l l el e 2 d i e s o u t u n i f o r m l y i n R N i f, i n a d d i t i o n tothe c o nd i t i o n th a t x (2)(s) = 0 f o r s ~ B , i t is a l so t r u e t ha t

    W l l - - W I2W l l d" W22 --2w12

    f o r a l l s ~ B . T h e v a l u e s o f c o b t a i n e d i n t h e f i r s t a n d s e c o n d c a s e sw h e n n = 2 c o r r e s p o n d t o o u r g e n e r a l r e s u lt s f o r n a ll el es .3.2. A M U L T I P L E A L L E L E M O D E L W I T H S E X - L I N K E D L O C U SA t w o - a l l e le m o d e l w i t h s e x - l i n k e d l o c u s w a s c o n s i d e r e d b y L u i [ 6, 7 ].T h e d y n a m i c s a r e s i m i l a r t o t h a t o f S e c t i o n 3 . 1 e x c e p t t h a t t h e r e a r es e p a r a t e m a l e a n d f e m a l e g e n e t i c o u t p u t s a n d t h e m i g r a t i o n d i s t r i b u -t i o n s f o r m a l e s a n d f e m a l e s m a y d i f f e r. L e t y / ( ') ( s ) a n d z ~m )(s ) b e t h ep r o p o r t i o n s o f t h e a l le l e A i i n th e f e m a l e a n d m a l e o u t p u t s a t l o c a ti o ns i n g e n e r a t i o n m p r i o r t o m a t i n g . T h e m a l e i s h a p l o i d f o r t h e Xc h r o m o s o m e a n d t h e r e f o r e o n l y h a s n g e n e t ic t yp e s, t h e i t h b e i n g ,4 i .T h e f e m a l e i s d i p l o i d a n d s o h a s n ( n + 1 ) / 2 g e n o t y p e s A i A j f o r1 ~< i ~

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    12/29

    112 J . R ADC LIFFE AND L. RASSv i = {v}i a n d o f t h e f e m a l e A i A j g e n o t y p e is w i / = { W }i/. R e a p i n g o c c u r st o m a i n t a i n t h e d e n s i t i e s o f m a l e s a n d f e m a l e s . M i g r a t i o n n o w o c c u r s ,t h e d e n s i t y f u n c t io n s f o r t h e d i s ta n c e r m o v e d b e i n g p ( r ) f o r f e m a l e sa n d q ( r ) fo r m a le s . A n e w g e n e r a t i o n is t h e n p r o d u c e d a s b e f o r e a n dt h e p r e c e d i n g g e n e r a t i o n d i e s . T h e e q u a t i o n s f o r t h e c o n t i n u o u s - s p a c em o d e l a r e g iv e n b e l o w . T h e r e is a n e q u i v a l e n t d i s c r e t e -s p a c e m o d e l .

    y ~ m ) ( r ) { W z ( m ) ( r ) } i +y~i n + ) ( s ) = z ~ m ) ( r ){ W y ( m ) ( r ) } i ' p ( s - r ) d r ,( 2 (y ( m ) (r ) ) ' W z ( m ) (r ) ) ( 9 )z~ - + 1) ( s ) = f R N v i Y ~ m ) ( r)[ v ,y ( m ) ( r) ] q ( s - r ) d r ,

    f o r i = l , . . . , n .C o n s i d e r t h e s p r e a d o f a n a l le le A ~ w h e n i n t r o d u c e d i n t o a b o u n d e dr e g i o n B o f a h a b i t a t b y m u t a t i o n o r i m m i g r a t io n , t h is b e i n g t a k e n t of o r m p a r t o f th e z e r o t h g e n e r a t i o n . P r i o r t o t h is o c c u r r e n c e , th ep o p u l a t i o n c o n t a i n e d ( n - 1 ) a l le l es in st a b le e q u i l ib r i u m , t h e r e b e i n gp r o p o r t i o n s ~ i ( ~ i ) f o r f e m a l e s ( m a l e s ) o f a ll e le A i f o r i = 1 . . . , n - 1 a ta l l p o s i t i o n s s . H e r e

    { [ W * d / a g ( v * ) + d / a g ( v * ) W * ] - 11 } i7 / / = { I ' [ W * d i a g ( v * ) + d / a g ( v * ) W * 1 -1 1 } > 0 ,

    { [ W * + d i a g ( v * ) W * d i g g ( v * ) - l ] - l l ) i 0 ,~ ' i = { l ' [ W * + d i a g ( v * ) W * d i a g ( v * ) - l ] - l l }

    ( 1 0 )

    f o r i = l . . . . . n - l , w h e r e W * a n d v * a r e t h e p a r t s o f t h e f it n es sm a t r i c e s r e l a t i n g t o t h e f i r s t ( n - 1 ) a l le l es . D e f i n e ~ , = 0 a n d ~ , = 0 .L e t { ~ }i = ~ i a n d { ~ } i = ~i- T h e n t h e z e r o t h g e n e r a t i o n h a s y ( ) ( s ) -a n d z ( ) (s ) = ~ f o r s ~ B .C o n s i d e r a p o s i t i o n s i n t h e f o r w a r d r e g i o n , f a r f r o m t h e r e g i o n Bw h e r e t h e n e w a l le l e A ~ w a s i n t r o d u c e d . T h e n y ~m )(s) a n d z~ m )(s) a r es m a l l , y /t m )( s) i s c l o s e t o ~ i , a n d z ! m ) ( s ) i s c l o s e t o ~ i f o r i = 1 . . . . n - 1 .F r o m E q u a t i o n s ( 9) , t h e f o ll ow i n g a p p r o x i m a t e e q u a t i o n s m a y b e o b -t a i n e d , w h i c h a r e v a l i d in t h i s f o r w a r d r e g i o n :

    y~m + a)(S) = --jR y~ m )(r {W~"} ~ + z ~ m ) ( r) { W r /} ~ p ( s - r ) d r ,z ( m + l ) ( s ) - f v"Y~(~( r ) - " s - r "- J R u ( v r / ) q ( ) d r . ( 1 1 )

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    13/29

    DISCRETE TIME SPATIAL. MODELS 113Note that Equations (11) are just a special case of Equation (1) withn replaced by 2n, n, = 2n -2, and x$z? I(s) = y:)(s) and x$;)(s) =zim)(s). Also pi 2n_ (r) = p(r), pi 2n(rl = q(r) for i = (2~2 1),2n, and

    YZ_l zn-1 ={wkI,/(2rlrWs), Yz:-l,zn =MI~J(29WS), Y2n,2n-1=u, / and Y~,~,, = 0. Hence we obtain the result that the speed offirst spread in a specific direction of allele A, among both males andfemales is c, where

    log{y,,-,,,,-,[P(A)/21}+log[l+\/1+48Q than the homozygote for allele 1. Thespeed of propagation was obtained for all values of the parameters inthe superior case and with the restriction in the intermediate case withw22 > wll that (w12 - wI1) 2 wIl(w22 - w12)/2w12.Note that we could consider the spread of several new alleles. Thiscan be treated in a similar fashion to Section 3.1.3.3. A MULTIPLE ALLELE MODEL WITH MIGRATION DEPENDENT

    UPON GENOTWEConsider dynamics similar to that of Section 3.1 but where the

    density function for the migration depends upon the genotype. We nowconsider the proportion of genotype A,A, at position s in generation mprior to mating, which is denoted by 2x$)(s) for i # j and x~~~(s). Let{X()(S))~~ {Xcm))li x:7)(s). Note that the matrix X@)(s) s symmet-ric and that, at posrtron s in generation m , the proportion of allele A, isgiven by {X(m)(s)l}i. The density function for migration of genotypeAiA j by position vector r is pii( The equations describing the processare

    1xi? + l)() = p)(s) RN

    Wij{Xc(r)l},{X(r)l}jlfX(m)(r)~(m)(r)l pij(s-r)dr, (12)

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    14/29

    114 J . RA DC LIFFE AND L. RASSw h e r e

    W i j { x ( m ) ( r ) 1 } i { X ' m ) ( r ) 1}yk(ra )(s ) = t. Z f R N l ' X ( m ) ( r ) $ r c x ( m ) ( r ) l P i j ( s - r ) d r "

    JC o n s i d e r a s t a b l e p o p u l a t i o n w i t h a l l el e s A 1 . . . . A n - 1" L e t 2 , / i > 0,i ~ j , a n d 7 /ij > 0 , i = j b e t h e p r o p o r t i o n s o f g e n o t y p e A i A j a t a l lp o s i t io n s s ~ R N . A n e w a l le l e o c c u r s b y m u t a t i o n i n ( o r i m m i g r a t i o ni n t o ) a b o u n d e d r e g i o n B , s o t h e z e r o t h g e n e r a t i o n i s t a k e n t o h a v ex!)(s) = 7// j fo r i < n an d j < n an d s ~ B . A lso x~)(s) = 0 fo r i = n o rj = n a n d s ~ B . L e t 7 / / b e t h e p r o p o r t i o n o f a ll e le A i and let {7/*} = r/if o r i < n . T h e n r/* = W * - 1 1 / 1 ' W * - 11 > 0 . H e n c e

    ~ l i w i j w j { W * - 1 1 1 'W * - 1 } i j { W * } i j~ l i j = ~ 7* 'W * r/* = l ' W * - l lw h e r e W * is t h e p a r t o f t h e f i tn e s s m a t r i x re l a t in g t o t h e f i rs t ( n - 1 )a l le les .

    D ef in e ~Tn = 0 , a nd le t r / b e th e ve c to r w i th {~7}i= r / i . N o t e t h a tn - - 1r/i = E j = I ~ i j , T h e n , i n t h e f o r w a r d f r o n t , E q u a t i o n ( 1 2) f o r i < n m a y b ea p p r o x i m a t e d b yn - - 1

    x ! 7 + 1 ) ( s ) = E q ~ i l f _ l , , q i t ( s - r ) x ~ m ) ( r ) d r , ( 1 3 )l= 1 "1w h e r e ~ b i t = w i n r l i / r f W r l a n d q i t ( r ) = P i n ( r ) . H e r e b o t h q ~ i t a n d q i l ( r )d e p e n d o n l y o n i a n d n o t o n I. E q u a t i o n ( 13 ) i s i d e n t ic a l w i t h E q u a t i o n( 1 ) i f w e t a k e x i + ( m ) l ( S )= x!m)(s) fo r i = 1 , . . . , ( n - - 1), rep lac e Y u b y ~bil an dP i l b y q i l , a n d l e t n 1 = 1 .I n t h i s c a se , A (A ), a s d e f i n e d i n S e c t i o n 2 , h a s i d e n t i c a l c o l u m n s . T h em a x i m u m e i g e n v al u e is t h e r e f o r e e q u a l t o t h e s u m o f th e e n t r ie s o f t h ec o m m o n c o l u m n v ec to r . H e n c e ,

    n - 1 Win~ip [ A ( A ) ] = ~ ] P i n ( A ) w - - T W " = ' y P ( A ) ,i = I

    w h e r e 3, = { W ~ } n / w ' W v / a n d P ( A ) = Y ' . ~ - ~ a i P i n ( A ) , w h e r e a i =W i n T l / { W T } } . N o t e t h a t P ( A ) i s t h e L a p l a c e t r a n s f o r m o f t h e p r o j e c t i o ni n t h e s p e c i f i e d d i r e c t i o n o f a d e n s i t y p ( r ) , w h i c h i s a w e i g h t e d f u n c t i o no f m i g r a t i o n d e n s i t i e s ; t h a t is, p ( r ) - n - 1- Z i = i i P i n ( r ) . H e n c e t h e s p e e d o ff i r s t s p r e a d c a n b e g i v e n i n t h e s i m p l e f o r m

    c = m a x{ O , in f l g [ P ( A ) ] + l g ( ' ) )x > 0 A "

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    15/29

    DISCRETE TIME SPATIAL MO DELS 115N ot e that , i f w e le t x(~m)(s)b e t h e p r o p o r t i o n o f a l le l e A n ( a t p o s i t i o n

    s an d i n g en e r a t i o n m ) , t h en b y su m m i n g o v e r i i n E q u a t i o n ( 13 ), w eo b t a i n

    x (m + l ) ( s ) = f R N T X ~ m ) ( r ) p ( s _ r ) d r .H en ce t h e sp eed o f sp r ead o f al le l e A n can b e d e r i v ed f r o m t h i s s in g l ee q u a t i o n a n d is t h e c o m m o n s p e e d o f s p re a d o f t h e g e n o ty p e s , c , g iv e nabove .3.4. A M U L T IP L E A L L E L E M O D E L W I T H S E X -L I N K E D L O C U S A N DM I G R A T I O N D E P E N D E N T U P O N G EN O T Y PE

    T h e d y n am i cs o f t h is m o d e l a r e s i m i l a r to S ec t i o n 3.3 , ex cep t t h a t t h em a l e a n d f e m a l e g e n e t i c o u t p u t s a r e s e p a r a t e a n d m a y h a v e d i f f e r e n tmigra t ion d i s t r ibu t ions . As in Sec t ion 3 .2 , the male i s hap lo id fo r the Xc h r o m o s o m e a n d t h e f e m a l e is d ip lo id . C o n s i d e r th e p r o p o r t i o n o f t h ed i f f e r en t g en o t y p es a t p o s it io n s i n g en e r a t i o n m f o r e ach sex p r i o r t om a t i n g . F o r t h e f em a l e s , l e t 2 y ! 7 )( s ) b e t h e p r o p o r t i o n o f g en o t y p eA i A j w h en i ~ j an d l e t y ~m ) (s ) b e t h e p r o p o r t i o n o f g en o t y p e A i A i.A l so l e t z~m ) (s ) b e t h e p r o p o r t i o n o f g en o t y p e A i f o r t h e m a l e s . T h em i g r a t i o n d en s i t y an d f i t n e s s f o r f em a l e s o f g en o t y p e A i A / a r e p i j ( r )an d w i j . T h e co r r e sp o n d i n g m i g r a t i o n d en s i t y an d f it n e s s f o r m a l e s o fg e n o t y p e A i a r e q i ( r ) an d v i . L e t {Y(m) ( s ) } ij = y ~ ) ( s ) . A l so l e t { z ( m ) ( $ ) } i= z!m) (s ). Th e e qua t ions descr ib ing the p rocess a rey ~ 7 + l ) ( s ) = 1 w i j [ { y ( m ) ( r ) l } i { z ( m ) ( r ) } j + { Y ( m ) ( r ) l } y { z ( m ) ( r ) } i ]

    k(mS(s) f : 2 [ ze~) ( r) ] 'W [y(m ) ( r ) ] 1 p i y ( s - r ) d r , ( 1 4 )

    z~m+ O(S ) : 1 , " v i { y ( m ) ( r ) l } ib(m)(s) JR N [ v 'y ( m ) ( r )l ] q i ( s - r ) d r ,fo r j < i and i = 1 . . . . n , wh ere

    k(m) ( s ) = ~ . E f R N w i y [ { Y ( m ) ( r ) l } i tz ( m ) ( r ) } j + { Y ( m ) ( r ) l } j t z ( m ) ( r ) } i ] j 2 [ z ( m ) ( r ) ] ' W [ y ( m ) ( r ) ] l

    p i j ( s - r ) d r ,f v i { Y ( m ) ( r ) l } ib ( m ) ( s ) = t ~ . J n N [ v ' y ( m ) ( r ) l ] q i ( s - r ) d r "

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    16/29

    1 1 6 J . R A D C L I F F E A N D L . R A S SC o n s i d e r a s t a b le p o p u l a t i o n w i t h a ll e le s A 1 . . . . A n - 1 w i t h 2 r /q > 0 ,

    i :~ j , a n d ~ /i: > 0 , i = j b e i n g t h e p r o p o r t i o n o f f e m a l e s o f g e n o t y p eA ~ A i a t a l l p o s i t io n s s ~ R N. T h e p r o p o r t i o n o f m a l e s o f g e n o t y p e A ~ a ta ll p o s i t i o n s s i n R N is ~ i. A n e w a l le l e o c c u r s b y m u t a t i o n i n ( o ri m m i g r a ti o n in t o ) a b o u n d e d r e g i o n B , s o th e z e r o t h g e n e r a t i o n i s t a k e nto ha ve y! ) (s ) = ~Tij an d z~)(s ) = ~i fo r i < n an d j < n an d s ~ B. A lsoyi

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    17/29

    DISCRETE TIME SPATIAL MODELSw h e r e

    117

    ~/11 = 2 ~ , , W r I , P~l( r) = ~ W i n ~ ii = l ( - - ~ n ' P i n ( F ) ' Y12 = 2b r,W ~,w i n ( n } i , . v .P~2( r ) = ~ - ~ ' P i , t r ) , Y2, = v'-~'i=1

    a n dp ~ l ( r ) = q n ( r ) .

    H e n c ec = m a x ( O , i n f l o g [ p ( A ) ]}A>O A '

    w h e r e

    1 [ yl,P ~,l(A ) + V/y21P~'12 A ) +4Y 21 ylZ P~'z(A) P~'I(A) ],gw i t h P i ~ ( A ) t h e L ap l ace t r an s f o r m o f t h e p r o j ec t i o n o f p ~ . ( r ) i n t h espec i f i ed d i r ec t ion .4. E V O L U T I O N A R Y G A M E T H E O R Y M O D E L S

    I n t h is s ec t i o n , w e co n s i d e r t w o m o d e l s i n ev o l u t io n a r y g am e t h eo r y .F o r a g en e r a l d i s cu s s io n o f ev o l u t i o n a r y g am e t h eo r y , s ee R e f s . 2 1 - 2 3 .S p a t ia l m o d e l s h av e b een co n s i d e r ed in R e f s . 24 an d 2 5, w i t h d i ff u s i o nt e r m s b e i n g u sed t o m o d e l t h e sp a t i a l a sp ec t . I n co n t r a s t , w e u secon tac t d i s t r ibu t ions to descr ibe the spa t i a l sp read .T h e f ir s t m o d e l co n s i s ts o f a s in g le p o p u l a t i o n i n w h i ch i n d iv i d u a lscan p l ay n p o s s i b l e s t r a t eg i e s . T h i s t u r n s o u t t o b e an a l o g o u s t o t h em o d e l in S ec t i o n 3.1 ex cep t t h a t t h e m a t r ix W i s n o w a p ay o f f m a t r i xt h a t is n o t i n g en e r a l sy m m et r i c . T h e seco n d m o d e l is t h a t o f a b i m a t r ixg a m e . T h e r e su l ts o f th e s a d d l e p o i n t m e t h o d a r e a p p l ie d t o g i ve t h esp eed o f sp r ead o f n ew s t r a t eg i e s i n p o p u l a t i o n s t h a t w e r e i n eq u i l i b -r i u m .T h e c o n n e c t i o n b e t w e e n t h e f i r s t m o d e l a n d t h e g e n e t i c m o d e l o fSec t ion 3 .1 i s b r i e f ly d i scussed , as i s the ex ten t to which the exac tan a l y t ic m e t h o d s o f W e i n b e r g e r [1 , 2 ] an d L u i [3 ] y i e ld r e su lt s f o r t h et w o - s tr a te g y m o d e l i n g a m e t h e o r y .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    18/29

    118 J . RAD CLIFFE AND L. RASS4.1. A S IN G L E - P O P U L A T I O N E V O L U T I O N A R Y G A M E T H E O R Y M O D E L

    A s e t u p a n a l o g o u s t o t h e m o d e l o f S e c t i o n 3.1 is c o n s i d e r e d . E a c hind iv idua l in the popu la t ion p lays one o f n s t r a teg ie s , w i th x !m)( s ) nowd e n o t i n g t h e p r o p o r t i o n i n t h e m t h g e n e r a t i o n a t p o s i t i o n s t h a t p l a y ss t ra t e g y i . T h e s u r v iv a l t o m a t u r i t y n o w d e p e n d s o n a p a y o f f m a t r ix A ,w h i c h "is n o t i n g e n e r a l s y m m e t ri c . T h e m o d e l i s d e s c r i b e d b y t h ee q u a t i o n s

    x } m ) ( r ) [ { A x ( m ) ( r ) } i + k ]x } m + l ) ( s ) = J R N [ X ( m ) ( r ) ] , [ A x ( m ) ( r ) + k ] P ( s - r ) d r , ( 1 5 )

    f o r i = 1 , . . . , n .H e r e k i s a la r g e p o si t iv e c o n s t a n t r e p r e s e n t i n g t h e c o m m o n b a c k -g r o u n d f i tn e s s. T h i s i s a s p a t ia l v e r s i o n o f t h e m o d e l d e s c r i b e d o n p a g e

    133 o f Re f . 23 . Le t W i j ~ - { W } i j = {A}ij + k . P ro v ide d k > m a x ( - {A}ij)t h e n w ij > 0 fo r a l l i and j . When W i s subs t i tu ted in to Equa t ions (15) ,t h e y b e c o m e i d e n t i c a l w i t h E q u a t i o n s ( 4 ) . N o t e t h a t , f o r t h e m o d e ldesc r ibed in Sec t ion 3 .1 , the f i tne s s ma t r ix W i s symmet r ic . For thep r e s e n t m o d e l , h o w e v e r , t h e m a t r i x W i s n o t i n g e n e r a l s y m m e t r i c .

    C o n s i d e r t h e s p r e a d o f a n e w s t r a t e g y S n. T h i s i s i n t r o d u c e d i n t o apo pu la t ion in s tab le equ i l ib r ium, wi th s t r a teg ie s S 1 . . . , Snl be ing p layedby p rop or t io ns ~ . . . . . */nl o f the pop u la t ion , r e spec t ive ly , a t a l l po in t s so f R N . T h e expre s s ion fo r 7 / / i s iden t ic a l w i th tha t ob ta ined fo r thec o r r e s p o n d i n g g e n e t i c m o d e l o f S e c t i o n 3.1 . T h e s p e e d o f f ir s t s p r e a d co f n e w s t r a t e g y Sn i s g i v e n b y E q u a t i o n ( 7 ) . R e s u l t s f o r s e v e r a l n e ws t r at e g i e s a r e i d e n ti c al t o t h o s e o b t a i n e d f o r g e n e s i n S e c t i o n 3 .1 .

    E x a c t m e t h o d s t o o b t a i n t h e s p e e d o f p r o p a g a t io n f o r th e g e n e t i cm o d e l o f S e c t i o n 3 .1 h a v e b e e n u s e d f o r t h e c a s e n = 2 a n d a r ed i scussed b r ie f ly in tha t s ec t ion . Equ iva len t r e su l t s us ing exac t me th od sm a y a l s o b e o b t a i n e d f o r t h e g a m e t h e o r y m o d e l i n t h e g e n e r a ln o n s y m m e t r i c c a s e .B e c a u s e n = 2 , w e n e e d c o n s i d e r o n ly th e s e c o n d e q u a t i o n o f E q u a -t ions (4) w i th W no nsy m m etr ie , be ca us e x[m)(s ) = 1 - - x~2m)(s). This m ayb e w r i t t e n i n t h e f o r m

    ( 1 6 )w h e r e

    w~ x 2 + w21x(1 - x)g ( x ) - - w 2 2x 2 + ( w l 2 + w l)x(1- x ) + w 1(1- x )

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    19/29

    D I SCR E T E T I M E SPA T IA L MO D E L S 1 19C o n s i d e r t h e s o l u t i o n s t o g ( x ) = x fo r 0 ~< x ~< 1. In all ca se s, x = 0

    a n d x = 1 a r e s o l u t i o n s . T h e r e i s a n a d d i t i o n a l s o l u t i o n x * , w h e r e

    W 2 1 - - W l l )x * = [ ( w 2 , - w H ) + ( w 1 2 - w 2 )]

    D e f i n e .~ = x * i f 0 < x * < 1 ; o t h e r w i s e d e f i n e $ = 1 .F o r t h e g e n e t i c s m o d e l w i t h n = 2 , x~2m )(s) s a t is f i es E q u a t i o n ( 1 6 ) a n dg ( x ) i s d e f i n e d a s a b o v e b u t h a s w 12 = w 2 1. W e i n b e r g e r [1 , 2 ] a n d L u i [ 3]

    p r o v e d r e s u lt s f o r th e a s y m p t o t i c s p e e d o f p r o p a g a t i o n f o r t h e g e n e t i cm o d e l i n t e rm s o f a g e n e r a l f u n c t i o n g ( x ) t h a t s a t i s f i e d c e r t a i n c o n d i -t i o n s . A s u f f i c i e n t s e t o f c o n d i t i o n s i s a s f o l l o w s :

    (1 ) g ( x ) h a s c o n t i n u o u s b o u n d e d d e r i v a t i v e s f o r x ~ [ 0 , 1 ] .( 2 ) g ( 0 ) = 0 , g ( 1 ) = 1 , a n d g ( $ ) = $ .(3 ) g ( x ) > x f o r x ~ ( 0 , $ ) a n d g ( x ) < x f o r x ~ ( $ , 1 ).(4 ) g ( x ) / x i s a n o n i n c r e a s i n g f u n c t i o n o f x f o r x ~ ( 0, $ ) .(5 ) 0 < g' (x ) ~ g '(O) fo r x ~ [0 , :~] .( 6 ) T h e r e e x is t s a D > 0 s u c h t h a t g'(O)(x - D x 2 ) < g (x )

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    20/29

    120 J. RA DCL IFFE AND L. RASSB . I n C ase 4 , a s i n t h e g en e t i c m o d e l , S t r a teg y 2 w ill d i e o u t u n i f o r m l yin R N . I n C ase 3 , S t r a t eg y 2 w i l l a l so d i e o u t an d n o t sp r ead i n an ydire ct ion w he n, in ad di t ion, x~) (s) < ~ for a l l s ~ B.W h e n n = 2, th e s p e e d o f fi rs t s p re a d o b t a i n e d b y t h e s a d d l e p o in tm e t h o d f o r t h e e v o l u ti o n a r y g a m e t h e o r y m o d e l a g r e e s w i th t h e r e su l tsf o r t h e s p e e d o f p r o p a g a t io n o b t a i n e d b y e x a c t m e t h o d s .4.2. A B I M A T R I X G A M E

    C o n s i d e r t w o d i f f e r en t p o p u l a t i o n s t h a t a r e i n co n f l ic t . I n d i v id u a l s inP o p u l a t i o n 1 can p l ay s tr a t eg ie s S ~ . . . . . S t , an d i n d iv i d u a ls in P o p u l a t i o n2 can p lay s t r a t eg ies T 1 , . . . , T ~ . Le t x !m) (s ) and y~m)( s ) de no te thep r o p o r t i o n s i n P o p u l a t i o n s 1 an d 2 i n t h e m t h g en e r a t i o n a t p o s i t i o n stha t p lay s t r a t eg ies i and j , r espec t ive ly . The su rv iva l to matur i ty inP o p u l a t io n s 1 a n d 2 n o w d e p e n d s o n t w o p a y o f f m a t r ic e s , A a n d B ,w h i c h a r e n o t i n g e n e r a l s y m m e t ri c . T h e m o d e l i s d e s c r i b e d b y t h eeq u a t i o n s

    . x ~ m ) ( r ) [ { A y ( m ) ( I ) } i + k ~ ]x ~ m + 1 ' ( S ) = J R N [ x ' m ' ( r ) ] t t A y ( m ' ( r ) J r k l ] P l ( s - r ) d r '

    . y ( m ) ( r ) [ { B x ( m ) ( r ) } j J r k 2 ]y ( m + 1)(S = JR s [Y(m)(r) ]' [Bx(m )(r ) + k2] p 2 ( s _ r ) d r ( 1 7 )

    fo r i = 1 . . . . . t a n d j = 1 , . . . , n . H e r e k 1 a n d k 2 a r e l a rg e p o s it iv ec o n s t a n ts r e p r e s e n t i n g t h e c o m m o n b a c k g r o u n d f i tn e s s o f i n d iv id u a ls i nPo pu lati on s 1 an d 2, respe ctive ly. Le t {V}ij = {A}i/+ kl an d {W}i. = {B}ij+ k 2 . T h e n p r o v id e d k 1 > m a x ( - { A } i ) a n d k 2 > m a x ( - { B } i j ) , ( V } i j > 0an d {W}ij > 0 fo r a l l i a nd j . E qu a t ion s (17) can be w r i t t en as

    r x ~ m ) ( r ) { V y ( m ) ( r ) } ix ! m + I ) ( S ) = J R N ~ P l ( s - r ) d r '

    r y ( m ) ( r ) { W X ( m ) ( r ) } jy ( m + l ) ( s ) = J R N ~ P 2 ( s _ r ) d r ' ( 1 8 )f o r i = l . .. . . t a n d j - - 1 . .. .. n .In i ti a lly , P opu la t ion 1 p lays s t r a t eg ies S 1 . . . . S5 a n d P o p u l a t i o n 2p lays s t r a t eg ies T 1 , . . . , T n c T h e p o p u l a t i o n s a r e m eq u i l i b r i u m , w i t hp r o p o r t i o n s {0" } - - 0 * p l ay in g s t r a teg y S i ( i - -1 . . . . . t 1) an d {~/*}j- -~7p lay ing s t r a t egy T / ( j = 1 , . . . , n 1 ) a t a ll p o in t s s , .where~ 1 ' 0 " = 1 a n d1 '7" = 1 . T he n 0* and ~j* sa t is fy 0* = g i ( O * , ~ * ) and ~j* = h j ( O * , ~ * ) ,w h e r e g i (O* , 7 1" ) = ( O * { V * ~ * } i / O * ' V * 7 1 * ) a n d h i ( O * , 7 1 ") =

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    21/29

    DISCRETE TIME SPATIAL MODELS 121( 7 / p { W * 0 * } j / r/ * 'W * 0 * ) . H e r e iV * }0. = {A*}ij + k 1 a n d {W *}0 = { B * }0. +k 2 , w h e r e A * a n d B * a r e t h e p a y o f f m a t r ic e s f o r P o p u l a t i o n s 1 a n d 2c o r r e s p o n d i n g t o t h e f i r st t I a n d n I s t r a t e g i e s , r e s p e c t iv e l y . T h u s{ 0 " } i = { V * - 1 1 } i / / ( l ' V * - 1 1 ) a n d { ,/* }j = {W *- 1 1 } / . / ( r W * - 1 1 ) .

    L e t t = t 1 + 1 a n d n = n I + 1 . S u p p o s e t h a t P o p u l a t i o n 1 i n t r o d u c e s an e w s t r a t e g y S t , b u t P o p u l a t i o n 2 c o n t i n u e s t o p l a y t h e e x i s ti n g s t r a t e -g i e s . D e f i n e { 0 } = 0* fo r i = 1 . . . t 1 an d { 0 } = 0 . A lso le t { ,/}i = r /* fo ri = 1 . . . . n 1 a n d {7/}~ = 0 .

    T h e a p p r o x i m a t e e q u a t i o n o b t a i n e d f r o m E q u a t i o n s ( 18 ) i n t h ef o r w a r d f r o n t is

    x ~ m + 1 ) ( $ ) = ~ f t t f R N P l ( r ) x ~ m ) ( s _ r ) d r , ( 1 9 )w he re 3~, = {V~/} / ( 0 ' V~/) .

    T h e s p e e d o f f ir s t s p r e a d o f s t r a te g y S t i n a s p e c i fi c d i r e c t i o n i s

    c l = m a x ( O , i n f l o g [ P l ( A ) ] + l o g ( ' Y " ) )~ > 0 A 'w h e r e P I (A ) is th e L a p l a c e t r a n s f o r m o f th e p r o j e c ti o n o f th e m i g r a t i o nd i s t r ib u t i o n p l ( s ) i n t h e s p e c i f ie d d i r e c t io n .S i m i la r ly , s u p p o s e t h a t P o p u l a t i o n 2 i n t r o d u c e s a n e w s t r a t e g y T~,w h i l e P o p u l a t i o n 1 c o n t i n u e s p l a y i n g s t ra t e g i e s S 1 . . . . S t1 . T h e a p p r o x i-m a t e e q u a t i o n o b t a i n e d f r o m E q u a t i o n s ( 18 ) i n th e f o r w a r d f ro n t is

    y ~ m + 1)(s ) = ~ n , fR n p 2 ( r ) Y ~ n m ) ( s _ r ) d r , ( 2 0 )

    w h e r e ~n~ = { W 0 } n / (1 7 'W 0 ) . T h e s p e e d o f f i r s t s p r e a d o f s t r a t e g y Tn in as p e c i f ic d i r e c t i o n i s

    w h e r e P 2( A ) is th e L a p l a c e t r a n s f o r m o f th e p r o j e c t io n o f t h e m i g r a t io nd i s t r i b u t i o n p 2 ( s ) i n t h e s p e c i f i e d d i r e c t i o n .

    N o w c o n s i d e r t h e c a s e w h e n P o p u l a t i o n s 1 a n d 2 e a c h i n t r o d u c e an e w s t r a t e g y , S t a n d T , r e s p e c t i v e l y . A s i n S e c t i o n 3 . 1 , E q u a t i o n ( 1 9 )w i l l b e v a l i d o n l y i f c I > / c 2 , i n w h i c h c a s e t h e s p e e d o f f i r s t s p r e a d o fs t r a t e g y S t i s c 1. E q u a t i o n ( 2 0 ) i s s i m i l a r l y v a l i d o n l y i f c 2 > / C l, i n w h i c hc a s e t h e s p e e d o f f ir s t s p r e a d o f s t r a t e g y Tn i s c 2 . T h e v a l u e o f

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    22/29

    122 J . RAD CLIFF E AND L. RASSc = m a x ( c1 , c 2 ) g i v es th e s p e e d a t w h i c h a d i s t u r b a n c e t o t h e e q u i l i b r i u mi s f i r s t f e l t , t h i s d i s t u r b a n c e b e i n g c a u s e d b y t h e r e l a t i v e l y m o r e a d v a n -t a g e o u s s t ra t eg y .

    T h e i n t r o d u c t i o n o f se v e r al n e w s t r a t e g ie s m a y b e t r e a t e d i n a s im i l a rf a s h i o n .5 . B R A N C H I N G P R O C E S S M O D E L S

    T h e s a d d l e p o i n t m e t h o d c a n b e a p p l ie d t o a w i d e r a n g e o f d is c re t et i m e b r a n c h i n g p r o c e s s m o d e l s . T w o p r o c e s s e s a r e g i v e n i n th i s s e c t io na s il lu s t ra t io n s . T h e f ir s t i s a m u l t i ty p e G a l t o n - W a t s o n p r o c e s s a n d t h es e c o n d i s a d e m o g r a p h i c b r a n c h i n g p r o c e ss . A d i s c u s s io n o f m u l t i t y p ea n d d e m o g r a p h i c b r a n c h i n g p r o c e s s e s is g i v e n i n R e f . 2 6.

    I n b r a n c h i n g p r o c e s s m o d e l s , a s y s t e m o f n o n l i n e a r i n t e g r a l e q u a -t i o n s i s o b t a i n e d f o r t h e p r o b a b i l i t y t h a t t h e f a r t h e s t s p r e a d i n a s p e c i f i cd i r e c t i o n a t d i s c r e t e t i m e m i s a t l e a s t s , g i v e n t h a t , a t t i m e z e r o , t h e r eis o n e i n d iv i d u a l i n th e p o p u l a t i o n w h o i s at t h e o r i g i n a n d is o f i t h t y p e( o r a g e o r a c o m b i n a t i o n o f b o t h ) f o r a ll p o ss i b le t y p e s i . T h i s i sd e n o t e d b y x ! m ) ( s ) . H e r e x ! ) ( s ) = 0 f or s t> 0 , an d x ~ ) ( s ) = 1 for s < 0 .

    B e c a u s e x ~ ) ( s ) i s n o t z e r o o u t s i d e a b o u n d e d r e g i o n o f R , t h eb r a n c h i n g m o d e l s d o n o t s a ti s fy t h e c o n d i t i o n s i m p o s e d i n S e c t i o n 2 top r o v e T h e o r e m s 1 a n d 2 . N o t e h o w e v e r t h a t t h e a c tu a l c o n d i t io n u s e di n t h e p r o o f s o f t h e s e t h e o r e m s r e q u i r e s t h a t D ) ( 0 ) h a s e n t r i e s t h a tex i s t fo r R e ( O ) > 0 a n d a r e u n i f o r m l y b o u n d e d f o r 01 ~< R e ( O ) ~< 02 f o rany 0 < 01 < 02 < 0o.F o r t h e c as e N - - 1 , t o e n s u r e t h a t th e s e c o n d i t io n s h o l d w h e ne s t a b li s h in g t h e s p e e d o f s p r e a d i n t h e p o s i t iv e d i r e c ti o n , w e n e e d o n l yr e q u i r e t h a t e a c h x ~ ) ( s ) i s b o u n d e d a n d t h a t x ! ) ( s ) = 0 fo r s > t A fo re a c h i a n d s o m e f i n i t e A .

    T h i s l a t t e r c o n d i t i o n i s m e t f o r t h e b r a n c h i n g p r o c e s s m o d e l s ; h e n c et h e r e s u l t s o f S e c t i o n 2 m a y s t i l l b e a p p l i e d .5.1. A M U L T I T Y P E G A L T O N - W A T S O N P R O C E S S

    T h e r e a r e n t y p es . E a c h i n d i v id u a l l iv e s f o r o n e d i s c r e te t i m ei n t e rv a l , g iv i n g b i r t h a t t h a t t i m e t o o f f s p r i n g , w i t h a l l i n d i v i d u a l sc o n t r i b u t i n g o f f s p r i n g t o t h e p r o c e s s i n d e p e n d e n t l y . T h e p r o b a b i l i t yt h a t t h e r e a r e t l . . . . , t n o f f s p r in g o f ty p e s 1 , . . . , n o f a t y p e i p a r e n t i sg i ( t I . . . . . t n) . T h e d e n s i t y f u n c t i o n f o r t h e d i s t a n c e r i n a s p e c i f i e dd i r e c t io n o f a ll th e o f f s p r i n g f r o m t h e p a r e n t o f t y p e i i s p i ( r ) . L e t U mb e t h e p o s i t i o n o f t h e i n d i v i d u a l f a r t h e s t f r o m 0 i n th e r u t h g e n e r a t i o ni n t h e g i v e n d i r e c t i o n , a n d l e t x } m ) ( s ) = P [U rn > s g i v e n t h a t t h e r e i so n e t y p e i i n d i v i d u a l a t p o s i t i o n 0 in t h e 0 t h g e n e r a t i o n ] .

    B y c o n d i t i o n i n g o n w h a t o c c u r s a t t h e e n d o f t h e f i r s t d i s c r e te t i m e

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    23/29

    D I S C R E T E T I M E S P A T I A L M O D E L S 123i n te r v a l, w e o b t a i n t h e f o l l o w i n g s y s t e m o f e q u a t i o n s d e s c r ib i n g t h i sm o d e l :. (m + f R t ~ [ 1 x ~ m ) ( r )] ' P i ( S r ) d r ,i 1 )(S ) . . . . ~ . ~ g i ( t l , . . . , t n ) 1 - - -

    tnf o r i = 1 , . . . , n . N o t e t h a t x ~ ) ( s ) = 1 i f s < 0 a n d x ~) = 0 i f s > 0 .

    I n t h e f o r w a r d t a il o f t h e d i s t ri b u t i o n o f f a r t h e s t s p r e a d , t h e s ee q u a t io n s m a y b e a p p r o x i m a t e d b y :

    x } m + l ) ( s ) = f g ~ t 1 " '" ~ . ~ g i( tl . . . . . t n ) [ ~ t j x } m ) ( r ) ] p i ( s - r ) d rtn [ j = l 1n= E l z i j f x } m ) ( r ) p i ( s - - r ) d r ,

    j ~ l Rw h e r e /z q is t h e e x p e c t e d n u m b e r o f o f f sp r in g o f t y p e j f r o m a ty p e ip a r e n t .

    L e t { A(A )}q = / z i j P / ( A ) , w h e r e P / (A ) is t h e L a p l a c e t r a n s f o r m o f p i ( r ) .T h e n t h e s p e e d o f s p r e a d o f th e f o r w a r d ta il , c , is g i v en b y T h e o r e m 3w i t h t h i s m a t r i x A (A ) . A s i m p l i fi c a ti o n o c c u r s w h e n P i (A ) is t h e s a m e f o ra ll i w i th c o m m o n v a l u e P ( A ) . I n t h is c a s e , c i s g i v e n b y E q u a t i o n ( 7 )w i t h ~, = p ( / . 0 , w h e r e { ~ } i j = [tl'ij"5.2. A D E M O G R A P H I C B R A N C H I N G P R O C E S S M O D E L

    C o n s i d e r a n a g e - d e p e n d e n t b r a n c h i n g p r o c e s s m o d e l , w i t h x i ( s ) n o wm e a s u r i n g t h e p r o b a b i l i t y t h a t t h e f a r t h e s t s p r e a d a t t i m e m i n as p e c i f i e d d i r e c t i o n i s a t l e a s t s , g i v e n t h a t t h e r e w a s o n e i n d i v i d u a li n it ia l ly o f a g e i a t p o s i t i o n 0 . A n i n d i v i d u a l o f a g e i h a s a p r o b a b i l it y / 3 ~o f d y i n g b e f o r e r e a c h i n g a g e i + 1 w i t h /3k = 1 , s o a n i n d i v i d u a l c a n n o tl iv e f o r k + 1 y e a r s o r m o r e . I f t h e i n d i v i d u a l s u r v i v e s t o a g e i + 1, t h e nt h e p r o b a b i l i t y o f t o f f s p r i n g i s g i ( t ) a n d , c o n d i t i o n a l o n t , t h e d e n s i t yf u n c t i o n o f t h e p o s i t i o n s r 1 . . . . r o f t h e s e o f f s p r in g i n t h e s p e c i f ie dd i r e c t i o n r e l a t iv e t o t h e p a r e n t is p i ( r 1 . . . . r t ) , w i t h c o m m o n m a r g i n a ld e n s i t y f u n c t i o n p i ( r ) . A g a i n , u s i n g a c o n d i t i o n i n g a r g u m e n t , w e o b t a i nt h e f o l lo w i n g e q u a t i o n s d e s c r i b in g t h e p r o c e s s :

    x ! m + l ) ( S ) = ( 1 - - ~ i ) ~ - , g i ( t )t

    (m )x 1 - [ 1 - f R , E [ 1 - - x ( m ) ( s - r j ) l P i ( r l ' " " r t ) d r l ' " " d r t '

    f o r i = 1 , . . . , k . N o t e t h a t x ~ "~ )l( S) -= O .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    24/29

    124 J . RAD CLIFFE AND L. RASSI n t h e f o r w a r d t a i l o f t h e d i s tr i b u t io n o f f a r th e s t s p r e a d , t h e s e

    e q u a t io n s m a y b e a p p r o x i m a t ed b y

    X } m + 1 ) ( $ ) = ( 1 - / 3 i ) [ X ~ + ~ ( S ) q " I,L i f x ( o m ) ( r ) p i ( s - - r ) d r ] ,f o r i = 1 . . . . k , w h e r e /z/ i s t h e e x p e c t e d n u m b e r o f o f f s p r i n g o f a nind iv idua l o f age ( i + 1 ). Le t P / (A) be t he Lap l ace t r ans form of p i ( r ) .D ef in e {A( A)}il = (1 - /3 i_ 1)/zi- 1P /- I(A) fo r i = 1 . . . . k + 1, {A( A)}i, + 1 =( 1 - / 3 / - 1 ) f o r i = 1 . . . . , k , a n d { A (A )}ij = 0 f o r j ~ : l o r ( i + 1 ) . T h e n t h es p e e d o f s p r e a d o f t h e f o r w a r d t a il, c , is g iv e n b y T h e o r e m 3 w i t h t h ismat r ix A(A).6 . C O N C L U S I O N

    T h e s a d d l e p o i n t m e t h o d i s a p o w e r f u l t o o l . I t c a n b e a p p l i e d t o aw i d e r a n g e o f b io l o g ic a l m o d e l s i n w h i c h t i m e a n d s p a c e m a y b ed i s c r e t e o r c o n t i n u o u s . I t h a s a l r e a d y b e e n u s e d f o r t h e a n a l y s i s o fc o n t i n u o u s t i m e m o d e l s o f e p id e m i c s . In t h i s p a p e r , w e h a v e d e r i v e d t h es a d d l e p o i n t a p p r o x i m a t i o n f o r d i s c r e t e t i m e m o d e l s . F o r o u r r e s u l t s t ob e a p p l i c a b l e t o s u c h d i s c r e t e t i m e m o d e l s , t h e a p p r o x i m a t e e q u a t i o n sin t he fo rward f ron t mus t be l i nea r , a s i n Equa t ion (1 ) , wi th nonnega t i vec o e f f i c i e n t s y / j . S o m e c a r e i s n e e d e d w h e n t h e s e e q u a t i o n s i n t h eforward f ron t y i e ld a r educ ib l e sys t em, when t he o r ig ina l sys t em ofequa t i ons i s nonreduc ib l e . In such ca se s , t he equa t i ons a re va l i d on ly i nt h e f o r w a r d f r o n t f o r a n e w t yp e , w h e r e n o c o n n e c t e d n e w t y p e c anspread a t a f a s t e r speed .

    M a n y c o n t a c t m o d e l s t h a t f i t i n t o t h e f o r m a t d e s c r i b e d c a n b ec o n s i d e r e d . W e h a v e s h o w n t h e w i d e r an g e o f a p p l ic a b il it y o f t h em e t h o d b y a p p ly i n g it t o s e v e r a l c o n t a c t m o d e l s i n g e n e ti c s, e v o l u t io n -a r y g a m e s , a n d b r a n c h i n g p r o c e s s e s . M a n y v a r ia t io n s a n d m o r e - c o m p l e xm o d e l s c a n b e w r i t t e n f o r w h i c h t h e m e t h o d i s s t i l l a p p l i c a b l e a n d f o rw h i c h t h e s p e e d o f fi rs t s p r e a d c a n b e o b t a i n e d b y t h e s a d d l e p o i n tm e t h o d d e s c r i b e d i n t h i s p a p e r .A P P E N D I X

    P r o o f o f T h e o r em 1 . T a k e M 0 su c h t h a t 1 0 ( m ) - 001 < ( 0 0 / 2 ) f o rm > M 0 . Then , fo r m > M 0, wr i t e1 [ O ( m ) + i ~ O ( m )

    O ( m ) e -g [ (m ) ] ~ = ~ " O ( m ) - i~ ) t{ [ A ( A ) ] m L( ) ( A ) } i d A = I 1 d - I 2 -I- 1 3 d - I 4 ,

    - - e - A s ( m ) - g [ O ( m ) ]

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    25/29

    D I S C R E T E T I M E S P A T IA L M O D E L Sw h e r e

    125

    N o w

    1I I = 2 - ~ f l > a J l y O ( . m ) e _ i y s ( m ) 1O ( m ) + i y { p [ O ( m ) ] }m { { A [ 0 ( m ) + / y ] } 'n L( )[ O (m) + iY]} idY ,

    O ( m ) 112 = 2-~ fs< [yl 0 t h e r e e x is tsa n a * s u c h t h a t y i / k ij ( y ) . < < d f o r l y l I> a * . T a k e . p =minx~tOo/2,kOol p (x ). T h e c o n t i n u i t y a n d p o s i t i v i t y o f p ( x ) i m p l y t h a tp > O .

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    26/29

    126T h e n f o r o~ > / a * ,

    J . R A D C L I FF E A N D L . R A S S

    E y # k i y ( Y ) { ( d l l ) I L ' @l l l < 2_~ f lyI p - m , m-i> a jh n l , ] m 1

    = E ~ ' ~ YiYfly > ? k i t ( Y ) d y .jT a k e d = p / 2 ( n - n 1) a n d f in d th e c o r re s p o n d i n g a * . T h e n

    h1Ill < E -~ p "Yiy2-m lyl> a k U ( Y ) d yJf o r c~ >~ c~*.

    N o w c h o o s e a > a * s u c h t h a t

    fly 1rp> ,~ i j ( y ) dy < 3hY.Ty#f o r a l l i , j .H e n c e 1 1 mI l 1 < ~ ( ~ ) f o r t h is ot a n d f o r m > ~ M o.

    N e x t c o n s i d e r 1 3. B e c a u s e t h e e i g e n v a l u e s o f A ( 0 0 ) a r e d i s ti n c t, f r o mD i e u d o n n 6 [ 2 7 ] , p a g e 2 4 8 , t h e r e e x i s t s a n e i g h b o r h o o d IA - 0 0 l < 80 f o rw h i c h A ( A ) h a s d i s t in c t e i g e n v a l u e s /.~ I(A ) . . . , / ~ n_ n l( A ) w i t h p ( A ) - -/ Z l( A ), w h e r e R e[ p ( A ) ] > I /z ,( A ) l f o r s t> 2 . A l s o / ~ s ( A ) , a n d t h e e n t r i e s o ft h e c o r r e s p o n d i n g i d e m p o t e n t E , (A ) , a re c o n t i n u o u s f u n c t i o n s o f A f o ra l l s a n d IA - 0 0 l < 80 .L e t E ( A ) = E l (A ) . In t h e n e i g h b o r h o o d o f 0 , d e f i n e

    mK ( ; O = ( 1 } ( X )]

    F r o m t h e c o n t i n u i t y o f t h e i d e m p o t e n t s a n d t h e e n t r i e s o f L /2 . Ina d d i t i o n , I ~ s ( A ) l < R e[ p ( A ) ] < p[Re(A)] a n d h e n c e I / z~ ( A ) / o [ R e ( A ) ]I < 1f o r s > i 2 . B e c a u s e m a x , ~ 2 1 / z s ( A ) / p [ R e ( A ) ] l ~ m a x ~ l /~ s ( 0 o ) l P ( 0 o ) < 1a s A ~ 0 0, t h e r e e x is ts a p o s i t i v e 8 1 < 80 a n d y < l s u c h t h a tI / z ~ ( A ) / p [ R e ( A ) ] I ~< y f o r s > / 2 a n d IA - 0 0 l < 61. H e n c e IK ( A ) I ~< y m ( n- n 1 - 1 ) D f o r a ny m ~ M o a n d I A - 0 1 < B1

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    27/29

    D I S C R E T E T I M E S P A T IA L M O D E L S 127C h o o s e M I > _ . M o s u c h t h a t I O ( m ) - O o l < < . ( 8 1 / v r 2 ) . T h e n 1 1 3 1 ~ / M 1.

    F i n a ll y , f o r t h e a a n d 8 p r e v i o u s l y o b t a i n e d , c o n s i d e r t h e i n t e g r a l 1 2.D e f i n e A * j ( x ) = su p 8 ,~ lyl ,~ ~ I A o ( x + iy )l. W h e n Y o = 0 , t h e n A o ( x + iy )- - 0 a n d h e n c e A * j ( x ) = 0 I f Yij ~ : 0 , t h en A * . (x ) < A o ( x ) I n t h i s c a s e ,j

    l im x_~ o o [ A * j ( x ) / A o ( x ) ] = [ A * j( O o ) /A i j( O o ) ] < 1. H e n c e t h e r e e x i st s ap o s i t i v e /3 < 1 a n d a n M 2 t> M 1 s u c h t h a t { A ' ~ j [ O ( m ) ] / A o [ O ( m ) ] } < / 3f o r m > / M 2 a n d a ll i , j s u ch t h a t 3 'o ~ 0. H e n c e A * [ 0 ( m ) ] < / 3 A [ O ( m ) ]fo r a l l m i> M 2 .

    N o w , b e c a u s e M 2 > / M o , w e h a v e ~ {L ( )[0 (m )+ /Y ]} jl < h f o r a l l j a n da ll m > / M o. T h e r e f o r e

    2 h a rlI2l ~< - - ~ - p [ 0 ( m ) ] - m {(A * [ 0 ( r e ) l ) m } ih a p [ O ( m ) ] - m / 3 m { ( A [ O ( m ) ] ) m l } i

    f o r m >~ M 2 .B u t A [ 0 ( m ) ] h a s d i s t in c t e i g e n v a l u e s f o r m 1> M 1 a n d h e n c e f o rm >i M 2 , a n d t h e i d e m p o t e n t E s [ 0 ( m ) ] t e n d s t o E ~ ( 0 ) a s m -- ,o o f o r a l l s ,

    s o t h e e n t r i e s a r e b o u n d e d . T h e r e f o r en ~ .~ n 1 ~ l ~ s [ O ( m ) ] mP[O(m)]-m{(A[O(m)])ml}i< = 1 p [O (m ) ] { I E s [ 0 ( m ) ] l } in - - n 1< { I E s [ 0 ( m ) ] l l } iS = I

    < Ff o r s o m e co n s t a n t F .H e n c e 1 1 2 1 ~< ( h o t F / ' n ' ) f l m f o r m I> M 2 . T a k e ~b = ( 1 + / 3 ) .

    1 mT h e n J I2 1 < ~ b p r o v i d e d m t> M 3 , w h e r e M 3 = m a x [ M 2 ,l o g ( 3 h a F / ' t r ) / l o g ( ~b /3 ) ].

    T h e t h e o r e m t h e n f o l lo w s b y t a k i n g = m a x ( , y , ~b) a n d M = M 3 .R E F E R E N C E S

    1 H .F . Weinberger , Asymptotic behavior of a mo del in popula t ion genet ics . InNon linear P artialDifferentialEqu ations and A pplications.J . Chadam , Ed. , LectureN otes in M athematics, Vol. 648, Springer, New Y ork, 1978, pp. 47-98 .2 H . F . W einberger, Lo ng-t im e beh avio r of a class of biological models. S/AM ZMath. Anal . 13:353-396 (1982).

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    28/29

    128 J . R A D C L I F F E A N D L . R A S S3 R . Lu i , A n o n l in e a r in te g r a l o p e r a to r a r i sin g f r o m a mo d e l in p o p u la t io n

    g e n e t i cs , I : m o n o to n e in i t ia l d a ta . SIA M J . Math. Ana l . 13(6) :913-937 (1982) .4 R . L u i , A n o n l i n e a r i n t e g ra l o p e r a t o r a ri s in g f r o m a m o d e l in p o p u l a t i o ng e n e t i cs , I I: i n i ti a l d a ta w i th c o mp a c t s u p p o r t . S /A M J . Math. Anal . 13(6) :938-953

    (1982).5 R . L u i , Ex i s t e n c e a n d s t a b i l i ty o f tr a v e l l in g wa v e s o lu t io n s o f a n o n l in e a rin te g r a l o p e r a to r . J . Math. Biol. 16:199-220 (1983) .6 R . Lu i , B io lo g ica l g r o wth a n d s p r e a d m o d e le d b y s y s tems o f r e c u r s io n s , I:m a t h e m a t i c a l t h e o ry . Math. Biosci. 93:269 -295 (1989) .7 R . Lu i , B io lo g ic a l g r o wth a n d s p r e a d m o d e le d b y s y s tems o f r e c u r s io n s , I I :

    b io lo g ic a l th e o r y . Math. Biosci. 93:297 -312 (1989).8 H . E . D a n i e l s , T h e d e t e r m i n i s t i c s p r e a d o f a s im p l e e p i d e m i c . I n Perspectives in

    Probabil i ty and Stat ist ics: Papers in Honour of M. S. Bart let t , J . Ga n i , Ed . ,d i s t r ib u t e d f o r A p p l i e d P r o b a b i l i t y T r u s t b y A c a d e m i c P r e s s, L o n d o n , 1 9 7 5 p p .6 8 9 - 7 0 1 .

    9 H .E . Da n ie l s , Th e a d v a n c in g wa v e in a s p a t i a l b i r th p r o c e s s. J . Appl. Probability14:689-701 (1977) .1 0 J . Ra d c l i f f e a n d L . Ra s s , Sa d d le - p o in t a p p r o x im a t io n s in n - ty p e e p id e m ic s a n dc o n ta c t b i r th p r o c e s s e s . Roc ky Mt . J . Math. 14(3) :599-617 (1984) .1 1 J . Ra d c l i f fe a n d L . Ra s s , Re d u c ib le e p id e mic s : c h o o s in g y o u r s a d d le . Rocky Mt .J. Math. 23(2) :725-752 (1993) .1 2 D . G . A r o n s o n , T h e a s y m p t o t i c s p e e d o f p r o p a g a t i o n o f a s im p l e e p i d e m i c . I n

    No nlinea r Diffusion, W . E . F i t z g ib b o n a n d H . F . W a l k e r , E d s ., R e s e a r c h N o t e s i nM a th e m a t ic s 1 4 , P i tma n , Lo n d o n , 1 9 7 7 , p p . 1 - 2 3 .1 3 O . D ie k m a n n , Ru n f o r y o u r li fe : a n o te o n th e a s y m p to t i c s p e e d o f p r o p a g a t io n

    o f a n e p id e mic . J . Differential Eq uations 33(1) :58-73 (1979) .1 4 J . Ra d c l i f f e a n d L . Ra s s , Th e a s y mp to t i c s p e e d o f p r o p a g a t io n o f th e d e te r m in -i s t ic n o n r e d u c ib le n - ty p e e p id e m ic . J . Math. Biol. 23:341-35 9 (1986) .

    1 5 J . Ra d c l i f f e a n d L . Ra s s , Th e a s y mp to t i c b e h a v io r o f a r e d u c ib le s y ste m o fn o n l in e a r in te g r a l e q u a t io n s . Ro cky M t . J . Math. 26(2) :731-752 (1996) .

    1 6 J . Ra d c l i f f e a n d L . Ra s s , Sp a t i a l b r a n c h in g a n d e p id e m ic p r o c e s s e s . I n Mathe-matical Population Dyna mics: Analysis o f Heterogen eity, Vo l . 1 , O . Ar in o , D . E .A x e l r o d , M . L a n g l ai s , a n d M . K i m m e l , E d s. , W u e r z , W i n n i p e g , 1 9 9 5 , p p .1 4 7 - 1 7 0 .

    1 7 J . Ra d c l i f f e a n d L . Ra s s , M u l t i ty p e c o n ta c t b r a n c h in g p r o c e s s es . I n Proceedingso f First World Conference on Branching Processes, S p r i n g e r L e c t u r e N o t e s i nSta t is t ics No. 99 , 1995 , pp . 169-179 .

    1 8 W . J . E w e n s , MathematicalPopulation Genetics. Sp r in g e r - Ve r la g , Be r lin , He id e l -b e r g , Ne w Y o r k , 1 97 9.1 9 P . C r e e g a n a n d R . L u i , S o m e r e m a r k s a b o u t t h e w a v e s p e e d a n d t r av e l in g w a v es o lu t io n s o f a n o n l in e a r in te g r a l o p e r a to r . J . Math. Biol . 20:59 -68 (1984) .2 0 O . D i e k m a n n a n d H . G . K a p e r , O n t h e b o u n d e d s o l u t i o n s o f a n o n l i n e a rc o n v o lu t io n e q u a t io n . Non l inear Anal . Theory Appl . 2(6) :721-737 (1978) .2 1 J . M a y n a r d Smi th , Evolut ion and the Theory of Games. C a m b r i d g e U n i v e r s i t yPress , 1982.2 2 E . C . Ze e m a n , Dy n a mic s o f th e e v o lu t io n o f a n im a l co n f li c ts . J. The or. Biol.

    89:249-2 70 (1981) .2 3 J . H o f b a e u r a n d K . S ig mu n d , The Theory of Evolut ion and D ynam ical Sys tems.Lo n d o n M a th e m a t ic a l So c ie ty S tu d e n t T e x t s 7 , Ca m b r id g e Un iv e r s i ty P r e s s ,1988.

  • 8/8/2019 Discrete Time Spatial Models Arising in Genetics

    29/29

    D I S C R E T E T I M E S P A T I A L M O D E L S 1292 4 V . C . L . H u t s o n a n d G . T . V i c k e rs , T r a v e li n g w a v e s a n d d o m i n a n c e o f E S S ' s . J.

    Math. Biol. 30:457-471 (1992) .2 5 G . T . V i c k e r s, S p a t i a l p a t t e r n s a n d E S S ' s . J. Theor. Biol. 140:129-135 (1989) .26 C . J . M o d e , Multi type Branching Processes Theory a nd Applications. A m e r i c a nE ls e v ie r , Ne w Yo r k , 1 97 1.2 7 J . D ie u d o n n 6 , Foundations o f M od em Analys is . Ch e ls e a , Ne w Y o r k , 1 9 6 9.