surface energies arising in microscopic modeling of martensitic … · results comparison with...

23
Surface Energies Arising in Microscopic Modeling of Martensitic Transformations Angkana R¨ uland (joint work with G. Kitavtsev and S. Luckhaus) Conference on Hysteresis, Avalanches and Interfaces in Solid Phase Transformations, Oxford, 21.09.2016 Angkana R¨ uland (University of Oxford) Surface Energies Oxford, 21.09.2016 1 / 23

Upload: others

Post on 08-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Surface Energies Arising in Microscopic Modeling ofMartensitic Transformations

Angkana Ruland

(joint work with G. Kitavtsev and S. Luckhaus)

Conference on Hysteresis, Avalanches and Interfaces in Solid PhaseTransformations, Oxford, 21.09.2016

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 1 / 23

Page 2: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Outline

1 Introduction

2 The Model Hamiltonian

3 Results

4 Ideas of Proof

5 Conclusion and Outlook

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 2 / 23

Page 3: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

Questions and Objectives

I Justification of continuum models as limits of discrete models (closerto first principles)? How are continuum models related to theatomistic Hamiltonians governing the behavior of the atoms in acrystal?

I Explanations of surface energies? Is it possible to extract surfaceenergy contributions from a discrete Hamiltonian?

I Discrete elastic energies as regularizations of continuum energies?Comparability to singular perturbation problems?

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 3 / 23

Page 4: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

The Square-to-Rectangular Phase Transition and ShapeMemory Alloys

1

1

b b

b b

b

a

b b

b b

a

b

b b

b b

SO(2)

(a 00 b

),

SO(2)

(b 00 a

).

SO(2)U0 SO(2)U1

E

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 4 / 23

Page 5: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

Experimental Observations: Diffuse Interfaces

above: perovskite (Salje)left: Pb3V2O8 (Manolikas, van Ten-deloo, Amelinckx)

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 5 / 23

Page 6: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

Experimental Observations: Sharp Interfaces

NiMn (Baele, van Tendeloo, Amelinckx)Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 6 / 23

Page 7: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

Deformations: Examples

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b

bb

b b b

bb

b

b

b

b

b

b

b

b b b b b

b

b

b

b

bC

bC

bC

bC

bC

Homogeneous transforma-tions to martensite arecharacterized by

I horizontal/verticaldistances betweenneighboring atomsare given by a or b,

I neighboringhorizontal/verticalinter-atomicdistances are equal,

I angles of 90.

interfaces between the martensitic variants violation of these properties.

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 7 / 23

Page 8: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Introduction

Set-up

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

bC bC

bC

bC

bC

λn

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

Ωn :=

z∣∣∣z = s

(10

)+ t

1√2

(−11

), s, t ∈ [−1, 1]

∩ [λnZ]2,

un : Ωn → R2, uj,−n−jn = Fλn

(j

−n− j

),

un ∈ An := v : Ωn → R2|det(v(x2)− v(x1), v(x3)− v(x1)) > 0

for all x1, x2, x3 ∈ Ωn such that diam(x1, x2, x3) =√

2λn

and det(x2 − x1, x3 − x1) > 0.

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 8 / 23

Page 9: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

The Model Hamiltonian

Construction of a Model Hamiltonian

Hn(u) :=

n∑i,j=−n

λ2nh

(uij − ui±1j

λn,uij − uij±1

λn

)

=

n∑i,j=−n

λ2n

((uij±1 − uij

λn

)2

− a2

)2

+

((ui±1j − uij

λn

)2

− b2)2

+

((uij±1 − uij

λn

)·(ui±1j − uij

λn

))2]×

×

((uij±1 − uij

λn

)2

− b2)2

+

((ui±1j − uij

λn

)2

− a2

)2

+

((uij±1 − uij

λn

)·(ui±1j − uij

λn

))2].

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 9 / 23

Page 10: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

The Model Hamiltonian

Construction of a Model Hamiltonian

Hn(u) :=n∑

i,j=−nλ2nh(uij−ui±1j

λn, u

ij−uij±1

λn

)

Advantages and Disadvantages

I based on geometricquantities,

I has SO(2)U0 ∪ SO(2)U1 aswells,

I controls distance from wells,

I controls discrete secondderivatives.

I ad hoc, no “first principles”justification for explicit form,

I uses underlying referenceconfiguration,

I no defects allowed.

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 10 / 23

Page 11: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

The Model Hamiltonian

Martensitic Twins

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

bC

bC

bC

bC

bC

b

bb

b b b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b b b b bC

bC

bC

bC

bC

Hn(u) ≤ cλn

U0 −QU1 =√

2a2−b2a2+b2

(a−b

)⊗ 1√

2

(11

), Q ∈ SO(2),

U0 − QU1 =√

2a2−b2a2+b2

(ab

)⊗ 1√

2

(1−1

), Q ∈ SO(2).

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 11 / 23

Page 12: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

The Model Hamiltonian

The Chain Hamiltonian

Additional “chain” assumption:

ui+1jn − uij+1

n = −λnτ i+j+1, τ i ∈ SO(2)

(−ab

),

corresponding adaptations for Hamiltonian

Hn(un) =λ2n

n∑i,j=−n

h

(uin − ui±1

n

λn, τ in, τ

i±1n , j

).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bb b

bbbb

bbb

bbb

bbbb

bbb

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 12 / 23

Page 13: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

The Model Hamiltonian

Set-up

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

FλxbC bC bC bC bC

bbb

bbbb

bbb

bbb

bbbb

bbb

bbb

bbbb

bbb

bb b

bbbb

bbb

bbb

bbbb

bbb

bCbC bC bC bC bC

Hn(un) :=∑i,jλ2nh(ui±1 − ui, τ in, τ i±1

n , j) ≤ Cλn,

uj,−n−jn = λnFµ

(j

−n− j

), un ∈ A

Fµn,τ ,

Fµ = µQU0 + (1− µ)U1, Q ∈ SO(2), µ ∈ [0, 1].

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 13 / 23

Page 14: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Results

Rigidity

Proposition

Let Fµ := µU0 + (1− µ)QU1 with µ ∈ [0, 1]. Let unn∈N ∈ AFµn,τ s.t.

lim supn→∞

λ−1n Hn(un) <∞.

Then there exists a number K ∈ N and a subsequence such that

I un → u in W 1,4(Ω,R2),

I for each s ∈ 1, . . . ,K − 1 there exists ms ∈ 0, 1, xs ∈ [−1, 1]such that

∇u(z) = QmsUms ,

for z ∈ Ω(xs, xs+1) where Q0 = Id, Q1 := Q and xK = 1,

IK−1⋃s=1

[xs, xs+1] = [−1, 1].

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 14 / 23

Page 15: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Results

Rigidity

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 15 / 23

Page 16: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Results

Surface Energies

C(V2, V3, r∗) := lim inf

n→∞minτi,ui

∑i∈Z

1

n

n∑j=−n

h(uin − ui±1

n , τ in, τi±1n , j

):

u ∈ Arn,τ , ui−jj = V2

(i− jj

)+ r1, i ≤ −n, |j| ≤ n,

ui−jj = V3

(i− jj

)+ r2, r

∗ = r2 − r1, i ≥ n, |j| ≤ n.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

bC bC bC bC bC bC bC bC bC bC

bC bC bC bC bC bC bC bC bC bC bC

bC bC bC bC bC bC bC bC bC bC bC bC

bC bC bC bC bC bC bC bC bC bC bC bC bC

bC bC bC bC bC bC bC bC bC bC bC bC bC bC

bCbCbCbCbCbCbCbCbCbCbCbCbCbC

bCbCbCbCbCbCbCbCbCbCbCbCbC

bCbCbCbCbCbCbCbCbCbCbCbC

bCbCbCbCbCbCbCbCbCbCbC

bCbCbCbCbCbCbCbCbCbC

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 16 / 23

Page 17: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Results

Surface Energies

Proposition

H1n := λ−1

n HnΓ→ Esurf with respect to the L∞ topology.

Here,

Esurf (u) :=

EK(Fµ,∇u(x1−, 0), ...,∇u(x(K−1)−, 0), Fµ),

if u ∈W 1,∞0 (Ω) + Fµx, ∇u ∈ U0, QU1

in Ω(xj , xj+1), u satisfies the b.c.,∞, else,

EK(V0, ..., VK) := infr

B+(V0, V1, r0) +

K−2∑s=1

C(Vs, Vs+1, rs)

+B−(VK−1, VK , rK−1).

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 17 / 23

Page 18: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Results

Comparison with Literature

Discrete:

I Blanc, Le Bris, Lions (2002): From molecular models to continuummechanics.

I Braides,Cicalese (2007): Surface energies in nonconvex discretesystems.

I Luckhaus, Mugnai (2009): On a mesoscopic many-body Hamiltoniandescribing elastic shears and dislocations.

Continuous:

I Conti, Schweizer (2006): Rigidity and Gamma Convergence forSolid-Solid Phase Transitions with SO(2) Invariance.

n∑i,j=−n

1

nh(ui±1,j±1 − uij) ≤ C

ε= 1n!

∫Ω

1

εW (∇u) + ε|∇2u|2dx ≤ C

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 18 / 23

Page 19: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Ideas of Proof

Compactness: Good Layers

There exist jn−1, jn0 , j

n1 s.t.

I jn−1 ∈ [−n,−n+ 2δn], jn0 ∈ [−δn, δn], jn1 ∈ [n− 2δn, n],

I λn∑n

i=−n h(uin−u

i±1n

λn, τ in, τ

i±1n , jnl

). n−α,

I #i ∈ [−n, n] : h

(uin−u

i±1n

λn, τ in, τ

i±1n , jnl

)≥ n−α

. δ−1nα,

I there exists a number Mδ > 0, independent of n with

#i ∈ [−n, n] : h

(uin−u

i±1n

λn, τ in, τ

i±1n , jnl

)≥ c≤Mδ.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Chain structure:

I L∞ bound:

|∇uijn | ≤ c <∞

for all i, j ∈ −n, . . . , n.Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 19 / 23

Page 20: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Ideas of Proof

Compactness: Simultaneously Good Points

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Most points “simultaneouslygood” points:

h

(uin − ui±1

n

λn, τ in, τ

i±1n , jnl

)≤ n−α

for all l ∈ −1, 0, 1.

For each “simultaneously good” i ∈ [−n, n] there exists Qi,n ∈ SO(2) suchthat either

||∇ui−jjn −Qi,nU0||C(Ωi−jj) . n−α/4 for all j ∈ [−n, n],

or ||∇ui−jjn −Qi,nU1||C(Ωi−jj) . n−α/4 for all j ∈ [−n, n].

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 20 / 23

Page 21: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Ideas of Proof

Compactness: Conclusion

Up to subsequences,

I there exist K ∈ N, x1, ..., xK ∈ (−1, 1) independent of n,

I and for any n there exist associated points xn1 , ..., xnK ∈ (−1, 1) and

yns,1, ..., yns,Kn

s∈ (xns , x

ns+1)

such that

I xns → xs, s ∈ 1, ...,K,I un u in W 1,4(Ω),

I in the interval (xns , xns+1) the following dichotomy holds: For each i

with λni ∈ (yns,l, yns,l+1) ⊂ (xns , x

ns+1) and l ∈ 1, ...,Kn

s , either

dist(∇ui−jjn , SO(2)U0) . n−α/4 or dist(∇ui−jjn , SO(2)U1) . n−α/4

for all j ∈ [−n, n].

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 21 / 23

Page 22: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Ideas of Proof

Gamma-Limit

I Idea: Use infimizing sequences, modify boundary conditions.

I Difficulties: Ensure boundary conditions without violatingadmissibility (in particular non-interpenetration condition).

I Techniques:I averaging,I cutting.

cnβ

Vs Vs+1

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 22 / 23

Page 23: Surface Energies Arising in Microscopic Modeling of Martensitic … · Results Comparison with Literature Discrete: IBlanc, Le Bris, Lions (2002): From molecular models to continuum

Conclusion and Outlook

The Full 2D Model and Further Questions

Hn(u) :=n∑

i,j=−nλ2nh(uij−ui±1j

λn, u

ij−uij±1

λn

)

Results for the full 2D model:

I Rigidity (one sidedcomparability to spinsystem).

I Sharp-interface limit:

H1n := λ−1

n HnΓ→ Esurf

with respect to the L1

topology.

Further questions:

I More general m-well problem,e.g. three wells?

I Higher dimensional problem,e.g. 3D?

I Form of the energy densities?

I Minimizers of the energydensities? Relation todiffuse/sharp interfaces?

Angkana Ruland (University of Oxford) Surface Energies Oxford, 21.09.2016 23 / 23