digital reconstruction of the lb1 h. floresiensis cranium · contribution we present a virtual...

1
Intro The LB1 cranium, along with the post-cranium, was recovered in September 2003 during archaeological excavation at Liang Bua, a limestone cave on Flores in eastern Indonesia 14 km north of Ruteng (the provincial capital of Manggarai Province). The age of LB1 ranges between 60.000 years ago (kyr) and 100.000 kyr [1]. As far as the skull is concerned, while the mandible is almost complete (apart the left condyle), the bregmatic region, right frontal, supraorbital, nasal and sub-nasal regions were discovered damaged [2]. Moreover, LB1 shows cranial asymmetry, which has been considered by some authors to be similar to that observed in non-pathological African ape and fossil hominin crania, but by others as positional deformational plagiocephaly, a condition that results from plastic deformation of the skull during infancy. Overall, even though the LB1 skull is mostly preserved, the fragmented and missing regions of the cranium coupled with the alleged physiological cranial asymmetry (post-depositional deformation cannot be entirely dismissed), a digital reconstruction is required in order to use the specimen for morphometric and biomechanical analysis. In this contribution we present a virtual reconstruction of the H. floresiensis holotype (LB1) cranium using state of-the-art three-dimensional (3D) digital modelling and GM methods [3]. Digital reconstruction of the LB1 H. floresiensis cranium Antonino Vazzana 1 , Justin A. Ledogar 2 , Rita Sorrentino 3,1 , David Strait 4 , Stefano Benazzi 1,5 1 - Department of Cultural Heritage, University of Bologna, Ravenna, Italy. 2 - The Function, Evolution, and Anatomy Research (FEAR) Lab, School of Environmental and Rural Science, University of New England, Australia. 3 - Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy. 4 – Department of Anthropology, Washington University in St. Louis, St. Louis, USA. 5 - Department of Human Evolution, Max Plank Institute for Evolutionary Anthropology, Leipzig, Germany. Acknowledgements We thank ARKENAS, Thomas Sutikna, E. Wahyu Saptomo, Peter Brown, the late Michael J. Morwood, and William L. Jungers for access to digital data. This project was funded by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (http://www.erc-success.eu/) grant agreement No 724046 - SUCCESS awarded to Prof. Stefano Benazzi. This new reconstruction provides the opportunity to adjust and/or integrate previous cranial measurements and is suitable for further quantitative studies, such as assessing cranial morphological variation using GM methods or testing hypothesis of feeding behaviour by means of finite element analysis. Step 5: Integration of missing parts Step 1: Data Segmentation Step 3: Reference (semi)landmark configurations Step 6: Symmetrization Step 4: TPS interpolation Unpaired landmarks Paired landmarks* Curve names N Smlm count** Basion (ba) Orbitale (or) Lower zygomatic arc right 1 20 Opistion (o) Foramen infraorbitale (fori) Temporal line right 2 19 Stafilion (sta) Superior orbital notch (son) Upper zygomatic arc right 3 20 Incisive foramen (if) Frontotemporale (ft) Orbital rim right (or to son) 4 9 Glabella (g) Jugale (ju) Orbital rim right (son to or) 5 9 Inion (i) Porion (po) Anterior nasal aperture left 6 10 Rhinion (rh) Anterior eminence (ae) Anterior nasal aperture right 7 10 Anterior nasal spine (ans) Mastoid process (mp) Orbital rim left (or to son) 8 9 Condylus occipitalis posterior (cop) Orbital rim left (son to or) 9 9 Entoglenoid (eg) Temporal line left 10 19 Upper zygomatic arc left 11 20 Lower zygomatic arc left 12 20 Midsagittal 13 39 Rhinion to glabella (Sellion) 14 9 Median nucal line 15 9 Palatine suture 16 9 Rhinion to Incisive foramen 17 9 Basisphenoid 18 10 Internal alveolar rim right 19 10 Internal alveolar rim left 20 10 External alveolar rim right 21 10 External alveolar rim left 22 10 Total landmarks 28 Total semilandmarks on curves 299 Total semilandmarks on serface 542 Total 869 * Landmarks identifiable on the left and right sides. ** Semilandmarks identified on the curves. Results and Conclusions Misures (mm) This study Kaifu et al. 2011 [10] Brown et al. 2004 Definition Maximum cranial length 138,97 -139 -143 Glabella–opisthocranion Minimum frontal breadth 66,86 61 67 Frontotemporale-frontotemporale Supramastoid breadth 112,38 114 113 Max. breadth across the supramastoid crests Bi-asterionic breadth 92,42 92 -97 Asterion–asterion Basion–bregma height 85,80 89 -89 Basion–bregma Basion–nasion length 77,30 -78 -81 Basion–nasion Basion–prosthion length 82,68 -85 -88 Basion–prosthion Superior facial height 50 -55 -53 Nasion–alveolare Outer bi-orbital breadth 87,97 88 88 Frontomalare temporale–frontomalare temporale Orbital breadth (r/l) 32,70 33/– 32 Maxillofrontale–ectoconchion Orbital height (r/l) 34,29 32/– 31 The maximum height between the upper and lower borders of the orbit Nasal breadth 21,33 21 21 Max. transverse inner breadth External palate breadth 51,13 52 52 Ectomolare–ectomolare Step 2: Mirroring Materials and Methods 3D digital models of the external cranial surface, endocranium, mandible, and upper and lower teeth were obtained from the CT image data acquired by Brown and colleagues in April 2004 (Step 1). The first step entailed the reconstruction of the right zygomatic arch, left supraorbital bone and left mandible by mirror imaging the preserved side, that is using morphological information of the original specimen [4, 5] (Step 2). Then, the remaining missing parts (i.e., bregmatic, nasal and sub-nasal regions) were virtually restored by warping a reference cranium, i.e. KNM-ER 1813 (H. habilis) using thin plate spline interpolation [6, 7] (Steps 3, 4, 5). Finally, a symmetric version of LB1 cranium was obtained using reflected relabelling [8, 9] (Step 6). Craniofacial measurements of LB1. Contact: [email protected] References: [1] Sutikna, T., Tocheri, M.W., Morwood, M.J., Saptomo, E.W., Jatmiko, Awe, R.D., Wasisto, S., Westaway, K.E., Aubert, M., Li, B., Zhao, J.X., Storey, M., Alloway, B. V., Morley, M.W., Meijer, H.J.M., Van Den Bergh, G.D., Grün, R., Dosseto, A., Brumm, A., Jungers, W.L., Roberts, R.G., 2016. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature. 532, 366–369 [2] Brown, P., Sutikna, T., Morwood, M.J., Soejono, R.P., Jatmiko, Wayhu Saptomo, E., Awe Due, R., 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature. 431, 1055–1061. [3] Smith, A.L., Benazzi, S., Ledogar, J.A., Tamvada, K., Pryor Smith, L.C., Weber, G.W., Spencer, M.A., Lucas, P.W., Michael, S., Shekeban, A., Al-Fadhalah, K., Almusallam, A.S., Dechow, P.C., Grosse, I.R., Ross, C.F., Madden, R.H., Richmond, B.G., Wright, B.W., Wang, Q., Byron, C., Slice, D.E., Wood, S., Dzialo, C., Berthaume, M.A., van Casteren, A., Strait, D.S., 2015. The Feeding Biomechanics and Dietary Ecology of P aranthropus boisei. The Anatomical Record. 298, 145–167. [4] Besl, P. J. & McKay, N. D. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14, 239–256 (1992). [5] Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13, 119–152 (1994). [6] Gunz, P., Mitteroecker, P. & Bookstein, F. L. in Modern Morphometrics in Physical Anthropology 73–98 (Kluwer Academic Publishers-Plenum Publishers, 2005). doi:10.1007/0-387-27614-9_3. [7] Bookstein, F. L. Morphometric tools for landmark data : geometry and biology. (Cambridge University Press, 1997). [8] Mardia, K. V., Bookstein, F. L. & Moreton, I. J. ‘Statistical assessment of bilateral symmetry of shapes’. Biometrika 92, 249–250 (2005). [9] Rohlf, F. J. & Slice, D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst Zool 39, 40 (1990). [10] Kaifu, Y. et al. Posterior deformational plagiocephaly properly explains the cranial asymmetries in LB1: A reply to Eckhardt and Henneberg. Am J Phys Anthropol 143, 335–336 (2010). L-ft R-ft g rh ans sta if ba o i L-son L-or L-ju L-ae R-ae R-ju R-or R-son R-eg L-eg L-po R-po L-cop R-cop R-mp L-fori L-fori L-mp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm

Upload: others

Post on 22-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Digital reconstruction of the LB1 H. floresiensis cranium · contribution we present a virtual reconstruction of the H. floresiensis holotype (LB1) cranium using state of-the-art

Intro

The LB1 cranium, along with the post-cranium, was recovered in September 2003 during archaeological excavation at Liang Bua, a limestone cave on Flores in eastern Indonesia 14 km north of Ruteng(the provincial capital of Manggarai Province). The age of LB1 ranges between 60.000 years ago (kyr) and 100.000 kyr [1]. As far as the skull is concerned, while the mandible is almost complete (apartthe left condyle), the bregmatic region, right frontal, supraorbital, nasal and sub-nasal regions were discovered damaged [2]. Moreover, LB1 shows cranial asymmetry, which has been considered bysome authors to be similar to that observed in non-pathological African ape and fossil hominin crania, but by others as positional deformational plagiocephaly, a condition that results from plasticdeformation of the skull during infancy. Overall, even though the LB1 skull is mostly preserved, the fragmented and missing regions of the cranium coupled with the alleged physiological cranialasymmetry (post-depositional deformation cannot be entirely dismissed), a digital reconstruction is required in order to use the specimen for morphometric and biomechanical analysis. In thiscontribution we present a virtual reconstruction of the H. floresiensis holotype (LB1) cranium using state of-the-art three-dimensional (3D) digital modelling and GM methods [3].

Digital reconstruction of the LB1 H. floresiensis craniumAntonino Vazzana1, Justin A. Ledogar2, Rita Sorrentino3,1, David Strait4, Stefano Benazzi1,5

1 - Department of Cultural Heritage, University of Bologna, Ravenna, Italy. 2 - The Function, Evolution, and Anatomy Research (FEAR) Lab, School of Environmental and Rural Science, University of New England, Australia. 3 - Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy. 4 – Department of Anthropology, Washington University in St. Louis, St. Louis, USA. 5 - Department of Human Evolution, Max Plank Institute for Evolutionary Anthropology, Leipzig, Germany.

AcknowledgementsWe thank ARKENAS, Thomas Sutikna, E. Wahyu Saptomo, Peter Brown, the late Michael J. Morwood, and William L. Jungers for accessto digital data. This project was funded by the European Research Council (ERC) under the European Union's Horizon 2020 Researchand Innovation Programme (http://www.erc-success.eu/) grant agreement No 724046 - SUCCESS awarded to Prof. Stefano Benazzi.

This new reconstruction provides the opportunity to adjust and/orintegrate previous cranial measurements and is suitable for furtherquantitative studies, such as assessing cranial morphological variationusing GM methods or testing hypothesis of feeding behaviour by means offinite element analysis.

Step 5: Integration of missing parts

Step 1: Data Segmentation

Step 3: Reference (semi)landmark configurations

Step 6: Symmetrization

Step 4: TPS interpolation

Unpaired landmarks Paired landmarks* Curve names N Smlm count**

Basion (ba) Orbitale (or) Lower zygomatic arc right 1 20

Opistion (o) Foramen infraorbitale (fori) Temporal line right 2 19

Stafilion (sta) Superior orbital notch (son) Upper zygomatic arc right 3 20

Incisive foramen (if) Frontotemporale (ft) Orbital rim right (or to son) 4 9

Glabella (g) Jugale (ju) Orbital rim right (son to or) 5 9

Inion (i) Porion (po) Anterior nasal aperture left 6 10

Rhinion (rh) Anterior eminence (ae) Anterior nasal aperture right 7 10

Anterior nasal spine (ans) Mastoid process (mp) Orbital rim left (or to son) 8 9

Condylus occipitalis posterior (cop) Orbital rim left (son to or) 9 9

Entoglenoid (eg) Temporal line left 10 19

Upper zygomatic arc left 11 20

Lower zygomatic arc left 12 20

Midsagittal 13 39

Rhinion to glabella (Sellion) 14 9

Median nucal line 15 9

Palatine suture 16 9

Rhinion to Incisive foramen 17 9

Basisphenoid 18 10

Internal alveolar rim right 19 10

Internal alveolar rim left 20 10

External alveolar rim right 21 10

External alveolar rim left 22 10

Total landmarks 28

Total semilandmarks on curves 299

Total semilandmarks on serface 542

Total 869

* Landmarks identifiable on the left and right sides.

** Semilandmarks identified on the curves.

Results and Conclusions

Misures (mm) This study Kaifu et al. 2011 [10] Brown et al. 2004 Definition

Maximum cranial length 138,97 -139 -143 Glabella–opisthocranion

Minimum frontal breadth 66,86 61 67 Frontotemporale-frontotemporale

Supramastoid breadth 112,38 114 113 Max. breadth across the supramastoid crests

Bi-asterionic breadth 92,42 92 -97 Asterion–asterion

Basion–bregma height 85,80 89 -89 Basion–bregma

Basion–nasion length 77,30 -78 -81 Basion–nasion

Basion–prosthion length 82,68 -85 -88 Basion–prosthion

Superior facial height 50 -55 -53 Nasion–alveolare

Outer bi-orbital breadth 87,97 88 88 Frontomalare temporale–frontomalare temporale

Orbital breadth (r/l) 32,70 33/– 32 Maxillofrontale–ectoconchion

Orbital height (r/l) 34,29 32/– 31 The maximum height between the upper and lower borders of the orbit

Nasal breadth 21,33 21 21 Max. transverse inner breadth

External palate breadth 51,13 52 52 Ectomolare–ectomolare

Step 2: MirroringMaterials and Methods

3D digital models of the externalcranial surface, endocranium,mandible, and upper and lowerteeth were obtained from theCT image data acquired byBrown and colleagues in April2004 (Step 1). The first stepentailed the reconstruction ofthe right zygomatic arch, leftsupraorbital bone and leftmandible by mirror imaging thepreserved side, that is usingmorphological information ofthe original specimen [4, 5](Step 2). Then, the remainingmissing parts (i.e., bregmatic,nasal and sub-nasal regions)were virtually restored bywarping a reference cranium,i.e. KNM-ER 1813 (H. habilis)using thin plate splineinterpolation [6, 7] (Steps 3, 4,5). Finally, a symmetric versionof LB1 cranium was obtainedusing reflected relabelling [8, 9](Step 6).

Craniofacial measurements of LB1.

Contact: [email protected]

References: [1] Sutikna, T., Tocheri, M.W., Morwood, M.J.,Saptomo, E.W., Jatmiko, Awe, R.D., Wasisto, S., Westaway, K.E.,Aubert, M., Li, B., Zhao, J.X., Storey, M., Alloway, B. V., Morley,M.W., Meijer, H.J.M., Van Den Bergh, G.D., Grün, R., Dosseto, A.,Brumm, A., Jungers, W.L., Roberts, R.G., 2016. Revisedstratigraphy and chronology for Homo floresiensis at Liang Bua inIndonesia. Nature. 532, 366–369 [2] Brown, P., Sutikna, T.,Morwood, M.J., Soejono, R.P., Jatmiko, Wayhu Saptomo, E., AweDue, R., 2004. A new small-bodied hominin from the LatePleistocene of Flores, Indonesia. Nature. 431, 1055–1061. [3]Smith, A.L., Benazzi, S., Ledogar, J.A., Tamvada, K., Pryor Smith,L.C., Weber, G.W., Spencer, M.A., Lucas, P.W., Michael, S.,Shekeban, A., Al-Fadhalah, K., Almusallam, A.S., Dechow, P.C.,Grosse, I.R., Ross, C.F., Madden, R.H., Richmond, B.G., Wright,B.W., Wang, Q., Byron, C., Slice, D.E., Wood, S., Dzialo, C.,Berthaume, M.A., van Casteren, A., Strait, D.S., 2015. The FeedingBiomechanics and Dietary Ecology of P aranthropus boisei. TheAnatomical Record. 298, 145–167. [4] Besl, P. J. & McKay, N. D. Amethod for registration of 3-D shapes. IEEE Trans Pattern AnalMach Intell 14, 239–256 (1992). [5] Zhang, Z. Iterative pointmatching for registration of free-form curves and surfaces. Int JComput Vis 13, 119–152 (1994). [6] Gunz, P., Mitteroecker, P. &Bookstein, F. L. in Modern Morphometrics in PhysicalAnthropology 73–98 (Kluwer Academic Publishers-PlenumPublishers, 2005). doi:10.1007/0-387-27614-9_3. [7] Bookstein, F.L. Morphometric tools for landmark data : geometry and biology.(Cambridge University Press, 1997). [8] Mardia, K. V., Bookstein, F.L. & Moreton, I. J. ‘Statistical assessment of bilateral symmetry ofshapes’. Biometrika 92, 249–250 (2005). [9] Rohlf, F. J. & Slice, D.Extensions of the Procrustes Method for the OptimalSuperimposition of Landmarks. Syst Zool 39, 40 (1990). [10] Kaifu,Y. et al. Posterior deformational plagiocephaly properly explainsthe cranial asymmetries in LB1: A reply to Eckhardt andHenneberg. Am J Phys Anthropol 143, 335–336 (2010).

L-ftR-ft

g

rh

ans

sta

if

ba

o

i

L-son

L-or

L-ju

L-aeR-ae

R-juR-or

R-son

R-egL-eg

L-poR-po

L-cop

R-cop

R-mp

L-fori

L-fori L-mp1

2

3

4 5

6 7

8

9

10

11

12

13

14

15

1617

18

19 2021

22

5 cm

5 cm5 cm

5 cm

5 cm

5 cm

5 cm

5 cm