diffraction opticsdial/ece425/notes9.pdf · diffraction optics physical basis • considers the...

43
ECE 425 CLASS NOTES – 2000 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) 207 DIFFRACTION OPTICS Physical basis Considers the wave nature of light, unlike geometrical optics Optical system apertures limit the extent of the wavefronts Even a “perfect” system, from a geometrical optics viewpoint, will not form a point image of a point source Such a system is called diffraction-limited Diffraction as a linear system Without proof here, we state that the impulse response of diffraction is the Fourier transform (squared) of the exit pupil of the optical system (see Gaskill for derivation)

Upload: lamtuyen

Post on 25-Mar-2018

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

207

metrical optics

e wavefronts

ptics viewpoint,

response of of the exit pupil n)

DR. ROBERT A. SCHOWENGERDT [email protected]

DIFFRACTION OPTICS

Physical basis

• Considers the wave nature of light, unlike geo

• Optical system apertures limit the extent of th

• Even a “perfect” system, from a geometrical owill not form a point image of a point source

• Such a system is called diffraction-limited

Diffraction as a linear system

• Without proof here, we state that the impulsediffraction is the Fourier transform (squared) of the optical system (see Gaskill for derivatio

Page 2: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

208

nction (PSF)

rier transform of

ind and

DR. ROBERT A. SCHOWENGERDT [email protected]

• impulse response called the Point Spread Fu

• image of a point source

• The transfer function of diffraction is the Fouthe PSF

• called the Optical Transfer Function (OTF)

Diffraction-Limited PSF

• Incoherent light, circular aperture

where J1 is the Bessel function of the first k

the normalized radius r’ is given by,

PSF r'( ) 2J1 r'( )

r'--------------

2=

Page 3: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

209

1.22π

DR. ROBERT A. SCHOWENGERDT [email protected]

where

• The first zero occurs at , or

Compare to the course notes on 2-D Fourier transforms

r'πDλf-------r

πrλN--------= =

D aperture diameter=

f focal length=

N f-number=

λ wavelength of light=

r 1.22λfD------ 1.22λN== r' =

Page 4: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

210

8 10

)

DR. ROBERT A. SCHOWENGERDT [email protected]

0

0.2

0.4

0.6

0.8

1

0 2 4 6

PS

F

normalized radius r'

2-D view (contrast-enhanced“Airy pattern”

central bright region, to first-

zero ring, is called the “Airy disk”

radial profile

Page 5: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

211

DR. ROBERT A. SCHOWENGERDT [email protected]

• Example calculation of PSF size

• system specs:

D = 1cm

f = 50mm

N = f/D = 5

λ = 0.55µm (green)

• radius of PSF = 1.22λN = 3.36µm

• very small!

Page 6: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

212

ncy is given by,

DR. ROBERT A. SCHOWENGERDT [email protected]

Diffraction-Limited OTF

• Incoherent light, circular aperture

where the normalized radial spatial freque

and the cutoff frequency is given by,

where

OTF ρ'( ) 2π--- ρ'( )acos ρ' 1 ρ'

2––=

ρ' ρ ρc⁄=

ρcDλf------ 1

λN--------= =

D aperture diameter=

f focal length=

N f-number=

λ wavelength of light=

Page 7: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

213

” function

ter of spatial

1

DR. ROBERT A. SCHOWENGERDT [email protected]

In 2-D spatial frequency space, the OTF is nearly a “cone

OTF is a low-pass filfrequencies

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

OT

F

normalized spatial frequency (ρ/ρc)

u

v

OTF

ρ = ρc

Page 8: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

214

363cycles/mm

utoff frequency of

al viewing

DR. ROBERT A. SCHOWENGERDT [email protected]

Example calculation of OTF cutoff frequency

• system specs:

D = 1cm

f = 50mm

N = f/D = 5

λ = 0.55µm (green)

• cutoff frequency = 1/λN = 0.363cycles/µm =

• very high! (the human vision system has a cabout 10cycles/mm (object scale) at normdistance)

Page 9: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

215

t and system

u,v

)

x

MTF

(

u,v

)

ut x( ) A B 2πuox( )sin+=

uox)

DR. ROBERT A. SCHOWENGERDT [email protected]

Modulation Transfer Function (MTF)

• Amplitude part of complex OTF

• signal modulation

• modulation is a measure of signal contrast

• for sinewave, , modulation = B/A

• Use MTF to predict image contrast, given objec

• output modulation(u,v) = input modulation(

• for sinewave input (object) to LSI system

the output (image) is

MTF u v,( ) OTF u v,( ) output signal modulationinput signal modulation------------------------------------------------------------= =

signal modulation max min–max min+--------------------------=

A B 2πuox( )sin+

inp

output x( ) A MTF uo( )B 2π(sin+=

Page 10: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

216

ulation MTF uo( ) BA---⋅=

u = 4u0

TFg system

DR. ROBERT A. SCHOWENGERDT [email protected]

and the image modulation at spatial frequency uo is image mod

MTF

u

1

input

output

u0 2u0 4u0

u = u0 u = 2u0

0.8

0.5

0.1

“typical” Mfor imagin

Page 11: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

217

LES

iffraction-

DR. ROBERT A. SCHOWENGERDT [email protected]

DIFFRACTION IMAGING EXAMP

Sine-wave imaged by circular aperture, dlimited

Page 12: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

218

cutoff-frequency, uc

atial frequency, u

convolution

DR. ROBERT A. SCHOWENGERDT [email protected]

opticssp

Input pattern

Output pattern

System response

(image)

(object)

(PSF)

Page 13: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

219

, diffraction-

DR. ROBERT A. SCHOWENGERDT [email protected]

Square-wave imaged by circular aperture

Page 14: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

220

cutoff-frequency, uc

spatial frequency, u

convolution

DR. ROBERT A. SCHOWENGERDT [email protected]

limited optics

Input pattern

Output pattern

System response

(image)

(object)

(PSF)

Page 15: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

221

sufficient energy

rce

se energy –>

DR. ROBERT A. SCHOWENGERDT [email protected]

Line and Edge Spread Functions

• PSF is often difficult to measure because of in

• Use a line source (slit) to increase energy –>

Line Spread Function (LSF)• Integrate PSF along direction of the line sou

• Use edge source (knife edge) to further increa

LSFx x( ) PSF x y,( ) yd

∞–

∫=

LSFy y( ) PSF x y,( ) xd

∞–

∫=

Page 16: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

222

ment

tem

f the PSF is not

DR. ROBERT A. SCHOWENGERDT [email protected]

Edge Spread Function (ESF)• Integrate LSF up to position of ESF measure

• Equivalent to step response in electronic sys

• ESF is a monotonic function of position

• LSF is the derivative of the ESF,

• Both LSF and ESF are orientation-dependent, iisotropic

ESFx x( ) LSFx α( ) αd

∞–

x

∫=

ESFy y( ) LSFy α( ) αd

∞–

y

∫=

LSFx x( )xd

dESFx x( )=

Page 17: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

223

tations to

DR. ROBERT A. SCHOWENGERDT [email protected]

• Must measure LSF and ESF at multiple orienreconstruct full 2-D PSF

Page 18: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

224

SF AND OTF

n are:

x(x)

Fx(x)

1-Dderivative

DR. ROBERT A. SCHOWENGERDT [email protected]

RELATIONSHIPS BETWEEN PSF, LSF, E

• For example, the relationships in the x-directio

PSF(x,y)

OTF(u,v) LSF

2-Done-sided

1-D

ES

1-DFourier

Transform

TransformFourier

OTF(u,0)profile

one-sided 1-D integration

integration

1-Dintegration

Page 19: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

225

MAGING

DR. ROBERT A. SCHOWENGERDT [email protected]

SECTION III – INTEGRATED ISYSTEM ANALYSIS

Scanning

Image Quality

System Simulation

Page 20: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

226

ctor(s)

s

DR. ROBERT A. SCHOWENGERDT [email protected]

SCANNING

Instantaneous image on focal plane dete

Scan the field-of-view

• Object-space scanning (mirror moves)

Show that the object-space scan angle itwice that of the mirror scan angle

object

θ

detector

Page 21: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

227

)

DR. ROBERT A. SCHOWENGERDT [email protected]

• Image-space scanning (detector moves)

• Translation scanning (camera or object moves

object

detector

object

detector

Page 22: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

228

te sensing

wavelengthdispersionnner

m scanner

DR. ROBERT A. SCHOWENGERDT [email protected]

Examples from airborne or satellite remosystems

What types of scanning are these examples?

1-D arraywhiskbroom scanner

GFOV

FOV cross-trackin-track

line scanner

2-D arraypushbroom sca

pushbroo

FOV: Field-Of-View (radians)

GFOV: Ground-projected FOV (km)

(aka “swath width”)

Page 23: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

229

ll area of the

mber of photons

terval equal to

ere W is the

ere is also image

DR. ROBERT A. SCHOWENGERDT [email protected]

Scanning is equivalent to convolution

• At each instant, the detector integrates a smaimage

• Integration time at each sample determines nucollected

• Generally, a scanned image is sampled at an indetector size

• undersampledWhy is one sample/detector element undersampled?

• PSF of scanning detector is rect(x/W,y/W), whdetector size

• If sample integration time is not negligible, thsmear

Page 24: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

230

is the amount of

gration time/ blurred)

r during pixel

tector width:

)---

DR. ROBERT A. SCHOWENGERDT [email protected]

• PSF of linear image smear is rect(x/S), where Ssmear during the integration time:

• Image smear sometimes used to increase intepixel, and therefore SNR (even though image is

• Total scanning PSF

• Combine scanning detector and image smeaintegration (normalize by volume PSF)

• if S = W, i.e. image smear is equal to one de

S image velocity x integration time=

vimgtint=

PSFscan x y,( ) rect x W⁄ y W⁄,( ) * rect x S⁄( )volumePSF

---------------------------------------------------------------------------=

rect x W⁄( ) * rect x S⁄( )[ ]rect y W⁄(volumePSF

------------------------------------------------------------------------------------------=

PSFscan x y,( ) tri x W⁄( )rect y W⁄( )volumePSF

----------------------------------------------------=

Page 25: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

231

systems

electronic

age quality

humanvision

subsystem

tina*

neuralnetwork

brain

DR. ROBERT A. SCHOWENGERDT [email protected]

IMAGE QUALITY

An imaging system consists of several sub

* points of signal transduction, optical <—>

Want to maintain the highest possible imthrough this process

lightsource

scene

imageacquisitionsubsystem

transmissionsubsystem

displaysubsystem*

optics detector* electronics

coder decoder

optics

re

Page 26: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

232

o closely spaced

mination

image

es when the first f the other pattern

easure

DR. ROBERT A. SCHOWENGERDT [email protected]

Spatial Resolution

• “Resolution” refers to the ability to detect twobjects in an image

• Many different ways to measure resolution

• Rayleigh Criterion

• quantitative; does not depend on visual exa

• appropriate for diffraction-limited optical

• two point sources —> two Airy patterns

• resolution is the separation of the two imagzero of one pattern coincides with the peak o

• does not incorporate noise into resolution m

Page 27: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

233

hey are just

λN

DR. ROBERT A. SCHOWENGERDT [email protected]

• Target-Specific Criteria

• separation of two particular objects when t“resolved”

• depends on visual examination

• incorporates noise into resolution measure

R Rayleigh = 1.22

Airypattern1

Airypattern2

Page 28: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

234

g imagery

DR. ROBERT A. SCHOWENGERDT [email protected]

targetimaging system PSF and resultin

Page 29: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

235

requency to

5 6

5 6

DR. ROBERT A. SCHOWENGERDT [email protected]

• Usually have fixed system PSF; vary target fevaluate resolution

target

imagingsystemPSF

image oftarget

1 2 3 4

1 2 3 4

profileof image

Page 30: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

236

e bar

et which is “just ually

DR. ROBERT A. SCHOWENGERDT [email protected]

• Define a line pair = one dark bar & one whit

• Define resolution to be measured by the targresolved” (correct number of bars can be visdistinguished along their entire length)

• Rbar = 1/d4 (line pairs/mm)

where d4 = mm/line pair for target 4

Page 31: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

237

5 6

DR. ROBERT A. SCHOWENGERDT [email protected]

• image noise lowers resolution

• Rbar = 1/d3 (line pairs/mm)

1 2 3 4

Page 32: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

238

ystem

it motion, in-

DR. ROBERT A. SCHOWENGERDT [email protected]

SENSOR SIMULATION

Landsat Thematic Mapper (TM) satellite s

Whiskbroom scanner

• side-to-side scanning, cross-track

• satellite orbtrack

whiskbroom scanner

Page 33: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

239

• Three major spatial response components

DR. ROBERT A. SCHOWENGERDT [email protected]

optics detector electronics

cross-track

in-trackcross-track

only

30m GIFOV

Page 34: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

240

al photography

to align orbit

scan tion - ixels

DR. ROBERT A. SCHOWENGERDT [email protected]

• Simulate input scene with high resolution aeri

rotatedwith TM

and direc2m p

Page 35: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

241

ample to 30m

DR. ROBERT A. SCHOWENGERDT [email protected]

• Apply each component PSF at 2m and downs

optics optics and detector

optics, detector and electronics

downsample2m —> 30m GSI

Page 36: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

242

ths later

DR. ROBERT A. SCHOWENGERDT [email protected]

Compare to real TM of same area, acquired 4 mon

simulated TM real TM (magnified)

(contrast-adjusted)

real TM

(magnified)

Page 37: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

243

f silver halide in

image

ia

DR. ROBERT A. SCHOWENGERDT [email protected]

PHOTOGRAPHIC GRANULARITY

• photographic density is aggregated “grains” odeveloped film

• causes random noise at every pixel in scanned

• Ex: aerial photograph of Dulles Airport, Virgin

enlargement

Page 38: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

244

versus DN

DR. ROBERT A. SCHOWENGERDT [email protected]

• Signal-dependent noise

• Standard deviation in Digital Numbers (DNs)

6

8

10

12

14

16

0 50 100 150 200

σ DN

µDN

Page 39: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

245

es

g

DR. ROBERT A. SCHOWENGERDT [email protected]

ELECTRO-OPTICAL SCANNER NOISE

• Due to

• line scan calibration (gain and offset) chang

• detector-to-detector calibration differences

• interference with other electronics

• saturation hysteresis

• Common problem

• Can be removed effectively by image processin

Page 40: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

246

erent noise

dom pixel noise

DR. ROBERT A. SCHOWENGERDT [email protected]

aerial video aperiodic scanline noise Landsat–4 MSS coh

Landsat–1 MSS bad scanline noise

Landsat–4 TM banding noise

AVIRIS scanline and ran

Page 41: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

247

DR. ROBERT A. SCHOWENGERDT [email protected]

Signal-to-Noise Ratio (SNR)

• Measure of image quality

• Several common definitions:

SN Rstd

σsignal

σnoise-----------------=

SN Rvar

σsignal2

σnoise2

-----------------=

SNRdB 10 SNR( )log=

Page 42: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

248

SNRstd 2=SNRvar 4=SNRdB 6=

SNRstd 10=SNRvar 100=SNRdB 20=

DR. ROBERT A. SCHOWENGERDT [email protected]

• Generally correlated with visual quality

SNRstd 1=SNRvar 1=SNRdB 0=

SNRstd 5=SNRvar 25=SNRdB 14=

Page 43: DIFFRACTION OPTICSdial/ece425/notes9.pdf · DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit

E C E 4 2 5 C L A S S N O T E S – 2 0 0 0

520 621-2706 (voice), 520 621-8076 (fax)

249

noise

DR. ROBERT A. SCHOWENGERDT [email protected]

• Visual quality depends on noise type

noiseless

global random noise detector striping