dfg research unit 580: electron transfer processes in anoxic aquifers

1
DFG Research Unit 580: Electron transfer processes in anoxic aquifers SP Z: Mössbauer spectroscopy and speciation modelling Stefan Haderlein and Stefan Peiffer University of Tübingen , University of Bayreuth Context of SP Z within the Research Unit Experimental approach Work schedule of SP Z Speciation of Fe in the presence of natural organic matter and effect(s) of OM on iron mineral geochemistry ( SP HAD, SP KAP, SP ZWI, SP MEC). Mineralogy and dynamics of iron phases formed in Fe-S systems ( SP PEI, SP PLA, SP HAD). Mineralogy and speciation of iron phases formed in Fe-S-DOM systems ( SP PEI, SP PLA, SP KNO, SP HAD, SP ZWI). Quantitative description of geochemical processes by chemical speciation modelling ( SP PEI, SP HAD, SP ZWI, SP KAP). Preliminary work and perspectives Objectives: Elucidation of reactive iron species and phases in geochemically heterogeneous anoxic aquifer systems: Design and apply Mössbauer experimental setups for in situ process identification Identify iron species & phases, reactive intermediates and dynamic surface processes in Fe-S-DOM systems Quantify key geochemical processes by chemical speciation modelling DOM e-donors t e r m i n a l e - a c c e p t o r s Iron oxide containing aquifer material, sulfate, CO 2 electron transfer e-shuttle humic substances, colloids pathway control recycling metabolite s mineral reactivity KNO MEC RIC ZWI KAP HAD CH 4 Z PEI PLA SP Z interfaces ... iron, sulfur and OM reactivity and speciation bulk- and surface properties of reactive minerals macroscopic , spectroscopic & modelling approaches Mössbauer spectroscopy: .... Principle 12 8 4 0 -1 0 -5 0 5 10 Ve locity (m m /s) 10 8 6 4 2 0 4 3 2 1 0 8 6 4 2 0 8 6 4 2 0 hematite magnetite goethite lepidocrocite ferrihydrite .... discerns most iron phases at in situ conditions .... can be surface sensitive by using 57 Fe and 56 Fe isotopes 57 Fe(II) aq sorbs, transfers electrons to hematite, and becomes 57 Fe(III)-hematite aqueous 57 Fe(II) 56 Fe- hematite natural hematite 56 hem atite p seu docub es 153 uM 57 Fe(II) reacted 79 uM 57 Fe(II) sorb ed -10 -5 0 5 10 V e lo city (m m /s) 2769 uM 57 Fe(II) reacted 4.2 K Example: Fe(III) phases formed on 56 hematite by heterogeneous oxidation of aqueous 57 Fe(II) Data: Larese-Casanova et al., Univ. Tübingen; 2009 in prep. for ES&T 56 hematite 57 Fe(II) Cl-NB Cl-AN 57 Fe(III) 56 Fe(III) 56 Fe(II) Hematite (antiferromagnetic) Hematite (weakly ferromagnetic) Goethite S S FeIII FeII Fe bulk mineral Probe red [CHCl 3 ] DOM DOSC Probe ox [CCl 4 ] 0 0 6 6 12 0 12 -6 6 -12 % Absorption 57 Co Detector Absorber Output 57 Fe* 57 Fe 57 Fe* 57 Fe Source velocit y - velocity (mm/s) + velocity t = 0 min t = 360 min t = 15 min

Upload: madra

Post on 18-Jan-2016

20 views

Category:

Documents


2 download

DESCRIPTION

Source. Absorber. Detector. Output. 57 Co. 57 Fe*. 57 Fe*. 57 Fe. 57 Fe. velocity. (mm/s). Cl-NB. Cl-AN. - velocity. 57 Fe(II). 57 Fe(III). 56 Fe(III). 56 Fe(II). 56 hematite. % Absorption. 0. 6. 12. 6. 0. -12. -6. 0. 6. 12. + velocity. KAP. ZWI. RIC. PLA. MEC. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DFG Research Unit 580:   Electron transfer processes in anoxic aquifers

DFG Research Unit 580:

Electron transfer processes in anoxic aquifers

SP Z: Mössbauer spectroscopy and speciation modelling

Stefan Haderlein and Stefan Peiffer

University of Tübingen , University of Bayreuth

Context of SP Z within the Research Unit Experimental approach

Work schedule of SP Z

Speciation of Fe in the presence of natural organic matter

and effect(s) of OM on iron mineral geochemistry

( SP HAD, SP KAP, SP ZWI, SP MEC).

Mineralogy and dynamics of iron phases formed in

Fe-S systems

( SP PEI, SP PLA, SP HAD).

Mineralogy and speciation of iron phases formed in

Fe-S-DOM systems

( SP PEI, SP PLA, SP KNO, SP HAD, SP ZWI).

Quantitative description of geochemical processes

by chemical speciation modelling

( SP PEI, SP HAD, SP ZWI, SP KAP).

Preliminary work and perspectives

Objectives: Elucidation of reactive iron species and phases in geochemically heterogeneous anoxic aquifer systems:

Design and apply Mössbauer experimental setups for in situ process identification

Identify iron species & phases, reactive intermediates and dynamic surface processes in Fe-S-DOM systems

Quantify key geochemical processes by chemical speciation modelling

DOM

e-d

on

ors

term

ina

l e-a

cce

pto

rs

Iron oxide containing aquifer material, sulfate,CO2

electrontransfer

e-shuttle

humic substances, colloids

pathway control

recycling

metabolites

mineral

reactivity

KNO

MEC

RIC

ZWI

KAP

HAD

CH4

Z

PEIPLA

SP Z interfaces ...

• iron, sulfur and OM reactivity and speciation

• bulk- and surface properties of reactive minerals

• macroscopic , spectroscopic & modelling approaches

Mössbauer spectroscopy: .... Principle

12

8

4

0

-10 -5 0 5 10Velocity (mm/s)

1086420

43210

8642086420

hematite

magnetite

goethite

lepidocrocite

ferrihydrite

.... discerns most iron phases at in situ conditions

.... can be surface sensitive by using 57Fe and 56Fe isotopes

57Fe(II)aq sorbs, transfers electrons to hematite,

and becomes 57Fe(III)-hematite

aqueous57Fe(II)

56Fe-hematite

natural hematite

Absorption (%)

-10 -5 0 5 10

Velocity (mm/s)

56hematite pseudocubes

153 uM 57

Fe(I I ) reacted

79 uM 57

Fe(I I ) sorbed

~900 uM 57

Fe(I I ) reacted

2769 uM 57

Fe(I I ) reacted

-10 -5 0 5 10

Velocity (mm/s)

56hematite pseudocubes

153 uM 57

Fe(I I ) reacted

79 uM 57

Fe(I I ) sorbed

~900 uM 57

Fe(I I ) reacted

2769 uM 57

Fe(I I ) reacted

4.2 K

Example: Fe(III) phases formed on 56hematite by heterogeneous oxidation of aqueous 57Fe(II)

Data: Larese-Casanova et al., Univ. Tübingen; 2009 in prep. for ES&T

56hematite

57Fe(II)

Cl-NB Cl-AN

57Fe(III)

56Fe(III) 56Fe(II)

Hematite(antiferromagnetic)

Hematite(weakly ferromagnetic)

Goethite

S

S

FeIII

FeIIFe

bulkmineral

Probered

[CHCl3]

DOMDOSC

Probe ox

[CCl4]

0 06 612 0 12-6 6-12

% A

bso

rpti

on

57CoDetecto

rAbsorber Output

57Fe*

57Fe

57Fe*

57Fe

Source

velocity

- velocity

(mm/s)+

velocity

t = 0 min

t = 360 min

t = 15 min