developments of a discrete adjoint structural solver for ...marc schwalbach1,tom verstraete2,...

32
Developments of a Discrete Adjoint Structural Solver for Shape and Composite Material Optimization Marc Schwalbach 1 ,Tom Verstraete 2 , Nicolas R. Gauger 3 AD 2016 September 15, 2016 Oxford, UK 1 von Karman Institute for Fluid Dynamics 2 Queen Mary University of London 3 Technische Universit¨ at Kaiserslautern

Upload: others

Post on 21-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Developments of a Discrete Adjoint Structural Solver for Shapeand Composite Material Optimization

    Marc Schwalbach1 ,Tom Verstraete2, Nicolas R. Gauger3

    AD 2016September 15, 2016

    Oxford, UK

    1von Karman Institute for Fluid Dynamics2Queen Mary University of London3Technische Universität Kaiserslautern

  • I C++

    I Eigen, PETSc, SLEPc

    I AD tool CoDiPack

    2 a

  • I FEM linear stress analysis

    I FEM vibration analysis

    I extension to composite (shell) elements

    3 a

  • linear stress analysis

    1. input x ∈ Rn

    2. linear system solve A(x)u = b(x)

    3. output σmax(u(x)) ∈ R

    x(1) =∂σmax∂x

    ?

    4 a

  • 5 a

  • 6 a

  • b(1) = A−Tu(1)

    A(1),i,j = −ujb(1),i

    7 a

  • Ab(1) = u(1)

    A(1),i,j = −ujb(1),i

    8 a

  • 9 a

  • rotating beam. ‖ ∂σmax∂x

    ‖ ∈ R90

    10 a

  • 11 a

  • DOFs ≈ 30k ≈ 200k 200k, RealReverseIndexrelative run time 2.5× T 2.1× T 2.8× Trelative peak memory 7.7×M 6.4×M 5.8×M

    gradient evaluation (forward + reverse run). M : peak memory of primal. T : run time of primal

    12 a

  • run time breakdown. 200k DOF axial fan. primal reverse AD

    13 a

  • 14 a

  • 15 a

  • vibration analysis

    1. assemble mass matrix B(x)

    2. solve generalized eigenvalue system: (A− λiB)ui = 0

    x(1) =∂λi∂x

    ?

    16 a

  • 17 a

  • A(1),ij = λ(1),kuk,iuk,j (1)

    B(1),ij = −λ(1),kλkuk,iuk,j (2)

    18 a

  • 19 a

  • rotating beam. ‖ ∂λ0∂x‖ ∈ R90

    20 a

  • 21 a

  • run time breakdown. 200k DOF axial fan. primal reverse AD

    22 a

  • I same linear and eigenvalue solver

    I extended design variables x∗ = (x,V )

    I lamination params

    V = V (t,θ)

    24 a

  • I different stiffness and mass matrices Ac(x∗), Bc(x

    ∗)

    I different failure criterion σTW

    ∂σTW∂x∗

    ,∂λk∂x∗

    25 a

  • 26 a

  • 27 a

  • composite flat plate. eigenmode 0 eigenmode 3

    28 a

  • ∂λ0∂x

    ∂λ3∂x

    29 a

  • ∂λ0∂V11

    30 a

  • ∂λ0∂V11

    ∂λ3∂V11

    31 a

  • I AD’d linear stress analysis, separate linear solver

    I AD’d vibration analysis, separate EV solver

    I extension to AD’d composites

    32 a

  • Developments of a Discrete AdjointStructural Solver for Shape andComposite Material Optimization

    Marc Schwalbach1

    Tom Verstraete2

    Nicolas R. Gauger3

    financial support

    European Commission - IODA4project

    1von Karman Institute for Fluid Dynamics2Queen Mary University of London3Technische Universität Kaiserslautern4Industrial Optimal Design using Adjoint CFD 32 a