development of continuum mechanics based beam elements...

54
Kyungho Yoon 2014 Development of Continuum Mechanics Based Beam Elements for Linear and Nonlinear Analysis 1

Upload: lyhanh

Post on 24-May-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Kyungho Yoon

2014

Development of Continuum Mechanics Based Beam Elements for

Linear and Nonlinear Analysis

1

Contents

1. Introduction to Continuum Mechanics Based Beam Elements

2. Warping Model for Discontinuously Varying Cross-section

3. Implementation for General Nonlinear Analysis

4. Improvement of Nonlinear Performance

5. Summary & Future Works

2

1. Introduction to Continuum Mechanics Based Beam Elements

3

Applications of Beam Finite Element Analysis

<Fabric bundle><Offshore platform><Bridge>

<Shell model>462 DOFs

<Beam model>36DOFs

<Solid model>1134 DOFs

<Physical model>4

Literature of Beam Element

• Search word “beam element” limit to exact keyword “finite element method”

5

Various Beam Elements

ABAQUSB21, B31, B22, B32, B23, B33, B34

ADINABEAM, ISOBEAM

ANSYSBEAM3, BEAM4, BEAM23, BEAM24, BEAM44, BEAM54, BEAM161, BEAM188, BEAM189

• In commercial software

• J. Frischkorn, S Reese, A solid-beam finite element and nonlinear constitutive modelling, Comput. Methods Appl. Mech. Eng. 2013.

• R Gonçalves, M Ritto-Corrêa, D Camotim, A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory, Comput. Mech. 2010.

• S.R. Eugster, C. Hesch, P. Betsch, Ch. Glocker, Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates, Int. J. Numer. Meth. Engng. 2013.

• F. Mohri, N. Damil, M.P. Ferry, Large torsion finite element model for thin-walled beams, Comput. Strut. 2008.

• In literature

• Degenerated beam• Z.X. Li, A co-rotational formulation for 3D beam element using vectorial rotational variables, Comput. Mech. 2007.• P.S. Lee, G. McClure, A general three-dimensional L-section beam finite element for Elastoplastic large deformation

analysis, Comput. Struct. 2006.

Pros• 3D geometry• Fully coupled strain states• Simple and Straightforward• Modeling capability

Cons• Cross-sectional shape• Nonlinear performance

6

Problem description #1 – Twisting Action

• Warping effect

Twisting angle

Tors

ion

0 1 2 3 4 50

100

200

300

400

with warpingwithout warping

26078=k 8284.81=k

stiff flexible

7

Problem description #1 – Twisting Action

St. Venant torsion theory

Vlasov thin-walled theory

Benscoter theory Jourawsky theory

Formulation

Uniform torsion

O O O O

Non-uniformtorsion

X O O O

Secondary warping

X X O O

• Mathematical theory

( , )wu y zϕ=x

xzyu xw ∂

∂=

)(),(θ

φ )(),( xzyuw αφ= ),()(

),( zyx

xzyu xw ψ

θφ +

∂∂

=

• Finite element implementation• A. Genoese, A. Genoese, A. Bilotta, G. Garcea, A mixed beam model with non-uniform warping derived from the

Saint Venant rod. Comput. Struct. 2014.• A. Genoese, A. Genoese, A. Bilotta, G. Garcea, A geometrically exact beam model with non-uniform warping

coherently derived from the Saint Venant rod, Engng. Struct 2014.• C.S. Jog, I.S. Mokashi, A finite element method for the Saint-Venant torsion and bending problems for prismatic

beams,. Compt. Struct. 2014.• J. Murin, M. Aminbaghai, V. Kutis, A new Timoshenko finite beam element including non-uniform torsion of open

and closed cross-sections, Engng. Struct. 2014.8

Problem description #2 – Degenerated Element

• Degeneration • Previous approach

• New approach

Vxx t+= 1( )i ih t= ∑x x

Vxxx )(1 ∑+= iih

Embeded node

Square frame

Change Gauss point

9

Degeneration Procedure

degeneration

degeneration

∑∑∑===

++=q

k

kz

tmkk

q

k

ky

tmkk

q

kk

tk

mt zrhyrhrh1

)(

1

)(

1

)( )()()( VVxx

∑=

=p

j

mjkj

mk ytshy

1

)()( ),( ∑=

=p

j

mjkj

mk ztshz

1

)()( ),(

• Geometry interpolation of the sub-beams• Geometry interpolation

of solid model

• Kinematic assumption

∑=

=n

i

mi

ti

mt tsrh1

)()( ),,( xx

kz

tmjk

ky

tmjkk

tmjk

t zy VVxx )()()( ++=

∑ ∑= =

=q

k

mjk

tp

jjk

mt tshrh1

)(

1

)( ),()( xx

10

Degeneration Procedure

∑=

=p

j

mjkj

mk ytshy

1

)()( ),( ∑=

=p

j

mjkj

mk ztshz

1

)()( ),( ∑=

=p

j

mjkj

mk ftshtsf

1

)()( ),(),(

∑∑∑∑====

+++=q

k

kx

tk

tmkk

q

k

kz

tmkk

q

k

ky

tmkk

q

kk

tk

mt tsfrhzrhyrhrh1

)(

1

)(

1

)(

1

)( ),()()()()( VVVxx α

11

Calculation of Warping Function

∑=

=p

j

mjkj

mk ftshtsf

1

)()( ),(),(

• Finite element discretization

• St. Venant equations

02

)(2

2

)(2

=∂

∂+

∂∂

zf

yf m

km

k Ωin

ynznz

fny

fn zy

mk

z

mk

y −=∂

∂+

∂∂ )()(

Γon

• Multiply connected cross-section• M.M.S. Nasser et. al., Boundary integral equations with the generalized Neumann

kernel for Laplace’s equation in multiply connected regions, Applied Mathematics and Computation, 2011.

• R. Barrettam, On stress function in Saint-Venant beams, Meccanica, 2013.• M.D. Bird, C.R. Steele, A solution procedure for laplace’s equation on multiply

connected circular domains, Journal of Applied Mechanics, 1992.

12

Novel Features

The formulation is simple and straightforward.

The formulation can handle all complicated 3-D geometries including curved and twisted geometries, varying cross-sections, and arbitrary cross-sectional shapes (including thin/thick-walled and open/closed cross-sections).

Warping effects fully coupled with bending, shearing, and stretching are automatically included.

Seven degrees of freedom (only one additional degree of freedom for warping) are used at each beam node to ensure inter-elemental continuity of warping displacements.

The pre-calculation of cross-sectional properties (area, second moment of area, etc.) is not required because the beam formulation is based on continuum mechanics.

Analyses of short, long, and deep beams are available, and eccentricities of loadings and displacements on beam cross-sections are naturally considered.

The basic formulation can be easily extended to general nonlinear analyses that consider geometrical and material nonlinearities. 13

Curved Beam Problem

• Problem description • Numerical results

D/Rw

N=4 N=8 Ref.

0.1 1.8613E-05 1.8599E-05 1.9020E-05

0.2 4.0321E-06 4.0296E-06 4.2771E-06

0.5 6.1726E-08 6.1694E-08 6.1724E-08

14

Tapered Beam Problem

• Problem description • Numerical results

Constrained warpingPresent study Ref.

0.025 1.1454E-04 1.16549E-040.095 5.9483E-05 6.01527E-050.225 2.0123E-05 1.91705E-050.475 8.2445E-06 7.11663E-06

θ5.0tan

15

Turbine Blade Problem

• Problem description • Numerical results• Multiply connected cross-section• Curved, twisted and tapered geometry• Eccentricity

Shell : 4680 DOFsBeam : 56 DOFs

16

Journal Paper

17

2. Warping Model for Discontinuously Varying Cross-section

18

Motivation

• Challenge

• Previous models• Free warping• Constrained warping• Varying & curved geometry

• Twisting center• Warping displacement shape

19

[ ] kr

q

k

kR

mR

kL

mLk

mkk

mw tsftsftsfrhtsr Vu ∑

=

++=1

)()()()( ),(),(),()(),,( ββα

Free warping

Interface warpings

New Warping Displacement Model

kr

q

kk

mkk

mw tsfrhtsr Vu ∑

=

=1

)()( ),()(),,( α

• Previous model • New warping displacement

20

Free Warping Function

• Existing method

• Proposed new method

1. Solve St. Venant equation for global coordinates2. Calculate twisting center3. Calculate warping function for twisting center

3 step procedure

Simultaneously calculate the free warping function and the corresponding twisting center

Coordinate transformed St. Venant equation

+ Zero bending moment condition

=

00BF

00H00HNNK G

GG

GGG

y

z

z

y

zy

λλ

one step procedure

21

Interface Warping Function

=

−−−

0

BB

λ

FF

000LL000HH000HHLNNK0

LNN0K

00

2

1

21

21

222

111(II)

(I)

y

z

(II)

(I)

(II)T(I)T

(II)z

(I)z

(II)y

(I)y

(II)(II)z

(II)y

(II)

(I)(I)z

(I)y

(I)

GG

GGGG

GGGGGG

λλ

Coordinate transformed St. Venant equation with twisting center multiplier+ Zero bending moment condition

+ Constraint condition for interconnected domain

22

Discontinuously Varying Thin-walled Cross-section

• Problem description • Numerical results

107 DOFs

230 DOFs Bending induced by torsion

23

Partially Constrained Warping Problem

• Problem description • Numerical results

24

Curved beam problem

• Problem description • Numerical results

25

Journal Paper

26

3. Implementation for General Nonlinear Analysis

27

Geometric nonlinearity Material nonlinearityStrain-displacement relation Finite rotation Strain-stress relation

Green-Lagrange strain Rodrigues formulation Implicit return mapping scheme with beam state projection

Implementation for nonlinear analysis

∫∫∫∫ −ℜ=++ ∆+

V ijijttt

V ijijt

V ijijt

V rsijijrs VdeSVdSVdSVdeeC0000

000

000

000

000 δκδηδδ

ℜ= ∆+∆+∆+∫ tt

V ijtt

ijtt VdS

0

000 εδ

• Principle of virtual work

12

jiij

j i

uux x

ε ∂∂

= + ∂ ∂

1 12 2

ji k kij

j i i j

uu u ux x x x

ε ∂∂ ∂ ∂

= + + ∂ ∂ ∂ ∂

cos sinsin cos

θ θθ θ

− =

R

11θ

θ−

=

R ij ijkl klS C ε=

[ ]Tkkz

ky

kxkkkk wvu αθθθ 00000000 =Uwith parameter

• Incremental equilibrium equation

eij ijkl klS C ε=e p

ij ij ijε ε ε= +

28

Implementation for nonlinear analysis

∑∑∑∑====

+++=q

k

kx

tk

tmkk

q

k

kz

tmkk

q

k

ky

tmkk

q

kk

tk

mt tsfrhzrhyrhrh1

)(

1

)(

1

)(

1

)( ),()()()()( VVVxx α

( ) ( ) ( ) ( )0 0

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( , )( )

q q q qm m t t k t k m t t k t k m t t t t k t t k

k k k k y y k k z z k k k x k xk k k k

h r h r y h r z h r f s t α α+∆ +∆ +∆ +∆

= = = == + − + − + −∑ ∑ ∑ ∑u u V V V V V V

202

0

00

0

00 )(ˆcos1

)(ˆsin)( k

k

kk

k

kk θRθRIθR

θ

θθθ −

++=

[ ]Tkz

ky

kx

k θθθ 0000 =θ2

02

02

00kz

ky

kx

k θθθθ ++=

−−

−=

00

0)(ˆ

00

00

00

0kx

ky

kx

kz

ky

kz

k

θθθθθθ

θRwith

kx

tkkx

tt VθRV )(0=∆+ ky

tkky

tt VθRV )(0=∆+ kz

tkkz

tt VθRV )(0=∆+

• Geometry interpolation

• Displacement interpolation

• Finite rotation parameterization

• Finite rotation of director

29

Wagner Strain

• Y.L. Pi, M.A. Bradford, B. Uy, A spatially curved-beam element with warping and Wagner effects, Int. J. Numer. Meth. Engng 2005.

• F. Mohri, N. Damil, M.P. Ferry, Large torsion finite element model for thin-walled beams, Comput. Struct. 2008.

Addtionally introduce Wagner moment and Wagner strain

Additionally introduce three Wagner’s coefficients

<Abaqus> <Consider Wagner effect> To consider fully coupled nonlinear strain terms is very important

Explicitly consideration

Explicitly consideration

30

Wagner strain

=)(

)(

0

)(0

m

mm

zy

xx

+−

+=

xm

xm

xm

xm

tmk

t

mt

zyzy

fx

θθθθ

α

cossinsincos

)()(

)()(

)(

)(x

- Geometry interpolation

- Covariant vectors

∂∂=

00

0

)(1

0

rxmg

−∂∂−−∂∂

∂∂+∂∂=

)sincos()cossin(

)()(

)()(

)(

)(1

xm

xm

x

xm

xm

x

tmk

t

mt

zyrzyr

rfrx

θθθθθθ

αg

22)(2)(2)()(0

)(110 ))((

21)(

21

rzy

rf

rf

rx xmm

tm

k

tm

kmt

∂∂

++∂∂

+∂∂

∂∂

=θααε

- Covariant Green-Lagrange strain

- Local Green-Lagrange strain

22)(2)(2)()(110 ))((

21)(

21

xzy

xf

xf xmm

tm

k

tm

kt

∂∂

++∂∂

+∂∂

=θααε

31

Cross-Shaped Beam Problem

- Problem description

Elasto perfectly plastic material model211 /100.2 mNE ×=

0=ν

0=H

111894 DOFs

42 DOFs

32

Cross-Shaped Beam Problem

- Numerical results

Beam problemsSolid elemen

t model(ADINA)

Shell element model(ADINA)

Beam element models

ADINA BEAM(ADINA)

BEAM188(ANSYS)

Present beam

Cross-shapedbeam problem

X X X

Solid element

Presentbeam element

DOFs 111894 42

Load step

800 1

Twisted Cantilever Beam Problem

- Problem description

211 /100.2 mNE ×=

0=ν

Elastic material model

34

Twisted Cantilever Beam Problem

- Numerical results

Beam problems

Solid element mo

del(ADINA)

Shell element mo

del(ADINA)

Beam element models

ADINA BEAM

(ADINA)

BEAM188(ANSYS)

Present beam

Twisted cantilever beam problem(Load Case I)

X X

Twisted cantilever beam problem(Load Case II)

X X 35

Lateral post buckling problem

- Problem description

36

Lateral post buckling problem

- Numerical results

37

Journal paper

38

4. Improvement of Nonlinear Performance

39

Problem Description

∫∫∫∫ −ℜ=++ ∆+

V ijijttt

V ijijt

V ijijt

V rsijijrs VdeSVdSVdSVdeeC0000

000

000

000

000 δκδηδδ

Shear force problemBending moment problem

1. Upper bound2. Slow convergence3. Solution reliability

• Problems in nonlinear analysis

1. Upper bound means accumulated error.2. There is no upper bound when simulating with linear stiffness matrix only.

The error is accumulated in nonlinear stiffness matrix term.40

Problem Description

“ It was shown that the finite element interpolation of all of theses rotation variables spoils the objectivity of the adopted strain measures with respect to a rigid rotation. The formulations based on the interpolation of iterative and incremental rotations were additionally proved to be dependent on the history of deformation. Interestingly, the co-rotational technique does not necessarily suffer from these drawbacks. ”

• G. Jelenic, M.A. Crisfield, Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics, Comput. Methods Appl. Mech. Engrg. 1999.

“ Under rotations including a significant rigid-body component, many elements produce over-stiff solutions due to ‘self-straining’.”

‘Self-straining’ of the rigid body rotation

♦ Stiffening of rigid body rotation

♦ Deficiency of shear eigenmode

41

Stiffening of rigid body rotation

• Principle of virtual work

∫∫ +=ΠV ijij

t

V klijklij VdSVdeCe00

000

000 ηδδδ

∫ ++=ΠVlinear VdeeGeeEeeE

0

0120120220220110110 4 δδδδ

∫ ++=ΠV

tttnonlinear VdSSS

0

0120120220220110110 2 ηδηδηδδ

• Eigen deformation

[ ] [ ]TTrrr xy−==

42

21 φφφ

• Strain values

01110110 =

∂∂

==x

ee rφδ 02220220 =

∂∂

==y

ee rφδ 0)(21 21

120120 =∂∂

+∂∂

==xy

ee rr φφδ

=∂∂

∂∂

+∂

∂∂∂

+∂∂

∂∂

+∂

∂∂∂

=

=∂

∂∂∂

+∂

∂∂∂

=

=∂

∂∂∂

+∂

∂∂∂

=

0)(21

8181

22221111120

2211220

2211110

yxyxyxyx

yyyy

xxxx

rrrrrrrr

rrrr

rrrr

φδφδφφφδφδφφηδ

δφφδφφηδ

δφφδφφηδ

• Internal virtual work

0=Π= r

linear φuδ ∫ +=Π

= V

ttnonlinear VdSS

r 0

0220110 )(

81

φuδ

42

Deficiency of shear eigenmode

• Eigen deformation

Aφ Bφ Cφ[ ] [ ]TTAAA xy

42

21 == φφφ

[ ]TrAB y 022

=−= φφφ

[ ]TrAC x022

=+= φφφ

• Internal virtual work

=Π=Π

=Π=Π

+=Π=Π

∫∫∫

==

==

==

V

tnonlinearlinear

V

tnonlinearlinear

V

ttnonlinearlinear

VdSG

VdSG

VdSSG

CC

BB

AA

0

0

0

0110

0220

0220110

21,221,2

)(81,2

φuφu

φuφu

φuφu

δδ

δδ

δδ

43

Study on Nonlinear Stiffness

∫∫∫ −=+ ∆+

V ijt

ijtt

V ijt

ijV rsijrs

ij VdSeRVdSVdeCe000

000

00

000 δδηδTotal Lagrangian :

NLKLK

TDDD

TCCC

TBBB

TAAANL

1111111111111111 φφφφφφφφK λλλλ +++=∑=

=8

1i

TiiiL φφK λ

TD

TD

TD

TD

TDDD 366366331111 φφφφφφφφφφ λλλλλ +++= 44

Eigen Recomposition

∫∫∫ −=+ ∆+

V ijt

ijtt

V ijt

ijV rsijrs

ij VdSeRVdSVdeCe000

000

00

000 δδηδTotal Lagrangian :

NLKLK

Eigen decomposition : ∑=i

TiiiNL φφK λ

Estimation of eigenvalue : iNLTiiNL

Tii φKφφKφ ≅=λ

Eigen recomposition : ∑=i

TiiiNL φφK λ

♦ Assumed Eigenvector for 2D beam

iφ( : assumed eigenvectors)

45

Straight cantilever problem

Load(single load

step)

Number of iteration

Without recomposition

With recomposition

2 9 7

4 14 11

6 19 13

8 X 14

10 X 13

20 X 15

30 X 16

40 X 16

50 X 18

46

Straight cantilever problem

Load(single load

step)

Number of iteration

Without recomposition

With recomposition

100 25 24

200 41 37

300 59 49

400 84 66

500 109 86

600 136 103

700 167 135

800 205 165

900 245 201

1000 289 234 19% improved47

Right angle frame problem

48

Offshore jacket problem

49

Summary & Future works

50

Summary

The continuum mechanics based beam finite elements allowingtwisting behavior are proposed.

The new modeling method to construct continuous warping displacement fields for discontinuously varying arbitrary cross-sections is presented.

The nonlinear formulation of the continuum mechanics based beam elements is presented.

A novel numerical method to improve nonlinear performance is proposed.

51

Future works

- Continuum mechanics based beam element- Composite (warping, zigzag, slip …)- Distortional mode - Jourasky type warping- Implementation for dynamic analysis

- Warping for discontinuously varying cross-section- Implementation for nonlinear analysis- Buckling analysis

- Nonlinear implementation- Buckling analysis (Inelastic, twisted structure)- Characteristics of twisting actions (poynting and swift effect)

- Improvement of nonlinear performance- Spurious energy mode (locking treatment)- Extension of eigen recomposition method- Recursive load step, problem dependent tangent stiffness matrix

52

Curriculum Vitae

• Education

• KAIST, Ph. D. Program, Division of Ocean System Engineering• KAIST, Master of Science, Division of Ocean System Engineering• KAIST, Bachelor of Science, Department of Mechanical Engineering

• Publications[1] K Yoon, PS Lee, Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors, Computer Methods in Applied Mechanics and Engineering, 2014.[2] S Yeo, H Chung, K Yoon, PS Lee, Y Hong, J Cha, Ballast planning for accuracy control on offshore floating dock. Ocean Engineering, submitted.[3] K Yoon, PS Lee. Modeling the warping displacement fields for discontinuously varying cross-section beams, Computers and Structures, 2014.[4] K Yoon, Y Lee, PS Lee. A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities, Structural Engineering and Mechanics, 2012.[5] Y Lee, K Yoon, PS Lee. Improving the MITC3 shell finite element by using the Hellinger-Reissner principle, Computers and Structures, 2012.

• Presentations[1] K Yoon, PS Lee, A continuum mechanics based beam finite element for Elastoplastic large displacement analysis, CST2014, 2014.[2] Y Hong, JH Cha, J Kim, K Cho, D Choi, K Yoon, S Yeo, Dimension control method for the erection of structures on offshore floating dock, Oceans’ 14 MTS/IEEE, 2014.[3] 윤경호, 전형민, 이필승, 연속체역학기반빔유한요소, 대한기계학회 CAE 및응용역학부문춘계학술대회, 2014.[4] 전형민, 윤경호, 이필승, Enriched MITC3 쉘요소개발, 대한기계학회 CAE 및응용역학부문춘계학술대회, 2014.[5] S Yeo, K Yoon, PS Lee, Y Hong, JH Cha, H Chung. Ballasting plan optimization for accuracy control on offshore floating dock, 12th International Symposium on Practical Design of Ships and Other Floating (PRADS), 2013.[6] K Yoon, PS Lee, Development of general beam finite elements with warping displacements, Sixth M.I.T. Conference on Computational Fluid & Solid Mechanics, 2011.[7] 윤경호, 이필승, 뒤틀림변위를고려한일반빔유한요소의개발, 한국전산구조공학회정기학술대회, 2011.

53

Q & A

54