development and applications of the timepix3 chip vertex2011, rust, austria. june 24, 2011 christoph...

25
Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3 , Martin van Beuzekom 2 , Michael Campbell 1 , Klaus Desch 3 , Vladimir Gromov 2 , Xiaochao Fang 3 , Ruud Kluit 2 , Andre Kruth 3 , Tuomas Poikela 1,4 , Xavi Llopart 1 , Francesco Zappon 2 ,Vladimir Zivkovic 2 1 CERN, Geneve, Switzerland, 2 National Institute for Subatomic Physics (Nikhef), Amsterdam, the Netherlands 3 Institute of Physics, Bonn University, Germany 4 University of Turku, Finland Vladimir Gromov 2

Upload: priscilla-norton

Post on 30-Dec-2015

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Development and Applications of the Timepix3 chip

Vertex2011, Rust, Austria. June 24, 2011

Christoph Brezina3, Martin van Beuzekom2, Michael Campbell 1, Klaus Desch3, Vladimir Gromov2, Xiaochao Fang3, Ruud Kluit 2,

Andre Kruth3, Tuomas Poikela1,4, Xavi Llopart 1, Francesco Zappon2 ,Vladimir Zivkovic2

1 CERN, Geneve, Switzerland, 2 National Institute for Subatomic Physics (Nikhef), Amsterdam, the Netherlands

3 Institute of Physics, Bonn University, Germany4 University of Turku, Finland

Vladimir Gromov2

Page 2: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 224/06/11

Outline

Medipix / Timepix family of pixel detectors

Timepix3 : functionality and features

Design and performance of some basic

circuits

Summary

Page 3: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 324/06/11

Medipix detectors

1997: Medipix1 (CERN) - technology: 1μm CMOS- array: 64 x 64 - pixel: 170 um x 170 um

2001-2005: Medipix2 (CERN) - technology: 0.25μm CMOS, 6-metal- array: 256 x 256 - pixel: 55 um x 55 um- energy resolved photon counting

2009: Medipix3 (CERN) - technology: 0.13μm CMOS, 8-metal- array: 256 x 256- pixel: 55 um x 55 um- charge summing mode- improved energy resolution

Photon (X-ray) counting hybrid pixel detector Imaging / medical applications

Page 4: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 424/06/11

Timepix pixel readout chip TPC / micro-pattern gas detectors applications measures hit arrival time OR energy deposit on each pixel

2007: Timepix (CERN) - external clock : 100 MHz- full frame readout : serial port (10ms/frame)

Limitations- any event readout requires full frame - no zero suppression- dead time (no continuous readout) - time resolution is only 10ns (bin size)- slow front-end (time-walk ~120ns)

Page 5: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 524/06/11

Timepix3 project: design goals and current status

Timepix3 is an approved project of the Medipix3 collaboration with an assigned budget (2-engineering runs in 2012, 130nm CMOS)

wide range of non-HEP applications: X-ray imaging Dosimetry Compton camera, gamma polarization camera, fast neutron camera, nuclear fission, astrophysics …

time-resolved imaging hit (photon) → ToA & ToT continuous & sparse readout minimum dead time

suitable for HEP applications

Page 6: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 624/06/11

Required readout chips for the HEP applications Upgrade of the LHCb VELO detector: VELOPIX

Micro-pattern gas avalanche detectors: GOSSIP, TPC etc.

minimum pixel size extremely high illumination:

up to 290 Mhits/cm2/s continuous data readout sparse data (zero suppression) charge measurement

minimum pixel size high time resolution: ~ 1ns wide dynamic range : ~ 100μs charge measurement high sensitivity : threshold ≈ 350e-

Page 7: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 724/06/11

Timepix3: main features

Feature Value

technology 130nm CMOS

pixel array 256 x 256

pixel size 55μm x 55μm

input charge both : h+ and e-

sensor leakage currentcompensation

Yes

data acquisition ToA &ToT / only ToA / Event count & Integral ToT

minimum threshold > 500 e- (1.8keV)

peaking time ~ 15ns

time walk(charge collection

time)

< 25ns

Time resolution / range

1.6nsec / 410μsec

ToT accuracy / range 25ns / 25.6 μsec (~150 Ke-)

readout Continuous sparse / Non-continuous sparse

output bandwidth 2.56Gbps

count rate up to 20 ●106 cm-2 sec-1

data transmission Conventional (separate Clock ) / Clock&Data Encoded8b/10b

Power consumption ~ 20μW/pixel (1.3W/chip)

Page 8: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 824/06/11

Timepix3: top level block diagram128 double-columns @ 256● 55μm = 1.4cm

dou

ble

colu

mn

data

bu

s (

40M

Hz)

DAC

Ring oscillator (640MHz)

Time Stamp 14bToT Counter 10b

Fast Counter 4b

DAC

MU

X

Readout Control (TOKEN based)

Analog Front-end Digital Region

8-Pixel Region

Doub

le co

lum

n b

us

ToT Counter 10b

Fast Counter 4b

End of Column Logic

FiFO

Readout control(Token based)

periphery bus

8 x LVDS

Serializer / FIFO

Tx

Data output blockperiphery data bus 40MHz

Data_out Data_in

Slow control

RXTx PLL

DAC EFUSEchip ID

Bandgap

Clock 40 MHz

RX

Reset_GLB

RX

Bias gen.

MU

X

MU

X

FIF

O

Clock

Vcntr(oscillator

)

pixel: 55μm x 55μm Super Pixel: 8pixels @ 4 x 2

64 Super Pixels in a DC 128 Double Columns (DC)

Super Pixel FIFO : 2-events

DC bus: 40MHz

End-of-DC FIFO: 4-events

Periphery bus: 40MHz @ 44b

Output Serializer / FIFO

Time Stamp 14b

Analog regions(30%)

Digital

region(70%)

Page 9: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 924/06/11

Timepix3: modes of operation

Data acquisition mode

ToA & ToT Only ToA Event Count & Integral ToT

Data format

Fast Time (640MHz @ 4b) & Slow Time Stamp (40MHz @ 14b) & ToT (40MHz @10b) & Pixel coordinate (16b)

Fast Time (640MHz @ 4b) & Slow Time Stamp (40MHz @ 14b) &

Pixel coordinate (16b)

Event Count(10b) & Integral ToT ( 14b) &

Pixel coordinate (16b)

Double hit resolution (per

pixel)

ToT + 700ns > 450ns -

Readout continuous

sparse data readout with

zero-suppression

non-continuous sparse data

readout with zero-suppression

Max counting rate < 100kHz/pixel

Max counting rate < 1kHz/pixel

Full chip readout time

- 1.6msec

Page 10: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

024/06/11

High resolution TDC

Preamp_out

Hit

Counter_8

OR

Ring Oscillator

Start / Stop

Hit_1

SyncCLKPixel logic _2

Pixel logic _8

Pixel logic _1

640MHz CLK

Counter_2Counter_1

Gated 640MHz CLK

SyncCLK (40MHz)

Ring Oscillator

Counter

Shared Ring Oscillator architecture (per Super Pixel)

Time diagrams

low switching activity ~10-5

negligible power consumption compact design (~10% of the pixel area)

Vcntr

Page 11: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

124/06/11

RC Ring Oscillator

OUTstart / stop

NAND

VcntrVDD

Effect of the power supply voltage

NCAP = Varactor

Control characteristic

voltage-controlled low sensitivity to the power supply channel-to-channel mismatch ~1%

Page 12: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

224/06/11

TDC’s array with a PLL control

PhaseFrequenc

yDetector

ChargePump

LoopFilter

SyncCLK

(40MHz)

640MHz CLK

Phase Locked Loop (PLL)

OUT

Vcntr

FbCLK(40MHz)

:16

Ring Oscillator

Ring Oscillator

Ring Oscillator

∆V ≈ 0

Icntr ≈ 0

DC_1

Vcntr

Vcntr

Vcntr

Features

immunity to variations

good uniformity

Gossipo-4 (Aug 8, 2011)

DC_2 DC_3 DC_4

Page 13: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

324/06/11

Charge sensitive preamplifier

Ikrum

Preamp_in

Vdd=1.5V

0.36V0.8V

0.37V

lpnfet

cu

rren

t

sin

k s

ou

rce c

urr

en

t

Preamp_out

Ck

10

000e-

5 000e-

1 000e-

-1 000e-

-5 000e -

-10 000e -

holes (h+)

electrons (e-)(Gas Detectors)

Preamp_out signals

Cfb=3fF

based on Krummenacher scheme both input signal polarities (h+ and e-)

high gain (50mV / 1ke-) minimum time-walk (peaking time ~ 10ns) low noise (σ ≈ 75e- @ Cd=25fF) power 4.5μW (3μA @ 1.5V)

Single-stage OPAMP

Cd

Page 14: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

424/06/11

Pulse height discriminator

Preamp_out

threshold tuning per pixel (4bit) fast response

Vthr / polarity

Threshold tuning (4bit)

Discr_out

0 -10k -20k -30k

9

6

3

0

preamp output

∆t, ns

discriminator output

Propagation delay

∆t1

∆t2

preamp output

discriminator output

Time diagrams

Qin, e-

THR

power ≈ 6μW (4μA @ 1.5V)

internal delay ≈ 3ns

threshold mismatch ≈ 150e-

threshold mismatch (with tuning) ≈ 10e-

In2

In1

Page 15: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

524/06/11

Readout of the chip

Timepix 3

Data [0:7]

Clock

Readoutboards

Timepix 3 Readoutboards

Encoded signal {Clock + Data}

Clock

Data

Clock Recovery

block

ReceiveEngine

Conventional readout link Embedded clock readout link

data bus and clock bus are separate

synchronization loss at high rate

8b /10bEncoding

Clock

Data

8b/10b encoding: 8b-word by 10b symbol

continuous activity for clock recovery

NO clock/data skew and synchronization

issues

disparity correction (between 1’s and 0’s)

DC balance control

data alignment

Clock

Data

Encodedsignal

Page 16: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

624/06/11

Timepix3: interface part

Slow control

Two modes of operation : - encoded Clock – Data output (at 640 MHz) - separate Clock and Data outputs (at 320MHz, 160MHz …. ) selectable readout speed

Phase Locked

Loop

SyncCLK (40MHz)

Mode of operationdefinition

Configuration data (threshold DAC’s, masks

etc)

Periphery Data Bus: 44bit @ 40MHz

8b

/10b

En

cod

er

FIF

OS

eri

alize

r

44bit

8bit

10bit

Data

1b

it

Round-robin Distributor

DataOut [0:7]

DataIn

ReadoutCLK

MU

X

640MHz

320MHz

160MHz

Syn

cC

LK

(4

0M

Hz)

:10

½

Clo

ck d

ela

y

Clo

ck

1b

itData

_seri

al_

lin

k

Clo

ck_s

eri

al_

lin

k

Control

LogicS

hu

tter

Reset

Bu

sy

Link is almost full

Ext.

Read

ou

t clo

ck

Page 17: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

724/06/11

Summary

Timepix3 pixel readout chip is being developed in the frame of the Medipix3 collaboration for a wide range of applications

the chip is defined as a 256 by 256 pixel array (~2cm2) where each pixel measures 55μm by 55μm

for each hit both time-of-arrival will be measured with 1.6ns accuracy as well as charge deposit (time-over-threshold method)

the chosen architecture allows for continuous readout of the sparsely distributed data with the hit rate up to 20 ●106 cm-2 sec-1

event count mode will also be available for imaging applications and for calibration

the chip is planned for submission in the beginning of 2012

Page 18: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Spare slides

Page 19: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 1

924/06/11

Medipix-based detectors: the sensor

Page 20: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 2

024/06/11

Medipix family detectors

1997: Medipix1 (CERN) - emerged from LHC1/Omega3 (technology: 1μm CMOS)- array: 64 x 64 / pixel: 170 um x 170 um / active area: 1.2cm2 - min detectable signal : 1 400 e- (5.1 keV in Si) - counter-per-pixel: 15-bit- shift register-based readout: 16b output bus @ 10 MHz (384μs)

2001-2005: Medipix2 (CERN) - technology: 0.25μm CMOS, 6-metal- array: 256 x 256 / pixel: 55 um x 55 um / active area: 2cm2 - energy window resolved photon counting: 2 discriminators - counter-per-pixel: 13-bit (14-bit) (max counting rate : 100kHz) - frame-based readout via: an LVDS TX: 1b @160MHz (< 9.2ms)

32-bit parallel port (< 300us@100MHz) - 3-side buttable: chip interface at one side only

2009: Medipix3 (CERN) - technology: 0.13μm CMOS, 8-metal- array: 256 x 256 / pixel: 55 um x 55 um / active area: 2cm2 - highly configurable- improved energy resolution: charge summing mode- per pixel: 2 discriminators and 2 counters- continuous count-read mode : second counter is a storage buffer - designed for TSV (through-silicon via)

Photon (X-ray) counting hybrid pixel detector Imaging / medical applications

Page 21: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 2

124/06/11

Preamp: main specifications Simulation Results (Xavi) Simulation Results (Vladimir Gromov)

Pixel size 55 µm x 55 µm okAnalog pixel area 55 µm x [10…20] µm okPixel matrix 256 x 256 okInput charge Bipolar (h+ and e-) okLeakage current compensation YES limited by the value of the Ikrum for electron signals Detector capacitance (Planar detector) < 50 fF 10fF (Gas Detectors)

Peaking time <25ns if Cd<70fF 8ns (Cd=10fF), 11ns (Cd=25fF), 17ns (Cd=50fF)Preamp output linear dynamic range (Cf=3fF) < 15 Ke- Gain=48mV/1Ke- → Output range = 1Ke-●800mV/48mV ≈ 12 Ke-

Timewalk <25ns [@ Qin>Threshold] < peaking timeReturn to zero (Tunable) YES (ΔIkrum) hole signals: not monotonous

TOT linearity and range Monotonic up to ~150 Ke- @Ikrum 10nA limited linearity in the range: ± 800mV ● (Cd+Cf) ≈ ± 150 Ke- if INL=15%; Cd=25fF, Cf=3fF

Return to zero full chip spread (TOT spread) < 5% Qin=30ke- @ holes= ± 20% ( σ= 5% ); electrons= ± 12% ( σ= 3% )

ENC (σENC) 0.57*Cd[fF]+61 [e-] → ~75 e- @ Cd=25fF σ = 64 e- (Cd=0fF), σ = 68 e- (Cd=10fF), σ = 76 e- (Cd=25fF) # Thresholds 1 okDiscriminator response time <5ns [if Qin>Threshold + 5 Ke-] ok

MC simulated Threshold spread ~200 e-

Preamp out: 30mV (p-p) → 625 e- (p-p) → σ = 100 e-

Discriminator input referred : 21mV(p-p) → σ = 73 e-

Overall: 37mV (p-p) → σ = 125 e-

Threshold spread after tuning (4 bits) ~20 e- 8 e-

Full chip minimum detectable charge 6*sqrt(ENC2+Threshold_mismatch2) → ~475 e- @ Cd=25fF ok

Pixel analog power consumption 8.4 µW static (Preamp 3.6 µW and 4.8

µW Discriminator)2.4 µW dynamic (only @ HIT)

Preamp: 3μA ● 1.5V = 4.5 µW (static) Discriminator: electrons 6μA ● 1.5V = 9 µW (static)

holes: 4μA ● 1.5V = 6 µW (static)

Stability (Phase Margin) - Phase margin = 44° Worst case: Ikrum =10nA, Cd=25fF, Vdd=1.5V, Ck=3.6pF

Page 22: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 2

224/06/11

Charge deposit measurements: time-over-threshold method

Cfb

Single-stage OPAMP

Cd

feedback

Ikrum

Qin

wide dynamic range : ± 100 ke-

I1I2

Preamp_in Preamp_out

Preamp_out signals

Preamp_in signals

-50 ke

-

-25 ke

-

-10 ke-

- 5 ke-

-50 ke-

-25 ke-

Qin < 15ke- : input charge stored on Cfb

15ke- <Qin < 100ke- : input charge stored on Cd

100ke- < Qin : input charge is drained be the

parasitic diodes

discharge current is signal-dependent → (INL ≈ 10% )

channel-to-channel ToT mismatch ≈ 25%

Page 23: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Vertex2011 V.Gromov 2

320/06/11

Accuracy of the ToT measurements

time jitter

THR

Preamp Output

Comparator Output

Qin ToT ToT accuracy6 ● σ(jitter) / ToT

-2 ke- 0ns ∞

-4 ke- 86ns 14%

-6 ke- 147ns 8.2%

-8 ke- 207ns 5.8%

-10 ke- 267ns 4.5%

-20 ke- 546ns 2.2%

-30 ke- 801ns 1.5%

-50 ke- 1260ns 0.9%

-100 ke- 2050ns 0.6%

ToT= Qin / Idisσ(jitter) = σ(Uout noise) / [dU/dt] ↓ Idis/Cfb

σ(jitter) / ToT = σ(Uoutnoise) ● Cfb / Qin

electronic noise causes time jitter: σ jitter = σ(Uout noise) / [dU/dt]

lowering of electronic noise

decreasing of the feedback capacitor

Page 24: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

Spartan-6 evaluation board (Peter Jansweijer)

3.2Gbps optical link

high-speed links

Spantan-6 FPGA

supports links running at 640MHz

Vertex2011 V.Gromov 2

424/06/11

Page 25: Development and Applications of the Timepix3 chip Vertex2011, Rust, Austria. June 24, 2011 Christoph Brezina 3, Martin van Beuzekom 2, Michael Campbell

TWEPP-09 V.Gromov 2

524/06/11

Micro-pattern gas detectors: layout and features

- particle track image (projection)- particle track image (projection)- 3D track reconstruction3D track reconstruction- no sensor leakage current compensation- low parasitic capacitance (less than 10fF)- micro-discharges in avalanche gap

Cluster3

Cathode (drift) plane

Gas Amplification Structure

Cluster2 Cluster1

Readout chip

1mm …1m → Drift gap

400V50um → Avalanche gap

Gas-avalanche detector combining a gas layer as signal generator with a CMOS readout pixel array

Front-endcircuit

Cpar