detoxification of tannery waste liquors with an electrolysis system

7
ELSEVIER Environmental Pollution, Vol. 97• No. 1 2, pp. 147 152, 1997 ,~ 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain PII: S0269-7491(97)00062-6 0269-7491/97 $17.00+0.00 DETOXIFICATION OF TANNERY WASTE LIQUORS WITH AN ELECTROLYSIS SYSTEM Apostolos G. Vlyssides a* and Cleanthes J. Israilides b aNational Technical University of Athens, Laboratory of O rganic and C hemical Technology, 9, Heroon Polytechniou Street, Zographou 157 00, Greece blnstitute of Technology of Agricultural Products, National Agricultural Research Foundation, 1, So./: Venizelou Street, Lycovrissi 141 23, Greece (Received 14 February 1997; accepted 23 April 1997) Abstract This paper describes an electrochemical treatment and detoxification of tannery waste liquors (TWL). In this technique, TWL was passed through an electrolytic cell usi ng a Ti/Pt anode and a stainless steel304 cathode. Owing to the strong oxidizing potential of the chemicals produced (chlorine, oxygen, hydroxyl radicals and other oxidants) the organic and inorganic pollutants (ammonia, sulfides and chromium) were wet oxidized to carbon dioxide, nitrogen oxides and sulfur dioxide. In addition, chromium was preci- pitated as Cr2(S04) 3. Experiments were run in a batch, laboratory-scale, pilot-plant, and the results are reported herein. After 30 min and 3 h of electrolysis at 0.26 A cm -2, 45°C and p H 9, total chemical oxygen demand (C OD ) was reduced by 52 and 83% and biochemical oxygen demand (BODs) was reduced by 35 and 66%, respectively. Addi- tionally, total suspended solids ( TSS) were reduced by 8.6 and 26%, total phenolic compounds were reduced by 95.6 and 99.4%. Ammonia, sulfides and soluble chromium were reduced by 100% in both cases, while the mean anode effi- ciency was 81gh -1 A -lm -2 and 1.9gh -1A -lm-e. Also, the mean energy consumption was 4.8kwh kg -1 of COD reduced and 200kwh kg -1 of COD reduced for 0.5 and 3 h, respectively. These results strongly indicate that this electrolytic method of total oxidati on of TW L cannot be cost effective for wide use. However, it can be used as an effecti- vepretreatment stage for detoxification of the wastewater, owing to great efficiency especially with respect to COD and toxicity (phenolics ) reduction. © 1997 Elsevier Science Ltd Keywords: Tanne ry waste liquors, electrochemical treat- ment, oxidation of phenols, chromium(Ill) removal. INTRODUCTION Environmental pollution owing to tannery waste liquors (TWL) is an important problem and causes great con- cern to the leather industries owing to the strain it cre- ates on their resources. The TWL are among the most *To whom correspondence should be addressed. Fax: 30 17723163. difficult wastes to treat due to their high organic load. Tanneries are producing about 7-15m 3 of TWL per tonne of rough leather. An average composition of TW L is given on Table 1 (ESCAP, 1982). Among the organic compounds which are present in these wastes are tannins (polyphenolic compounds) which are difficult to break and are considered to be highly toxic pollutants. Among the inorganic compounds, which are present in TWL in high concentrations, .are ammonia (Szpryokowicz et al., 1995; Naumczyk et al., 1996), sulfides and chromium (Sykes and Corning, 1987) that are strong inhibition factors for any kind of biological treatment. There is not any universally accepted method for an effective treatment of TWL at worldwide level. A thorough review of tannery waste- water treatment was given by Tsotsos (1986). Existing technologies for the treatment of TWL include the use of ozone gas, ozone and UV, and UV and hydrogen peroxide. In spite however, of improvements resulting in less expensive ozone production, the cost of ozone generation is still one of the main drawbacks when it is compared with other technologies• The most widely used technology, the aerobic treatment of the sludge after a primary removal of proteins by sedimentation is not considered cost effective in small and medium size industries like most of those which occur in Greece. In general, biological treatment methods whether aerobic or anaerobic, even though they lead to a significant removal of chemical oxygen demand (COD) and bio- chemical oxygen demand (BOD), still leave unacceptable levels for direct discharge. Moreover, full nitrification cannot be established (Grenschow and Hegemann, 1993). Oxidation technologies for the treatment of industrial wastewaters have been an attractive alterna- tive to biological methods, especially where biorecalci- trant and toxic wastes are to be treated (Mantzavinos e t al., 1996). In the case of TWL, electrochemical treatment has been reported as a feasible process (Szpryokowicz and Zillio Grande, 1994). However, some researchers are in favour of a combined oxidative and biological treat- ment for tannery wastewaters (Szpryokowicz and Zillio Grande, 1994, 1995; Jochimsen et al., 1996; Kaul and Szpryokowicz, 1996; Naumczyk et al., 1996). 14 7

Upload: abhijeet-prasad

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 1/6

E L S E V I E R

En v i ro n me n t a l Po l l u t i o n , Vol . 97• No . 1 2 , pp . 147 152 , 1997,~ 1997 E ls ev ie r S c ience L td

A l l r i g h t s r e s e r v e d . P r i n t e d i n G r e a t B r i t a i n

P I I : S 0 2 6 9 - 7 4 9 1 ( 9 7 ) 0 0 0 6 2 - 6 0 2 6 9- 7 49 1 /9 7 $ 1 7 . 0 0 + 0 . 0 0

D E T O X I F I C A T I O N O F T A N N E R Y W A S T E L I Q U O R S W I T H A N

E L E C T R O L Y S I S S Y S T E M

Apostolos G. Vlyssidesa* and Cleanthes J. Israilidesb

aNational Technical University of Athens, Laboratory of O rganic and C hemical Technology, 9, Heroon Polytechniou Street,Zographou 157 00, Greece

blnstitute o f Technology of Agricultural Products, National Agricultural Research Foundation, 1, So./: Venizelou Street,Lycovrissi 141 23, Greece

(Received 14 Feb ruary 1997; accepted 23 Apr i l 1997)

Abstract

T his paper descr ibes an e lec t rochemica l t r ea tment and

d e t o x if i ca t i o n o f t a n n e ry w a s t e l iq u o r s ( T W L ) . I n t h i s

technique , T W L was pas sed through an e lec t ro ly t i c ce l l

us ing a T i /P t anode and a s ta in les s s tee l30 4 ca thode . O wing

to the s t rong ox id i z ing po ten t ia l o f the chemica ls produce d

( ch lor ine , oxygen , hydroxy l rad ica l s and o ther ox idants )

the organic and inorganic pollutants (ammonia, sul f ides and

chrom ium) were we t ox id i z ed to carbon d iox ide , n it rogen

ox ides and su l fur d iox ide . I n addi t ion , ch romium was prec i -

p i t a t e d a s C r 2 ( S 0 4 ) 3 . Exper iments were run in a ba tch ,

laboratory-scale , pi lot-plant , and the resul ts are reported

here in . A f te r 30 min a nd 3 h o f e lec tro lys i s a t 0 . 26 A cm - 2 ,

4 5 ° C a n d p H 9 , t o ta l c h e m i c a l o x y g e n d e m a n d ( C O D ) w a s

r e d u c e d b y 5 2 a n d 8 3 % a n d b i o c h e m i c a l o x y g e n d e m a n d( B O D s ) w a s r ed u c e d b y 3 5 a n d 6 6 % , r e sp e c ti v el y . A d d i -

t ionally , to ta l suspended so l ids ( T S S) were r educed by 8 .6

a n d 2 6 % , t o t a l p h e n o l ic c o m p o u n d s w e r e r e d u c ed b y 9 5 . 6

and 99 .4%. Ammonia , su l f ides and so lub le chromium were

reduced by 1 00% in both cases , while the mea n anod e eff i-

c ie n cy w a s 8 1 g h -1 A - l m - 2 a n d 1 . 9 g h - 1 A - l m - e . A l so ,

t h e m e a n e n e r g y c o n su m p t i o n w a s 4 . 8 k w h k g - 1 o f C O D

r e d u ce d a n d 2 0 0 k w h k g - 1 o f C O D r e d u c ed f o r 0 . 5 a n d

3 h, respect ively . These resul ts s trong ly indicate that this

e l e c tr o l yt i c m e t h o d o f t o t a l o x id a t io n o f T W L c a n n o t b e c os t

e f f ec t ive for w ide use. H owever , i t can be used as an e f fec t i -

vepre t rea tment s tage fo r de tox i f i ca t ion o f the w as tewater ,

owing to grea t e f f ic iency espec ia l ly w i th r espec t to C OD andtox ic i t y ( phenol ic s ) r educ t ion . © 1997 E lsev ier Sc ience L td

K e y w o r d s : T a n n e r y w a s t e l i q u o r s , e l e c t ro c h e m i c a l t r e a t -

m e n t , o x i d a t i o n o f p h e n o ls , c h r o m i u m ( I l l ) r e m o v a l .

I N T R O D U C T I O N

E n v i r o n m e n t a l p o l l u t i o n o w i n g t o t a n n e r y w a s t e l iq u o r s

( T W L ) i s a n i m p o r t a n t p r o b l e m a n d c a u s e s g r e a t c o n -

c e r n t o t h e l e a t h e r i n d u s t r i e s o w i n g t o t h e s t r a i n i t c r e -

a t e s o n t h e i r r e s o u r c e s . T h e T W L a r e a m o n g t h e m o s t

* To whom c o r r e s ponde nc e s hou l d b e a dd re s se d . F a x : 3 017723163.

d i f f ic u l t w a s t e s t o t r e a t d u e t o t h e i r h i g h o r g a n i c l o a d .

T a n n e ri e s a r e p r o d u c in g a b o u t 7 - 1 5 m 3 o f T W L p e r

t o n n e o f r o u g h l e a th e r . A n a v e r a g e c o m p o s i t i o n o fT W L i s g i v e n o n T a b l e 1 ( E S C A P , 1 98 2).

A m o n g t h e o r g a n i c c o m p o u n d s w h i c h a r e p r e s e n t i n

t h e s e w a s t e s a re t a n n i n s ( p o l y p h e n o l i c c o m p o u n d s )

w h i c h a r e d i f fi c u lt t o b r e a k a n d a r e c o n s i d e r e d t o b e

h i g h ly t o xi c p o l l u ta n t s . A m o n g t h e i n o r g a n i c c o m p o u n d s ,

w h i c h a r e p r e s e n t i n T W L i n h i g h c o n c e n t r a t i o n s , .a re

a m m o n i a ( S z p r y o k o w i c z et al . , 1 9 9 5 ; N a u m c z y k et al . ,

1 9 9 6 ) , s u l f i d e s a n d c h r o m i u m ( S y k e s a n d C o r n i n g ,

1 9 8 7 ) t h a t a r e s t r o n g i n h i b i t i o n f a c t o r s f o r a n y k i n d o f

b i o l o g i c a l t r e a t m e n t . T h e r e i s n o t a n y u n i v e r s a l l y

a c c e p t e d m e t h o d f o r a n e f fe c ti v e t r e a t m e n t o f T W L a t

w o r l d w i d e l e ve l. A t h o r o u g h r e v i e w o f t a n n e r y w a s t e -w a t e r t r e a t m e n t w a s g i v e n b y T s o t s o s ( 1 9 8 6 ).

E x i s ti n g t e c h n o l o g i e s f o r t h e t r e a t m e n t o f T W L

i n c lu d e t h e us e o f o z o n e g a s, o z o n e a n d U V , a n d U V a n d

h y d r o g e n p e r o x id e . I n s p it e h o w e v e r , o f i m p r o v e m e n t s

r e s u l ti n g i n l es s e x p e n s i v e o z o n e p r o d u c t i o n , t h e c o s t o f

o z o n e g e n e r a t i o n i s st il l o n e o f t h e m a i n d r a w b a c k s w h e n

i t i s c o m p a r e d w i t h o t h e r t e c h n o l o g ie s • T h e m o s t w i d e l y

u s e d t e c h n o l o g y , t h e a e r o b i c t r e a t m e n t o f t h e s lu d g e

a f t e r a p r i m a r y r e m o v a l o f p r o t e i n s b y s e d i m e n t a t i o n i s

n o t c o n s i d e r e d c o s t e f fe c t iv e i n s m a l l a n d m e d i u m s iz e

i n d u s t r ie s l i ke m o s t o f t h o s e w h i c h o c c u r i n G r e e c e . I n

g e n e r a l , b i o l o g i c a l t r e a t m e n t m e t h o d s w h e t h e r a e r o b i c

o r a n a e r o b i c , e v e n t h o u g h t h e y le a d t o a s i g n i fi c a n tr e m o v a l o f c h e m i c al o x y g e n d e m a n d ( C O D ) a n d b i o-

c h e m i c a l o x y g e n d e m a n d ( B O D ) , s ti ll le a v e u n a c c e p t a b l e

l e v e l s f o r d i r e c t d i s c h a r g e . M o r e o v e r , f u l l n i t r i f i c a t i o n

c a n n o t b e e s t a b l i s h e d ( G r e n s c h o w a n d H e g e m a n n ,

1 99 3). O x i d a t i o n t e c h n o l o g i e s f o r th e t r e a t m e n t o f

i n d u s t r i a l w a s t e w a t e r s h a v e b e e n a n a t t r a c t i v e a l t e r n a -

t i v e t o b i o l o g i c a l m e t h o d s , e s p e c i a l l y w h e r e b i o r e c a l c i -

t r a n t a n d t o x i c w a s t e s a r e to b e t r e a t e d ( M a n t z a v i n o s e t

al. , 1 9 96 ). I n t h e c a s e o f T W L , e l e c t r o c h e m i c a l t r e a t m e n t

h a s b e e n r e p o r t e d a s a f e a s i b l e p r o c e s s ( S z p r y o k o w i c z

a n d Z i l li o G r a n d e , 1 9 94 ). H o w e v e r , s o m e r e s e a r c h e r s a r e

i n f a v o u r o f a c o m b i n e d o x i d a t i v e a n d b i o l o g ic a l t re a t -

m e n t f o r t a n n e r y w a s t e w a te r s ( S z p r y o k o w i c z a n d Z i ll io

G r a n d e , 1 9 9 4 , 1 9 9 5 ; J o c h i m s e n et al . , 1 9 9 6 ; K a u l a n d

S z p r y o k o w i c z , 1 99 6; N a u m c z y k et al . , 1996).

147

Page 2: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 2/6

14 8 A . G . V l y s s i d e s , C . J . I s r a i l id e s

Table 1. Mean composition o f tannery waste l iquors (TWL )

Cha r a c t e r is t ic s Ra nge ( m g l i t r e - 1 )

BOD5 210-4300CO D 18 0-27 000To ta l suspended sol ids 925-36 000To t a l c h r om i u m 3 - 3 50Sulfides 1-500

Chlor ides 1500-28 000To t a l phe no l i c c om p ou nds 0 .4 - 100A m m on i u m n i t r oge n 17 -3 8 0Kje hda h l n i t r oge n 90 - 63 0Fats and oi ls 49-620pH 1 - 13

o f c h l o r i d e - - c h l o r i n e - c h l o r i d e i s r e d u c e d o w i n g t o t h e

p r o d u c t i o n o f C 1 0 3 - t h a t is a s t a b le c h l o r a t e a n i o n .

T h e r e f o r e , a t l o w p H s t h e c h l o r i d e s a r e r e d u c e d d u r i n g

t h e e l e c t r o l ys i s p r o c e s s p r o d u c i n g f r e e c h l o r in e , w h i l e i n

h i g h p H t h e c h l o r i d e s a r e o x i d i s e d p r o d u c i n g c h l o r a t e s .

O n l y i n m o d e r a t e a l k a l i n e t o n e u t r a l c o n d i t i o n s , t h e

i n i ti a l c o n c e n t r a t i o n s o f c h l o r i d e s r e m a i n s t a b le ( V l y s -

s i de s e t a l . , 1 9 9 6 ) d u r i n g t h e c o n t i n u o u s p r o d u c t i o n o ff r e e h y d r o x y l r a d i c a l s.

T a b l e 2 s h o w s t h e e l e c t ro c h e m i c a l a n d c h e m i c a l r e a c -

t i o n s ( I s r a i l i d e s e t a l . , 1 9 9 7 ) t h a t c a n t a k e p l a c e i n a

m i x t u r e o f b r i n e s o l u t i o n a n d w a s t e w a t e r i n a n e l e c t ro -

l y s i s c e l l u s i n g T i / P t a n o d e .

T h i s s t u d y d e a l s w i t h a p h y s i c o c h e m i c a l a p p r o a c h t o

t h e t r e a t m e n t o f T W L , b a s e d o n t h e p r in c i p le o f o x id a -

t iv e d e g r a d a t i o n o f a ll it s o rg a n i c c o m p o u n d s i n a n

e l e c t r o l y s i s s y s t e m .

The o r e t i c a l a ppr o a c h

T h e t i m e o f o x i d a t io n d e p e n d s u p o n t h e s t a bi li ty a n d

c o n c e n t r a ti o n o f c o m p o u n d s ; c o n c e n t r at i o n o f N a C I

u s e d ; t e m p e r a t u r e ; p H o f t h e s o l u t io n ; t i m e o f r e c i rc u -

l a t io n ; s iz e o f t h e a n o d e ; a n d c u r r e n t a n d v o l t a g e

a p p l i e d ( V l y s s i d e s e t a l . , 1996) .

T h e e l e c t r o c h e m i c a l r e a c ti o n s , w h i c h t a k e p l a c e d u r i n g

t h e e l e c t r o ly s i s o f a b r i n e s o l u t i o n , a r e c o m p l i c a t e d a n d

n o t e n t i r e ly k n o w n . F o r t h e t i m e b e i n g o n l y a s s um p t i o n s

c a n b e m a d e , b a s e d o n t h e p r o d u c t s t h a t c a n b e d e t e r-

m i n e d ( C 12 , C IO 2 , 0 3 , O H , O , C 1 O H , H 2 0 2 , 0 2 , H 2 ,

C O 2 ). T h e ra d i c al s O H , O a n d C 1 O H h a v e a v e r y s h o r t

l if e o w i n g t o t h e i r h i g h o x i d a t i o n p o t e n t i a l a n d t h e y a r ee i t h e r d e c o m p o s e d t o o t h e r o x i d a n t s ( C 12 , 0 2 , C 1 0 2 , 0 3 ,

a n d H 2 0 2 ) o r t h e y o x i d i s e o r g a n i c c o m p o u n d s ( d i r e c t

o x i d a t i o n ) . T h e p r i m a r y ( C 12 , 0 2 ) a n d s e c o n d a r y ( C 1 0 2 ,

0 3 , a n d H 2 0 2 ) o x i d a n t s t h a t a r e p r o d u c e d f r o m t h e

d e s t r u c t i o n o f r a d i c a l s h a v e q u i t e a l o n g l if e a n d a r e d i f -

f u s e d in t o t h e a r e a a w a y f r o m t h e e l e c tr o d e s c o n t i n u i n g

t h e o x i d a t i o n p r o c e s s ( i n d i r e c t o x i d a t i o n ) .

T h e d i r e c t e l e c t r o - o x i d a t i o n r a t e o f o r g a n i c p o l l u t a n t s

i s d e p e n d e n t o n t h e c a t a l y t ic a c t iv i t y o f t h e a n o d e ; o n

t h e d i f f u si o n r a te s o f o r g a n i c c o m p o u n d s i n th e a c t i v e

p o i n t s o f t h e a n o d e ; a n d o n t h e a p p l ie d c u r r e n t d e n s i ty

( A n t r o p o v , 1 9 7 7 ; P r e n t i c e , 1 9 9 1 ) . T h e i n d i r e c t e l e c t r o -

o x i d a t i o n r a t e i s d e p e n d e n t o n t h e d i f f us i o n r a t e o f se c -o n d a r y o x i d a n t s i n t o t h e s o l u t io n , t e m p e r a t u r e a n d t h e

p H . A n e f f e c ti v e p o l l u t a n t d e g r a d a t i o n i s b a s e d o n t h e

d i r e c t e l e c t r o c h e m i c a l p r o c e s s b e c a u s e t h e s e c o n d a r y

o x i d a n t s a r e n o t a b l e t o c o m p l e t e l y c o n v e r t a ll o r g a n i c s

i n t o w a t e r a n d c a r b o n d i o xi d e .

F r o m p r e v i o u s i n v e s t i g a t i o n s ( W i l k e t a l . , 198 7 ;

V l y s s i d e s e t a l . , 1 9 9 6 ) , i n a c i d s o l u t i o n s , o x y g e n , f r e e

c h l o r in e a n d m a y b e s o m e a m o u n t s o f o z o n e a n d

c h l o r i n e o x i d e s a r e t h e m a i n s e c o n d a r y o x i d a n t s a s

b y p r o d u c t s o f t h e d i re c t o x i d a t i o n p r o c e ss . I n m o d e r -

a t e a l k a l i n e s o l u t i o n s a c y c l e o f c h l o r i d e - c h l o r i n e - -

h y p o c h l o r i t e - -c h l o r i d e t a k e s p l a c e , w h i c h p r o d u c e s

O C I - , o x y g e n a n d s o m e a m o u n t s o f h y d ro g e n p e r o x id e

a n d m a y b e o z o n e . I n s t r o n g a l k a l i n e s o l u t i o n s t h e c y c l e

M A T E R I A L S A N D M E T H O D S

The la bo r a to r y p i l o t p lan t

T h e e x p e r i m e n t a l p l a n t c o n s i s t e d ( F i g . 1 ) o f t h e e l e c t ro -

l y ti c ce ll , t h e r e c i r c u l a t io n s y s t em , t h e p H - c o r r e c t i o n

s y s t e m a n d t h e c o o l i n g s y s t e m f o r t h e w a s t e w a t e r .

T h e e l e c t r o l y t i c c e l l

T h e e l e c t r o ly t i c c e ll c o n s is t e d o f t h e c a t h o d e , w h i c h w a s

a s t a i n le s s s t e el 3 0 4 c y l i n d e r o f 2 0 c m d i a m e t e r , a n d o f

t h e a n o d e , w h i c h w a s l o c a t e d i n t h e c e n t r e o f th e c y l in -

d e r a n d w h i c h w a s m a d e o f t it a n i u m a l l o y , m e a s u r i n g

4 8 c m i n l e n g t h a n d 2 . 5 4 c m i n d i a m e t e r , c o v e r e d b y p l a -

t i n u m a l l o y f o il a p p r o x i m a t e l y 0 . 2 5 m m t h i ck . T h e e l e c -

t r o d e s w e r e o p e r a t e d a t 1 5 v o l t s D . C . a n d 1 00 a m p e r e s .

T h e r e c i r c u l a t i o n s y s t e m

T h e r e c i r c u l a t i o n s y s t e m i n c l u d e d a v e s s e l o f 1 5 l i t r e s ,w h i c h c o n t a i n e d t h e w a s t e w a t e r t o b e t r e a t e d , a n d a

Table 2. Electrochemical reactions

A n o d ePr im ary e lec trochemical reac t ions

n 2 0 + M [ ] + C l - ~ M [CI OH- ] + H + + 2e -H20 + M [ ] ~ M [ O H - ] + H + + e -

Seco ndary e lec t rochemical reac t ion6 OC 1- + 3 H 2 0 - 6 e - ~ 3 / 2 0 2 + 6 H ÷ + 4 C 1 - + 2 C 1 0 3 -

C a t h o d ePr im ary e lec t rochemical reac t ions2 H 3 0 + + 2 e - ~ H2 + 2 H2 02 H2 0 + 2e -- -- ~ H2 + 2 O H -

Seco ndary e lec t rochemical reac t ionO C1- + H 2 0 + 2 e - ~ C l ~ + 2 O H -

Ox i da t i on r e a c t ionsI n a c l o s e d a node a r e a

R + M[OH-]- --~ M [] + RO + H + + e-R + M [ C I O H ] ~ M [ ] + R O + H + + C I - + e -

H 2 0 + M [ O H - ] - - - * M [ ] + 0 2 + 3 H + + 3 e -H2 0 + M[C1OH-] + C1- ~ C12 + M [] + 02 + 3 H ÷ + 4 e -

A wa y f r o m e l e c t rode sR + 0 2 + 2H ÷ ~ R O + H 2 0 - 2 e -

R + C 1 2- -* R C I + C I - - e -R + OH- -- -~ RO + H ÷ + 2 e -

R C1 + O H - ~ R O + C 1- + H + + e -

Equi l ib r ium reac t ionsC12 + 2 0 H - ~ H20 + O C I - + C I -

Page 3: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 3/6

Detoxification o f tannery waste liquors 14 9

v E

cool ing water

ca thodeSS-304

F

C

+ anode Pt /Ti

cool ing jacket

surge vessel

p p S ~ - - - - - - - ~ - ' \

I - N a OH -1

sampling

Fig . 1 . Expe r imenta l l ab ora to ry pi lo t p lant . C = e lec t ro ly t i c ce ll ; E = e lec tromag net ic va lve; P = rec ircu la t ing pump ; TI CR = tem-pera ture indica tor cont rol l e r recorder ; pH IR = p H indica tor recorder ; RIR = redo x indica tor recorder ; PP = per is tal ti c pump .

c e n t r i f u g a l p u m p ( P ) o f 4 0 l it re m i n - I f lo w r a t e , w h i c h

c o n t i n u o u s l y r e c i r c u l a t e d t h e r e a c t o r c o n t e n t s i n t o t h e

e l e c t r o l y t i c c e ll .

The p H correct ion system

T h e p H c o r r e c t i o n s y s te m c o n s is t e d o f a p H i n d i c a to r -

r e c o r d e r ( p H I R ) w h i c h c o n t i n u o u s l y m e a s u r e s t h e p H

c o n t e n t o f th e s u r g e v e s se l a n d w i t h t h e h e l p o f t h e

d o s i n g p u m p s P P - 1 a n d P P - 2 w h i c h s u p p ly H C L a n d

N a O H , r e s p e c t iv e l y , t h e p H i s k e p t c o n s t a n t a t 9 .0 .

Cooling system

T h e c o o l i n g s y s t e m i n c l u d e d a t e m p e r a t u r e i n d i c a t o rc o n t r o l l e r r e c o r d e r ( T I C R ) , a n e l e c t r i c v a l v e f o r t h e

w a t e r a n d a c o o l i n g w a t e r j a c k e t w h i c h w a s l o c a t e d i n

t h e r e a c t o r . T h e c y l i n d e r w a ll a n d t h e c o o l i n g j a c k e t

c o n s t i t u t e d t h e c a t h o d e . W h e n e v e r t h e t e m p e r a t u r e o f

t h e w a t e r e x c e e d e d 4 5 ° C , c o o l i n g w a t e r w a s c i r c u l a t e d

i n t h e j a c k e t , u n t i l t h e t e m p e r a t u r e r e t u r n e d t o t h e

d e s i r e d v a l u e .

T h e c h a n g e o f r e d o x p o t e n t ia l i n t h e r e a c t o r w as

c o n t i n u o u s l y r e c o r d e d b y a r e d o x i n d i c a t o r - r e c o r d e r

( R I R ) . T h e s a m p l e s f o r a n a l y s is w e r e d r a w n f r o m t h e

r e c i r c u l a t io n r e a c t o r .

Table 3 . C om pos i t ion of tannery waste l iquor (TWL ) used inex p er i m en t s

Charac ter i s t i cs Value (mg l i t re - I )

p H 4BOD5 1720C O D 8 5 4 0Tota l suspended sol ids 6200To tal dissolved sol ids 22 400To t a l c h r om i u m 67Sulfides 385Ch lorides 18 500To t a l phe no l i c c om p ou nds 91A m m on i u m n i t roge n 28 8Kje hda h l n i t r oge n 520

Alkal in i ty a s C a C O 3 1770Fats and oi ls 280

M a t e r i a l

T h e c o m p o s i t i o n o f th e T W L t h a t w a s u s ed i n all

e x p e r i m e n t s is s h o w n i n T a b l e 3 .

M e t h o d o l o g y

T h e e f f i c i e n c y o f t h e e l e c t r o l y t i c c e l l w a s s t u d i e d w h e n

p H a n d t e m p e r a t u r e r e m a i n e d s t a b l e a t 9 . 0 a n d 4 5 ° C ,

r e s p e c ti v e l y, d u r i n g t h e e x p e r i m e n t .

F o u r e x p e r i m e n t s u n d e r t h e s a m e c o n d i t i o n s w e r e

r u n , a n d t h e r e s u l t s p r e s e n t e d i n t h i s w o r k a r e t h e a v e r -

a g e o f th e f o u r s e p a r a t e m e a s u r e m e n t s .

E a c h e x p e r i m e n t w a s o f b a t c h o p e r a t i o n a n d i t s d u r a -

t i o n w a s 3 h . E v e r y 5 r a in s a m p l e s w e r e t a k e n f r o m t h er e a c t o r . S o l u b le C O D , B O D s , t o t a l s u s p e n d e d s o l id s

( T S S ) , su lf id e s , a m m o n i a , t o t a l K j e i d a h l n i t r o g e n ( T K N ) ,

t o t a l s o l u b l e c h r o m i u m , p H , r e d o x , c h l o r i d e s , c h l o r i n e

a n d t o t a l o x i d a n t s w e r e m e a s u r e d . A d d i t io n a l l y , s a m p l e s

w e r e t a k e n f o r t o t a l p h e n o l ic c o m p o u n d d e t e r m in a t i o n .

T h e C O D , B O D s , T S S , T K N , a m m o n i a , s u lf id e s a n d

f r e e c h l o r i n e a n a l y s i s w e r e c a r r i e d o u t a c c o r d i n g t o t h e

S t a n d a r d M e t h o d s f o r th e E x a m i n a t i o n o f W a t e r a n d

W a s t e w a t e r ( A P H A - A W W A - W P C F , 1 989). T h e

d e t e r m i n a t i o n o f o z o n e a n d t h e t o ta l o x i d a n t s e x c e p t fo r

c h l o r i n e w a s c a r r ie d o u t a c c o r d i n g t o W i lk ( 1 98 9 ). T h e

90008000

7000

6000

E 5 0 0 0

4000

8 3 000

2000

1000

0

time, minutes

Fig . 2 . Reduct ion of to ta l suspended sol ids ( - -F- I - - ) , COD( - - 0 - - ) a n d B O D s ( - - ~ - - ) d u r in g th e ele ct ro ly si s tr e a tm e n t .

Page 4: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 4/6

150 A. G. Vlyssides, C. J . Israi l ides

10090

~¢ 80e.,= 70~. 60

o 40o 30

~ 10

t ime, m i n u t e s

F i g . 3 . Conc e n t r a t i on o f t o t a l phe no l i c c om pou nds du r i ngelec t ro lysi s t rea tmen t as a fun ct ion o f time.

40 0

35 0

30O

o 250

r 200

~o 150o

10 o

50

0 - - It - ~ .~ . - 7 .~ .~ .7 . .7 .~ .7 .7 . ' -117 .7 .7 .~2 . . . . . .

t ime, m i n u t e s

Fig. 5 . Su l fides ( - - I -1 - - ) and to ta l so lub le chrom ium ( - - @ -- )reduct ion dur ing e lec t ro lysi s t rea tm ent .

t o t a l p h e n o l i c c o m p o u n d s w e r e m e a s u r e d b y t h e F o l i n -

C i o c a l t e u m e t h o d ( S l i n k a r d a n d S i n g l e t o n , 1 9 77 ) .

C h r o m i u m w a s d e t e r m i n e d b y a t o m i c a b s o r p t i o n u s i n g

a P e r k i n E l m e r ( m o d e l 2 3 8 0 ) a n a l y s e r .

R E S U L T S A N D D I S C U S S I O N

A s s h o w n i n F i g . 2 t h e T S S w e r e r e d u c e d b y o n l y

2 6 % ( f r o m 6 2 0 0 to 4 5 6 0 m g l i t r e - ~ ) d u ri n g t h e 3 h o f

e l e c tr o l y si s . T h i s i s a n i n d i c a t i o n o f t h e v e r y s l o w r a t e

o f h y d r o l y s i s , a t l e a s t d u r i n g t h e f i r st h o u r s o f e l e c-

t r o l y s i s .

O n t h e o t h e r h a n d , t h e r e w a s a g r e a t d e c r e a s e o f

B O D 5 ( F i g . 2 ) , f r o m 1 7 2 0 t o 5 9 0 m g l i t r e - l ( 6 5 % d u r i n g

t h e 3 h o f e l e c t r o l y s i s ) .

T h e C O D w a s r e d u c e d e v e n f u r t h e r f r o m 8 5 4 0 t o1 3 70 m g l i tr e - I , a s s h o w n i n F i g . 2 , a r e d u c t i o n o f a b o u t

8 4 % d u r i n g t h e 3 h o f e le c tr o ly s is . T h e C O D / B O D r a t io

w h i c h i s a n i n d e x o f t o x i c i t y d u r i n g b i o l o g i c a l tr e a t -

m e n t s w a s i m p r o v e d c o n s i d e r a bl y a n d d r o p p e d f r o m 5

t o 2 .3 .

P h e n o l i c c o m p o u n d s w e r e d e s t r o y e d v e r y q ui c k ly , a s

s h o w n i n F ig . 3 . T h e y w e r e r e d u c e d b y 9 5 . 5 % d u r i n g

t h e f i rs t 3 0 m i n o f t h e e l e c tr o l y si s . T h e r e d u c t i o n o f

a m m o n i u m n i t r o g e n w a s a l so v e r y fa s t. A s s h o w n i n

F i g . 4 , i t w a s r e d u c e d b y 9 9 % d u r i n g t h e f i rs t 6 0 m i n o f

t h e e l e c t r o l y s is .

600 - -

5OO

400

j 3OO

8 20O

100

0 . . . . . . . . . _ ,,. ~ . . .L. JL __.. . ._ : : ;.~. .~t._L

~O o o

time, minutes

F i g . 4 . T o t a l K j e l d a h l n i t r o g e n ( - - D - - ) , a m m o n i a ( - - Q - - )r e du c t i on a nd n i t r a t e s ( - - A - - ) p r odu c t i on du r i ng e le c tr o ly s ist r e a t m e n t .

T h e T K N w a s a l m o s t c o m p l e t e ly d e g r a d e d ( 9 8 %

r e d u c t i o n ) d u r i n g t h e 3 h o f e l e c t r o l y s i s ( F i g . 4 ) . T h e

s a m e f i g u r e s h o w s t h a t a n i n c r e a s e o f n i t r a te s w a s

o b s e r v e d w h i ch s t a r t ed t o b e p r o d u c e d a f t er 3 0 m i n o f

e l e c tr o l y si s , w h e n t h e a m m o n i u m n i t r o g e n w a s d e p l e t e da n d r e a c h e d i ts h i g h e s t c o n c e n t r a t i o n (2 1 m g l i t r e - ~ ) a t

1 20 m i n . T h e n i t w a s g r a d u a l l y r e d u c e d t o 1 1 m g l i tr e -

a t t h e e n d o f t h e 3 h o f e l e c t r o l y s i s .

T h e r e w a s a l s o a v e r y r a p i d r e d u c t i o n o f t h e s u lf id e s

( F i g . 5 ) w h i c h w e r e r e d u c e d f r o m 3 8 5 m g l i t r e - 1 t o n i l ,

d u r i n g t h e f i r s t 25 m i n o f t h e e l e c t r o l y s i s .

I n t h e e n v i r o n m e n t , c h r o m i u m i s f o u n d i n t h e f o r m

o f a t r iv a l e n t a n d a m u c h m o r e t o x i c s ix - v a l e n t a t o m .

I n t h e T W L c h r o m i u m i s f o u n d i n t h e t r i v a l e n t f o r m .

I t s s a l t s a nd ox i de s ( Cr C13 , Cr2(SO4)3, C r 2 0 3 ) a r e

e a s i l y r e m o v e d d u e t o t h e i r l o w s o l u b i l i t y i n w a t e r , i n

c o n t r a s t w i t h t h e s i x - v a le n t c h r o m i u m s a lt s a n d o x i d e sw h i c h a r e w a t e r s o l u b l e . D u r i n g t h e s t r o n g o x i d a t i v e

c o n d i t i o n s o f e l e c tr o l y s is th e t r i v a l e n t c h r o m i u m w a s

c o n v e r t e d t o s i x - v a l e n t . A s a r e s u l t , i t r e m a i n s i n s o l u -

t i o n w h i l e t h e t o x i c i t y o f t h e s o l u t i o n i n c r e a se s .

T h e r e w a s a n i m p r e s s i v e d e c r e a s e i n th e c o n c e n t r a t i o n

o f s o l u b le c h r o m i u m w h i c h w a s n u l l if ie d d u r i n g t h e f i rs t

1 0 - 1 5 r a i n o f e l e c t ro l y si s . T h e r e d u c t i o n o f c h r o m i u m

c o u l d p r o b a b l y b e c o n n e c t e d w i t h t h e p a r a l l e l r e d u c t i o n

o f s u l fi d e s a c c o r d i n g t o t h e f o l l o w i n g r e a c t i o n s ( J o r g e n -

s e n a n d J o h n s e n , 1 9 89 ):

200001800016000

- - 1400012000100008000

8

400020OO

0 + -H -H- ÷ H- -~ ~ ~ ~ + ~- - '~c - t I I t I I I ~ -H -+ + -~- + + q -+ + -

time, minutes

F ig . 6 . Ch l o ri de s ( - - I 7 - - ) , t o t a l c h lo r i ne ( - - @ - - ) a nd o t he roxidants ( - - /k - - ) changes dur ing e lec t ro lys i s t rea tment .

Page 5: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 5/6

Detoxi ficat ion of tannery waste liquors 151

90

80

< 70

60

,~ 50

m 4 0©o 30

~ 20

10

time, minutes

Fig. 7. An od e efficiency dur ing electrolysis t rea tme nt .

25 0

..~ 200O

o 100

50

o

time, minutes

Fig . 8 . Ene rgy cons ump t ion dur ing e lec tro lys is t rea tm ent .

S- + 02 --~ S02 + e-

S02 + 1120 --~ H2S03

3H2S03 + 2H2Cr04 --~ Cr2(S04)3 + 51120

T h e a b o v e c o n s i d e r a t i o n s m a y b e c o n f i rm e d b y :

( a ) r e p e t i t i o n o f t h e e x p e r i m e n t u n d e r t h e s a m e c o n -

d i t i o n s w i t h o u t t h e p r e s e n c e o f s ul fi d es w h i c h

w e r e r e m o v e d b y n i t r o g e n s t r i p p i n g . O n l y v e r y

l i t t l e c h r o m i u m w a s r e m o v e d ( 1 5 % ) a n d t h e

c h r o m i u m w a s p r e s e n t i n t h e s o l u t i o n i n i t s m a i n

f o r m C r ( V I ) ;

( b ) a n a l y s is o f t h e p r e c i p i t a n t s h o w e d t h a t c h r o m i u mw a s p r e s e n t as Cr2(504)3;

( c ) a f t e r 1 h o f e l e c t r o l y s is s o l u b l e C r ( V I ) h a s s t a r t e d

t o a p p e a r ( F i g . 5 ) r e a c h i n g 5 m g i i tr e - t a f t e r 3 h

o f e l e c tr o l y si s . T h e r e s o l u b i l i s a t io n o f c h r o m i u m

w a s p r o b a b l y d u e t o t h e o x i d a t i o n o f p r e c ip i t a n t s

a n d t o a n i n a b i l i t y t o r e d u c e C r ( V I ) t o C r ( I I I )

d u e t o t h e a b s e n c e o f su l fi d e s.

P r o d u c t i o n o f o x i d a n t s

F i g u r e 6 s h o w s t h e c o n c e n t r a t i o n s o f c h l o r i d e i o n s a n dt o t a l c h l o r i n e , a s w e ll a s o f o t h e r o x i d a n t s a s a w h o l e .

T h e c o n c e n t r a t i o n o f c h l o r id e s w a s r e d u c e d i n t h e fi rs t

1 0 m i n f r o m 1 8 5 4 0 m g li t r e - I t o 1 2 3 0 0 m g l i t r e - 1 a n d

w a s s t a b i l i s e d a t t h i s c o n c e n t r a t i o n d u r i n g t h e w h o l e

p r o c e s s o f e le c t ro l y s is . T h e c h l o r i n e w a s i n c r e a s e d d u r -

i n g t h e f ir s t 1 0 r a i n f r o m z e r o t o 6 3 0 0 m g l i t r e - I a n d

r e m a i n e d s t a b l e t h e r e a f t e r . T h i s p r o v e s t h e e x i s t e n c e o f

t h e t h e o r e t i c a l c y c l e , c h l o r i d e s - c h l o r i n e - c h l o r i d e s . T h e

o t h e r o x i d a n t s , e x c e p t f o r c h l o r i n e , i n c r e a s e d r a p i d l y i n

t h e f ir s t 1 0 r a i n f r o m z e r o t o 5 8 4 0 m g l i t r e - 1 a n d t h e n

c o n t i n u e d t o i n c r e a s e w i t h a r a t e o f 6 .8 m g l i t r e - I r a i n - ~ .

T h e p r e s e n c e o f 0 3 a n d H 2 0 : w a s a ls o d e te c t e d.

A n o d e e f f i c i e n c y

F i g u r e 7 s h o w s t h e a n o d e e f f ic i e n cy o f t h e e l e c t r o d e

m e a s u r e d i n K g C O D r e m o v e d p e r h o u r p e r m 2 o f

a n o d e s u r f a c e a n d p e r a m p e r e a p p l i e d ( k g C O D ~ h - I

m - Z A - I ) . W i t h t h e s t a r t o f t h e e l e ct r o ly s i s t h e e ff i-

c i e n c y w a s 8 1 k g C O D r h - 1 m - 2 A - I w h i c h i s c o n s i d -

e r e d v e r y s a t i s f a c t o r y ( C o m n i n e l l i s , 1 9 9 2 ) , b u t i n t h e

n e x t 1 5 m i n i t w a s r e d u c e d to 6 . 8 k g C O O t h -1

m - 2 A - 1 . T h e n i t c o n t i n u e d t o b e r e d u c e d r e a c h i n g

1 . 8 k g C O D ~ h J m - 2 A - 1 a t t h e e n d o f t h e 3 h . T h e s e

r e s u l t s c a n n o t b e c o n s i d e r e d s a t i s f a c t o r y , a f t e r t h e

1 5 m i n o f e l e c t r o l y s i s. T h i s i s c l e a r l y s e e n i n F i g . 8 ,w h e r e t h e d e m a n d s i n en e r g y c o n s u m p t i o n a r e s h o w n .

T h e g r a d u a l d e c r e a s e o f e l e c t r o d e e f fi c ie n c y i n d i c a t e s

t h e i n c r e a s in g d i f fi c u lt y fo r o x i d a t i o n o f r e s i d u a l

o r g a n i c s i n t h e w a s t e .

E n e r g y c o n s u m p t i o n

F i g u r e 8 s h o w s t h e e n e r g y d e m a n d s v e r s u s ti m e i n th e

e l e c t r o l y s i s s y s t e m . D u r i n g t h e f ir s t 1 0 m i n o f e l e c t r o l y -

s i s t h e e n e r g y c o n s u m p t i o n w a s f a i r l y l o w ( f r o m 4 . 8 t o

1 1 .0 K w h p e r k g C O D r ) b u t t h e n i n c r e a s e d a b r u p t l y t o

5 8 K w h p e r k g C O D r . L a t e r , a l t h o u g h a t a s lo w e r r a t e,

t h e e n e r g y c o n s u m p t i o n c o n t i n u e d t o i n c re a s e r ea c h i n g

2 0 0 K w h p e r k g C O D r r e n d e r i n g u n f a v o r a b l e t h e ap p l i-c a t i o n o f t h e e l e c t r o ly t i c o x i d a t i o n f o r t h e c o m p l e t e

t r ea t m e n t o f T W L .

Ta ble 4 . Eff i c iency o f e l ec tro lys i s for the f ir st 3 0 m in o f e l ec tro lys is

Du r a t i on o f So l u b le CO D To t a l phe no l i ce lect ro lysi s reduc t ion com pou nds reduct ion(min) (%) (% )

Am mo nium Sul fides Soluble chrom iumni t r oge n r e du c t ion r e du c t i on r e du c t ion

( % ) ( % ) ( % )

C O D / B O Drat io

5 20.0 27.4l0 38.7 40.615 47.0 67.020 48.73 80.2

25 50.4 93.430 52.0 95.6

19.4 28 .5 85.0 4 .9627.0 63.1 98.5 4.0034.7 84.4 100 4.0042.0 98 .7 - - 4 .00

49.6 100 - - 3 .8464.5 100 - - 3 .70

Page 6: Detoxification of Tannery Waste Liquors With an Electrolysis System

8/3/2019 Detoxification of Tannery Waste Liquors With an Electrolysis System

http://slidepdf.com/reader/full/detoxification-of-tannery-waste-liquors-with-an-electrolysis-system 6/6

152 A. G . V l y s s i de s , C . J . I s r a i l i de s

C O N C L U S I O N S

T h e e l e c t r o l y t ic o x i d a t i o n a s a n i n t e g r a t e d s o l u t i o n f o r

t h e t r e a t m e n t o f T W L d o e s n o t s e e m t o b e fe a si b le d u e

t o h i g h e n e r g y d e m a n d s . H o w e v e r , t h e a p p l ic a t i o n o f

e l e c t ro l y s i s a s a p r e t r e a t m e n t a n d f o r r e s i d e n c e t i m e u p

t o 3 0 m i n s e e m s t o b e v e r y e ff ic i en t , m a i n l y f o r t h e

d e t o x i fi c a ti o n o f T W L .I n t h e f i r s t 3 0 m i n o f e l e c t r o ly s i s th e f o l l o w i n g c o u l d

b e a c h i e v e d ( T a b l e 4 ) :

1 . r e d u c t i o n o f p h e n o l i c c o m p o u n d s b y 9 5 % ;

2 . r e d u c t i o n o f a m m o n i u m n i t r o g e n by 6 4 .5 % ;

3 . c o m p l e t e o x i d a t i o n o f s ul fi d es ;

4 . c o m p l e t e s e d im e n t a t i o n o f c h r o m i u m ;

5 . r e d u c t i o n o f C O D b y 5 2 % ;

6 . i m p r o v e m e n t o f b i o d e g r a d a b i l it y i n d e x ( C O D /

B O D ) f r o m 4 . 9 6 t o 3 .7 .

T h e p r e t r e a t m e n t o f T W L i s f a v o u r e d b y t h e f a c t t h a t

i t c o n t a i n s h i g h a m o u n t s o f N a C I : 0 . 2 5 - 4 . 6 % .

R E F E R E N C E S

A P H A - A W W A - W P C F ( 1 9 8 9 ) Standard M ethods for theExaminat ion of Water and Wastewater , 17th edn. Amer icanPu b l i c He a l t h A s s oc i a ti on , Wa s h i ng t on , D C.

A n t r opov , L . ( 1977) Theoretical Electrochemistry, 1st edn.Mi r , Mos c ow.

Comninell is , C. (1992) Th e e lec t rochemical t rea tme nt ofwastewater , gw a 1 1 , 7 9 2 - 7 9 7 .

ESCA P ( 198 2) Report on Industrial Pollution Control Guide-lines Part VII." Tanning Industry. Uni t e d N a t i ons , Ba ngk ok .

G r e ns c how , E . a nd H e ge m a nn , W. ( 1993) A na e r ob i c t r e a t m e n to f t a nn e r y wa s t e wa t e r , gw f W as s e r Abw as se r 134, 262-268.I s ra i l ides , C. J . , Vlyss ides , A . G. , Mourafe t i , V . N . and Kar -

vouni , G . (1997) Ol ive o i l was tewater t rea tment wi th theuse of an electrolysis system. Bioresource Technology (inpress).

Jochimsen, J . C. , Jekel , M. R. and Hegemann, W. (1996)Com b i ne d ox i da t i ve a nd b i o log i c a l t r e a t m e n t fo r s e pa r a t e ds t r e a m s o f t a n ne r y wa s t e wa t e r . Proceedings of the 2nd Spe-cialized Conference on Pretre atmen t of Industrial Waste-waters. I A W Q, A t he ns , pp . 404 -412 .

Jo r ge ns e n , S . E . a nd Johns e n , I . ( 198 9) Re m ova l o f he a vymetals. In Principles o f Environmental Science a nd T echnol-ogy, e ds E . S . Jo r ge ns e n a nd I . Johns e n , 2nd e dn , pp . 3 8 5 -386. Elsevier.

Ka ul , S . N . and Szpryoko wicz, L. (1996) Biological process asa pre t rea tment for e lec t rochemical ox ida t ion. A case s tudyfo r c l u s t e r o f t a nne ri e s f r om a c om m on e ff lu e n t t re a t m e n tplant . Proceedings o f the 2nd Specialized Conference onPretrea tment o f Industrial Wastewaters. I A W Q, A t he ns , pp .386-395.

Ma n t za v i nos , D . , La u e r , E . , He l l e nb r a nd , R . , L i v i ngs ton , A .G. and Metca i fe , I . S . (1996) The wet ox ida t ion as a pre-t r e a t m e n t m e t ho d fo r wa s te wa te rs c on t a m i na t e d b y b i o r e -sistant organics. Proceedings of the 2nd SpecializedConference on Pretrea tment o f Industrial Wastewaters.IAWQ, Athens , pp . 209-216.

Naumczyk, J . , Szpyrkowicz, L. , De Faver i , D. M. and Zi l l ioG r a nd i , F . ( 1996) E l e c tr oc he m i c a l t r e a t m e n t o f t a nne r ywastewater conta in ing high s t rength pol lu tant s . TransI C h e m E 74(P ar t B) , 59-68.

Prent ice , G . (1991) Electrochemical Engineering Principles, 1stedn. Prent ice Hal l , NJ.

Sl inkard , K. and Single ton, V . (1977) Tota l phenol analys i s :

a u t om a t i on a nd c om pa r i s on wi t h m a nu a l m e t hods . Ameri -can Journal o f Enol. Vitic. 2,8, 49- 55 .Sykes , R. U and Corning, D. R. (1987) Pol lu t ion abatement

a nd c on t r o l i n l e a t he r i ndu st r y , indu s t r y a nd e n v i r onm e n t .U N E P / I E O 10(2), 9-22.

Szpryokowicz, L. and Zi l l io Grandi , F . (1994) Appl ica t ion ofe lec t rochemical processes for t ann ery was tewa ter t rea tment .Toxicolog y and Envirnonmental Chem istry 44, 183-220.

Szpryokow icz, L. and Zi l l io Grand i , F . (1995) Elec t rochem icalt r e a t m e n t o f t a nne r y wa s t e wa t e r u s i ng T i / P t a nd T i / P t / I relectrodes. Water Research 29(2), 517-524.

Tsotsos , D. (1986) Tanner ies . A shor t survey of the methodsa pp l i e d fo r wa s t e wa t e r t r e a tm e n t . Water Science and Tech-nology 18, 69-76.

Vlyssides, G . A . , I s ra i lides, C. J . , Loizido u , M. , K arvo uni , G .

and Mo urafe t i , V . (1996) Elec t rochem ical t rea tme nt ofvinasse from beet molasses. Proceedings of the 2nd Special-ised Conference on P retreatm ent o f Industrial Wastewaters.IAWQ, Athens , pp . 522-529.

Wi ik , I . J . , Al tmann, R. S . and Berg, J . D. (1987) Ant imicro-b ial ac t iv i ty of e lec t ro lyzed sa l ine solu t ions . The Science ofthe T otal Environment 63, 191-197.

Wi lk , I . J . (1989) Econ omic adva ntages of an e lec t ro lysi s sys-tem for pu lp b leaching. Proceedings of the InternationalSym posium on W ood and Pulping Chemistry. T A P P I ,A t l a n t a , G A , pp 13 5 -13 7 .