design data sheet (10 2015)

Upload: muradashour

Post on 21-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Design Data Sheet (10 2015)

    1/42

    University of TripoliFaculty of Engineering

    Aeronautical Engineering

    Department

    Mr. Adel Ali Kurban

    9/30/2015

    AERONAUTICAL ENGINEERS

    DATASHEETS

    AE 465 Aircraft Design

  • 7/24/2019 Design Data Sheet (10 2015)

    2/42

  • 7/24/2019 Design Data Sheet (10 2015)

    3/42

    - 1 -

    1 Weight Estimation

    1.1 Initial Weight Analysis

    tfocrewPLFETO WWWWWW ++++= (1.1)

    tfocrewEOE WWWW ++= (1.2)

    TOtfotfo WMW = (1.3)

    Mtfo- Relationship Wtfoand WTO(usually around 0.005)

    FresFusedF WWW += (1.4)

    FusedresFres WMW = (1.5)

    Mres - The ratio of reserve fuel and fuel required for the mission

    PLFOETO WWWW ++= (1.6)

    B

    AW

    W

    =)(log

    E

    TO

    10 (1.7)

    See Table 1.7 for A and B values.

    =

    =

    +=ni

    i i

    i

    TO

    ffW

    W

    W

    WM

    1

    11 (1.8)

    TOffFused WMW = )1(

    (1.9)

    TOffresF WMMW += )1)(1( (1.10)

    Piston-Propeller AircraftEndurance

    =

    +1

    ln3751

    i

    i

    ltrltrP

    P

    ltr

    ltrW

    W

    D

    L

    cVE

    (1.11)

    ltrltrP

    P

    ltrltr

    D

    L

    c

    VE

    i

    i

    eW

    W

    +=

    375

    1

    (1.12)

    Range

    =

    +1

    ln375i

    i

    crcrP

    Pcr

    W

    W

    D

    L

    cR

    (1.13)

    crcrP

    P

    cr

    D

    L

    c

    R

    i

    i eW

    W

    +

    =375

    1

    (1.14)

  • 7/24/2019 Design Data Sheet (10 2015)

    4/42

    - 2 -

    Jet AircraftEndurance

    =

    +1

    1

    i

    i

    ltrltrj

    ltrW

    Wln

    D

    L

    cE

    (1.15)

    (

    ltr

    ltrltrj

    D

    L

    Ec

    i

    i eW

    W

    +

    =1

    (1.16)

    Range

    =

    +1i

    i

    crcrj

    crW

    Wln

    D

    L

    c

    VR

    (1.17)

    crcrj

    cr

    D

    L

    c

    V

    R

    i

    i eW

    W

    +

    =1

    (1.18)

    Table 1.1 Recommendation Values for WPLand WCrew

    Pay load Weight Short /medium Long distance

    Passenger Crew member Passenger Crew member

    Weight per passenger 190 -200 Ibs 190-200 Ibs 190-200 Ibs 190-200 IbsWeight per Baggage 30 Ibs 30 Ibs 40 Ibs 40 Ibs

    Military 200 Ibs 200 Ibs

    Table 1.2Recommendation Values for WTO/WPL

    Airplane Type WTO/WPL

    Homebuilt 2-8

    Single Engine 3-6

    Twin Engine 2-5

    Agricultural 2-3

    Business Jets 3-5

    Regional Turboprops 3-4

    Transport Jets 3-5

    Military Trainers

    Fighters 10-18Military Patrol, Bombers, and Transports 3-6

    Flying Boats, Amphibious and Float Airplanes 2-4

    Supersonic Cruise -

  • 7/24/2019 Design Data Sheet (10 2015)

    5/42

  • 7/24/2019 Design Data Sheet (10 2015)

    6/42

    - 4 -

    Table 1.6Value for L/D, Cj,pand for Cp for Cruise

    Aircraft Type:

    Cruise

    L/D Cj Cp p

    lbs/lbs/hr lbs/lbs/hr

    1 Homebuilt 8-10 0.6-0.8 0.72 Single Engine 8-10 0.5 -0.7 0.8

    3 Twin Engine 8-11 0.5 -0.7 0.82

    4 Agricultural 5-7 0.5 -0.7 0.82

    5 Business Jets 10-12 0.5-0.9

    6 Regional TBPs 11-13 0.4 - 0.6 0.85

    7 Transport Jets 13-15 0.5 -0.9

    8 Military Trainers 8-10 0.5-1.0 0.4-0.6 0.82

    9 Fighters 4-7 0.4-1.4 0.5-0.7 0.820

    10 Mil.Patrol Bomb. Transport 13-15 0.5-0.9 0.4-0.7 0.820

    11 Flying Boats, Amphibious Float

    Airplanes

    10-12 0.5-0.9 0.5-0.7 0.820

    12 Super Sonic Cruise 4-6 0.7-1.5

    Table 1.7 Regression coefficient off A and B

    Airplane Type A B

    Homebuilt: Personal Fun and

    transportation

    0.3411 0.9519

    Scaled fighters 0.5542 0.8654

    Composites 0.8222 0.8050

    Single Engine Propeller Driven -0.1440 1.1162

    Twin Engine Propeller Driven 0.0966 1.0298

    Twin Engine Composites 0.1130 1.0403

    Agricultural -0.4398 1.1946

    Business Jets 0.2678 0.9979

    Regional Turboprops 0.3774 0.9647

    Transport Jets 0.0833 1.0383

    Military Trainers: Jets 0.6632 0.8640

    Turboprops -1.4041 1.4660

    Turboprops without item No.2 0.1677 0.9978

    Piston/Propellers 0.5627 0.8761

    Fighters: Jets ( + external load ) 0.5091 0.9505

    Jets (clean) 0.1362 1.0116

    Turboprops (+ external load) 0.2705 0.9830

    Military Patrol,

    Bomber &

    Transport:

    Jets -0.2009 1.1037

    Turboprops -0.4179 1.1446

    Flying boats, Amphibious, Float Airplanes 0.1703 1.0083Supersonic Cruise 0.4221 0.9876

  • 7/24/2019 Design Data Sheet (10 2015)

    7/42

    - 5 -

    1.2 Weight Analysis methods1.3 Statistical Weight Estimation MethodsStatistical Aircraft Component Methods

    Table 1.8 Approximate Empty Weight Build-up

    Group Transports

    &

    Bombers

    Fighters General

    aviation

    Group [Ib] CG location ofgroup

    Wwing 10.0 9.0 2.5 SEXPO_Wing[ft2] 40% MAC

    WH-tail 5.5 4.0 2.0 SEXPO_H_tail[ft2] 40% MAC

    WV-tail 5.5 5.3 2.0 SEXPO_V_tail[ft2] 40% MAC

    WFuselage 5.0 4.8 1.4 SEXPO_H_tail[ft2] 40-50%

    Fuselage length

    WLand_gear 0.043 .033

    0.045 Navy

    .057 WTO[Ib]

    WNose 0.15 0.15 0.15 WLand_gaer[Ib]At point of

    attachment

    WMain 0.85 0.85 0.85 WLand_gear[Ib] At point ofattachment

    Winstalled_engine 1.3 1.3 1.4 WEngine[Ib] 50% of enginelength

    Wmise 0.17 .17 .10 WTO[Ib] 40-50%Fuselage length

    Table 1.9 Reduction of weight due to use of new materials or new Technology

    Structural Component WEnew/ WEold

    Composites Al-Li

    Primary

    Structure Fuselage 0.75-0.85 0.90

    Wing, Vertical Tail, Canard or Horizontal Tail 0.75 0.90

    Landing Gear 0.88 0.90

    Secondary

    Structure Flaps, Slats, Access Panels, Fairings 0.70 0.90

    Interior Furnishing 0.50 N.A

    Air Induction System 0.70 0.90

  • 7/24/2019 Design Data Sheet (10 2015)

    8/42

    - 6 -

    Table 1.10 Mass of Some miscellaneous components

    No. Component Type, description, details Mass (Ib)

    1 Seat Flight deck civil 53-62

    2 Fighter pilot (ejection seat) 209-243

    3 Passenger economy 29-35

    4 Passenger tourist 44-62

    5 Troop 9-13

    6 Missile and bomb ACM, AGM-129 2756

    7 AGM-130 2917

    8 HARM, AGM-88 560

    9 Harpoon, AGM-84A 1169

    10 Hell fire, AGM-114A 101

    11 Maverick, AGM-65A 463

    12 Penguin 2, AGM-119B 849

    13 Sea Eagle 1323

    14 Sidewinder, AIM-9J 192

    15 Sparrow, AIM-7F 501

    16 Stinger, FIM-92 35

    17 TOW, BGM-71A/B 42

    18 Standard, AGM-78 1356

    19 SLAM, AGM-84E 1389

    20 Stick, yoke, wheel Side-stick 0.22

    21 Stick 1

    22 Yoke, wheel 2

    23 Parachute Civil 9

    24 Military 18

    25 Instruments

    Compass, tachometer, altimeter, airspeed indicator,

    clock, rate of climb, bank angle indicator,accelerometer, GPS, etc.

    1-2

    26 Gyroscope (x,y,z) 1-4

    27 Display 2-9

    28 Lavatories Short-range aircraft 0.13N1.3

    29 Long-range aircraft 0.5N 1.3 0.5 N1.4

    30 Business jet 1.7N 1.3 1.7 N1.5

  • 7/24/2019 Design Data Sheet (10 2015)

    9/42

    - 7 -

    2 Constraint Analysis

    Rearranged Equations

    The referenced equations are rearranged into a format of:

    =

    S

    W

    P

    W

    W

    T

    TOTOTO

    for

    2.1

    Stall SpeedFAR 23 Single engine airplane Vs< 61 kt at WTO

    Multi engine airplane with WTO61kt ( unless meet climb

    gradient criteria Par 23.67

    FAR 25 No requirements for min Vs

    CLVS

    WTOmaxS

    2

    2

    1=

    TO

    (2.1)

    2.2

    Take-off Distance, FAR 23Propeller driven

    =

    S

    WCLTOP

    P

    W

    TO

    TOmax

    TO

    123

    (2.2)

    Jet driven:

    =

    S

    W

    W

    T

    TOTOmaxTOFL

    TO

    CLS.02960

    1 (2.3)

    Other necessary equations are: speed)off-liftcalledaslo(liftoff@

    211

    .

    CLCL TOmaxTO = (2.4)

    2

    2323 009094 TOP.TOP.STOG += (2.5)

    2

    2323 014901348 TOP.TOP.STO += (2.6)

    And units onhp

    are

    ft

    lbTOP

    f

    2

    2

    23

    2.3 Take-off distance, FAR 25

    Jet driven:

    SCL

    S

    W

    W

    T

    TOFLTOmax

    TO

    TO

    .

    =

    537

    (2.7)

    Propeller driven:

    =

    S

    W

    SCL

    P

    W

    TO

    TOFLTOmax

    TO .93112

    (2.8)

    Using

    PT

    =

    2000

    5750 & 922000

    5750 .P

    T =

    = (2.9)

  • 7/24/2019 Design Data Sheet (10 2015)

    10/42

    - 8 -

    2.4 Landing Distance

    FAR 23

    2265.0SLLG VS = (2.10)

    LGL s.s = 9381 (2.11)

    SCLkS

    WLh@

    LTO

    max

    .

    LISA.L

    =

    7772 (2.12)

    When WkW TOLL = Note that units for 0.265 in SLGequation are ft/kt

    2

    FAR 25

    22 507030 SLAFL V.V.S == (2.13)

    23042060 SLFLL V.S.S == (2.14)

    SCLkS

    WFL

    LTO

    max

    .

    L

    =

    81342 (2.15)

    Note that units for 0.3 in SFLequation are also ft/kt2

    2.5 Climb

    FAR 23Rate-of-Climb (RC) [MAXIMUMnotBest],

    +

    S

    W

    TO

    kRCRCP

    kRCp

    P

    W

    TO

    (2.16)

    ( )

    =

    lb

    hp

    ,

    minft/RCRCP

    00033 (2.17)

    define

    =

    CD

    C/

    L

    max

    kRC

    23

    19

    (2.18)

    eACD3CLomaxRC

    = (2.19)

    CDRC max= 4CDo (2.20)

    In addition, for max RC, i.e.

    ( )

    CDo

    /

    eA/

    .

    CD

    C/

    L

    max

    41

    43

    3451

    23

    . =

    (2.21)

  • 7/24/2019 Design Data Sheet (10 2015)

    11/42

    - 9 -

    Climb Gradient (CGR

    +

    S

    Wk

    CC

    CGR

    C.

    P

    W

    D

    L

    Lp

    3

    1

    1

    9718

    (2.22)

    WHERE W = k WTOso at take-off k = 1 and at landing select kL

    Units for 18.97

    hpftlb

    2

    2

    for minimum CGR use CL=CLmax-0.2 or CL@ (CL/CD)max

    FAR 25If propeller driven or turbo-prop, use FAR 23 CGR in equation 2.18 with appropriate

    power, flap and gear settings. If the aircraft is multi-engine, then the power loading

    for One Engine Inoperative (OEI) must be increased by multiplying as shown below.

    ( )

    =

    N

    N

    P

    W

    P

    W

    OEI

    1

    (2.23)

    Jet aircraft, One Engine Inoperative (OEI)

    +

    =

    CGR

    D

    L)N(

    N

    W

    T 1

    1 (2.24)

    WHERE N = the number of engines

    Jet aircraft, All Engines Operating (AEO)

    CGR

    D

    LW

    T+

    =

    1

    (2.25)

    AND T/W and L/D are for the flight conditions being analyzed! If landing then

    substitute W = kL WTO for landing condition to calculate CL (and then CD from

    appropriate drag polar) use

    CV

    VC L

    S

    TOmax

    TO

    specblimc

    L 2

    2

    = (2.26)

    Since

    VCL 2

    1

    2.6 Time-to-climbFAR 25

    +=

    D

    LV

    RC

    W

    T o

    TO

    1

    60

    (2.27)

    RCo inmin

    ft , V insec

    ft

  • 7/24/2019 Design Data Sheet (10 2015)

    12/42

    - 10 -

    2.7 Cruise Speed,FAR 23,

    Propeller Driven Aircraft

    3

    S

    PIP

    = (2.28)

    IP

    S

    W

    P

    W3

    =

    (2.29)

    Conversion from cruise to sea level take-off conditions

    None turbocharged

    TOPcr

    TO S

    W

    k

    ts

    P

    W

    I

    =

    3

    (2.30)

    Wcr= kcr WTO and ts = throttle setting For turbocharger =1

    = 77.3 (2.31)

    = 0.8 0 .85For retractable gear, cantilever wing

    VIP

    =

    34

    2 (2.32)

    For fixed gear, cantilever wing

    VIP

    =

    31

    2 (2.33)

    For biplane, strutted monoplane, with fixed wing

    VIP

    =

    3000

    22 (2.34)

    NOTEs (1) in Eqn (2.27-2.30) the velocity is mph!

    In Eqn (2.27) the constant should be 77.35 and with units P (hp), W (lbs)

    and S (ft2) the velocity, V, will be in (ft/sec).

    FAR 25

    +=

    eAq

    Dq

    ts

    S

    Wk

    S

    W

    C

    W

    TTO

    cr

    TO

    TO

    o

    2

    1

    (2.35)

    Again since Wcr= kcr WTO and assuming Tcr= ts TTO

    cr

    TO

    TO

    cr

    crTO T

    T

    W

    W

    W

    T

    W

    T

    =

    (2.36)

    Units alert: q must have units of lb/ft2! (i.e. in slugs/ft3)For turbo-props use the (without turbo) Eqn (2.26) above.

  • 7/24/2019 Design Data Sheet (10 2015)

    13/42

    - 11 -

    Table 2.1 Typical Values for Maximum Lift Coefficients for Clean, Takeoff and

    Landing

    Airplane Type CLmax CLmaxTO CLmaxL

    Homebuilt 1.2 - 1.8 1.2 - 1.8 1.2 - 2.0

    Single Engine 1.3 - 1.9 1.3 - 1.9 1.6 - 2.3Twin Engine 1.2 - 1.8 1.4 - 2.0 1.6 - 2.5

    Agricultural 1.3 - 1.9 1.3 - 1.9 1.3 - 1.9

    Business Jets 1.4 - 1.8 1.6 - 2.2 1.6 - 2.6

    Regional Turboprops 1.5 - 1.9 1.7 - 2.1 1.9 - 3.3

    Transport Jets 1.2 - 1.8 1.6 - 2.2 1.8 - 2.8

    Military Trainers 1.2 - 1.8 1.4 - 2.0 1.6 - 2.2

    Fighters 1.2 - 1.8 1.4 - 2.0 1.6 - 2.6

    Military Patrol, Bombers, and Transports 1.2 - 1.8 1.6 - 2.2 1.8 - 3.0

    Flying Boats, Amphibious and FloatAirplanes 1.2 - 1.8 1.6 - 2.2 1.8 - 3.4

    Supersonic Cruise 1.2 - 1.8 1.6 - 2.0 1.8 - 2.2

    Table 2.2 Typical Values for Landing Weight to Take-Off Weight Ratio

    Airplane Type WL/WTO

    minimum Average Maximum

    Homebuilt 0.96 1.0 1.0

    Single Engine 0.95 0.997 1.0

    Twin Engine 0.88 0.99 1.0Agricultural 0.7 0.94 1.0

    Business Jets 0.69 0.88 0.96

    Regional Turboprops 0.92 0.98 1.0

    Transport Jets 0.65 0.84 1.0

    Military Trainers 0.87 0.99 1.1

    Fighters (Jets) 0.78 1.0

    Fighters (TP's) 0.57 1.0

    Military Patrol, Bombers, and Transports (Jets) 0.68 0.76 0.83

    Military Patrol, Bombers, and Transports (TP's) 0.77 0.84 1.0

    Flying Boats, Amphibious and Float Airplanes (Jets) 0.68 0.76 0.83Flying Boats, Amphibious and Float Airplanes (TP's) 0.77 0.84 1.0

    Supersonic Cruise 0.63 0.75 0.88

  • 7/24/2019 Design Data Sheet (10 2015)

    14/42

    - 12 -

    Requirements FAR 23 Types Normal Utility Aerobatics Commuter

    Weight WTO< 12,500 Ibs WTO< 19,000 Ibs

    No of pilots 1 pilot 2 pilots

    Max No of passenger 10 11-21

    Max altitude 25000ft

    Requirement Configuration AEO

    OEI

    Altitude (ft) Climb

    speedFlaps gear

    Take-off

    25.111 Take-off Retracted OEI (35-400) IGE 1.25VTO

    25.121 Take-off Extended OEI ground effect VLFV2

    25.121 Take-off Retracted OEI Out of ground effect V21.2VTO

    25.121 Retracted Retracted OEI Take-off V2=1.25VS

    La

    nding 25.119 Landing Extended AEO 1.3VS

    25121 Approach Extended OEI >1.1 VsL>1.5 VsA

  • 7/24/2019 Design Data Sheet (10 2015)

    15/42

    - 13 -

    ategory Requirement Weight

    (Ibs)VSO(kt)

    Configuration AEO

    OEI

    Altitude

    (ft)C

    Flaps gear

    Normal

    ,

    Utility,

    Aerobatic[N-U-A]

    Recip

    Takeoff

    23.65(a) 6 000 Take-off Retracted AEO S.L.

    Recip &

    Turbine

    23.65(b) >6 000 Take-off Extendedretracted

    6 000 Take-off Retracted OEI 400 V

    23.67(b)(2) >6 000 Retracted Retracted OEI 1500

    Commuter[C]

    23.67(c)(1) Take-off Extended OEI Take-off V

    23.67(c)(2) Take-off Retracted OEI 400 V

    23.67(c)(3) Retracted Retracted OEI 1500

    Landin

    23.67(c)(4) Landing Retracted OEI 400

    23.77(c) Landing Extended AEO [N-U-A] 23.77(a) 6 000 Landing

    retracted6000 Landing Extended AEO

  • 7/24/2019 Design Data Sheet (10 2015)

    16/42

    - 14 -

    3 Drag Polar

    3.1 The Rapid Drag Estimation Method (First Class)Drag Polar assumed to be parabolic, i.e., equation of the form

    eACLCD

    cleanoCDOEIFCD ++=

    2

    Where:OEI

    F = Factor accounting for one engine Inoperative OEI

    Propulsion FOEI

    All-Engines-Operating 1.00

    Fixed Pitch Propeller 1.25

    Variable Pitch Propeller 1.10

    Low Bypass Ratio Turbofan 1.15

    High Bypass Ratio Turbofan 1.25

    TOwet WdcS 1010 loglog += (3.1)

    cd

    TOwet WS 10= (3.2)

    wetSbaf 1010 loglog += (3.3)

    ab

    wetSf 10= (3.4)

    S

    fC cleanD =0

    (3.5)

    CDCDCD clean += 00 (3.6)

    Table 3.1 First Estimation for CDo and e with flaps and gear down

    Configuration CD0 e

    Clean 0 0.80 - 0.85

    Take-off Flaps 0.010 - 0.020 0.75 - 0.80

    Landing Flaps 0.055 - 0.075 0.70 - 0.75

    Landing Gear 0.015 - 0.025 No Effect

    Propeller Wind milling 0.015-0.018 No Effect

    Table 3.2 Frist Estimation of Cf

    Aircraft Type Cf

    Bomber and civil Transport 0.003

    Military cargo ( high wing) 0.0035

    Fighter 0.0035

  • 7/24/2019 Design Data Sheet (10 2015)

    17/42

    - 15 -

    Aircraft Type Cf

    Navy Fighter 0.0040

    Clean supersonic cruise 0.0025

    Light aircraft single engine 0.0055

    Light aircraft twin engine 0.0045

    Prop seaplane 0.0065

    Jet seaplane 0.0040

    Table 3.3 Correlation coefficients for Parasite area versus wetted area

    Cf A b

    0.016 -1.7993 1.0

    0.015 -1.8062 1.0

    0.014 -1.8633 1.00.012 -1.9243 1.0

    0.010 -1.9961 1.0

    0.009 -2.0458 1.0

    0.008 -2.0969 1.0

    0.007 -2.1549 1.0

    0.006 -2.2218 1.0

    0.005 -2.3010 1.0

    0.004 -2.3979 1.0

    0.003 -2.5229 1.0

    0.002 -2.6990 1.0

    Table 3.4 Regression Line Coefficients for take-off Weight Versus Wetted Area

    Airplane Type c d

    Homebuilt 1.2362 0.4319

    Single Engine 1.0892 0.5147

    Twin Engine 0.8635 0.5632

    Agricultural 1.0447 0.5326

    Business Jets 0.2263 0.6977

    Regional Turboprops -0.0866 0.8099

    Transport Jets 0.0199 0.7531

    Military Trainers 0.8565 0.5423

    Fighters -0.1289 0.7506

    Military Patrol, Bombers, and Transports 0.1628 0.7316

    Flying Boats, Amphibious and Float Airplanes 0.6295 0.6708

    Supersonic Cruise -1.1868 0.9609

    * For these airplanes, wetted areas were correlated with "clean" maximum take-offweight. No stores were accounted for.

  • 7/24/2019 Design Data Sheet (10 2015)

    18/42

    - 16 -

    Drag due to Mach number

    3.2 Component Drag Build up (second Class)Reynolds number

    =

    lURe (3.7)

    Standard formulation to estimate Friction Coefficient

    Complete laminar flow

    e

    fR

    .C

    lam

    3281= (3.8)

    Complete turbulent flow

    ( ) 58210

    4550.

    e

    fRLog

    .C

    trb= (3.9)

    Accounts for compressibility

    ( ) ( )

    6502582

    10 14401

    4550..

    e

    f

    M.RLog

    .C

    comptrb

    +

    =

    (3.10)

    Mixed laminar turbulent flow37506250

    0 19636

    .

    e

    .

    tr

    RC

    X.

    C

    X

    = (3.11)

    80

    0

    201

    0740.

    tr

    .

    e

    fC

    XX

    R

    .C

    mix

    = (3.12)

    Wing

    0

    0.001

    0.002

    0.003

    0.004

    0.005

    0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

    Zero

    LiftDragRise

    Mach Number M

  • 7/24/2019 Design Data Sheet (10 2015)

    19/42

    - 17 -

    ( ) ( ) Expowingwetww

    Lswf

    wo SCf

    C

    t

    C

    tL

    S

    RRCD

    +

    +=

    4

    1001 (3.13)

    Horizontal Tail

    ( ) ( ) ExpotailHwetH

    w

    Ls

    Ho SCf

    C

    t

    C

    tL

    S

    RCD

    +

    +=

    4

    1001 (3.14)

    Vertical Tail

    ( ) ( ) ExpotailVwetV

    w

    Ls

    Vo SCf

    C

    t

    C

    tL

    S

    RCD

    +

    +=

    4

    1001 (3.15)

    L = 1.2 for maximum t/c located at x 0.3c

    L = 2.0 for maximum t/c located at x < 0.3c

    Fuselage

    ( ) bBfB CDCDCD +=o (3.16)

    ( )( )

    ( )S

    S.CfRCD

    fuswet

    d

    l

    d

    lfuswfBf f

    f

    f

    f

    +

    += 00250

    601

    3 (3.17)

    Figure 3.1 Wing Fuselage Interference Correlation factor

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.0E+07 1.0E+08 1.0E+09 1.0E+10

    Rwf

    Fuselage Reynolds NumberRl Fus

    M

    0.25

    0.4

    0.6

    0.7

    0.8

    0.85

    0.9

    0.25

    0.4

    M= 0.6 -0.9

  • 7/24/2019 Design Data Sheet (10 2015)

    20/42

    - 18 -

    Figure 3.2 Lifting surface correlation factor for wing subsonic

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    1.35

    0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

    RLS

    cos (tc)max

    M=0.9

    M=0.8

    M0.25

    M=0.6

  • 7/24/2019 Design Data Sheet (10 2015)

    21/42

    - 19 -

    ( )

    =

    Bf

    f

    b

    bCD

    d

    d.

    CD

    3

    0290

    (3.18)

    ( )Bff

    flap AC

    CCD

    = (3.19)

    Table 3.5Correlation Coefficients for flap Drag

    Flap type A B

    Split flap 0.0014 1.5

    Plain flap 0.0016 1.5

    Single slotted flap 0.00018 2

    Double slotted flap 0.0011 1

    Fowler 0.00015 1.5

    Drag Due to Wind milling Propellers

    S

    DN.CD

    propblades

    prop

    2001250= (3.20)

    Drag Due to Turbojet Engine

    S

    S

    U

    VBPR

    U

    V

    U

    V

    M.S

    d.CD noz

    bypass

    noz

    core

    noz

    core

    nozinl

    wm

    +

    ++= 11

    1601

    207850

    2

    2

    (3.22)

    Table 3.6 Velocity Ratio

    =

    U

    Vnoz

    0.25 for turbojets (no bypass)

    0.42 for low by-pass ratio jet engines (BPR < 2.0)

    0.12 for the primary airflow of high by-pass jet engines (BPR > 2.0)

    0.92 for the fan airflow of high by-pass jet engines (BPR > 2.0)

    U

    SHP

    SqCDwm

    33= (3.21)

  • 7/24/2019 Design Data Sheet (10 2015)

    22/42

    - 20 -

    Landing Gear Drag

    Table 3.7 Drag of Tire Only

    Tire Type Tire A Tire B Tire C Tire D

    CDS 0.18 0.25 0.23 0.31-0.35

    Referance Aera dw dw dw dw

    Corresponds to Three Part

    Type (GA)

    Type III Type III high

    floatation

    tundra

    Old fashioned

    disc wheel type

    S

    w

    tire CDS

    wdCD

    = (3.23)

    ( )Bff

    flap AC

    CCD

    = (3.24)

    Table 3.8 Drag of Tires with wheel Fairings

    Fairing Type A1 A2 A3 B C

    Tire Type TypeIII (B) TypeIII (B) TypeIII (B) TypeIII (B) TypeIII (B)

    CDS (H W) 0.13 0.090 0.044 0.117 0.129

    CDS (d w) 0.143 0.119 0.070 0.217 0.188

    Sw

    fairing CDS

    WH

    CD

    = (3.25)

    Table 3.9 Drag of fixed Landing Gear Struts with Tires

    Type C B A

    CDS See Table 1.112 1.204

    Ref. Aera dw dw dw

  • 7/24/2019 Design Data Sheet (10 2015)

    23/42

    - 21 -

    Type D E FCDS See Table 1.125 See Table

    Ref. Aera dw dw dw

    Type I H G

    CDS See Table 0.994 See TableRef. Aera dw dw dw

    Type L K J

    CDS 0.992 See Table See Table

    Ref. Aera dw dw dw

    Type O N M

    CDS See Table 0.315 See Table

    Ref. Aera dw dw dw

    Type Q P

    CDS 1.85 2.1 0.45-0.6

    Ref. Aera dw dw

  • 7/24/2019 Design Data Sheet (10 2015)

    24/42

    - 22 -

    Table 3.10 Drag of Landing Gear Struts with and without Fairings

    Strut Type Tire Type CDS

    A 8.5-10 B 1.112

    B 8.5-10 B 1.204

    C1 8.5-10 + streamline wire B 1.151C2 8.5-10 + tubular support B 1.178

    C3 27 inch streamline + tube A 1.082

    C4 25x11-4 X-low press + tube C 0.940

    C5 30x5 disk wheel hi-press + tube D1 1.779

    C6 32x6 disk wheel hi-press + tube D2 1.373

    D1 8.5-10 B 1.230

    D2 8.5-10 B 1.191

    E 8.5-10 B 1.125

    F1 8.5-10 B 1.138

    F2 8.5-10 + Fairing C B 0.877F3 27 inch streamline tube A 1.014

    F4 25x11-4 X-low press + tube C 0.858

    F5 30x5 disk wheel hi-press + tube D1 1.628

    G1 8.5-10 B 1.151

    G2 8.5-10+Fairing A2 B 0.733

    H 8.5-10 B 0.994

    I1 8.5-10 + Fairing B B 0.536

    I2 8.5-10 + Fairing C B 0.484

    I4 27 inch streamline + tube A 0.564

    I5 27 inch streamline+ tube A 0.496J1 8.5-10 B 0.615

    J2 8.5-10 + Fairing A1 B 0.458

    J3 27 inch streamline A 0.485

    K1 8.5-10 B 0.981

    K2 8.5-10 + Fairing C B 0.641

    L 8.5-10 B 0.992

    M1 8.5-10 + Fairing A1 B 0.484

    M2 8.5-10 + Fairing A1 + Expanding fillet B 0.315

    N 8.5-10 B 0.315

    Drag due to external fuel tanks

    Figure 3.3 Drag due to external fuel tanks

  • 7/24/2019 Design Data Sheet (10 2015)

    25/42

    - 23 -

    Drag of Streamlined Struts and Landing Gear Pant Fairings

    Figure 3.4 Geometric definition of small wing like surface and standard cross sections

    Drag of Canopies

    Figure 3.5 Canopy styles denoted by A through I

    Figure 3.6 Drag of blunt and undercut cockpit windows

    w

    EBDSEB

    S

    SCDCD

    = (3.26)

    w

    sfS

    SS

    ct

    ctCCD

    +

    +=

    2

    12 (3.27)

  • 7/24/2019 Design Data Sheet (10 2015)

    26/42

  • 7/24/2019 Design Data Sheet (10 2015)

    27/42

    - 25 -

    Figure 3.10Two-dimensional drag coefficients of several cross-sections. Valid only

    for 104< Re< 105.

    Drag Due to Wing Washout

    Ground Effectper IGE

    Lift induced drag

    Maximum lift to drag ratio

    The span (Oswald) efficiency factor is found from

    Method 1: Empirical Estimation

    For straight wing

    ( ) 4604501781 680 .A..e . = (3.35)Swept Wing

    ( ) ( ) 1304501614 150680 .cosA..e .LE

    . = (3.36)

    Where LE> 30 oCorrection of aspect ratio due to winglets

    += b

    h.

    AAcorr

    91

    1 (3.37)

    Method 2: USAF DATCOM

    ( )+

    =

    RAR

    CLR

    AR

    CL.

    e

    1

    11

    (3.38)

    =

    LER

    LER

    U

    R

    l

    (3.39)

    ( )wwashouti i.CD = 000040 (3.31)

    ( )

    ( )bh..

    bh.

    47051

    32111

    +

    = (3.32)

    ( ) ( )OGEiIGEi

    CDCD = (3.33)

    ( ) ( )

    = OGE

    IGE

    DLDL (3.34)

  • 7/24/2019 Design Data Sheet (10 2015)

    28/42

    - 26 -

    LEcos

    ARP

    =1 (3.40)

    LELELER cosMcotRP =22

    2 1 (3.41)

    If P21.3x105determine R from calculate from the following expression:

    ( ) ( )( )

    ++=

    200950213018527284 1

    2

    210210

    Psin.Plog.Plog..R (3.42)

    If P2>1.3x105determine R from calculate from the following expression:

    118

    1

    1

    1011190860

    PP..R

    +

    += (3.43)

  • 7/24/2019 Design Data Sheet (10 2015)

    29/42

    - 27 -

    4 Miscellaneous

    4.1 Conversion FactorsLength Mass

    1ft 12 in 1 slug 14. 59kg

    1 ft 0.3045 m 1kg (mass) 2.205 Ib (weight)

    1 in 2.54 cm Pressure

    1 m 3.28084 ft 1 Pa 0.00015 psi

    1 mi (statute mile) 5280 ft 1 atm 101325 Pa

    1 mi (statute mile) 1.609 km 1 atm 14.7 psi

    1 mi (statute mile) 0.868976 nm Angle

    1 nm (nautical mile) 6078 ft 1 rad 180/degSpeed Fuel specific weight

    1 knot 1.689 ft/s Gasoline 44.9 Ib/ft3(0.72)

    1 knot 1.151 mph JP1 49.7 Ib/ft3(0.80)

    1 knot 1.852 km/hr JP3 48.2 Ib/ft3(0.775)

    1mph 1.457 ft/s JP4 49.0 Ib/ft3(0.785)1mph 1.609 km/hr Kerosene 51.2 Ib/ft3(0.82)

    1mph 0.8684 knot Temperature

    Power R =1.8 K

    1 BHP 33000 ft

    Ib/min

    R =F + 459.69

    1 BHP 550 ft Ib /sec F =1.8 C + 32

    1 BHP 745.7 W K =C + 273.16

    4.2 Atmosphere propertiesThe standard atmosphere is mathematically defined in two layers from sea level to 20

    kmh = altitude above sea level in feet or meters.

    T0= Absolute temperature at sea level = 288.15 K = 518.67 R (or 15 C = 59 F)

    0= Density of air at sea level= 1.225 kg/m3= 0.07648 lb/ft3= 0.0023769 slug/ft3P0= air pressure at sea level=1Atm=101325 N/m

    2=2116.2 lb/ft2=14.696 lb/in2=29.921

    in of Hg

    a= Speed of Sound =340.3 m/s = 1116.4 ft/s

    # Altitudes

    up to

    English Units

    Temperature (R)

    Density (slug/ft3)

    Pressure (lb/ft2)

    Metric Units

    (K)

    (kg/m3)

    (N/m2)h is measured in: Feet meters

    1 11 km T = T0(1 h / 145442 ft)

    = 0(1 h / 145442 ft)4.255876P = P0(1 h / 145442 ft)

    5.255876

    T = T0(1 h / 44329 m)

    = 0(1 h / 44329 m)4.255876P = P0(1 h / 44329 m)

    5.255876

    2 20 km T = T0(0.751865)

    = 0(0.297076)e((36089-h)/20806)P = P0(0.223361)e

    ((36089-h)/20806)

    T = T0(0.751865)

    = 0(0.297076)e((10999-h)/6341.4) P = P0(0.223361)e

    ((10999-h)/6341.4)

  • 7/24/2019 Design Data Sheet (10 2015)

    30/42

    - 28 -

    Table 4.1 Atmosphere properties

    Altitude

    [ft]

    Temperature

    [Kelvin]

    Pressure

    [pascal]

    Density

    [slug/ft3]

    Speed of sound

    [ft/s]

    Viscosity

    [lb.sec/ft2]

    0 288.150 101325 0.00237717 1116.45 3.78456x107

    1000 286.169 97716.6 0.00230839 1112.61 3.76386 x107

    2000 284.188 94212.9 0.00224114 1108.75 3.74310 x107

    3000 282.206 90811.7 0.00217539 1104.88 3.72228 107

    4000 280.225 87510.5 0.00211114 1100.99 3.70138107

    5000 278.244 84307.3 0.00204834 1097.09 3.68041107

    6000 276.263 81199.6 0.00198698 1093.18 3.65938107

    7000 274.282 78185.4 0.00192704 1089.25 3.63828107

    8000 272.300 75262.4 0.00186850 1085.31 3.61710107

    9000 270.319 72428.5 0.00181132 1081.36 3.59586107

    10000 268.338 69681.7 0.00175549 1077.39 3.57454107

    11000 266.357 67019.8 0.00170099 1073.40 3.55316107

    12000 264.376 64440.9 0.00164779 1069.40 3.53170107

    13000 262.394 61942.9 0.00159588 1065.39 3.51016107

    14000 260.413 59523.9 0.00154522 1061.36 3.48856107

    15000 258.432 57182.0 0.00149581 1057.31 3.46688107

    16000 256.451 54915.2 0.00144761 1053.25 3.44513107

    17000 254.470 52721.8 0.00140061 1049.18 3.42330107

    18000 252.488 50599.8 0.00135479 1045.08 3.40139107

    19000 250.507 48547.6 0.00131012 1040.97 3.37941107

    20000 248.526 46563.3 0.00126659 1036.85 3.35735107

    21000 246.545 44645.1 0.00122417 1032.71 3.33522107

    22000 244.564 42791.5 0.00118285 1028.55 3.31300107

    23000 242.582 41000.7 0.00114260 1024.38 3.29071107

    24000 240.601 39271.0 0.00110341 1020.19 3.26834107

    25000 238.620 37600.9 0.00106526 1015.98 3.24588107

    26000 236.639 35988.8 0.00102812 1011.75 3.22335107

    27000 234.658 34433.1 0.000991984 1007.51 3.20074107

    28000 232.676 32932.4 0.000956827 1003.24 3.17804107

    29000 230.695 31485.0 0.000922631 998.963 3.15526107

    30000 228.714 30089.6 0.000889378 994.664 3.13240107

    31000 226.733 28744.7 0.000857050 990.347 3.10945107

    32000 224.752 27448.9 0.000825628 986.010 3.08642107

    33000 222.770 26200.8 0.000795096 981.655 3.06330107

    34000 220.789 24999.0 0.000765434 977.280 3.04010107

    35000 218.808 23842.3 0.000736627 972.885 3.01681107

    36000 216.827 22729.3 0.000708657 968.471 2.99344107

    37000 216.650 21662.7 0.000675954 968.076 2.99135107

    38000 216.650 20646.2 0.000644234 968.076 2.99135107

    39000 216.650 19677.3 0.000614002 968.076 2.99135107

    40000 216.650 18753.9 0.000585189 968.076 2.99135107

  • 7/24/2019 Design Data Sheet (10 2015)

    31/42

    - 29 -

    4.3 The Geometric Properties of Aircraft

    Geometry of Lifting Surface

    Formulation for the Simple Trapezoidal Planform

    Approximation of an Airfoil Cross-Sectional Area

    ( )

    6

    3 tCkAairfoil

    += (4.1)

    Where: C = Airfoil chord, in ft or m

    k = Location of the airfoils maximum thickness as a fraction of C.

    t = Airfoil thickness, in ft or m.Approximation of an Airfoil Perimeter

    ( ) ( )22222

    1444

    kCtCkt

    Sairfoil +++= (4.2)

    Wing area

    ( )tr CCb

    S +=2

    (4.3)

    Aspect ratio

    C

    b

    S

    bAR ==

    2

    (4.4)

    Taper ratio

    r

    t

    C

    C= (4.5)

    Mean Aerodnam!c "#ord (MA")

    $#e MA" !s com%&ted 'rom

    dyCS

    MAC

    b

    =2

    0

    22 (4.6)

    ( )( )+

    ++=

    1

    1

    3

    22

    rCMAC (4.7)

    Y coordinates for straight tapered wing

    ( )+

    +==

    13

    21

    2

    by (4.8)

    Sweep Angle

    ( )

    +

    =

    1

    14mn

    ARtantan mn (4.9)

    Where nor mis sweep angle of the nthor mth constant fraction chord line.

    +

    +=

    1

    114

    ARtantan /cLE (4.10)

    +

    +=

    1

    122

    ARtantan /cLE (4.11)

  • 7/24/2019 Design Data Sheet (10 2015)

    32/42

    - 30 -

    ( )( )2

    22

    1

    1540

    +

    ++= rFw c/t

    b

    S.V (4.12)

    ( )( )( )

    +++=

    112512 C

    t

    oexpwet.SS (4.13)

    rfwexp CwSS = (4.14)

    ( )

    ( )t

    r

    ct

    ct= (4.15)

    Volume of pyramid

    ( )21213

    SSSSl

    Volume +++= (4.16)

    Cg Location

    Volume of obelisk

    +++=

    23

    122121

    babaSS

    lVolume (4.18)

    Wing wet area

    Engine wet area

    a1

    b1

    S2 a2

    b2

    ll

    S2

    S1

    S1

    ( )

    2121

    2121 23

    4

    1

    SSSS

    SSSSl

    cg++

    ++= (4.17)

    ( )( )

    ( )

    +

    ++=

    14

    125012 C

    t

    oexpwet

    .SS (4.19)

  • 7/24/2019 Design Data Sheet (10 2015)

    33/42

    - 31 -

    Wetted area of fan cowling

    Wetted area of gas generator

    Wetted area for plugs

    Bodies of revolution for >4.5Volume

    Wetted area for cylindrical mid-section:

    Wetted area for streamlined fuselage without cylindrical mid-section

    Dp

    Deg

    Dg

    Def

    Dh

    Dn

    ln

    ln

    lg

    lp

    Fan Cowling

    Max. Diameter

    Gas-generatorCowling

    Plug

    ( )

    ++++=

    n

    ef

    n

    hnn

    D

    D

    .D

    D..Dl 1151803502 (4.20)

    =

    3

    5

    113

    11

    g

    g

    g

    eg

    ggl

    D

    D

    DDl (4.21)

    ppDl. = 70 (4.22)

    ( )

    =

    ff

    ffDl

    lD2

    14

    2 (4.23)

    ( ) ( )

    +

    = 2

    32

    2 1

    1

    2

    1ffff

    ffDlDllD (4.24)

    ( )( )( )

    ++=

    51

    322 3001511351050.

    ff

    ffffDl

    ..Dl..lD (4.25)

  • 7/24/2019 Design Data Sheet (10 2015)

    34/42

    - 32 -

    Wetted area of fuselage

    Component Approximate Wetted Area

    = 2.4 2.5

    FUSF SD

    =4

    D/L=0.15to 0.25

    = 2

    = 2.4 !!

    = 2.3 "" "# $!!

    = 2.7 !!

    = 2.85 "" "# $!!

    +=

    2

    topside

    wetF

    AAS (4.26)

    { }

    44 844 76876

    4444444 84444444 76 ConeCylinder

    Paraboloid

    .

    DL

    DDL

    DDDL

    L

    D

    +

    ++

    +

    =

    424844

    12

    22

    32

    2351

    22

    12

    1

    (4.27)

  • 7/24/2019 Design Data Sheet (10 2015)

    35/42

    - 33 -

    Passenger SeatingThe following tables show seating standards and baggage volume allowances

    representing a typical airline 1-class high-density configuration. Typical 2-class

    short-range seating rules are also included.

    1-Class

    High

    Density

    2-Class Short-RangeFirst

    Class

    (FC)

    Economy

    Class

    (YC)

    Seat Ratio Nominal % 100 8 Remainder

    - Allowable % - 6-10 Remainder

    Seat Pitch inch 28/29 36 32

    Seat Depth inch 20 22 20

    Minimum legroom for first row behind a wall inch 18 22 18

    Minimum recline for last row in front of a wall inch 5 8 5

    Seat Width Single inch 20 28.5 22- Double inch 40 57 42

    - Triple inch 59 n/a 62

    Maximum number of excuse-me seats to get

    to an aisle- 2 1 2

    Minimum Aisle Width inch 19 23 23

    Passenger BaggageThe following tables show seating standards and baggage volume allowances

    representing a typical airline 1-class high-density configuration. Typical 2-class

    short-range seating rules are also included.

    1-Class

    High

    Density

    2-Class Short-Range

    First

    Class

    (FC)

    Economy

    Class

    (YC)

    Carry-on baggage volume ft/pax5.5 (Note 1)

    2 1.5

    Checked-in baggage volume ft/pax 5 4

    Notes:1) The 1-class high-density rules do not differentiate passenger baggage as carry-on or

    checked-in. Instead, the specified total baggage volume must be provided as any

    combination of carry-on and checked-in baggage.

    CateringThe following table shows the rules used to determine the number of food trays

    required.

    1-Class

    High

    Density

    2-Class Short-Range

    First Class

    (FC)

    Economy

    Class

    (YC)

    Trays per Passenger - 1.0 3.0 1.5

  • 7/24/2019 Design Data Sheet (10 2015)

    36/42

    - 34 -

    The following table shows the rules used to determine the number of trolleys required

    along with key trolley/galley parameters.

    Whole

    trolley

    Half

    trolley

    Galley

    unit

    Trays per Trolley - 28 14Trolley length inch 31.7 15.8

    Trolley width inch 12.7 12.7

    Overall galley depth, including rear structure inch 34 17.4

    Galley end structure inch 1.35

    Galley intermediate structure (3) inch 1.1

    Minimum aisle width between galley units inch 26

    Minimum space required in front of galley for

    manoeuvring trolleys

    inch 36 20

    Notes:1) First class and economy class meals must be stored in separate trolleys.2) It is a requirement that no economy trolleys need to be moved through the first class

    section during the flight. It is preferable that no first class trolleys need to be moved

    through the economy section during the flight.

    3) Galley units more than four trolleys wide require sub-dividing with a hard partition insuch a way that there are no more than three trolleys per compartment.

    4) The following drawings show examples of full-, half- and mixed-trolley galleyarrangements.

    34.0

    15.4 28.1 40.8 53.5 67.3

    17.4

    15.4 28.1 40.8 53.5 67.3

    53.5

    34.0

    28.1 29.5

    14.1

  • 7/24/2019 Design Data Sheet (10 2015)

    37/42

    - 35 -

    LavatoriesThe following table shows the rules used to determine the number lavatories required.

    1-Class

    High

    Density

    2-Class Short-Range

    First Class

    (FC)

    Economy

    Class

    (YC)

    Passengers per Lavatory - 75 20 75

    The following table shows some key lavatory parameters.

    Lavatory

    Cubicle

    Minimum cubicle footprint inch 1650

    Minimum cubicle dimension in length

    or width

    inch 29

    Minimum aisle width between lavatory

    cubicles

    inch 26

    Notes:

    1) First- and economy passengers must be provided with separate lavatories.

    2) First class lavatories must be directly accessible from the first class section.

    Economy class lavatories must be directly accessible from the economy class section.

    3) It is preferable that no passenger has a direct view into a lavatory when in their

    seat.

    The following drawings show examples of outer wall lavatories cubicles. Different

    shape cubicles of equivalent area are permissible.

    The following drawings show examples of centre cabin lavatories cubicles. Different

    shape cubicles of equivalent area are permissible.

    Inner WallOuter Wall

    Floor Line

    45.7

    36.6

    29

    57

    38

    44

  • 7/24/2019 Design Data Sheet (10 2015)

    38/42

    - 36 -

    The following drawings show examples of centre cabin lavatory blocks.

    AttendantsThe number of attendants is determined by the number required for passengers

    services or by the manning of emergency exits (see Exits section), whichever is the

    greater. The following table shows the required passenger servicing requirements:

    1-Class

    High

    Density

    2-Class Short-Range

    First Class

    (FC)

    Economy

    Class

    (YC)

    Passengers per Attendant - 50 16 50

    The following drawings show standard attendant seat sizes, usually positioned near

    exits.

    The following drawings show minimum attendant to passenger spacing.

    44 26

    58

    57

    76

    44

    17.3

    5

    18.2

    35

    25.8

    Wall Mounted:

    17.3

    8.4

    22

    35

    25.8

    Floor Mounted:

    1

    43.8

    60

    21.95

    22

    54.8

    42.8

    60

    20.9

    5

    22

    56.2

    Floor Mounted Opposite Economy Seats:

    8.4

    Wall Mounted Opposite Economy Seats:

    5

  • 7/24/2019 Design Data Sheet (10 2015)

    39/42

    - 37 -

    (attendant-passenger spacing, continued)

    Cross-SectionThe following rules apply as minimum standards when determining the aircraft cross-

    section:

    1-Class

    High

    Density

    2-Class Short-Range

    First Class

    (FC)

    Economy

    Class

    (YC)

    Minimum distance to sidewall for window seat

    passenger

    - at head (A) mm 60 100 60

    - at shoulder (B) mm 30 60 30

    - at armrest (C) mm 20 20 20

    - at foot (D) mm 40 40 40

    Minimum standing height mm

    - in aisle mm 2100 2100 2100

    - under side bins mm 1700 1700 1700

    - under centre bins mm 1700 1700 1700

    The following table lists the approximate anthropometric dimensionsfor the reference person seated naturally on a 400mm high seat.

    2020 95%

    US Male

    Floor to top of head (E) mm 1380

    Upper head radius (F) mm 80

    Floor to shoulder (G) mm 1030

    Width across shoulders (H) mm 530

    Floor to elbow (armrest) (I) mm 590

    Width across feet (J) mm 350

    5

    41.8

    60

    19.28 22

    55.2

    Wall Mounted Opposite Business Class Seats:

    8.4

    42.8

    60

    18.2

    8

    22

    56.6

    Floor Mounted Opposite Business Class Seats:

    J

    H

    I

    G

    E

    F

    A

    B

    C

    D

  • 7/24/2019 Design Data Sheet (10 2015)

    40/42

    - 38 -

    ExitsCS-25 (25.803 & Appendix. J) States that the aircraft must be capable of being

    evacuated in 90 seconds using only half the side exits on the aircraft.

    The following table lists key parameters for standard floor-level exit sizes.

    Type

    A

    Type

    B

    Type

    C

    Type

    I

    Type

    II

    Passenger exit rating - 110 75 55 45 40

    Number of attendants - 2 2 1 1 1

    Clear opening height inch 72 72 48 48 44

    Clear opening width inch 42 32 30 24 20

    The following table lists key parameters for standard over wing exit sizes.

    Type

    II

    Type

    III

    2x

    Type

    III

    Type

    IV

    Passenger exit rating - 40 35 65 9

    Number of attendants - 1 0 0 0

    Clear opening height inch 44 36 - 36

    Clear opening width inch 20 20 - 19

    Maximum step-up from cabin

    floor

    inch 10 20 20 29

    Maximum step-down onto wing inch 17 27 27 36

    The following drawings show acceptable minimum assist space, passageway and

    cross-aisle for Type A and B exits:

    The following drawings show acceptable minimum assist space, passageway and

    cross-aisle for Type C, I and II exits:

    20

    6036

    Type A/B - Assist Space & Passageway

    FloorLine

    Overlapminimum 50%cross-aislewidth

    20

    Type A/B Cross-Aisle (End of Cabin)

    Cross-aisle mustbe within 36passageway(100%overlap) 20

    Type A/B Cross-Aisle (Mid-Cabin)

    20

    3220

    Type C/I/II - Assist Space & Passageway

    FloorLine

    Type C/I/II Cross-Aisle

    Minimum 1(5%cross-aisle width)

    20

    Passagewaymust be withindooropening(100% overlap)

    Assist space can be forwardor aft of the passageway

  • 7/24/2019 Design Data Sheet (10 2015)

    41/42

  • 7/24/2019 Design Data Sheet (10 2015)

    42/42

    (Adjacent Type III over wing exit options, continued)

    Under floor Cargo

    The following table lists commonly used under floor cargo containers.

    Common name LD1 LD2 LD3 LD3-45W LD3-46

    ULD convention name AKC APA AKE AKH AKG

    Examples of current

    aircraft applicability

    - B747 B767 A330/340

    A380

    B777

    A320 A320 (alsofits A330

    etc.)

    Container Type - Half width Half width Half width Full width Half width

    Volume m 5.2 3.4 4.53 3.5 3.10

    Tare Weight kg 70 60 70 82 No dataMax. Gross Weight kg 1588 1225 1588 1588 1588

    The following drawings show simplified dimensions of these containers:

    Double Type III Over wing (Option 3) - Passageway

    Hatch widths= Door widths+ 2 per side(= 24)

    20

    Single Type III Over wing (Option 3) Cross-Aisle

    Permissiblerange forcross-aisle

    = No Recline

    6

    6

    6

    61.5

    LD1 Container

    60.4

    64

    92

    47

    LD2 Container

    60.4

    64

    61.5

    61.5

    LD3 Container

    60.4

    64

    79

    45

    61.5

    LD3-46 Container

    60.4

    45

    79

    61.5

    LD3-45W Container

    60.4

    96.2