design and analysis of non-uniform linear array for …

26
DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR DOA ESTIMATION OF NON-CIRCULAR SIGNALS PAYAL CENTRE FOR APPLIED RESEARCH IN ELECTRONICS INDIAN INSTITUTE OF TECHNOLOGY – DELHI INDIA April 2021

Upload: others

Post on 15-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

DESIGN AND ANALYSIS OF NON-UNIFORM

LINEAR ARRAY FOR DOA ESTIMATION OF

NON-CIRCULAR SIGNALS

PAYAL

CENTRE FOR APPLIED RESEARCH IN ELECTRONICS

INDIAN INSTITUTE OF TECHNOLOGY – DELHI

INDIA

April 2021

Page 2: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

© Indian Institute of Technology Delhi (IITD), New Delhi, 2021

Page 3: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

DESIGN AND ANALYSIS OF NON-UNIFORM

LINEAR ARRAY FOR DOA ESTIMATION OF

NON-CIRCULAR SIGNALS

by

PAYAL

Centre for Applied Research in Electronics

Submitted

in fulfillment of the requirements of the degree of

Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY – DELHI

INDIA

April 2021

Page 4: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Dedicated to

My Family

Page 5: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Certificate

This is to certify that the thesis entitled “Design and Analysis of Non-Uniform

Linear Array for DoA Estimation of Non-circular Signals” being submitted

by Ms. Payal to the Centre of Applied Research in Electronics, Indian Institute

of Technology Delhi, for the award of the degree of Doctor of Philosophy is the

record of the bona-fide research work carried out by her under my supervision. In

my opinion, the thesis has reached the standards fulfilling the requirements of the

regulations relating to the degree.

The results contained in this thesis have not been submitted either in part or in

full to any other university or institute for the award of any degree or diploma.

(Prof. Monika Aggarwal)

Centre of Applied Research in Electronics

Indian Institute of Technology Delhi

Hauz Khas, New Delhi 110016

India

i

Page 6: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Acknowledgements

I was able to complete this doctoral dissertation with the support of many people.

I would like to express my deep sense of gratitude and tribute to all of them. First

of all, I would like to express my sincere gratitude to my dissertation advisor Prof.

Monika Aggarwal for her valuable guidance, support and consistent encouragement

throughout my doctoral studies. It was their encouragement that enabled me to come

up with my own original ideas which helped me in formulating meaningful research

problems. Her profound technical knowledge, passion towards research, attention to

detail, and diligence helped me in shaping up my vision for future research. I am deeply

indebted for their inspiration, motivation and guidance.

I would also like to thank my student research committee members Prof. S. D

Joshi, Prof. Arun Kumar, Prof. Rajendar Bahl for their useful interactions, invaluable

comments and suggestions. I am also thankful to all the professors at IIT Delhi from

whom I had the opportunity in understanding the fundamentals during the courses.

I would also like to thank the staff members of CARE office for taking care of all

the paperwork and other logistics.

My stay at IIT Delhi would not have been so memorable without the friends that

I have made along the journey making my life joyful and thankful for being a con-

stant source of encouragement. Thanks go out to all PhD scholars and my friends of

signal processing group. They have always been around to provide useful suggestions,

companionship, and created a peaceful research environment.

Most importantly, I would like to acknowledge my family for their unconditional

love, continuous support, and blessings. Their high moral values, principles, and em-

ii

Page 7: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

phasis on quality education made a pivot role in shaping me up the person I am today.

Although, they were physically far away from me, their immense faith and wish is

gratefully acknowledged. Finally, sincere thanks go to my family, who have always

been there for me through thick and thin times of my journey.

Payal

iii

Page 8: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Abstract

The Direction of Arrival (DoA) estimation becomes a fascinating research area in sensor

array signal processing due to its enormous application in the field of communication,

radar, radio astronomy, sonar, navigation, and emergency assistance, and so forth. Tra-

ditional DoA estimation algorithms such as Multiple Signal Classification (MUSIC),

EStimation of Parameters by Rotational Invariant Techniques (ESPRIT), Maximum

likelihood (ML) etc. are able to resolve only N − 1 sources using N sensors. The limit

of identifiability of an array has been increased using the virtual array concept. The

virtual sensors in the array come about as a result of the spatial covariance/ spatial

cumulants between the sensor output of the array. The position of virtual sensor is the

function of physical sensor position. Therefore, many non-uniform linear arrays such

as MRA, Nested array, Coprime array, ML-NA, etc. have been designed to increase

the degrees of freedom. Most of these structures have been designed by utilizing the

circular statistics of data.

In today’s environment of 4G/5G technology, Internet of things, etc. non-circular sig-

nals like AM, MASK, BPSK, or UQPSK, M-PSK, etc. are so much prevalent. The

non-circularity property of signals provide additional valuable statistical information

though non-circular/pseudo moments. In many practical fields, the demand of detec-

tion and estimation of these signals within the limited physical resources such as power,

bandwidth, number of sensors, etc. has increased. Therefore, in this dissertation, we

present the solution of estimating the parameter such as DoA of non-circular signals

using minimum number of sensors in an array.

To begin with, we developed the underdetermined mathematical model to estimate the

DoAs of non-circular signal using the complete second-order statistics of data. The pro-

iv

Page 9: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

posed model generated a virtual array, called Sum-Difference Co-Array (SDCA), with

O(4N2) elements which may be able to resolve the O(4N2) sources using N sensor

array. A novel non-uniform linear array, termed asNested Array with Displaced Sub-

array (NADiS), has been proposed to maximize the aperture of SDCA. The stability

of the designed array is being studied using weight function. The analytical expression

of weight function for the proposed design is derived. Also, the Cramer Rao Bound

(CRB), a universal tool for evaluating the performance of any parameter estimation

algorithm, is derived for DoA estimation using the underdetermined model. Numerical

results demonstrate that the proposed array provided better performance gain over

the existing arrays with different algorithms such as SS based MUSIC, Compressive

Sensing (CS), Direct Augumenatble Approach (DAA).

Second-order statistics based methods have some limitations, like sensitive to modelling

error, colored Gaussian noise, limited resolvability, etc. To overcome these limitations

and to increase the resolvability of an array, we proposed a mathematical framework

corresponding to 2qth (q > 1) order/ higher-order non-circular statistics. The proposed

framework generate a virtual array, known as Pseudo Cumulant along with Cumulant

Virtual Array (PCCVA), which provide the O((2N)2q) degrees of freedom using the N

sensor array. The proposed mathematical model increases the identifiability capability

of linear arrays in context of non-circular signals. Further, we provide a generalized

method to compute the weight function corresponding to any virtual array.

The aperture of 2qth order non-circular virtual array is the function of physical array ge-

ometry. Therefore, we designed a non-uniform linear array such a way the fourth-order

non-circular virtual array has maximum aperture. The higher-order direction find-

ing methods reduces the number of sensors of the array and, thus reduce the receiver

hardware, which drastically deduces the overall cost of DoA estimation. Therefore, we

proposed an extension of proposed non-uniform linear array to an arbitrary even order

q > 1 giving rise to the 2qth order Cumulant based Nested Array (QoCNA), which

leads to the longer consecutive virtual sensors segment in 2qth non-circular virtual

array. The virtual array corresponding to proposed design provides a large degrees

of freedom which increase both the resolution power and identifiability capabilities of

v

Page 10: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

array. Further, the stability of virtual array corresponding to the proposed array is

studied with the weight function analysis.

In the real situation, most of time the assumption such as uncorrelatedness are not

fulfilled. We analyze the non-uniform linear array, ULA and the virtual array per-

formance in presence of multipath and mutual coupling. The performance of ULA,

non-uniform linear array and virtual array in multipath environment and mutual cou-

pling is analyzed via the computer simulations as well as the finite element analysis

tool, i.e., COMSOL Multiphysics.

vi

Page 11: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

सार

आगमन की दिशा (द.ओ.ए) का आकलन ससर सरणी दसगनल परोसदसिग म एक आकरषक अनसिधान कषतर बन जाता ह

सिचार, रडार, रदडयो खगोल दिजञान, सोनार, नदिगशन और आपातकाल क कषतर म इसक दिशाल अनपरयोग क कारण

सहायता,और आग। पारिपररक द.ओ.ए आकलन एलगोररिम जस दक मलटीपल दसगनल कलादसदिकशन

(मयसी),अनमान परामीटसष ऑि रोटशनल इनिररक तकनीक (ईएसपीआरआईटी), अदधकतम सिभािना (एमएल)

आदि किल एन 1 को हल करन म सकषम ह N ससर का उपयोग करन िाल सरोत। िचषअल सरणी अिधारणा का

उपयोग करक दकसी सरणी की पहचान की सीमा बढाई गई ह। आभासी सरणी क ससर आउटपट क बीच सथादनक

सहसियोजक / सथादनक कमयलटस क पररणामसवरप सरणी म ससर आत ह। िचषअल ससर की ससथदत भौदतक ससर

की ससथदत का कायष ह। इसदलए, कई गर-समान रसखक सरदणयो ि जस एमरए क रप म, नसटड ऐर, कोपराइम एर,

एमल-नए आदि को सवतितरता की दडगरी बढान क दलए दडजाइन दकया गया ह। इनम स जयािातर सिरचनाओि को डटा

क पररपतर आकडो ि का उपयोग करक दडजाइन दकया गया ह। आज क पररिश म 4 जी / 5 जी परौदयोगोदगकी, चीजो ि

की इिटरनट, इतयादि जस गर-पररपतर दसगनल जस एएम, एमएएसक, बीपीएसक ,या यपीसक, एम-पीएसक, आदि

बहत परचदलत ह। सिकतो ि की गर-गोलाकार सिपदि अदतररकत मलयिान सािसिकीय जानकारी परिान करती ह हालािदक

गर-पररपतर / छदम कषण। कई वयािहाररक कषतरो ि म, इन सिकतो ि का पता लगान और अनमान लगान की मािग सीदमत

भौदतक सिसाधन जस दक दबजली, बडदिडथ, ससर की सििा, आदि म िसि हई ह। इसदलए, इस शोध परबिध म,हम

ससर की नयनतम सििा का उपयोग करक गर-पररपतर सिकतो ि क द.ओ.ए जस परामीटर का आकलन करन का

समाधान परसतत करत ह एक सरणी म।

आरिभ करन क दलए, हमन डटा क सिपणष िसर करम क आिकडो ि का उपयोग करक गर-पररपतर दसगनल क द.ओ.ए

का अनमान लगान क दलए कम-स-कम गदणतीय मॉडल दिकदसत दकया। परसतादित मॉडल न 𝑂(4𝑁2) ततो ि क

साथ सम-अितर सह-ऐर (स.द.सी.ए) नामक एक आभासी सरणी उतपनन की, जो N ससर सरणी का उपयोग करक

𝑂(4𝑁2) सरोतो ि को हल करन म सकषम हो सकता ह। एक उपनयास गर-समान रखीय सारणी, दजस दिसथादपत सबर

(न.ए.डी.इ.स) क साथ नसटड एर क रप म कहा जाता ह, को स.द.सी.ए क एपचषर को अदधकतम करन का परसताि

दिया गया ह। िजन फि कशन का उपयोग करक दडजाइन की गई सरणी की ससथरता का अधययन दकया जा रहा ह।

परसतादित दडजाइन क दलए िजन समारोह की दिशलरणातमक अदभवयसकत वयतपनन ह। इसक अलािा, ि करमर राि

बाउिड (सी.र.बी), जो दकसी भी परामीटर अनमान एलगोररिम क परिशषन का मलयािकन करन क दलए एक सािषभौदमक

उपकरण ह, को अिडरएटडषमाइिड मॉडल का उपयोग करक द.ओ.ए आकलन क दलए परापत दकया जाता ह।

सििातमक पररणाम परिदशषत करत ह दक परसतादित सरणी न दिदभनन एलगोररिम जस एसएस आधाररत सिगीत, कि परदसि

सदसिग (सीएस), डायरकट ऑगमनबल अपरोच (डीएए) क साथ मौजिा सरदणयो ि पर बहतर परिशषन लाभ परिान दकया।

िसर करम क आकडो ि क आधार पर कछ सीमाए होती ह, जस मॉडदलिग तरदट क दलए सिििनशील, रिगीन गॉदसयन

शोर, सीदमत परदतधवदन, आदि। इन सीमाओि को िर करन क दलए और एक सरणी की अननमान को बढान क दलए,

हमन 2𝑞𝑡ℎ(𝑞 > 1) क अनरप एक गदणतीय रपरखा परसतादित की उचच-करम क गर-पररपतर आकड ऑडषर कर।

परसतादित ढािचा एक आभासी सरणी उतपनन करता ह, दजस कयसलट िचषअल ऐर (पी.सी. सी. वी. ए) क साथ सयडो

कयमलट क रप म जाना जाता ह, जो 𝑂((2𝑁)2𝑞 सवतितरता परिान करत ह। न ससर सरणी का उपयोग करना।

परसतादित गदणतीय मॉडल गर-पररपतर सिकतो ि क सििभष म रसखक सरदणयो ि की पहचान कषमता बढाता ह। इसक

अलािा, हम दकसी भी िचषअल सरणी क अनरप भार फि कशन की गणना करन क दलए एक सामानयीकत दिदध परिान

करत ह।

Page 12: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

2𝑞𝑡ℎ ऑडषर नॉन-सकष लर िचषअल ऐर का एपचषर भौदतक सरणी जयादमदत का कायष ह। इसदलए, हमन एक गर-समान

रसखक सरणी को इस तरह स दडजाइन दकया ह दक चौथ करम क गर-पररपतर आभासी सरणी म अदधकतम एपचषर

ह। उचच-करम दिशा खोजन क तरीक, सरणी क ससर की सििा को कम कर ित ह और इस परकार ररसीिर हाडषियर

को कम कर ित ह, जो डीओए अनमान की समगर लागत को कािी कम कर िता ह। इसदलए, हमन परसतादित गर-

समान रसखक सरणी क दिसतार को मनमाना करन क दलए 𝑞 > 1 का आिश दिया, जो 2𝑞𝑡ℎ ऑडषर को जनम ि

रहा ह। 2𝑞𝑡ℎ गर-पररपतर आभासी सरणी। परसतादित दडजाइन क अनरप आभासी सरणी सवतितरता की एक बडी

दडगरी परिान करता ह जो ररजॉलयशन पािर और सरणी की पहचान कषमताओि िोनो ि को बढाता ह।

इसक अलािा, आभासी सरणी की ससथरता परसतादित सरणी क अनसार िजन फि कशन दिशलरण क साथ अधययन

दकया जाता ह। िासतदिक ससथदत म, जयािातर समय जस दक असिबिदधत धारणा परी नही ि होती ह। हम गर-समान

रसखक सरणी, य.ल. ए और मलटीपलथ और आपसी यगमन की उपससथदत म आभासी सरणी परिशषन का दिशलरण

करत ह। य.ल. ए, गर-समान रसखक सरणी और बहपदित िातािरण और आपसी यगमन म आभासी सरणी का

परिशषन कि पयटर दसमलशन क साथ-साथ पररदमत तत दिशलरण उपकरण, यानी, .ओ.म.स.ओ.ल. मलटीदफदजकस।

Page 13: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Table of Contents

Certificate i

Acknowledgements ii

Abstract iv

List of Figures xi

List of Tables xix

Abbreviations xxi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Underdetermined Estimation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Second-order statistics based virtual array . . . . . . . . . . . . 3

1.2.2 Higher-order statistics based virtual array . . . . . . . . . . . . 6

1.3 Non-Circular Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Array Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Second-Order Statistics Based Array : NADiS 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Signal Model and virtual array generation . . . . . . . . . . . . . . . . 17

vii

Page 14: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

2.2.1 Signal Model of non-circular signals . . . . . . . . . . . . . . . . 17

2.3 Proposed array configuration . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Weight Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Cramer Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Comparison of different nested array structure . . . . . . . . . . . . . . 40

2.6.1 In terms of aperture of VULA . . . . . . . . . . . . . . . . . . . 40

2.6.2 In terms of weight function . . . . . . . . . . . . . . . . . . . . . 41

2.6.3 In terms of CRB . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Spatial Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 MSE Versus SNR . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.3 MSE Versus Sensors . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.4 MSE Versus Snapshots . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.5 MSE Versus Number of Sources . . . . . . . . . . . . . . . . . . 49

2.7.6 MSE Versus Separation Between Sources . . . . . . . . . . . . . 50

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Generation of virtual array using the 2qth order non-circular statistics 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Proposed mathematical framework . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 2qth order non-circular statistics of received data . . . . . . . . 57

3.2.3 Generation of Virtual Array from 2qth order cumulants matrix . 60

3.2.4 Determination the virtual sensor position . . . . . . . . . . . . . 62

3.3 Weight Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Virtual array corresponding to circular statistics . . . . . . . . 69

3.3.2 Virtual array corresponding to non-circular statistics . . . . . . 70

3.4 Comparison of CVA and PCCVA aperture . . . . . . . . . . . . . . . . 72

3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Spatial Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii

Page 15: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

3.5.2 Probability of Resolution vs SNR . . . . . . . . . . . . . . . . . 78

3.5.3 MSE vs SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.4 MSE versus separation between sources . . . . . . . . . . . . . 81

3.5.5 MSE versus Number of sources . . . . . . . . . . . . . . . . . . 82

3.5.6 Effect of weight function on estimation performance . . . . . . 83

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Higher-Order cumulant based NULA: QoCNA 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Virtual Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Fourth Order Statistics based Virtual Array . . . . . . . . . . . 92

4.3.2 Virtual Array corresponding 2qth order statistics . . . . . . . . 94

4.4 Proposed array structure . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Proposed Array structure for 2qth order non-circular statistics . . . . . 103

4.6 Comparison of proposed array structures with existing array structure . 106

4.6.1 In terms of degrees of freedom . . . . . . . . . . . . . . . . . . . 106

4.6.2 In terms of virtual array stability . . . . . . . . . . . . . . . . . 108

4.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.1 Probability of Resolution vs SNR . . . . . . . . . . . . . . . . . 114

4.7.2 Performance Analysis in terms of Mean Square Error . . . . . . 115

4.7.3 Performance comparison of Proposed NULA, ULA and Proposed

virtual array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7.4 Performance comparison corresponding HOS crucial parameters 126

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Performance analysis of NULA in presence of multipath and mutual

coupling 129

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix

Page 16: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

5.3 DoA estimation Algorithm using Sparse Bayesian Learning based Rele-

vance Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 DoA estimation in presence of coherent multipath . . . . . . . . . . . . 134

5.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 In presence of Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . 139

5.5.1 Finite Element Study . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.2 Simulation setup in COMSOL MULTIPHYSICS . . . . . . . . . 141

5.5.3 Effect of mutual coupling on acoustic wavefront . . . . . . . . . 143

5.5.4 Spatial Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Conclusion 149

6.1 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendix 151

Bibliography 159

Work Published Based on this Dissertation 173

Technical Biography of Author 176

x

Page 17: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

List of Figures

1.1 Nested Array configuration and corresponding difference co-array . . . 5

1.2 Coprime Array (a) Physical sensor placement (b) Difference co-array . 6

1.3 (a) Scatter plot of radar data (b) Scatter plot of wind data (c) Co-

variance and complementary co-variance function plot of wind data (d)

Co-variance and complementary co-variance function plot of wind data

[ T. Adali, P. J. Schreier and L. L. Scharf, “Complex-Valued Signal Pro-

cessing: The Proper Way to Deal With Impropriety,” in IEEE Trans-

actions on Signal Processing, vol. 59, no. 11, pp. 5101-5125, Nov.

2011.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 A basic model for array signal processing. . . . . . . . . . . . . . . . . 12

2.1 Proposed NLA Structure : NADiS . . . . . . . . . . . . . . . . . . . . . 24

2.2 An example of NADiS configuration where N = 8, N1 = 4, N2 = 4 and

L = 10 D = 7. (a) The NADiS configuration (b) The virtual array . . . 27

2.3 An example of NADiS configuration where N = 8, N1 = 5, N2 = 3 and

L = 13 D = 9. (a) The NADiS configuration (b) The virtual array . . . 30

2.4 Sum and Difference co-array of Array Ω (Note: The number in the curly

brackets . denotes the frequency of corresponding entry.) . . . . . . . 33

2.5 Cross Sum Co-array and Cross Difference Co-array between ULA-I and

ULA-II of NADiS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Weight function of NADiS whose physical sensors located at 0, 1, 2, 3, 4, 13, 22, 31 36

2.7 Weight Function of proposed array structure for 6 physical sensors and

SDCC structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi

Page 18: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

2.8 The performance of the proposed CRB with SNR for ADCA, CPASD,

SDCC and NADiS. The number of physical sensors array is 6. The num-

ber of snapshots is K = 600. For M = 17 sources uniformly distributed

in −60 to 60 with step of 7.3. . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Spatial Spectra estimated using Compressive sensing (CS) for both con-

figuration with 8 sensors and M = 27 sources located uniformly between

−60 to 60 with the step of 4.5, 30 dB SNR and 600 snapshots. . . . 44

2.10 Spectrum of Direct Augmented Approach (DAA) at SNR = 30dB for 8

sensors NADiS and CPASD 600 snapshots and with 27 sources. . . . . 45

2.11 Mean Square Error versus SNR for 1000 Monte Carlo experiments with

N = 8 physical sensors array. The number of snapshots is K = 600. For

M = 27 sources uniformly distributed in −60 to 60 with step of 4.5. 46

2.12 Mean Square Error versus Signal-to-Noise Ratio. Graph compared for

the six sensors configuration with 600 snapshots and for 17 sources. . . 47

2.13 Mean Square Error versus SNR for 1000 Monte Carlo experiments with

N = 6 physical sensors with the location of 0, 1, 2, 3, 10, 17. The

number of snapshots is K = 400. For M = 5 sources located at

−60,−33,−6, 21, 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 Mean Square Error versus Number of sensors for 1000 Monte Carlo

experiments with M = 27 sources uniformly distributed in −60 to 60

with step of 4.5. The number of snapshots is K = 600 and SNR = 20dB. 49

2.15 Mean Square Error versus snapshot for 1000 Monte Carlo experiments

with N = 6 physical sensors with the location of 0, 1, 2, 3, 10, 17. For

M = 17 sources uniformly distributed in −60 to 60 with step of 7.3.

Here SNR = 30dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.16 Mean Square Error versus sources for 1000 Monte Carlo experiments

with N = 6 physical sensors with the location of 0, 1, 2, 3, 10, 17. The

number of snapshots is K = 800 and SNR = 30dB. . . . . . . . . . . . 51

xii

Page 19: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

2.17 Mean Square Error versus sources for 1000 Monte Carlo experiments

with N = 8 physical sensors with the location of 0, 1, 2, 3, 4, 13, 22, 31.The number of snapshots is K = 800 and SNR = 30dB. . . . . . . . . 51

2.18 Mean Square Error versus Separation between Sources for 1000 Monte

Carlo experiments with N = 8 physical sensors with the location of

0, 1, 2, 3, 4, 13, 22, 31. The number of snapshots is K = 600 and SNR

= 30dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Physical sensors placement . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 4th order virtual array (i) with CVA approach (ii) with PCCVA approach 67

3.3 6th order virtual array (i) with CVA approach (ii) with PCCVA ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Weight Function of HO-NA with 6 sensor with PCCVA and CVA ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Compared the weight function of 4th-order PCCVA and CVA of (a)

array S26 (b) array S35 (c) Nested Array (d) Co-Prime Array . . . . . . 74

3.6 MUSIC Spectrum comparison between CVA and PCCVA approaches for

Number of sensors 4 and Number of sources 8. The number of snapshots

is K = 20, 000 and SNR is 0 dB. . . . . . . . . . . . . . . . . . . . . . . 75

3.7 MUSIC Spectrum comparison between CVA and PCCVA for array S16

and 11 8-PSK sources. The number of snapshots is K = 20, 000 and

SNR is 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Spatial Spectrum obtained using compressive sensing of PCCVA and

CVA. There are 6 sensors and M=39 sources located uniformly between

−60 to 60 with the step 3.1. The number of snapshots is K = 20, 000

and SNR is 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Probability of resolution versus SNR for the array S16, S26 and S35 with

9 sources located at −60 to 60 with the step of 14 at 2000 snapshots. 78

xiii

Page 20: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

3.10 Mean square error (MSE) vs. SNR for array S16 and M = 8 sources from

the direction −60,−43,−26,−9, 8, 25, 42, 59, using spatial smoothing

based MUSIC algorithm and compressive sensing. The number of snap-

shots is K = 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.11 Mean Square Error (MSE) vs. SNR for S16, S26 and S35 array config-

urations and M = 9 8-PSK sources signal from the direction between

−60 to 60 with the step of 15. The number of snapshots is K = 2000. 80

3.12 Mean Square Error (MSE) vs. SNR for S16, S26 and S35 array config-

urations and M = 27 sources from the direction between −60 to 60

with the step of 4.6. The number of snapshots is K = 2000. . . . . . . 81

3.13 Mean square error (MSE) vs. SNR for S16, S26 and S35 array configura-

tions and M = 11 sources from the direction between −60 to 60 with

the step of 11.3. The number of snapshots is K = 2000. . . . . . . . . 81

3.14 Mean square error (MSE) vs. Separation between the 10 sources for S16,

S26 and S35 array configurations at 20 dB SNR using spatial smoothing

based MUSIC algorithm. The number of snapshots is K = 2000. . . . . 82

3.15 Mean square error (MSE) vs. Number of sources for S16, S26 and S35 ar-

ray configurations at 20 dB SNR using spatial smoothing based MUSIC

algorithm. The number of snapshots is K = 3000. . . . . . . . . . . . . 83

3.16 Weight function of an array whose physical sensors located at 0 1 2 3 10 17 84

3.17 MUSIC Spectrum for Number of sensors 6 and Number of sources 15.

The number of snapshots is 2000 and SNR is 20 dB. (a) Full aperture

virtual array; (b) with −25 to 25 virtual array aperture. . . . . . . . . 85

3.18 MSE vs Aperture of virtual array with 6 sensor array. The number

of snapshots is 2000. (a) Overdetermined scenario with 5 sources; (b)

Underdetermined scenario with 15 sources. . . . . . . . . . . . . . . . . 86

4.1 Proposed Array configuration . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Proposed array structure for 6 physical sensors (a) Physical sensor array

(b) virtual array (c) VULA . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiv

Page 21: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

4.3 Optimized proposed array structure for 6 physical sensors (a) Physical

sensor array (b) virtual array (c) VULA . . . . . . . . . . . . . . . . . 103

4.4 Aperture of fourth-order VULA vs number of sensors . . . . . . . . . . 107

4.5 Weight function of fourth-order virtual array corresponding to 6 physical

sensor arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Spatial Spectra for 6 sensors proposed array withM = 41 sources located

uniformly between −60 to 60 with the step of 3 at 20dB. The number

of snapshots is K = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Normalized spatial spectrum of different array geometries for 6 sensors

array and M = 41 sources located uniformly between −60 to 60 with

the step of 3 at 20dB SNR using SS based MUSIC method. The number

of snapshots is 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.8 Spatial Spectra using SS based MUSIC algorithm of different 6 sensors

array at 20dB with 800 snapshots for 10 sources directions −56,−32,−27,−13, 0, 11, 23, 36, 45, 54, 5.(a) 2LNA (b) 3L-FONA (c) 4L-FONA (d) Proposed array (FoCNA). . 112

4.9 Spatial Spectra using compressive sensing methods of different 6 sensors

array structures at 20dB with 800 snapshots for 10 sources directions

−56,−32,−27,−13, 0, 11, 23, 36, 45, 54, 5. (a) 2LNA (b) 3L-FONA (c)

4L-FONA (d) Proposed array (FoCNA). . . . . . . . . . . . . . . . . . 113

4.10 Spatial Spectra for 6 sensors proposed array withM = 26 sources located

uniformly between −55 to 55 with the step of 3 at 20dB. The number

of snapshots is K = 20000. . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11 Probability of resolution versus SNR for the different 6 sensor arrays with

25 sources located at −60 to 60 with the step of 5 at 2000 snapshots. 115

4.12 Mean Square Error (MSE) vs. SNR for N = 6 physical sensors array

and M = 31 sources uniformly distributed in −60 to 60 with step of

4 using different algorithm. The number of snapshots are 1500 and 2000.116

4.13 MSE vs. Number of Sources for N = 6 physical sensors FoCNA at 20dB

SNR using different algorithm. The number of snapshots is 2000. . . . 117

xv

Page 22: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

4.14 MSE vs. SNR with N = 6 physical sensors for FoCNA and M = 25

sources uniformly distributed in −60 to 60 with step of 5 using SS

based MUSIC algorithm. The number of snapshots is K = 2000. . . . . 118

4.15 MSE vs. SNR with array S2 and M = 49 sources uniformly distributed

in −60 to 60 with step of 2.5 using SS based MUSIC algorithm. The

number of snapshots is K = 3000. . . . . . . . . . . . . . . . . . . . . . 118

4.16 MSE vs. SNR with N = 6 physical sensors for FoCNA and M = 17

sources uniformly distributed in −60 to 60 with step of 7 using SS

based MUSIC algorithm. The number of snapshots is K = 2000. . . . . 119

4.17 MSE vs. SNR with N = 6 physical sensors for FoCNA and BPSK AND

8-QAM signal with M = 9 DoAs using SS based MUSIC algorithm. The

number of snapshots is K = 800. . . . . . . . . . . . . . . . . . . . . . 120

4.18 MSE vs. Number of snapshot with N = 8 physical sensors arrays and

M = 49 sources uniformly distributed in −60 to 60 with step of 2.5

using SS based MUSIC algorithm at 20dB SNR. . . . . . . . . . . . . . 120

4.19 MSE vs. Number of Sources for N = 8 physical sensors arrays at 20

dB SNR using 2000 snapshots using SS based MUSIC algorithm. The

sources are uniformly distributed in −60 to 60. . . . . . . . . . . . . . 121

4.20 MSE vs. Number of Sources for N = 6 physical sensors arrays at

20dB SNR using 2000 snapshots using SS based MUSIC algorithm. The

sources are uniformly distributed in −60 to 60. . . . . . . . . . . . . 122

4.21 MSE vs Number of Sources for array S3 at 20 dB SNR. The number of

snapshots is 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.22 (b) MSE vs. Angular Separation between 7 sources which are uniformly

distributed in −60 to 60 for array S3 at 20 dB SNR. The number of

snapshots is 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.23 MSE vs. Number of Sensors for M = 25 sources uniformly distributed

in −60 to 60 with step of 5 using SS based MUSIC algorithm. The

number of snapshots is 2000 and 20 dB SNR. . . . . . . . . . . . . . . 124

xvi

Page 23: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

4.24 MSE vs. SNR withN = 6 physical sensors with the location of 0, 1, 2, 33, 46, 59.The number of snapshots is K = 2000. For M = 5 sources located at

−60,−33,−6, 21, 48 . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.25 Probability of Resolution vs. SNR with N = 6 physical sensors with the

location of 0, 1, 2, 33, 46, 59. The number of snapshots is K = 2000.

For M = 5 sources located at −60,−33,−6, 21, 48 . . . . . . . . 125

4.26 MSE vs. Number of snapshot with N = 6 physical sensors fourth-order

and second-order NULA and M = 11 sources using SS based MUSIC

algorithm at 20dB SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.27 MSE vs Second Source power using SS based MUSIC algorithm of 6

sensors array with 800 snapshots for 2 sources directions 35, 40 at

different power level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Spatial Spectra estimated using SBL-RVM and beamforming algorithm

for 6 sensors ULA and three coherent sources from the direction 38, 50

and 60, at 20 dB SNR and 2000 snapshots. . . . . . . . . . . . . . . . 135

5.2 Spatial Spectra estimated using SBL-RVM and beamforming algorithm

for 17 sensors ULA and three coherent sources from the direction 38,

50 and 60, at 20 dB SNR and 2000 snapshots. . . . . . . . . . . . . . 136

5.3 Spatial Spectra estimated using SBL-RVM and beamforming algorithm

for 6 sensors NADiS and corresponding virtual array. Consider three

coherent sources from the direction 38, 50 and 60, at 30 dB SNR and

600 snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Sound speed variation with depth . . . . . . . . . . . . . . . . . . . . . 138

5.5 Sound Pressure level and ray profile with distance . . . . . . . . . . . . 139

5.6 Impulse response of the given channel . . . . . . . . . . . . . . . . . . 139

5.7 DoA estimation using 6 sensors ULA for COMSOL data . . . . . . . . 140

5.8 DoA estimation using 17 sensors ULA for COMSOL data . . . . . . . 140

5.9 DoA estimation using 6 sensors NULA for COMSOL data . . . . . . . 141

5.10 Model Setup in COMSOL . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.11 Model mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xvii

Page 24: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

5.12 ULA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.13 ULA with mutual coupling . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.14 NULA with MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.15 Different NULAs structures for 6 physical sensors. (a) ULA (b) Nested

Array (c) CoPrime Array (d) CADiS (e) NADiS . . . . . . . . . . . . . 145

5.16 Spatial Spectrum of 6 sensor ULA and NULAs with no mutual coupling

effect. The direction of sources are [128, 135, 145]. The number of

snapshots is K = 1500 (a) 6 sensor ULA (b) CADiS (c) Nested Array

(d) CoPrime Array (e) NADiS (f) 18 sensor ULA. . . . . . . . . . . . . 146

5.17 Spatial Power Spectrum of ULA with 6 sensor, NULA and ULA with

18 sensor with mutual coupling effect. The direction of sources are

[128135]. The number of snapshots is K = 1500. . . . . . . . . . . . . 148

xviii

Page 25: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

List of Tables

2.1 Comparison of VULA aperture of various array configuration . . . . . . 40

3.1 Co-arrays corresponding to column of matrix B4,v(θm) . . . . . . . . . 66

3.2 Comparison of virtual array aperture with proposed method . . . . . . 72

4.1 Virtual Array Corresponding to ULA . . . . . . . . . . . . . . . . . . . 96

4.2 Comparison of the consecutive lags for different array structures based

on the 2q-th order virtual array . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 COMSOL Simulation Parameter . . . . . . . . . . . . . . . . . . . . . . 141

xix

Page 26: DESIGN AND ANALYSIS OF NON-UNIFORM LINEAR ARRAY FOR …

Abbreviations

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BPSK Binary phase-shift keying

CRB Cramer Rao bound

CS Compressive Sensing

DoA Direction of Arrival

ESPRIT Estimation of Signal Parameters by Rotational Invariant Techniques

GMSK Gaussian MSK

MVDR Minimum Variance Distorsionless Response

ME Maximum Entropy

ML Maximum Likelihood

MuSiC Multiple Signal Classification

MSK Minimum Shift Keying

MSE Mean Square Error

NULA Non-Uniform Linear Array

NC Non-Circular

PSK Phase-Shift Keying

SS Spatial Smoothing

SNR Signal-to-noise ratio

SBL-RVM Sparse Bayesian Learning based Relevance Vector Machine

ULA Uniform Linear Array

UQPSK Unbalanced Quaternary Phase-Shift Keying

VULA Virtual Uniform Linear Array

WSS Wide Sense Stationary

xxi