density-functional theory calculations relevant to hydride

15
Density-Functional Theory Calculations Relevant to Hydride Formation and Prevention SRF - Paris - September 23, 2013 Denise Ford Argonne National Laboratory (previously affiliated with Fermi National Accelerator Laboratory and Northwestern University)

Upload: others

Post on 25-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Density-Functional Theory Calculations Relevant to Hydride

Density-Functional Theory Calculations Relevant to Hydride Formation and

Prevention SRF - Paris - September 23, 2013

Denise Ford

Argonne National Laboratory (previously affiliated with Fermi National Accelerator Laboratory

and Northwestern University)

Page 2: Density-Functional Theory Calculations Relevant to Hydride

Acknowledgments

  Dr. Lance Cooley

  Prof. David Seidman

  Computing resources at Fermilab and Argonne National Laboratory

  Funding from Fermilab

2 SRF 2013 Denise Ford September 23, 2013

Page 3: Density-Functional Theory Calculations Relevant to Hydride

SRF Cavity Limitations Related to Impurities in Niobium

Quench

Q - disease Q - slope

Ideal

3

Impurities can   be dissolved in the metal

and cause reduction of Tc and local heating

  form precipitates with local magnetic moments or reduced Tc

SRF 2013 Denise Ford September 23, 2013

Page 4: Density-Functional Theory Calculations Relevant to Hydride

Density Functional Theory Modeling

4

NbH (β niobium hydride) bcc Niobium

Infinitely expand structure with periodic boundary conditions

Build a crystal structure

Compare properties of different structures

SRF 2013 Denise Ford September 23, 2013

  Solve the electronic structure problem for the model systems using DFT in VASP

  Assess properties such as binding energy, charge distribution, and niobium lattice strain

Page 5: Density-Functional Theory Calculations Relevant to Hydride

5

Hydride Phase Formation

SRF 2013 Denise Ford September 23, 2013

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 095002

Page 6: Density-Functional Theory Calculations Relevant to Hydride

6

Interstitial Hydrogen, Oxygen, Nitrogen, and Carbon

SRF 2013 Denise Ford September 23, 2013

tetrahedral absorption (H)

octahedral absorption (O,N,C)

Nb128H Nb128O Nb128N Nb128C

Charge on interstitial atom (e-) -0.65 -1.35 -1.63 -1.76

Binding energy (eV) -2.41 -7.02 -7.39 -8.48

Lattice strain energy (eV) 0.11 0.83 0.83 0.96

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003

Page 7: Density-Functional Theory Calculations Relevant to Hydride

Hydride Phase Prevention by Absorbed Oxygen

  Further examination of oxygen showed   Interstitial oxygen traps interstitial hydrogen

  Oxygen preferentially migrates to niobium site vacancies over hydrogen

  Mechanism for the low temperature bake (which mitigates Q-slope) -> Break up hydride phases

-> Detrap hydrogen from niobium lattice defects

-> Block phase nucleation sites with oxygen atoms

-> Trap interstitial hydrogen with interstitial oxygen atoms

  Would nitrogen have a similar effect?

7

SRF 2013 Denise Ford September 23, 2013

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003

Page 8: Density-Functional Theory Calculations Relevant to Hydride

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

2 3 4 5 6 7 8 9X-H Distance (Å)

Bind

ing

Ener

gy (e

V)

X=N

X=O

8

Hydrogen Trapping by Oxygen and Nitrogen

SRF 2013 Denise Ford September 23, 2013

Page 9: Density-Functional Theory Calculations Relevant to Hydride

9

Hydrogen, Oxygen, and Nitrogen in Niobium Site Vacancies

SRF 2013 Denise Ford September 23, 2013

-1.0

-0.5

0.0

0.5

0 1 2 3 4

Vaca

ncy

Abs

orpt

ion

Ener

gy (

eV)

unpaired electrons

Page 10: Density-Functional Theory Calculations Relevant to Hydride

10 SRF 2013 Denise Ford September 23, 2013

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4

unpaired electrons

Atomic Radius (A) Charge when Interstitial (e) Vacancy Absorption Energy (eV) Strain Releif by Vacancy Absorption (eV)

Hydrogen, Oxygen, and Nitrogen in Niobium Site Vacancies

Page 11: Density-Functional Theory Calculations Relevant to Hydride

11 SRF 2013 Denise Ford September 23, 2013

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4

unpaired electrons

Atomic Radius (A) Charge when Interstitial (e) Vacancy Absorption Energy (eV) Strain Releif by Vacancy Absorption (eV)

Hydrogen, Oxygen, Nitrogen, and Carbon in Niobium Site Vacancies

Page 12: Density-Functional Theory Calculations Relevant to Hydride

12

Hydrogen, Oxygen, and Nitrogen in Niobium

SRF 2013 Denise Ford September 23, 2013

  Vacancy trapping and detrapping energies1,2,3 : N>O>H

  Effect on superconducting transition temperature4,5,6

  O>N>H

  hydride precipitates Tc < 2 K

  some nitrides Tc > 10 K

1. Hautojarvi P, et al. 1985 Phys. Rev. B 32 4326–31; 2. Igata N, Miyahara K, Ohno K and Hakomori K 1982 J. Nucl. Mater. 108/109 234–9; 3. Wechsler M S and Murty K L 1989 Metall. Trans. A 20A 2637–49; 4. DeSorbo W 1963 Phys. Rev. 132 107–23; 5. Jisrawi N M, et al. 1998 Phys. Rev. B 58 6585–90; 6. Ohlendorf D and Wicke E 1979 J. Phys. Chem. Solids 40 721–8

Page 13: Density-Functional Theory Calculations Relevant to Hydride

Conclusions

  Suggested improvements for processing   Tailor bake temperature and time to eliminate hydride

precipitates and supply the appropriate amount of oxygen to prevent their reformation

  Potentially use nitrogen for milder effect on superconducting transition temperature

  Future work   Examine the formation of nitride phases in niobium

  Examine the effect of various NbxNy, NbxNyHz, NbxOyHz complexes on the superconducting properties of the niobium

  Examine the role of dislocations in hydride phase formation/prevention

13 SRF 2013 Denise Ford September 23, 2013

Page 14: Density-Functional Theory Calculations Relevant to Hydride

Hydrogen in Niobium

14

  α, α’ – interstitial hydrogen dispersed in bcc niobium

  β, ε – ordered hydrogen interstitials in fco niobium

  δ – ordered hydrogen interstitials in fcc niobium – fluorite structure

  λ, λc – experimentally unconfirmed phases R.E. Ricker, G.R. Myneni, J. Res. Natl. Inst. Stand.

Technol., 115, 1 (2010).

!

!"#

$%%&%%'&()#*+#),&#)&'-&.$)/.&01*'-*%2)2*(#32$4.$'#%,*5(#2(#6247#89$:7##;,2%#32$4.$'#%,*5%#8#

-,$%&%<#

#

"7# !0=,$%&<##;,&#!#-,$%&#2%#&%%&()2$>>?#),&#-/.&#@A#A*3?#1&()&.&3#1/A21#9A11:#-,$%&#

2()&.%)2)2$>>?#$>>*?&3#52),#B#$)*'%#.$(3*'>?#32%).2A/)&3#*C&.#)&).$,&3.$>#%2)&%#2(#),&#

1.?%)$>#>$))21&7DD###

!7# !E0=,$%&<##;,&#!E#-,$%&#2%#$#.$(3*'#2()&.%)2)2$>#$>>*?#*+#B#2(#A11#@A#52),#&%%&()2$>>?#),&#

%$'&#1.?%)$>#%)./1)/.&#$%#),&#!#-,$%&7##;,2%#3&%24($)2*(#2%#/%&3#+*.#B#1*(1&().$)2*(%#

$A*C&#$A*/)#!F#G#'*>&#+.$1)2*(7DF0DD

#

H7# "0=,$%&<##;,&#"#-,$%&#,$%#$#+$1&#1&()&.&3#1/A21#9+11:#*.),*.,*'A21#%)./1)/.&#52),#B#

$)*'%#*11/-?2(4#+*/.#2()&.%)2)2$>#%2)&%#-&.#/(2)#1&>>#2(#$(#*.3&.&3#$..$(4&'&()#52),#

&%%&()2$>>?#),&#%)*21,2*'&).?#*+#@AB7##;,2%#-,$%&#+*.'%#A&>*5#"IJ#KLM#A/)#/(3&.4*&%#$#

%&.2&%#*+#*.3&.2(4#).$(%+*.'$)2*(%#A&>*5#HJ#)*#8J#KL#.&%/>)2(4#2(#),&###$(3#$#-,$%&%7#

F7# %0=,$%&<###;,&#%#-,$%&#,$%#),&#+>/*.2)&#%)./1)/.&#2(#5,21,#),&#@A#$)*'%#,$C&#$(#+11#

$..$(4&'&()#52),#),&#B#$)*'%#*11/-?2(4#)&).$,&3.$>#%2)&%7##;,&#A*/(3$.2&%#*+#),2%#

-,$%&#+2&>3#$.&#-**.>?#N(*5(#$(3#3$%,&3#>2(&%#$.&#/%&3#2(#),&#32$4.$'#*+#6247#89$:#)*#

2(321$)&#),2%#+$1)7#

I7# #0=,$%&<##;,&#"#-,$%&#).$(%+*.'%#2()*#),&###-,$%&#$)#)&'-&.$)/.&%#A&>*5#0DO#KL7##;,2%#

-,$%&#,$%#$#($..*5#1*(1&().$)2*(#A$(3#$.*/(3#),&#%)*21,2*'&).?#*+#@AFBH#$(3#+*.'%#

*/)#*+#),&!"#-,$%&#A?#>*(40.$(4&#*.3&.2(4#),&#B#$)*'%#2(#),&#)&).$,&3.$>#%2)&%#5,2>&#),&#

@A#$)*'%#.&'$2(#/($++&1)&37##P--$.&()>?M#B#,$%#%24(2+21$()#'*A2>2)?#$)#),&%&#>*5#

)&'-&.$)/.&%#$(3#Q$(1,&%)&.#$(3#=2).&DD#.&-*.)#),$)#%)/32&%#,$C&#*A%&.C&3#B#'*)2*(#$)#

)&'-&.$)/.&%#$%#>*5#$%#J7JI#R7###

DM87# $#$(3#$"#=,$%&%<##Q$(1,&%)&.#$(3#=2).&#DD#.&-*.)#),$)#$)#>&$%)#I#*),&.#-,$%&%#,$C&#A&&(#

.&-*.)&3#2(#),&#>2)&.$)/.&M#A/)#),&#&S-&.2'&()$>#&C23&(1&#2%#/(1&.)$2(#*.#/(1*(+2.'&37##

;,&%&#-,$%&%#$.&#32%1/%%&3#2(#),&2.#-$-&.M#A/)#52),#),&#&S1&-)2*(#*+#),&#$#$(3#$"#-,$%&%M#

),&%&#$/),*.%#&>&1)&3#(*)#)*#2(1>/3&#),&%&#-,$%&%#*(#),&#)&'-&.$)/.&01*'-*%2)2*(#

32$4.$'7##;,&#-,$%&#+2&>3#+*.#),&%&#-,$%&%#2%#-**.>?#N(*5(#$(3#3$%,&3#>2(&%#$.&#/%&3#2(#

),&#32$4.$'#*+#6247#89$:#)*#2(321$)&#),2%#+$1)7#####

#

!

#$%&'(!)!*!+$,-$&.*/01',%(2!3456(!1$5%'5.!'(3,'7(1!-0!852"4(67('!521!9$7'(::!;5<!521!=>!?@!

(A&$B$-'$&.!3'(66&'(!521!3,7(27$5B!(67$.57(6!C,'!401'$1(!3456(6!-56(1!,2!74(!1575!,C!#',..!521!D(42!:E!C,'!74(!!!521!!""!'(%$,26!521!852"4(67('!521!9$7'(!::!C,'!74(!""%!'(%$,2!;-<F!

!"#$%&'()*&)+"',-.*#/)+'

!"#$%&'012#',345'

6)$7)*1"8*)9':;' 6)

$7)*1"8*)9'<'

SRF 2013 Denise Ford September 23, 2013

Page 15: Density-Functional Theory Calculations Relevant to Hydride

Density Functional Theory Modeling

15

  Solve the electronic structure problem for the model system

  Parameters   Vienna Ab Initio Simulation Package (VASP)

  Plane wave basis set w/400 eV cutoff

  PAW pseudopotentials to describe atomic cores

  PBE-GGA exchange-correlation functional

  0.25/Å gamma-centered k-point mesh

  Bader Method to assign local properties

SRF 2013 Denise Ford September 23, 2013