degree of freedom energy equations virtual...

22
Degree of Freedom Energy Equations Virtual Work

Upload: dangkhanh

Post on 13-May-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Degree of FreedomEnergy EquationsVirtual Work

Page 2: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

k (N/m) c (Ns/m)

Static Equilibrium Position

kmg

static =δ

f(t)

x(t)

m

F(t) input

X(t) output

1 DOF System (Mass&Spring)

MECHANICAL SYSTEMS

Page 3: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

k (N/m)

f(t)

m

x(t)c (Ns/m)

21 2

1 xmE &=

22 2

1 kxE =

xxcxtfW δ−δ=δ &)(

Page 4: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Lagrange’s Equation:

ixii

QxE

xE

dtd

=∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂ 21&

Lagrange’s equation is written for linear systems as follow

Where xi is the ith generalized co-ordinate and Qxi is the generalizedforce subjected to the ith generalized co-ordinate.

ixii

Qx

EEx

EEdtd

=∂−∂

−⎟⎟⎠

⎞⎜⎜⎝

⎛∂−∂ )()( 2121&

Page 5: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

For Mass&spring system, application of the Lagrange’s equation givesthe “Equation of Motion”.

( ) xmxmdtd

xE

dtd

&&&&

==⎟⎠⎞

⎜⎝⎛∂∂ 1

kxx

E=

∂∂ 2

xctfQx &−= )(

xctfkxxm &&& −=+ )(

)(tfkxxcxm =++ &&&

Page 6: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Viscous damping, B (Nms/rad)

R

k

c

221 mRI =

m M(t)

θ

RθR Sinθ

For θ<<1

Sin(θ)=θ

Cos(θ)=1

21 2

1θ= &IE

22 )(

21

θ= RkE

)R(cRB)t(MW θδθ−δθθ−δθ=δ &&

≈R

Page 7: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

221 2

121

θ= &mRE

222 2

1θ= kRE 1 DOF system, θ

Lagrange’s equation for θ

θ=⎟⎠⎞

⎜⎝⎛ θ=⎟

⎠⎞

⎜⎝⎛

θ∂∂ &&&&

22121

21 mRmR

dtdE

dtd θ=

θ∂∂ 22 kRE

θ−θ−=θ&& 2cRB)t(MQ

( ) )t(MkRcRBmR21 222 =θ+θ++θ &&&

)R(cRB)t(MW θδθ−δθθ−δθ=δ &&

Page 8: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

1 DOF system, θL

kc

θF(t)

L/4 3L/8 3L/8

GA B

D

21 2

1θ= &BIE

Homogeneous beam is pinned at point B. The moment of inertia with respect to point B is calculated from theSteiner Theorem.

2mrII GB +=

r

442LLLr =−=

22

4121

⎟⎠⎞

⎜⎝⎛+=

LmmLIB

C

Page 9: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

22

4121

⎟⎠⎞

⎜⎝⎛+=

LmmLIB 487

483

484

16121 2222

2 mLmLmLLmmLIB =+=+=

2221 48

721

21

θ=θ= && mLIE B 1621

421)(

21 222

22

θ=⎟

⎠⎞

⎜⎝⎛ θ==

LkLkxkE A

DDC xxcxtFW δ−δ=δ &)( θ=θ=8

6,8

3 LxLx DC

⎟⎠⎞

⎜⎝⎛ θδθ−⎟

⎠⎞

⎜⎝⎛ θδ=δ

86

86

83)( LLcLtFW & δθθ−δθ−=δ &

6436

83)(

2LcLtFW

δθ⎟⎟⎠

⎞⎜⎜⎝

⎛θ−−=δ &

6436

83)(

2LcLtFW

Page 10: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Lagrange’s equation for θ

2221 48

721

21

θ=θ= && mLIE B 1621

421)(

21 222

22

θ=⎟

⎠⎞

⎜⎝⎛ θ==

LkLkxkE A

δθ⎟⎟⎠

⎞⎜⎜⎝

⎛θ−−=δ &

6436

83)(

2LcLtFW

θ=⎟⎠⎞

⎜⎝⎛ θ=⎟

⎠⎞

⎜⎝⎛

θ∂∂ &&&&

221487

487 mLmL

dtdE

dtd

θ=θ∂

∂16

22 LkE

θ−=θ&

169)(

83 2cLtFLQ

)(161

169

487

83222 tFkLcLmL L−=θ+θ+θ &&&

Page 11: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

ELECTRICAL SYSTEMS

L R

V1C V2

q&

L-R-C Circuit

L

q&

dtqdLVV ba&

=−

a b

(Henry)

R

q&

(Ohm)

a b

qRVV ba &=−

b

q&a C

(Farad)

qC

VV ba1

=−

Page 12: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

According to the Kirschhoff’s Rule,

2111 VqC

andVqC

qRdtqdL ==++ &&

Where V1 denotes the input voltage and V2 denotes the output voltage.

The energy and virtual work equations for L-R-C circuit are

21 2

1 qLE &= 22 2

1 qC

E = qqRqVW δ−δ=δ &1

There is only one current in the circuit and then the system is said to be 1 DOF. The generalized co-ordinate is the charge q.

Application of the Lagrange’s equation to charge q establishes themathematical model.

Page 13: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

( ) qLqLdtd

qE

dtd

&&&&

==⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂ 1

21 2

1 qLE &= 22 2

1 qC

E = qqRqVW δ−δ=δ &1

qCq

E 12 =∂∂ qRVQq &−= 1

11 VqC

qRqL =++ &&& 21 VqC

and =

Page 14: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Laplace Transformation (Kuo, 1995)

The Laplace transform is one of the mathematical tools used for thesolution of linear ordinary differential equations. In comparison with theclassical method of solving linear differential equations, the Laplacetransform method has the following two attractive features:

1.The homogeneous equation and the particular integral of the solutionare obtained in one operation.

2.The Laplace transform converts the differential equation into an algebraic equation in s. It is then possible to manipulate the algebraicequation by simple algebraic rules to obtain the solution in the s-domain. The final solution is obtained by taking the inverse Laplacetransform.

Page 15: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Definition of the Laplace Transform

Given the real function f(t) that satisfies the condition

∫∞ σ− ∞<0

)( dtetf t

For some finite real σ, the Laplace transform of f(t) is defined as

∫∞ −=0

)()( dtetfsF st

The variable s is referred to as the Laplace operator which is a complex variable; that is,

ω+σ= is

Page 16: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Example 1.

Let f(t) be a unit-step function that is defined as

⎩⎨⎧

<>=

0001)(

)(tttu

tf

The Laplace transform of f(t) is obtained as

[ ]s

es

dtetutuLsF stst 11)()()(00=−===

∞−∞ −∫

Page 17: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Example 2.

Consider the exponential function

tetf α−=)(

where α is a real constant

α+=−==

∞α+−

∫∞

α+−α−

sdteesF s

estt ts 1)(0

)(

0

Page 18: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

Important Theorems of the Laplace Transform

Theorem 1: Multiplication by a Constant

Let k be a constant and F(s) be the Laplace transform of f(t). Then

[ ] )()( skFtkfL =Theorem 2: Sum and Difference

Let F1(s) and F2(s) be the Laplace transform of f1(t) and f2(t), respectively. Then

[ ] )()()()( 2121 sFsFtftfL ±=±Theorem 3: Differentiation

)0()()(lim)()(0

fssFtfssFdt

tdfLt

−=−=⎥⎦⎤

⎢⎣⎡

Page 19: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

)0(...)0()0()()( )1(21 −−− −−′−−=⎥⎥⎦

⎢⎢⎣

⎡ nnnnn

ffsfssFsdt

tfdL

Theorem 4: Integration

ssFdfL

t )()(0

=⎥⎦⎤

⎢⎣⎡ ττ∫

Theorem 5: Initial -Value Theorem

)(lim)(lim0

ssFtfst ∞→→

=

Theorem 6: Final -Value Theorem

)(lim)(lim0

ssFtfst →∞→

=

Page 20: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

)(tfkxxcxm =++ &&&

Apply the Laplace transform to the equation of motion of the mass-springsystem

[ ] [ ] )()()0()()0()0()(2 sFskXxssXcxsxsXsm =+−+−− &

[ ] ( ) )()0()0(1)(2 sFxxssXkcsms =−+−++ &

[ ] )()(2 sFsXkcsms =++

kcsmssFsXsH

++== 2

1)()()(

kcsms ++21F(s) X(s)

)(1)( 2 sFkcsms

sX++

=

(Transfer Function)

All initial conditions are assumed to be zero while evaluating the Transfer Function.

Page 21: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

k (N/m)

f(t)

m

x(t)c (Ns/m)

m=200 kgc=300 Ns/mk=5000 N/m

f(t)=50 N (step function)

t (sec)

f(t)

50

ssF 50)( =

Page 22: Degree of Freedom Energy Equations Virtual Workdebis.deu.edu.tr/userweb/zeki.kiral/MAK3026_Kontrol_Tekstil/Textile_week2.pdfLagrange’s Equation: x i i i Q x E x E dt d = ∂ ∂

MATLAB Code

clc;clear;

m=200;

c=300;

k=5000;

pay=[1];

payda=[m,c,k];

step(pay*50,payda)

skcsmssX 501)( 2 ++=

0 1 2 3 4 5 6 7 80

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018Step Response

Time (sec)

Ampl

itude

Steady-state value

x(t)

msss

sssXtxxst

ss 01.050005050

50003002001)(lim)(lim 20

==++

===→∞→