dasar ventilasi mekanik ag

29
1 DASAR VENTILASI MEKANIK ANANG ACHMADI, SpAn ICU Bedah RS Jantung Pusat Nasional Harapan Kita - Jakarta

Upload: pitria-hayati

Post on 13-Apr-2015

113 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Dasar Ventilasi Mekanik Ag

1

DASAR VENTILASI MEKANIK

ANANG ACHMADI, SpAn

ICU Bedah

RS Jantung Pusat Nasional

Harapan Kita - Jakarta

Page 2: Dasar Ventilasi Mekanik Ag

ObjectivesObjectives

• Describe types of breaths and modes

of mechanical ventilation

• Describe interactions between

ventilatory parameters and

modifications needed to avoid harmful

effects

• Describe types of breaths and modes

of mechanical ventilation

• Describe interactions between

ventilatory parameters and

modifications needed to avoid harmful

effects

Page 3: Dasar Ventilasi Mekanik Ag

Early ventilators

Page 4: Dasar Ventilasi Mekanik Ag

4

Ventilator ~ Ventilator ~ ventilasiventilasi•• Ventilasi Ventilasi = = keluar masuknya udara dari atmosfer ke keluar masuknya udara dari atmosfer ke alveolusalveolus

•• Ventilator = Ventilator = menghantarkanmenghantarkan (delivery) (delivery) udaraudara/gas TEKANAN/gas TEKANANPOSITIF POSITIF ke dalam paruke dalam paru

•• Ventilasi semenit Ventilasi semenit = TV x RR (= TV x RR (frekuensi nafasfrekuensi nafas))

–– TV = 5-7 cc/TV = 5-7 cc/kgBBkgBB

–– RR = 10 –12 kali/RR = 10 –12 kali/menitmenit

•• Compliance = Compliance = Pengukuran dari elastisitas paru dan dindingPengukuran dari elastisitas paru dan dindingdadadada

–– Nilai Nilai compliance compliance mengekspresikan adanya perubahan mengekspresikan adanya perubahan volumevolumeakibat perubahan dari tekanan akibat perubahan dari tekanan (pressure)(pressure)

–– Compliance Compliance rendah rendah = “Stiff lung” - edema = “Stiff lung” - edema paruparu, , efusi efusi pleura,pleura,obstruksiobstruksi, , distensi distensi abdomen abdomen dan pneumotoraksdan pneumotoraks

–– Compliance Compliance tinggi tinggi = = penurunan elastisitas resistensi pada inspirasipenurunan elastisitas resistensi pada inspirasidan penurunan kemampuan mengeluarkan udara waktu ekspirasidan penurunan kemampuan mengeluarkan udara waktu ekspirasi(COPD)(COPD)

Page 5: Dasar Ventilasi Mekanik Ag

5

Kriteria tradisional untuk bantuan ventilasi mekanikKriteria tradisional untuk bantuan ventilasi mekanik

35-45 > 60Ventilasi (PaCO2-mmHg)

25-65(FiO2 1.0) > 350P(A-aDO2) mmHg

75-100 (air)<60 dg FiO2 0,6Oksigenasi (PaO2-mmHg)

5-7 < 5TV (cc/kg)

10-20x/m > 35x/mMekanik (RR)

NORMAL RANGEINDIKASI VENTILASIPARAMETER

Page 6: Dasar Ventilasi Mekanik Ag

6

TUJUAN KLINIS / INDIKASI PEMAKAIANTUJUAN KLINIS / INDIKASI PEMAKAIANVENTILASI MEKANIKVENTILASI MEKANIK

GAGAL NAFAS HIPOKSEMIK :

Reverse hypoxemia dgn pemberian PEEP dan konsentrasi O2tinggi (ARDS,edema paru atau pneumonia akut)

GAGAL NAFAS VENTILASI:

Reverse acute respiratory acidosis

- Koma : trauma kepala, encefalitis, overdosis, CPR

- Trauma med spinalis, polio, motor neuron disease

- Polineuropati, miastenia gravis

- Anesthesia (relaksan u/operasi, tetanus, epilepsi)

STABILISASI DINDING DADA:

Flail chest

MENCEGAH ATAU MENGOBATI ATELEKTASIS

Page 7: Dasar Ventilasi Mekanik Ag

7

TUJUAN FISIOLOGISTUJUAN FISIOLOGIS

MEMPERBAIKI VENTILASI ALVEOLAR

MEMPERBAIKI OKSIGENASI ALVEOLAR(FiO2, FRC,V'A)

MEMBERIKAN PUMP SUPPORT ( MEWOB)

Consensus conference on mechanical ventilation, Int Care Med 1994,20:64-79

Page 8: Dasar Ventilasi Mekanik Ag

Indications for Mechanical Ventilation

Indications for Mechanical Ventilation

• Ventilation abnormalities– Respiratory muscle dysfunction

• Respiratory muscle fatigue• Chest wall abnormalities• Neuromuscular disease

– Decreased ventilatory drive– Increased airway resistance and/or

obstruction

• Ventilation abnormalities– Respiratory muscle dysfunction

• Respiratory muscle fatigue• Chest wall abnormalities• Neuromuscular disease

– Decreased ventilatory drive– Increased airway resistance and/or

obstruction

Page 9: Dasar Ventilasi Mekanik Ag

• Oxygenation abnormalities

– Refractory hypoxemia

– Need for positive end-expiratory pressure (PEEP)

– Excessive work of breathing

• Oxygenation abnormalities

– Refractory hypoxemia

– Need for positive end-expiratory pressure (PEEP)

– Excessive work of breathing

Indications for Mechanical Ventilation

Indications for Mechanical Ventilation

Page 10: Dasar Ventilasi Mekanik Ag

Types of Ventilator BreathsTypes of Ventilator Breaths

• Volume-cycled breath– “Volume breath”– Preset tidal volume

• Time-cycled breath– “Pressure control breath”– Constant pressure for preset time

• Flow-cycled breath– “Pressure support breath”– Constant pressure during inspiration

• Volume-cycled breath– “Volume breath”– Preset tidal volume

• Time-cycled breath– “Pressure control breath”– Constant pressure for preset time

• Flow-cycled breath– “Pressure support breath”– Constant pressure during inspiration

Page 11: Dasar Ventilasi Mekanik Ag

Modes of Mechanical Ventilation

• Consider trial of NPPV

• Determine patient needs

• Goals of mechanical ventilation– Adequate ventilation and oxygenation– Decreased work of breathing– Patient comfort and synchrony

Page 12: Dasar Ventilasi Mekanik Ag

Modes of Mechanical VentilationPoint of Reference:

Spontaneous Ventilation

Modes of Mechanical VentilationPoint of Reference:

Spontaneous Ventilation

Page 13: Dasar Ventilasi Mekanik Ag

Continuous Positive Airway Pressure (CPAP)

Continuous Positive Airway Pressure (CPAP)

• No machine breaths delivered

• Allows spontaneous breathing at elevated baseline pressure

• Patient controls rate and tidal volume

• No machine breaths delivered

• Allows spontaneous breathing at elevated baseline pressure

• Patient controls rate and tidal volume

Page 14: Dasar Ventilasi Mekanik Ag

Assist-Control VentilationAssist-Control Ventilation

• Volume or time-cycled breaths + minimal ventilator rate

• Additional breaths delivered with inspiratory effort• Advantages: reduced work of breathing; allows

patient to modify minute ventilation• Disadvantages: potential adverse hemodynamic

effects or inappropriate hyperventilation

• Volume or time-cycled breaths + minimal ventilator rate

• Additional breaths delivered with inspiratory effort• Advantages: reduced work of breathing; allows

patient to modify minute ventilation• Disadvantages: potential adverse hemodynamic

effects or inappropriate hyperventilation

Page 15: Dasar Ventilasi Mekanik Ag

Pressure-Support VentilationPressure-Support Ventilation

• Pressure assist during spontaneous inspiration with flow-cycled breath

• Pressure assist continues until inspiratory effort decreases

• Delivered tidal volume dependent on inspiratory effort and resistance/compliance of lung/thorax

• Pressure assist during spontaneous inspiration with flow-cycled breath

• Pressure assist continues until inspiratory effort decreases

• Delivered tidal volume dependent on inspiratory effort and resistance/compliance of lung/thorax

Page 16: Dasar Ventilasi Mekanik Ag

• Potential advantages– Patient comfort

– Decreased work of breathing

– May enhance patient-ventilator synchrony

– Used with SIMV to support spontaneous breaths

• Potential advantages– Patient comfort

– Decreased work of breathing

– May enhance patient-ventilator synchrony

– Used with SIMV to support spontaneous breaths

Pressure-Support VentilationPressure-Support Ventilation

Page 17: Dasar Ventilasi Mekanik Ag

• Potential disadvantages

– Variable tidal volume if pulmonary resistance/compliance changes rapidly

– If sole mode of ventilation, apnea alarm mode may be only backup

– Gas leak from circuit may interfere with cycling

• Potential disadvantages

– Variable tidal volume if pulmonary resistance/compliance changes rapidly

– If sole mode of ventilation, apnea alarm mode may be only backup

– Gas leak from circuit may interfere with cycling

Pressure-Support VentilationPressure-Support Ventilation

Page 18: Dasar Ventilasi Mekanik Ag

Synchronized Intermittent Mandatory Ventilation (SIMV)

Synchronized Intermittent Mandatory Ventilation (SIMV)

• Volume or time-cycled breaths at a preset rate

• Additional spontaneous breaths at tidal volume and rate determined by patient

• Used with pressure support

• Volume or time-cycled breaths at a preset rate

• Additional spontaneous breaths at tidal volume and rate determined by patient

• Used with pressure support

Page 19: Dasar Ventilasi Mekanik Ag

• Potential advantages– More comfortable for some patients

– Less hemodynamic effects

• Potential disadvantages – Increased work of breathing

Synchronized Intermittent Mandatory Ventilation (SIMV)

Synchronized Intermittent Mandatory Ventilation (SIMV)

Page 20: Dasar Ventilasi Mekanik Ag

Controlled Mechanical VentilationControlled Mechanical Ventilation

• Preset rate with volume or time-cycled breaths• No patient interaction with ventilator• Advantages: rests muscles of respiration• Disadvantages: requires sedation/neuro-

muscular blockade, potential adverse hemodynamic effects

• Preset rate with volume or time-cycled breaths• No patient interaction with ventilator• Advantages: rests muscles of respiration• Disadvantages: requires sedation/neuro-

muscular blockade, potential adverse hemodynamic effects

Page 21: Dasar Ventilasi Mekanik Ag

Inspiratory Plateau Pressure (IPP)Inspiratory Plateau Pressure (IPP)

• Airway pressure measured at end of inspiration with no gas flow present

• Estimates alveolar pressure at end-inspiration• Indirect indicator of alveolar distension

• Airway pressure measured at end of inspiration with no gas flow present

• Estimates alveolar pressure at end-inspiration• Indirect indicator of alveolar distension

Peak pressure Plateau pressure

Inspiration Expiration

PIP

Plateau pressure

Page 22: Dasar Ventilasi Mekanik Ag

• High inspiratory plateau pressure– Barotrauma – Volutrauma– Decreased cardiac output

• Methods to decrease IPP– Decrease PEEP– Decrease tidal volume

Inspiratory Plateau Pressure (IPP)Inspiratory Plateau Pressure (IPP)

Page 23: Dasar Ventilasi Mekanik Ag

Inspiratory Time: Expiratory Time Relationship (I:E ratio)

Inspiratory Time: Expiratory Time Relationship (I:E ratio)

• Spontaneous breathing I:E = 1:2

• Inspiratory time determinants with volume breaths– Tidal volume

– Gas flow rate

– Respiratory rate

– Inspiratory pause

• Expiratory time passively determined

• Spontaneous breathing I:E = 1:2

• Inspiratory time determinants with volume breaths– Tidal volume

– Gas flow rate

– Respiratory rate

– Inspiratory pause

• Expiratory time passively determined

Page 24: Dasar Ventilasi Mekanik Ag

I:E Ratio during Mechanical VentilationI:E Ratio during Mechanical Ventilation

• Expiratory time too short for exhalation– Breath stacking

– Auto-PEEP

• Reduce auto-PEEP by shortening inspiratory time– Decrease respiratory rate

– Decrease tidal volume

– Increase gas flow rate

• Expiratory time too short for exhalation– Breath stacking

– Auto-PEEP

• Reduce auto-PEEP by shortening inspiratory time– Decrease respiratory rate

– Decrease tidal volume

– Increase gas flow rate

Page 25: Dasar Ventilasi Mekanik Ag

Permissive HypercapniaPermissive Hypercapnia

• Acceptance of an elevated PaCO2, e.g., lower tidal volume to reduce peak airway pressure

• Contraindicated with increased intracranial pressure

• Consider in severe asthma and ARDS

• Critical care consultation advised

• Acceptance of an elevated PaCO2, e.g., lower tidal volume to reduce peak airway pressure

• Contraindicated with increased intracranial pressure

• Consider in severe asthma and ARDS

• Critical care consultation advised

Page 26: Dasar Ventilasi Mekanik Ag

Auto-PEEPAuto-PEEP

• Can be measured on some ventilators

• Increases peak, plateau, and mean airway pressures

• Potential harmful physiologic effects

• Can be measured on some ventilators

• Increases peak, plateau, and mean airway pressures

• Potential harmful physiologic effects

Page 27: Dasar Ventilasi Mekanik Ag

• Can be measured on some ventilators

• Increases peak, plateau, and mean airway pressures

• Potential harmful physiologic effects

• Can be measured on some ventilators

• Increases peak, plateau, and mean airway pressures

• Potential harmful physiologic effects

Auto-PEEPAuto-PEEP

Page 28: Dasar Ventilasi Mekanik Ag

Pediatric ConsiderationsPediatric Considerations

• Infants (< 5 kg)

– Time-cycled, pressure-limited ventilation

– Peak inspiratory pressure initiated at 18–20 cm H2O

– Adjust to adequate chest movement or exhaled tidal volume ~8 mL/kg

– Low level of PEEP (2–4 cm H2O) to prevent alveolar collapse

• Infants (< 5 kg)

– Time-cycled, pressure-limited ventilation

– Peak inspiratory pressure initiated at 18–20 cm H2O

– Adjust to adequate chest movement or exhaled tidal volume ~8 mL/kg

– Low level of PEEP (2–4 cm H2O) to prevent alveolar collapse

Page 29: Dasar Ventilasi Mekanik Ag

• Children– SIMV mode– Tidal volume 8-10 mL/kg– Flow rate adjusted to yield desired

inspiratory time• Infants 0.5–0.6 secs• Toddlers 0.6-0.8 secs• Older 0.8–1.0 secs

– Rate <18–20 breaths/min– PEEP 2–4 cm H2O

• Children– SIMV mode– Tidal volume 8-10 mL/kg– Flow rate adjusted to yield desired

inspiratory time• Infants 0.5–0.6 secs• Toddlers 0.6-0.8 secs• Older 0.8–1.0 secs

– Rate <18–20 breaths/min– PEEP 2–4 cm H2O

––

Pediatric ConsiderationsPediatric Considerations