d3.1 - scenarios identification and requirement analysis · 2019-03-12 · v2i vehicle to...

129
Founding Members D3.1 - Scenarios identification and requirement analysis Deliverable ID D3.1 Project Acronym DREAMS Grant: 763671 Call: H2020-SESAR-2016-1 Topic: RPAS-02: Drone information management Consortium coordinator: IDS Edition date: 20 March 2018 Edition: 00.01.00 Template Edition: 02.00.00 EXPLORATORY RESEARCH

Upload: others

Post on 23-Jan-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

Founding Members

D3.1 - Scenariosidentification andrequirementanalysis

DeliverableID D3.1 ProjectAcronym DREAMS Grant: 763671 Call: H2020-SESAR-2016-1 Topic: RPAS-02:Droneinformationmanagement Consortiumcoordinator: IDS Editiondate: 20March2018 Edition: 00.01.00 TemplateEdition: 02.00.00

EXPLORATORYRESEARCH

Page 2: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

2

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Authoring&Approval

AuthorsofthedocumentName/Beneficiary Position/Title Date

AlbertoMennella/TOPVIEWSRL TeamLeader 15/03/2018

ToniCafiero/TOPVIEWSRL Projectcontributor 15/03/2018

GianlucaLuisi/TOPVIEWSRL Projectcontributor 15/03/2018

SalvatoreMennella/TOPVIEWSRL Projectcontributor 15/03/2018

MassimoAntonini/IDS TeamLeader 15/03/2018

MatteoCarta/EUROUSCIT Projectcontributor 15/03/2018

MalikDoole/TUDelft Projectcontributor 15/03/2018

VincenzoAscione/TOPVIEWSRL Projectcontributor 15/03/2018

ReviewersinternaltotheprojectName/Beneficiary Position/Title Date

GiuseppeDiBitonto/IDS ProjectManager 20/03/2018

MassimoAntonini/IDS TeamLeader 20/03/2018

JoostEllerbroek/TUDelft TeamLeader 20/03/2018

CostantinoSenatore/EuroUSCIT TeamLeader 20/03/2018

AlbertoMennella/TOPVIEWSRL TeamLeader 20/03/2018

ApprovedforsubmissiontotheSJUBy-RepresentativesofbeneficiariesinvolvedintheprojectName/Beneficiary Position/Title Date

GiuseppeDiBitonto/IDS ProjectManager 20/03/2018

MassimoAntonini/IDS TeamLeader 20/03/2018

JoostEllerbroek/TUDelft TeamLeader 20/03/2018

AlbertoMennella/TOPVIEWSRL TeamLeader 20/03/2018

CostantinoSenatore/EuroUSCIT TeamLeader 20/03/2018

RejectedBy-RepresentativesofbeneficiariesinvolvedintheprojectName/Beneficiary Position/Title Date

Page 3: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

4

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

DREAMSDRONEEUROPEANAIMSTUDY

This study is part of a project that has received funding from the SESAR Joint Undertaking undergrant agreement No 763671 under European Union’s Horizon 2020 research and innovationprogramme.

Abstract

This document gathers a representative set of operational scenarios and the related preliminaryrequirementsofcandidateU-spaceservicesinvolved.

The identified scenarios serve both as input for the DREAMS study and as contribution to thedefinitionofpotentialUse-Cases;theycoveralldroneflightphases,fromstrategicplanningtopost-flight,andtrytocoverasmuchaspossibletheU-spaceservicesdefined,fromdifferentusers’pointofview.

Themethodologyusedtorepresenteachscenario isUnifiedModellingLanguage(UML),borrowingthe type of diagrams that most instinctively allow to represent a model to be discussed amongpartnerswithseveraltechnologicalprofiles.

The starting point is the description of the state-of-the-art process that actual (and diligent) UASoperators implement for their aerial work operations, in accordance with applicable localregulations. Further analysis is carried out to better identify the phases where themost tangibleadded value of U-space services can be achieved, optimizing operators' work, efficiency (costreduction)andsafetyofoperations.ParticularattentionisgiventoBVLOSoperationsinuncontrolledClassGairspacewithpotentialgroundobstaclesandothermannedandunmannedtrafficinterferingwithUASoperations.

Finally, a concept of the U-space system architecture is described taking into account alldependenciesanddataexchangeamongalldefinedsystemactorsdefined.

Page 4: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

5

Founding Members

TableofContents1 Introduction................................................................................................................8

2 Survey.......................................................................................................................17

3 Analysisofrelevantscenarios....................................................................................29

4 Requirementanalysis................................................................................................98

5 Conclusions.............................................................................................................119

6 References...............................................................................................................120

AppendixA Websurvey............................................................................................124

ListofTablesTable1:U-spaceServices......................................................................................................................14

Table2:ScenariosvsU-spaceservicesandflightphases......................................................................51

Table3:UASmaincharacteristicsofScenario2...................................................................................57

Table4:UASmaincharacteristicsofScenario3...................................................................................62

Table5:UASmaincharacteristicsofScenario4...................................................................................68

Table6:UASmaincharacteristicsofScenario5...................................................................................75

Table7:UASmaincharacteristicsofScenario6...................................................................................79

Table8:UASmaincharacteristicsofScenario7...................................................................................83

Table9:UASmaincharacteristicsofScenario7...................................................................................86

Table10:UsersvsFlightphases..........................................................................................................100

Table11:U-spaceservicesvsScenarios..............................................................................................109

ListofFiguresFigure1:U-spacerollout.......................................................................................................................11

Figure2:PhasesofdronemissionthoughtheutilizationofU-spaceservices.....................................12

Figure3:Scenarioidentificationandrequirementanalysisapproach..................................................15

Figure4:GUTMAStudy-UTMSystemArchitecture[1].......................................................................18

Figure5:NASAStudy–SystemArchitecture........................................................................................20

Figure6:NASAStudy–Capabilities......................................................................................................20

Page 5: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

6

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure7:NASAStudy–ResPlatformwithAPIs.....................................................................................21

Figure8:NTU'sTM-UASProgramme[15].............................................................................................23

Figure9:Rakuten-AirMapUTMplatformarchitecture[39]..................................................................24

Figure10:Rakuten-AirMapAirspaceManagementDashboard,entirelyinJapanese[34]..................25

Figure11:DronesRevenues(left)anddronesvolume(right).Source:Gartner[41]...........................26

Figure12:commercialapplicationswiththehighestimpactonthemarketupto2020[44][45]........27

Figure13:ExampleofUsecasediagram...............................................................................................30

Figure14:ExampleofSequencediagram.............................................................................................31

Figure15:ExampleofClassDiagramandmainattributesofClasses...................................................32

Figure16:Commitment&Verificationphasebeforestrategicphaseofthemission..........................33

Figure17:UseCaseof“MissionRequest”............................................................................................34

Figure18:genericcommitmentandverificationprocess(SequenceDiagram)...................................35

Figure19:No-flyZones:Airports..........................................................................................................37

Figure20:No-fly-Zones:RestrictedAreas.............................................................................................37

Figure21:ExampleofnearbyNo-flyZone(presenceofstadiuminviolet)duringflightphase...........38

Figure22:UsecaseMissionPlanning...................................................................................................39

Figure23:Sequencediagram-missionplanning..................................................................................40

Figure24:CircularandrectangularareasofOperations(horizontalplane).........................................41

Figure25:circularandrectangularareasofOperations(verticalplanes)............................................42

Figure26:AreaofOperations(polygonal)............................................................................................43

Figure27:exampleofGroundStationHMIsettingsforgeofence........................................................43

Figure28:exampleofpossibletransitionsamongdifferentflightmodes............................................45

Figure29:ReturntoHomeprocedureexample....................................................................................45

Figure30:UseCasepre-flightcheck.....................................................................................................46

Figure31:Sequencediagramforpre-flightphase................................................................................47

Figure32:Exampleofautomaticwaypointmission.............................................................................48

Figure33:UseCaseMissionexecution.................................................................................................49

Figure34:ExampleofapopularGroundStation[30]...........................................................................49

Page 6: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

7

Founding Members

Figure35:PostFlightOperationUsecase.............................................................................................50

Figure36:ExampleofapaperPilotlogbookusedforRPASoperations...............................................50

Figure37:Exampleofthescenariodescribed......................................................................................57

Figure38:Exampleofe-identificationapplicationforlawenforcement..............................................64

Figure39:Exampleofe-identificationapplication,retrievinginformationofunauthorizedoperator65

Figure40:UAS1duringdeliverymission..............................................................................................69

Figure41:UAS1afterDAAandcranegeo-tagging...............................................................................70

Figure42:Obstacledetectionsequencediagram.................................................................................72

Figure43:ExampleofCTRCrossing......................................................................................................74

Figure44:Exampleofflightplanwhichminimizeinterferencewithmannedtraffictake-off/landing76

Figure45:ExampleofterrainfollowingforBVLOSspecificmission.....................................................78

Figure46:ExampleofpossibleusageofU-spaceapplicationonaEFB................................................81

Figure47:Dronerequestsaccesstoairspace.......................................................................................89

Figure48:Dronedynamicallymodifiesitsroute..................................................................................92

Figure49:U-Spacesystemconcept....................................................................................................101

Figure50:e-Registrationprocess........................................................................................................102

Figure51:e-Identificationprocess......................................................................................................103

Figure52:U-Spaceusersandmaindataflows...................................................................................110

Page 7: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

8

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

1 Introduction1.1 Purposeofthedocument

This document represents theD3.1 contractual deliverable forDREAMSproject as reported in theGrantAgreement (Annex 1 – Part 1 - WT2 list of deliverables). The information contained in thisdocumentisrelatedtothetasksT3.010andT3.020,respectively“ReferenceScenarioidentification”and“Dataandservicerequirementanalysisandelicitation”.

TheReferenceScenarioidentificationtaskconsistsonidentifyingoneormorescenariosofparticularinterestforUASoperatorsinbothVLOSandBVLOSconditions,accordingtoaproposedandsharedmethodologywhichmayinvolvemorethanoneiterationforthefinalconvergence,consideringalsothe final U-space CONOPS and feedback deriving from other projects [26][5]. During theimplementationofthisprocess,astrongerunderstandingofdataitemsandservicesinterestingthedroneoperatorsandU-spacestakeholderswillbeachieved,accordingtothescenariosproposed.

1.2 IntendedreadershipThisdocument isacontractualdeliverableasreported intheGrantAgreement (Annex1–Part1 -WT2listofdeliverables).

Thedisseminationlevelissetas“Public”.Inparticular,thescenarioidentificationandrequirementsanalysisisexpectedtobeusedinDREAMSprojectasaninputtothestudyitself,howeverotherU-spacerelatedstudiescouldalsobenefitofthefirstscenariosidentified;inparticularinchap.§3asetofUse-Casesisproposed.

1.3 AbbreviationAcronym Meaning

AI ArtificialIntelligence

AIP AeronauticalInformationPublication

AIRPROX AircraftProximity

AIS AeronauticalInformationService

ATC AirTrafficControl

ATM AirTrafficManagement

ATZ AerodromeTerminalTrafficZone

C&CC2 CommunicationCommand&Control

CAGR CompoundAnnualGrowthRate

DAA DetectAndAvoid

Page 8: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

9

Founding Members

DREAMS DRoneEuropeanAIMStudy

DTC DroneTrafficController

EGNOS EuropeanGeostationaryNavigationOverlayService

EIRP EquivalentIsotropicallyRadiatedPower

ETSI EuropeanTelecommunicationsStandardsInstitute

FCU FlightControlUnit

FTS FlightTerminationSystem

GA GeneralAviation

GNC GuidanceNavigationControl

GNSS GlobalNavigationSatelliteSystem

GTRF GalileoTerrestrialReferenceFrame

HDOP HorizontalDilutionofPrecision

HR HumanResources

IAB InternationalAdvisoryBoard

ICAO InternationalCivilAviationOrganization

IOC IntelligentOrientationControl

IOT InternetOfThings

M2M MachineToMachine

NAA NationalAviationAuthority

NAS NationalAirspacesystem

PMP ProjectManagementPlan

POC PointofContact

QoS QualityofService

RLOS RadioLineOfSight

RPA RemotePilotedAircraft

SBAS SatelliteBasedAugmentationSystem

SES SingleEuropeanSky

SESAR SingleEuropeanSkyATMResearch

STELLAR SESARToolEnablingcoLLaborativeATMResearch

TCL TechnicalCapabilityLevel

UA UnmannedAircraft

UAS UnmannedAircraftSystems

UML UnifiedModellingLanguage

USS UASServiceSupplier

Page 9: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

10

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

UTM UnmannedTrafficManagement

V2I VehicletoInfrastructurecommunication

V2V VehicletoVehiclecommunication

VLL VeryLowLevel

VTOL VerticalTakeOffandLanding

WGS84 WorldGeodeticSystem1984

1.4 U-spaceoverviewU-Space is a set of new services and specific procedures designed to support safe, efficient andsecure access to airspace for large numbers of drones. These services rely on a high level ofdigitalisationandautomationoffunctions,whethertheyareonboardthedroneitself,orarepartofthe ground-based environment. U-space provides what is needed to enable and support routinedroneoperations,aswellasaclearandeffectiveinterfacetomannedaviation,ATM/ANSforserviceprovidersandauthorities.

U-Space will be capable of ensuring smooth operation of drones in all operating environments,includingurbanareas, and inall typesof airspace, inparticular toVLLairspace. Itwill address theneedtosupportthewidestpossiblevarietyofmissions,andmayconcernalldroneusers,aswellasevery category ofUASs, as defined by EUCommission proposed Regulation on unmanned aircraftoperations[8].Accordingtothecriticalityoftheprovidedservices,performancerequirementswillbeestablished forboth structural elementsand servicedelivery, covering safety, security, availability,continuity,resilienceandsoon.

U-SpaceserviceswillbedeliveredbyserviceproviderswithinthegivenU-spaceenvironment.Theydo not replicate the function of ATC, as known in ATM: instead, theywill deliver key services toorganise the safe and efficient operation of drones and ensure a proper interface with mannedaviation,ATCandrelevantauthorities.

ThefirsttwoU-spaceservices,whichrelyonagreedEUstandards[8],[9],arethefollowing:

1. Electronic registration (e-registration): draft EU UAS Regulations envisage that electronicregistration ismandatory fordroneoperators,exceptoperatorsofdronesweightingbelow250grams,aswellassomeclassesofdronesusedintheopencategory,andalldronesusedinthespecificcategory.

2. Electronic identification (e-identification): itwill allowauthorities to identifyadrone flyingand link it to information stored in the registry; the identification supports safety andsecurityrequirementsaswellaslaw-enforcementprocedures.

TheprogressivedeploymentofU-space is linked to the increasing availability of blocksof servicesandenablingtechnologies.Overtime,U-spaceserviceswillevolveasthelevelofautomationofthedrone increases, and advanced forms of interaction with the environment are enabled (includingmannedandunmannedaircraft)mainlythroughdigitalinformationanddataexchangeoveracloud-basedplatform.

Page 10: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

11

Founding Members

Figure1:U-spacerollout

• U1:U-spacefoundationservicesprovidee-registration,e-identificationandbasicgeofencingservices

• U2:U-space initial services support themanagementofdroneoperationsandmay includeflight planning, flight approval, tracking, airspace dynamic information, and proceduralinterfaceswithairtrafficcontrol.

• U3: U-space advanced services supportmore complex operations in dense areas andmayincludecapacitymanagementandassistanceforconflictdetection.Indeed,theavailabilityofautomatedDAA functionalities, in addition tomore reliablemeans of communication,willlead to a significant increase of operations in all environments and may require a morerobustframework.

• U4: U-space full services, particularly services offering integrated interfaces with mannedaviation,supportthefulloperationalcapabilityofU-spaceandwillrelyonveryhighlevelofautomation,connectivityanddigitalisationforboththedroneandtheU-spacesystem.

By2019,U-spaceisexpectedtobeestablishedwithU1servicesandsignificant,enablingnewdroneoperations. In addition, 2019 will deliver pre-operational demonstrations of the initial U-spaceservices(U2),aswellasfirstresultsfromSESARresearchanddevelopmentprojects,whichwillpavethewayfortheroll-outofU-Space(U2-U4).

In addition to theU-space services,we consider the actual operations performed daily by severaldroneoperatorsinEuropeasaU0servicesstage.Atthisstagenodigitalservices,norautomationisofferedtoDroneOperatorsbynationalauthorities,thereforeingeneral,allauthorizationsmustbemanuallyrequested(delayinobtainingpermitsfromlocalNAAs),resultingunfortunatelyinalossofbusinessforcommercialoperatorsinmanycases.

In accordance with the majority of local regulations, VLOS operations are allowed (with stronglimitations)andfewornoneinformationaboutothermannedorunmannedtrafficisavailabletothedrone users. The “remain well clear” capability is left under the responsibility of the pilot incommandunderVLOSconditionsandoneextracrew(observer) isgenerallyneededtosupportthepilot in case of other interfering air traffic in the area of operations (AIRPROXwith helicopters inurbanenvironment isnotanunlikelyevent).Theseconditionsare ingeneralhandledwithastrongproceduralapproach.Thebestpracticesatstate-of-the-artusedbydroneoperators, flying inVLOSconditions, aredescribed in§3.2asa sequenceofproceduralmacro stepsas startingpointof theanalysis.

Page 11: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

12

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure2:PhasesofdronemissionthoughtheutilizationofU-spaceservices

Figure2presents thepreparationofadronemissionand its temporaldeployment throughall theflight phases accordingwith U-space blueprint 0. This prototypemission is taken as input for thedevelopmentof the scenariosproposed in cap.§3. Inparticulareach scenarioproposed isdetailedwitha“storyboard”descriptionasthefollowingdescribedinU-spaceblueprint,butwithmorefocusonaparticularsituationoftheflight,affectingoneormoreservices,actorsandoneormorephasesofflight.

Page 12: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

13

Founding Members

1.5 RelationwithCORUSprojectAsforothersiblingsprojects,DREAMShasahigh“levelofdependency”withtheCORUStransversalproject.According to theprojectMasterPlan [26], theCORUSprojectprovides fundamental input(e.g.conceptofoperation, functionalandnon-functional requirements,…)–neededtoaddresstheDREAMSactivities(e.g.identificationofscenarios,designoftheserviceintermsofdataormetadatato be considered,…). Such inputs have in particular a quite consistent impact on the scenarioidentificationactivity.

At the timewhen the first draft of the present document has beenwritten, few information areavailable to be taken as CONOPS input for the scenario identification activity. However, throughconstantiterationsandcoordination(e.g.web-ex7thDec2017,1st informationsharingsessionwithSJU, CORUS eventworkshop 22nd January ‘18, IABDREAMSmeeting 26 February ‘18…),more andmoreinputbecameavailablefortheprogressoftheactivitywithreasonableassumptions.

1.6 U-spaceservicesandactorsInthissectionthelistofservicesandactorsdefinedoftheU-spaceisreported,accordingtothe1stInformationsharingsessionheldonwebex-7thDec2017withSJUandsiblingsprojects’partnersandtheU-spaceblueprintcommunicationmaterials.

ThedefinitionofU-spaceservicesaswellastheirtailoringresultingfromthescenariosproposedandthedatarequirementsanalysis,isreportedinchap.§4.

Page 13: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

14

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Followingthesameapproach,thelistofactorsofU-spaceisalsoreportedinthesamechapterwithadeeperspecializationwithrespecttothosespecifiedinchapter§3.

U1 U2 U3 U4

E-registration Tacticalgeofencing DynamicGeofencing

E-identification Tracking CollaborativeinterfacewithATC

Pre-tacticalgeofencing

Flightplanningmanagement

Tacticaldeconfliction

Strategicdeconfliction

Dynamiccapacitymanagement

Weatherinformation

Droneaeronauticalinformationmanagement

ProceduralinterfacewithATC

Emergencymanagement

Monitoring

Trafficinformation

Table1:U-spaceServices

The actors used for the study are those defined in [33] and presented in chap.§4, however thescenarioswillbeinvestigatedwithgenericactorsas:

• DroneUser• DroneOperator• Authority

Theseactorsare identifiedandspecialized inchapter chap.§3.Finallyadefinition foreachactor isgiveninandchap.§4.

1.7 Documentstudylogic

Thescenarioswillbeidentifiedinthenextchapters,havinginmindthecoverageofU1,U2andU3U-spaceservicesand thedifferent flightphases, stimulating thegreatestnumberofU-spaceservices

Page 14: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

15

Founding Members

interfaces’ as well as the prospective from different actors’ point of view. The strategy used toidentifythemostinterestingscenariosstartswiththefollowinginput:

• DREAMSprojectproposal;

• Bottom-upexperienceofUASaerialworkoperations(includingcontingencysituations);

• Stateoftheartsolutionsavailableonthemarket;

• Preliminary feedback from other UAS operators/stakeholders through online survey ondreamswebsite:https://www.u-spacedreams.eu/questionnaire/

• Inputfromexperts’feedback(IABmeeting–Rome,26thFebruary‘18);

• U-spaceblueprintprototypedeliveryscenariostoryboard;

• SJUcommunicationmaterialforU-spaceservices;

• EUdronedraftregulation;

• Surveyonotherparallelstudies(e.g.NASA&GUTMAstudies);

• SurveyonbestpracticeactuallyinusebyDroneOperators;

• Marketopportunitiespotentiallyunlockedwithnewidentifiedscenarios;

• NewservicesofferedtoEUcitizens;

Suchinputareusedinthestep-wiseapproachtoourstudy,presentedinFigure3.

Figure3:Scenarioidentificationandrequirementanalysisapproach

Page 15: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

16

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

The Step 1 (Actual drone operations) is the first stage of the process where the actual droneoperations are described (with the experience of a drone operator) in order to highlight theinformation shared with the actual (insufficient) procedures and the tools used for retrieving theinformationneededforoperationsfromplanningtopostflightphases.

TheStep2(Survey)isasecondprocessthattakesintoaccountotherparallelUTMstudiesaswellasmarket forecasted figures for BLOVS operations, in order to derive important drivers for thescenariostoberepresented.

TheStep3(IdentificationofScenarios)Onthebasisofreasonableassumptions, thisstepanalysesthescenariosboundariesconsidering:

• Theactorsinvolved;

• Therequestedfunctionalities;

• TheapplicableU-spaceservices;

• Thetypeofdatarequestedorexchanged.

ThemethodologyusedforrepresentationistheUML2.0modellinglanguage[27].Thescenariosareidentified and modelled through relevant Use-Cases and sequence diagrams involving actors,functionalitiesandU-spaceservices.

IntheStep4(Requirementsanalysis)moredetailsaboutservicedependenciesanddataexchangeamongidentifiedactorsisprovidedwithmore“specialization”detailsoftheactorsproposedinthescenarios.Thisstephas inoutputa firstanalysisofdata requirementsandthetypesofdata tobeshared

In theStep5 (Servicecoverage):abackwardapproach is followedhere toverifywhetherall flightphases and U-space services are covered at least once in the scenarios proposed, in order toguaranteethewidestpossiblecoverage.

FinallyatStep6(Conclusions):theconclusionsofthestudywillbesummarizedwithafirstindicationoftheinitialgapsandthepossiblekeyparameterstobesimulatedintheupcomingvalidationphaseofDREAMSproject.

Another iterationmaybe required for refinementwith the final CONOPS fromCORUSproject (noassumptions).

Page 16: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

17

Founding Members

2 SurveyInthischaptersomerelevantandparallelon-goingstudiesarebrieflyanalysed.

2.1 GlobalUTMassociationstudy

In the GUTMA study a common architecture with interfaces to external systems will serve as abaselinetodefinethestandardinterfaces.

Approach: Identifying stakeholders; breaking downUTM system of systems; identifying functionaluse cases and interactions among sub-systems. The UTM concept is represented as a system ofindividualUTMsystems,standardizedbyoperationalprocedures,inwhichUASsareoperatedmoreor less autonomously; information is shared and exchanged, allowing for efficient adaptations, toachievethecommonobjectiveofsafely,orderlyandefficientlyusingVLLairspace.

UASTrafficManagementisachievedbyclosecooperationoftheinvolvedstakeholders,eachofthemplaying a significant role. Operating methods and technical systems are designed to guide themduringthedifferentphasesofflight:

• Strategic phase, well before the time of operation, which addresses the airspace design,definitionofstrategicno-flyzones,regulations,etc.;

• Pre-flightphase, before the timeofoperationbut focusedon the specific flight,mainly toaddresstheoperationsplanning;

• In-flightphase,whichisthetimeofoperationwhentheflightisperformingitsoperations;

• Post-flight phase, which addresses the analysis of recordings aspects and other relevantpost-flightbusinessandobligations.

TheUTMsystemcanbebrokendownintotwomajorinteractingsystemstypes:

• The systems that contains all technical infrastructures supporting the functioning of theUTM;

• The systems that include all human interface components of thewhole system (e.g.UTMoperators,UASpilots/operatorsandpublicauthorities).

EachUTM system can bemodelled as a set of functional blocks inmutual interaction in order toaccomplish the system mission. The proposed architecture is aimed at avoiding deploymentsconstraints,giventhemanypossiblevariationsinphysicalarchitectureofthesystems,accordingtothespecificdeploymentcase.

Thebreakdownhighlights important informationexchanges, inputs for services, anddataprotocoldefinitions.

Page 17: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

18

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure4:GUTMAStudy-UTMSystemArchitecture[1]

Ahigh-leveldescriptionofinteractionsamongUTMsystemsisprovidedbyemployingusecases,thatisathematicsequenceoffunctionalities.

Themethodologytobeappliedinordertoachieveadetaileddescriptionoftheinteractions,consistsofadynamicanalysisbrokendownintothefollowingphases:

• Static view: it represents the systems and external components involved in the use case,highlightingrelationshipsamongthem.

• Dynamicview: itrepresentsthefunctionalrelationsofthestaticview, inasequentialway,withthefunctionsthatimplies.

• Flows: According to the dynamic view, it is possible to identify the flows of data for eachfunctionalrelationshipbetweensystemsandcomponents.

According to themethodology used also in GUTMA approach, the DREAMS study employed Use-casesandsequencediagramstorepresentthefunctionalrelationshipanddatasharingamongactorsandfunctionalities.

Page 18: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

19

Founding Members

2.2 NASAUTMstudy

TheNASAUTMstudy[38]isaimedatrapidlyenablinglarge-scalesUAStraffic, inpresenceofothertraditionalaviation,withfocustosafelyoperateatlowaltitudeinuncontrolledairspace.

Approach: following an incremental risk-based model, starting in low-risk environments andprogressing towards higher risk environment, rapidly enabling sUAS to operate at low altitudestartinginClassGairspace.

Thefundamental,envisionedUTMprinciplesinclude:

• onlyauthenticatedUASareallowedtooperateintheairspace;

• UASwill“stayclear”ofeachother;

• UASandmannedaviationwill“stayclear”ofeachother;

• UASoperatorand/orsystemswillhavecompleteawarenessofallconstraintsintheairandallthewaytoground;

• publicsafetyUASwillhavepriority.

ThetwomainmantrasofUTMinclude:

• flexibilitywherepossibleandstructurewherenecessary

• a risk-based approach where geographical assets and UAS use cases will indicate theperformancerequiredtooperateintheairspace.

UTM ConOps uses a combination of airspace design, flight rules, operational procedures, ground-basedautomationsystems,andvehiclecapabilitiestoenablesafeuseoftheNASbyUAS.

UTM ConOps will provide an appropriate level of transparency of the UAS operations beingconductedinClassGairspace;itwillaccommodateadiverseinventoryofUAS;itwillbeflexiblewithrespecttotheUASoperator’srequiredcapabilities;UTMtechnologieswilluseavailableinformationfromnon-traditionalsources;itwillminimizetheregulatoryimpactsonexistingusersofuncontrolledairspace;finally,UTMwillbescalabletofutureoperationalscenarios.

Theproposedarchitecture isbaseduponaprimarydistributionofrolesandresponsibilitiesamongUAS Operators, UAS Service Suppliers and Regulators / Air Navigation Service Suppliers; thearchitectureisspecificallytailoredtotheUnitedStates.

InthisarchitecturetheUASTrafficManagementSystem(UTMS)isoperatedbytheregulator/ANSP.It interfaces with the other NAS systems and provides directives and constraints to the UASoperations via the UAS Service Supplier (USS) Network. The USS could be operated by the UASoperators, other commercial or government entities. The operators use the USS to organize andcoordinate their operations and meet all constraints and directives from the ANSP systems. Theregulator/ANSPsUTMsystemhasaccesstoalloperationsandisinformedaboutanydeviationsthatcouldhaveanimpactontheNAS.

Page 19: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

20

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure5:NASAStudy–SystemArchitecture

ThedevelopmentoftheUTMresearchplatformisdescribedintermsofsuccessiveUTMTCLs.EachnewTCLextendsthecapabilitiesofthepreviousTCL.ThenumberofservicesprovidedandtypesofUASoperationssupportedincrease.ThesuccessiveiterationssupporttheentirerangeofUASfromremotely piloted vehicles to command-directed UAS and fully autonomous UAS. Capability 1 hasbeenfieldtestedin2016.

Figure6:NASAStudy–Capabilities

NASAisalsospearheadingthedevelopmentofaUTMresearchplatformthatinstantiatesapplicationprogramming interface (API)-based coordination of UAS operations and services into a researchsoftwareenvironment.

Page 20: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

21

Founding Members

Figure7:NASAStudy–ResPlatformwithAPIs

NASA uses the research platformwith its partners to test and evaluate increasingly complex UASoperationsandassociatedUTMtechnicalcapabilitylevels(TCL).

2.2.1 LAANC

LAANCisconsideredaprecursortoaUTMsystemthatNASAisdevelopingfortransfertotheFAAby2019. It is an industry-developed applicationwith the goal of providing drone operators near realtime processing of airspace notifications and automatic approval of requests that are belowapprovedaltitudesincontrolledairspace.

LAANCmeetstheregulatoryrequirementsofthe2016SmallUASruleandtheSpecialRuleforModelAircraft currently enforced in the USA. The UAS Data Exchange facilitates LAANC by providingairspacedatatoindustrysothattheycancreatethetoolsneededtobenefitthedronecommunity.

LAANC is the industry developed application through which operators may apply for an airspaceauthorizationornotifytheAirTrafficControlToweroftheintendedflightplans.

Airspace data is provided through theUAS facilitymaps (UASFMs). Themaps show themaximumaltitudearoundairportswheretheFAAmayauthorizeoperationsunderthesmallUASrule.IndustrywillprovidetheseoperatorstheabilitytointeractwiththemapsandprovideautomaticnotificationandauthorizationrequeststotheFAA.

AprototypeevaluationwithFAAapprovedUASServiceProvidersisgoingtotakeplaceinFall2017—Spring2018.

Page 21: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

22

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Theevaluation involves10AirTraffic facilitiesandnearly50airportsbased in theUSA.ANationalbetatestwillbelaunchedin2018;itwillcontinuetoevolveandexpandthenumberofATCfacilitiesandUASServiceSuppliers.

Therewillbetwoalternatewaystoapplyforanairspaceauthorization,andneitherprocessrequirestheoperatortocontactanAirTrafficControlTower:

• Usingthecurrentlyenforcedprocesses.

• ApplyingthroughaFAAapprovedUASServiceSupplier.

AsofFall2017,twocompanieshavecompletedthetechnicalstepsrequiredandhaveenteredintoagreementwiththeFAAtoprovideLAANCServices:AirmapandSkyward.

UTMisaconceptinthesamewaythattheInternetisaconcept.It’snotathingthatonecompanybuildsor implements. It’sadistributedsetof systemsmadeupofhardwareandsoftwarebuiltoninteroperable interfaces and protocols—similar to how ethernet and TCP/IP create a functionalInternetthatallofuscanaccesseveryday.ThesestandardsandprotocolsastheDNAofanorganicsystemthatwillgrowitself,inthesamewaythattheInternethas.

UTM means that air traffic will no longer be managed via a centralized government-maintainedsystem,asitistoday.Insteadadistributedsetofserviceswillprovideaccesstotheairspacethroughinteroperable,industry-builttechnologiesthatcanhandlemillionsofaircraftinoursharedairspace,whileimprovingonthegoldstandardofsafetythataviationenjoystoday.

2.3 SingaporeUTMProgramme

NanyangTechnologyUniversity,inpartnershipwiththeCivilAviationAuthorityofSingapore(CAAS)throughthejointresearchcentreATMRI(AirTrafficManagementResearchInstitute),isworkingonsolutionsforairtrafficmanagementincludingUTMintheverylow-levelairspace

Oneof themain conceptsdeveloped is the ideaofUTMcontrol stations thatwould regulateandschedule the UAV traffic flow and track every single unmanned aircraft across the Singaporeanairspace.Furthermore,therewouldbetwodifferentlaneswithdifferentpurpose:

• below200feet/60metresAGL,a“slow”laneforlocaltraffic;

• between200and400feet/60and120metresAGL,a“fast”laneforlonghaultraffic;

• altitudesranging from400to500feetwouldbeano-flyzone,whichwill serveasabufferwiththeaboveairspace.

AsshowninFigure8,therearesomestickingpoints:

• airspacemanagement,withthedivisionintothreeairblocksaccordingtothedifferentlevelof performance evaluated and monitored; this will dictate the safety of UAV operationsthroughtheairblock;

• detectandavoid(DAA)systemsdetectingandpreventingpotentialmid-aircollisions;

Page 22: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

23

Founding Members

• safeseparationdistance,horizontalandvertical;

• geofencing,virtualbarrierssetuptopreventaccessintorestrictedareasbytheUAVs;

• designated takingoffand landingareas, leveragingonexistingurban infrastructures, flyingoverbuildingsandchoosingopenareasas take-offand landingareas, inordertominimizeUAVsflightsabovehumantraffic;

• monitoring signal strength,withgreenand red regionswithgoodandpoor signal strengthmonitoredbyControlStation.

Figure8:NTU'sTM-UASProgramme[15]

Thesystem implies thataircraftsofanykindshouldbecapableof communicatingwitheachotherandconnectingtotheinternet;therefore,thisresearchispayinggreatattentiontothereliabilityofhigh-speedmobilephonenetwork4.5Gandtothesignalstrengthmapping[16].

2.4 JapaneseUTMPlatform

AirMapmentionedin§2.2.1asaLAANCserviceprovider,atthebeginningof2017hassignedajointventurewithRakutenInc.torealizeanUTMplatformforJapaneseairspace,basedonthefollowingarchitecture[20].

Page 23: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

24

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure9:Rakuten-AirMapUTMplatformarchitecture[39]

Thesystemisdesignedtoorganize low-altitudeairspacedata, includingregulationsandadvisories,weather, terrain, and other critical information to enable safe and efficient drone operationsconnectingdroneoperatorsandairspacemanagers.

In December 2017, Rakuten Airmap eventually launched Airspace Management Dashboard. As aplatform,itstargetsarebothairspaceusersandairspacemanagers.ItindeedmakesavailableseveralinformationforsituationalawarenessandflightplanningintheJapaneseairspace,suchas:

• nationaldronerules(CivilAviationBureauandNationalPoliceAgency);

• prohibited,restrictedanddangerareas;

• denselyinhabiteddistricts;

• NOTAMs;

• windandweatherconditions;

• locationofairports,heliports,hospitals,publicbuildingsandothersensitiveplaces.

ItsoenablesdigitalauthorizationcapabilitiesforJapaneseairspacemanagers,thusmakingeasierforthemtoestablishandmodifyVLLairspacerestrictions,toprocessandmonitorflightplans,aswellastocommunicateinrealtimewithdroneusersandoperators[34].

Page 24: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

25

Founding Members

Figure10:Rakuten-AirMapAirspaceManagementDashboard,entirelyinJapanese[34]

It is interesting to note the perspective of vertical integration between the platform servicesproposed(whichallowtoscaleUAStrafficmanagement)andtheannouncedplanofRakutenInc.todelivergoodsviadrones.

2.5 UASoperationsmarkettrends

Itisnowcommonbeliefthattheunmannedaircraftmarkethasjuststartedaphaseofrapidgrowth.Accordingtoforecasts,globalsalesofdroneswillincreaseinvaluefrom$8.5billionin2016to$12billionin2021,withacompoundannualgrowthrate(CAGR)of7.6%[24].Withparticularreferenceto the European market of commercial, industrial and civil drones, it is estimated that from thecurrent€197millionin2017itwillreach€3.86billionin2037,withaCAGRof16%[40].

Within the drone market, a Gartner study underlines a certain rivalry between commercial andpersonal drones. The first ones have a smaller market share in terms of volumes, but betterperformancesandahigheraverageprice,thusgeneratingmoretotalrevenuesthanpersonaldronesdo. It follows a bias due to the use of — cheaper and less performing — personal drones forcommercial purposes, and theirmanufacturers and vendors are pushing to position themselves inthecommercialdronesmarket,alsothankstofasttechnologicaldevelopment[41].

Page 25: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

26

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure11:DronesRevenues(left)anddronesvolume(right).Source:Gartner[41].

TherapidgrowthintheuseofcommercialdronesreliesonthreekeyfactorsThefirstconsistsinthestrongcompetitionreachedinthismarket,withontheonehandasignificantpricepressure,ontheother a continuous improvement in performance and reliability of remotely piloted aircraft. Thesecond factor is the strong incentive to the authorities to produce and adapt the rules andregulationsfordrones.Finally,theconsumerdronessectorhasexperiencedafirstskimmingwiththedisappearance of numerous start-ups born from the wave of enthusiasm, outclassed by fewdominantplayersholdingalmosttheentiremarketandnowstandingasreferenceinterlocutorsforthe same public authorities for the development of standards and management systems for the"new"airtraffic[42].

ItshouldalsobeemphasizedthatbynowthedegreeofsafetyofUAVshasreachedverysignificantlevels, as recently assessed by ASSURE (Alliance for the security of the UAS system throughexcellenceinresearch)bothforgroundandairbornecollisions.Testsshowedthat,evenintheworstcase,anaveragecommercialdrone (weighingabout1.5kg)wouldnotbeable tocausesignificantdamage toanairliner, especially at lowaltitudes towhichmost commercial drones fly.Of course,thesestudiesagreethatdronemanufacturersshouldadoptdetectionandgeofencingtechnologiesto prevent the collision eventwith anupstreamaircraft and that the safety effort in the sector isbasedonthesafeseparationofaircrafttypes[43].

According to numerous analyses of the sector, with particular reference to that conducted byGoldmanSachs [44], in order to unlock definitively the commercial potential and the large-scaledemandfordroneoperations,severalactionsarerequiredfromalegalandregulatorystandpoint:

• theincreaseinheightfromtheground(40%)overthecurrent400feet/150meters;

• theaffirmationofautonomousflight,evenabovepopulatedareas;

• BVLOSflightsthatmakeuptheprerequisiteforlarge-scaleuse.

39% 61%

PersonalandCommercialDronesRevenues2017

Personaldrones

Commercialdrones 94%

6%

PersonalandCommercialDrones

Volumes2017

Personaldrones

Commercialdrones

Page 26: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

27

Founding Members

In the future growth prospects, not just the sale of devices, but above all the services and dataprovided through them will be of great importance. According with the GoldmanSachs and PWCforecasts, the commercial applications destined to have greater value on themarket up to 2020,(takingintoaccountalsothedatacollectionservicesthatwillintegrateorprovide)areindescendingorderthosedescribedinFigure12[44][45].

Figure 12: commercial applications with the highest impact on the market up to 2020[44][45]

2.6 EUdraftRegulationFollowingthepublicationofanA-NPA2015-10[8]inJuly2015,theEuropeanAviationSafetyAgency(EASA) published a new Technical Opinion in January 2018 [9] with the aim to create a newregulatoryframeworkthatdefinesmeasurestomitigatetheriskofoperationsinthe:

• ‘open’ category, through a combinationof limitations, operational rules, requirements for thecompetencyof the remotepilot, aswell as technical requirements forUAS, such that theUASoperatormayconducttheoperationwithoutpriorauthorizationbythecompetentauthority,orwithoutsubmittingadeclaration;

• ‘specific’category,throughasystemthatincludesariskassessmentbeingconductedbytheUASoperatorbeforestartinganoperation,oranoperatorcomplyingwithastandardscenario,oranoperatorholdingacertificatewithprivileges.

constructionandinfrastructure

agriculture(precision)

transport,

insurance(detectionofdamage),

oilandgas,

security(police,fires,coastguard)

journalism,

borderinspectionandcontrol

realestate

pipelinesminesandcleanenergy

cinemaandmedia

Page 27: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

28

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

AccordingtooneofthepurposesofthisopinionoffosteringthedevelopmentoftheUASmarket,aparticular attention has been given to identify scenarios with a potential disruptive market, stilllocked,havinginmindOpen,SpecificandCertifiedUAScategories.

However, the levelof safetyofUASoperationsdescribed in the scenariosof cap.§3aswell as theregulation framework to be adopted will be taken into account in a different document (D3.3)accordingtoDREAMSPMP[26].

Page 28: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

29

Founding Members

3 AnalysisofrelevantscenariosThissectionisrelatedtotheidentificationandanalysisofthemostrelevantscenariosforthestudy.InordertointroducetheU-spacescenarios,section§3.2makesatourinsideactualVLLapproachtoVLOS operations and best practice used bymost drone operators to complywith applicable localnationalregulations.

3.1 RepresentationofScenarioThe scenarios introduced in this chapter shall be intended as operational scenarios, whose mainpurposeistoprovideadescriptionofhowafuturesystemcouldwork.Eachscenariodescribesthebehaviourofactors,theirinteractionsandthewidercontextofuse.Fromadetailedscenario,theU-space stakeholders shouldbeable to identifyuser requirementsandpotentialbusiness cases.Theinformationprovidedisbaseduponassumptionsonactorsandservicesinteractions,thereforeonlyhighlevelmainstreamsofusecasescanbeprovidedatthisstage.

Whenpossible,followingabottom-upapproach,somedetailswillbeaddedtoenhancethescenariodescription,onthebasisoftheexperiencegainedduringdroneoperations.

Fromaschematicpointofview, thescenario isdenotedasahigh level“container” representingaparticular environment of relevant importance for U-space operations, where different “actors”,airspaceusers,functionsand“objects”,interactthroughdefinedlogicalinterfaces.ThescenarioshallnotbeintendedasacompletemissionperformedbyanRPASoperatorfromtheplanningtothepostflight phase, but as a particular operational portrait characterized by one ormore UASs, airspaceusers, ground users, the surrounding environment, with given boundaries in the time and in thespace.

Forthisreasons,atourbestknowledge,therepresentationmethodologyusedinthisdocumentforthe description of scenario is the Unified Model Language (UML) by means of Use-Cases andSequencediagrams;eachscenariopresentedwillincludethefollowing:

• Storyboard:atextualdescriptionofthecontest(e.g.urbanenvironment,typeofAirspace,concurrentUASsinvolved,…)tobetranslatedinthemaininformationstreamtobesharedamongactorsandservicesinatextualsequenceofevents.FromUMLrepresentationpointofviewthemostrelevantUse-CaseisderivedfromtheStoryboard.

• SequenceDiagrams:uptothreesequencediagramsfromthemostrelevantUse-Casesofthescenario proposed will be described, highlighting the specific U-space user’s prospectiveinvolved in thescenarioproposed. In theSequencediagram,our interpretationofU-spaceservices interaction is proposed, according toU-space services definitions reported in par.§1.6.

• Phaseofflight:Thescenariocanhaveitssequenceofeventsconcentratedinonephaseofthe flight (Planning, Pre-Flight, Execution, Post-Flight) or spread over more of them. Acoverage table isprovided tokeepundercontrol thecoverageof the scenariooverall thepossibleflightphasesandservices.

Page 29: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

30

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

• UAS specification and capabilities: the minimum information about technical UAScapabilities and performance is given to allow the Safety assessment (D3.3 document),consideringthevarietyofUASavailableonthemarket(andthoseenvisagedforthefuture)and the different capabilities spreading from small VLOS drones up to heavy BVLOS highenduranceplatforms.

3.1.1 UnifiedModellingLanguage

Inordertorepresentthescenariodynamicsandtheinteractionsamongactors,thisstudywilladoptthe philosophy derived by UML, borrowing the type of diagrams that most instinctively allow torepresentamodelandtodiscussitamongpartnerswithseveraltechnologicalbackgrounds.

DiagramtypesborrowedbyUMLtorepresentthescenariosare:

ü UseCaseDiagram-torepresentthefunctionsrequestedbytheactorsinvolved;anexampleisshowedinFigure13,wheretheactor“DroneOwner”,afteracrashofitsaircraft,asksforthefunction“DroneRepair”toasecondactor“DroneRepairer”.

ü SequenceDiagram-tomodelthecollaborationamongobjectsbasedonatimesequence:itshowshowtheobjectsinteractwithotherswithreferencetotheusecasederivedfromthescenario. The Figure 14 represents the sequence for the function “Drone Repair” and theentitiesinterfacingtoimplementthefunction.Therepresentationofthesequencetorealizethefunctionisself-explicative.

Figure13:ExampleofUsecasediagram

Page 30: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

31

Founding Members

Figure14:ExampleofSequencediagram

Finallyasanexample,theUML“ClassDiagram”isalsoreported.Thisdiagramisusefultoidentifytheobjects properties (attributes), the functionalities that they offer (methods) and their mutualinteractions.TheClassDiagramshowsthestaticstructureofthesystembeingmodelled,focusingontheelementsofthesystemregardlessofthetime.HoweverClassdiagramswillnotbeusedatthisstage.

Page 31: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

32

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure15:ExampleofClassDiagramandmainattributesofClasses

3.2 BestpracticeforUASoperationsThebenchmark fromwhichwewill start is the actual process andprocedures thatUASoperatorsadopt for implementing theirmissions. Although the limitations superimposed by the actual localregulationsdonotallowtheinvolvementofRPASinBVLOSoperations,thereisasignificantnumberof registeredUASoperators in Europe that conductondailybasis their aerialworks inVLOSor E-VLOSconditionsinaccordancewiththeirapprovedoperationsmanuals.

The operations manual is a well-known tool in manned aviation used to explain the duties andresponsibilitiesofthestaffinvolvedinaerialoperationsandabouthowtheproceduresareadoptedsafely by the company’s crew over and over. Without being application specific (e.g. industrialinspections, sensors calibrations, generic aerialwork, etc…), there is aminimumnumber of steps,independent from thepayloadusedand therefore from theapplication,whicheachUASoperatorshould comply with, in order to guarantee the safety and the repeatability of operations in anorganizedandsharedprocessfromthecustomer’srequest(commitment)uptotheprovisionoftheaerialwork.

Page 32: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

33

Founding Members

Figure16:Commitment&Verificationphasebeforestrategicphaseofthemission

Thisprocessencompassesallthephasesfromplanningtopost-flight,includingthe“Commitment&Verification” phase introduced,where a preliminary verification (offline) is done before acceptingthemission,followingupwiththeplanningphase.

AfirstimprovementandtangibleaddedvalueofU-spaceservicesisrepresentedbytheautomation(or semi automation) of the manual process performed by the UAS operators to conduct theverification, assessment and planning of themission. In otherwords, a tool thatwould aggregatedata provided by different sources, pointing out potential hazards of amission and a preliminaryassessment(oradvices)foritsfeasibility,wouldbepotentiallyvaluableformanyoperators(e.g.HRtime reduction). This specific question has been addressed to drone operators through the websurvey[AppendixA].

Finally,inthefollowingsectionsitisgivenacommonprocedurewithmoredetails,torecognizethestepsadoptedsofarbydroneoperatorswithpopulartools.Thestepsspreadfromtheverificationoffeasibilityofthemissionuptothepostflightsprocedures.

3.2.1 Commitment&Verification

Themajorityoftoday’sRPASoperationsinVLOSconditionsfallundertheumbrellaofgeneric“aerialwork”, thereforeapreliminaryphaseof verification for the feasibility of themission is consideredaftertherequestforagenericaerialworkmission.

InFigure17(UseCaseDiagram)itisreportedagraphicrepresentationofthecustomer’srequestforaerialworktotheDroneOperator;therequestisdonethroughtheoperator’sPOC(PointofContact,whichcanbeeitherapersonorawebsitelandingpage).

Commitment&Verification Planning Pre-Flight Execution Postflight

Commitment&Verification Planning Pre-Flight Execution Postflight

Page 33: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

34

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure17:UseCaseof“MissionRequest”

The verification process for the feasibility of the mission involves the internal team of the RPASoperator (e.g. safety engineer/pilots) and some offline tools for a preliminary assessment. ForgenericVLOSoperationsinGairspaceorincontrolledairspace(e.g.CTR),suchprocesshasanimpacton the final cost of the operation in terms of direct personnel hours involved in the analysis,depending on the experience of UAS operator and the knowledge (and risk) of the area ofoperations.

Themainstepsofagenericverificationprocessaftertheclient’srequestinclude,butarenotlimitedto,thefollowingitems:

• Verificationoftheairspaceclass:theverificationoftheairspaceclassisoneofthefirstitemstobecheckedbyaUASoperatortoassessthegeneralfeasibilityofthemission,theexpectedtimetoobtainNAA’sauthorization(ifapplicable),adraft ideaof thecosts involvedfortheflightandadraftassessmentoftheriskassociatedtothemission.

o Airspaceclass:accordingwithoperator’sauthorizationsowned,theclassofairspaceandthelocalregulation,themissioncanbeplannedfromtheverynextday(e.g.inuncontrolledairspaces)upto60daysincaseofmissionsinsideATZinproximitiestoairports, due to the additional authorizations required. Some operations are notfeasible at all or need special authorizations. Furthermore, according with no-flyzones limitations (e.g.P/D/Rarea inAIPcartography)andwith thedistances tobekeptalwaysfromandtoairports/airdromes,additionalverificationbasedonofficialaeronauticalpublication[10]mustbetakenintoaccount.

o Active NOTAM: In addition to the previous investigation the UAS operator mustcheckwhethertheareaofmissionisaffectedbyactiveorpermanentNOTAMandiftheplannedmissionhasconflicts. Itmustnotbeexcludedthat,withrespecttothemission foreseen, theUASoperatormight himself apply for requesting a temporalsegregationoftheairspaceforhisparticularmission.

• Preliminary area examination: Digital Cartographies (e.g.OpenStreetMap) or other up-to-datecartographiessoftwaretool(e.g.Googleearth)canbeusedtohaveaquickoverviewofthe area of operations, potential local hazards, distance from buildings, etc… Such toolsprovidequiteaccuratemeasurementsofdistancesfromthedesignedareaofoperationstoroads,buildingsandplaceswherepossiblegatheringofpeopleare likelytohappen.This isusefulforapreliminarycheckofpossibledimensioningofthearea intendedforoperations

Page 34: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

35

Founding Members

and the dimensioning of the area used as “buffer” to be used in case of emergency,malfunctions of UAS and contingency actions. Potential Hazards (cellular base stations inproximity, power lines, big steel structures,…) can be partially detected at this stage bymeans of such tools, however on-field survey are generally a good practice to adopt formissingorpartialinformationduealsotocartographicaldataepoch.

• Preliminaryassessmentoftheoperation’srisk:Afterthefirstinformationprovidedbydigitaltools,thereisgenerallyenoughinformationtoevaluatetheriskinvolvedfortheOperatortoaccept or decline the mission. However, this item will be deeply investigated in the task3.030(D3.3deliverable)

Checking validity of insurance: it is foreseen the operator’s insurance validity checking(space, time, limit of liability,…) accordingwith the area of operations, the UAS and crewinvolved,thepotentialriskassociatedtothemissionandtheaerialactivitytobeperformed.

InFigure18itisreportedasequencediagramforthemacrostepsfollowedforthisphase.

Figure18:genericcommitmentandverificationprocess(SequenceDiagram)

The preliminary steps identified represent aminimal set of recognized “best practice” for generalaerial work, that can be considered as common base of checking items for a large group ofapplications.AttheendofthisphasetheUASoperator,throughhisPOC,shouldbeabletoacceptordeclinethemission,providingaquotationforit.

Page 35: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

36

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Thefollowingsubparagraphsaddmoredetailstosomeoftheitemsprovided.

3.2.1.1 No-flyzones&airportsAirport and no-fly zones distances from the planned area of operations of UAS shall be verifiedoffline, in a first approach, by AIS/AIP cartography and other “terrestrial” cartographic support.Digitalapplicationsavailableonsmartphonesandtabletsareatinitialstageofusage[28]insideUASoperatorscommunitiesandhavequitevaluableimpactespeciallyduringthepre-flightphase.

Nevertheless,dronesandflightcontrollerconstructorskeepcontinuouslyuptodateadatabaseofmajor airports and no fly zones in the world on special registers/look-up tables of the flightcontroller/avionics used; such list is distributed to their customers though constant (sometimesforced)flightfirmwareupdates.Inmostofthecases,whenthedrone(UASordroneusedforleisure)isintheproximityofanofly-zone/airport,take-offiscompletelyinhibited;thefirmwareconsideringthe drone GNSS position prevents arming the motors, or implements other in-flight descendingstrategiesforsafetyreasons.

According with the safety strategies implemented by global drones and flight controllersmanufacturers(verifiedduringaerialworkoperations),itisreportedasafetyimplementationof“no-fly-zones”asexample.

The “no-fly-zones” are divided into Airport and Restricted Areas (e.g. R/P/D), according to manyCommercialoff-the-shelfdronesonthemarket:

ü Airport include major airports and flying fields where manned aircrafts operates at lowaltitudes.

ü RestrictedAreas(e.g.R/P/D)includebordersbetweencountriesorsensitivesites.ThedetailsoftheNo-fly-zonesareexplainedinFigure20.

Airports

Airportno-fly-zonesarecomprisedofano-flyzoneandanaltitude-restrictedzone.EachtypeofzoneencompassesaradiusofacertainsizeasreportedinFigure19.

ü R1milesaroundtheairport(dependingonitsshapeandsize)encompassestheno-flyzone,insideofwhichtakeoffandflightareprohibited;

ü FromR1toR1+1milesaroundtheairport,theflightaltitudeislimitedata15°slope,startingat66feet(20meters)fromtheedgeofairportandradiatingoutwards.Theflightaltitudeislimitedto1640feet(500meters)atR1+1miles;

ü When theaircraft iswithin320 feet (100meters)ofano-fly zone,awarningmessagewillappearatpilot’sgroundstation.

Page 36: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

37

Founding Members

Figure19:No-flyZones:Airports

RestrictedAreas

RestrictedAreasdonothaveanaltitude-restrictedzone.InfactinFigure20:

ü R miles around the Restricted Areas (depending on the local regulation) is a no fly zone,insideofwhichtake-offandflightareprohibited

ü AWarningZoneissetontheperimeteroftheRestrictedArea.WhentheUASiswithin100meters(0.062miles)ofthenoflyzone(inthewarningzone),awarningmessagewillappearsonpilot’sgroundstation.

Figure20:No-fly-Zones:RestrictedAreas

Page 37: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

38

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

In general the distance from sensible sites depends on the local regulations. In Figure 21 it isreported an example of a restricted area close to the area of operations from a real aerophotogrammetrymission.

Figure21:ExampleofnearbyNo-flyZone(presenceofstadiuminviolet)duringflightphase.

Thepresenceofstadium,thoughcheckedandfarfromtheareaofoperations,limitedthemaximumaltitudeofUAS,causingdelaytoachievethefullcoverageofthearea.

Consideration

Some restricted zones as stadiums coulddynamically set their fencing onlywhen needed with atrustedaccounttoU-spaceservices.Infactitmustbenotedthatduringthetimeofoperations,therewasnoeventinthestadium.

3.2.2 Planning

Once the commercial proposal has been accepted by the client and the gross verification iscompletedbytheUASoperatorthroughthestepspreviouslyidentified,itispossibletoproceedwiththeplanningphase.

Commitment&Verification Planning Pre-Flight Execution Postflight

Page 38: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

39

Founding Members

ThemainactorforthisphaseistheUASPilotinchargeofoperations(Figure18, iterationref.1.1.4“Suitable Crew”), whose target is to plan the optimal mission through the function “MissionPlanning”(UseCaseFigure22).

Figure22:UsecaseMissionPlanning

Asfor§3.2.1,thePlanningphaseinclude,butisnotlimitedto,thefollowinggeneralsteps:

• Weather forecast: wind velocities and directions, temperatures and possibility of rain aregenerally checked as normal procedures, accordingly with RPAS manual of operations inorder toassess thebest temporalwindow frame forplanning themission,with respect totheUASflightenvelopelimitations.Afirstwindforecast isalsousefulforthecalculationofthedimensionsof thebufferboundariesaroundtheareaofoperations.Suchcalculation isneededfortheassessmentoftheminimumdistancetobekeptfrompeoplenotinvolvedinflightoperations.

• Areas of operations definition: One or multiple areas of operations shall be identifiedaccordingly, considering the extension of the area to be inspected. The dimensions of thearea (e.g.heightandhorizontaldistance frompeoplenot involved in flightoperations)aredefined according to the safety assessment provided. Different modelling parameters areusedsuchaswindvelocity,drone’sgroundspeed,etc…Mostcommercialdronesavailableonthemarketimplementnativelystaticgeofencingmechanismswhichlimittheflightenvelopeofdrone insideavolume,whosebase is centredon thehomepoint (where thedronehasbeenswitchedon).Intheplanningphase,duringthedefinitionoftheareaofoperation,itisabestpracticealsotodefinealternativelandingsitesincaseofemergencies.

• AnalysisofGNSSlimitations:GNSSsignalscodemeasurementsaretodaytheprimarysourceforGNCofmulticopters, fixedwings and lighter-than-airUAS. In factmost of professionaldronesavailableonthemarketareequippedwithmulticonstellationGNSSreceiverswhicharecapabletoresolvetheirpositionexploitingthesignalsfromdifferentconstellations(GPS,Glonass,Galileo,EGNOS).Moreover,privateandpublicGNSSterrestrialpermanentnetworkswidelyspreadoverEuropearetodaycapabletoaugmentandenhancepositioningaccuracyuptodecimetrelevel,incommercialsystems.DespitetherelevantprogressofGNSSindustryinlatest10yearsandthecostreductionofreceivers,therearesometypicalsituationsduringnormal drone operations that cannot be solved by GNSS technology only. A typical casewhere GNSS limitationsmust be considered is represented by UAS inspectionmissions inurbancanyonscenarios.Inthissituationothertechnologiessuchasvisioningsystems(lateral

Page 39: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

40

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

andvertical),ultrasonic/inertial sensorsareneeded toaugmentGNSS lowaccuracydue tomultipatheffectsand/orpoorsatellitevisibility/highHDOPvalues.

• Geofencesettings:Finallythegeo-fencelimits(ifnecessary,withrespectofthecriticalityofoperation)maybesetontheaircraft,thoroughPilot’sGroundControlstation,toperimetertheareaofoperations(ref.§3.2.2.2)

• ChoiceofFlightmode:Thechoiceofflightmodeisanotherimportantitemtobesetduringtheplanningphase.Accordingwith typologyofmissionand theUASplatformdefined, thepilot in command selects themost suitable flightmode. Although still in VLOS conditions,some operations are more suitable to be performed in automatic mode (e.g. aerophotogrammetricwork),whileothermissionsaremoresuitableinmanualorassistedmode(e.g. wind turbine blades industrial inspection) where high precision is needed and thepiloting skill still represents a high added value. Some typical operative modes formulticopterdronesaredescribedin§3.2.2.3

• Preparation of embarking list: The planning phase ends up with the application of thelimitations analysed to the UAS selected for the mission, the implementation of allmaintenancechecklistsand the inspectionsof theUASselected,according to theoperatormanuals and the preparation of the embarking list for the mission (drones, equipment,documents,…)

Figure23:Sequencediagram-missionplanning

Page 40: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

41

Founding Members

3.2.2.1 AreaofoperationsThesimplesttypologyareasusedforVLOSoperationsareshowedinFigure24andFigure25.Inthefiguresarereportedalsotheareasofbufferthat,ifwelldimensioned,mitigatetheriskassociatedtopeoplenotinvolvedornotawareofflightoperations,accordingwiththeriskassessmentprovided.

Area of Operations

Area of Operations

Area of Operations

Area of buffer

Area of buffer

Area of buffer

Area of buffer

Area of Operations

Area of buffer

Area outside the control of pilot

Area of buffer

Area outside the control of pilot

Area delimitation

Area delimitation

r

b

b

bb

b

b

b

bb b

bl

Ll

L

HH

H

H

I) II)

III) IV)

Figure24:CircularandrectangularareasofOperations(horizontalplane)

Moregeneralcriteriaforbufferareadeterminationaregenerallyincluded(e.g.flightconditions,aircraftconfiguration,Endurance,operationalspeedetc..).

Page 41: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

42

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

H bb

hmax

r

H bb

hmax

r

Area of operations

Area of operations

Area of buffer

Area of buffer

Area of buffer

Area of buffer

Area outside control of pilot

H bb

hmax

L

Area of operations

Area of buffer

Area of buffer

H bb

hmax

l

Area of operations

Area of buffer

Area of buffer

H bb

hmax

L

Area of operations

Area of buffer

Area of buffer

H bb

hmax

l

Area of operations

Area of buffer

Area of buffer

Area outside control of pilot

Area outside control of pilot

I)

II)

III)

IV)

Figure25:circularandrectangularareasofOperations(verticalplanes)

The area of operations illustrated are the simplest possible, used by UAS operators to justifycalculations for the dimensioning of areas (horizontal separations). Actual tools and third partysoftwaresupportpolygonalarea,usedtoenhanceplanningactivity.

Page 42: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

43

Founding Members

Figure26:AreaofOperations(polygonal)

3.2.2.2 GeofencesettingsInFigure27itisreportedanexampleoftheactualmechanismsusedtosetthegeofencelimitationsonacommercialmulticopterdrone.ThelimitscanbeconfiguredinbothverticalandhorizontalaxisandarecalculatedbythedronestartingfromtheHOMEPoint(typicallycoincidentwiththetake-offpoint)set.

Figure27:exampleofGroundStationHMIsettingsforgeofence

Page 43: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

44

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.2.2.3 FlightoperativemodesIn this section a quick overview of the most common operative modes available on commercialdronesonthemarketisgiven.Theoperativemodeshereafterdescribedaretypicalofamulticopterdrone.

TheSWintegrationleveloftheRPAandthepilot’sworkloadisintendedonaqualitativescaleoffivevalues:None,Low,Medium,High,VeryHigh

MANUAL(UASattitudeandheightcontrolonly)

Inmanualmodethepilothasfullcontroloftheaircraft;theFCUautomaticallycontrolstheattitudeoftheRPAonthehorizontalplanetokeepalwaysalevelledflightandtheheight’scontrol.NoothercontrolorsoftwareassistanceisprovidedbytheFCUinthisflightmode.Thepilot’scommandsarealwaysmixedwiththeattitudeandheightcontrolandareneveroverriddenbyon-boardsoftwareinnormalflightconditions.Theintegrationofon-boardSWis:Medium.Thepilot’sworkloadis:High

ASSISTED(Positioning,UASattitudeandheightcontrol):

Inassistedmodethepilothasfullcontroloftheaircraft;theFCUautomaticallycontrolstheattitudeof the RPA, the height and the horizontal position control. In this mode the RPA is capable ofhoveringwithoutstandingprecisioninafixedpoint inopensky.Thewind’seffect isautonomouslycorrected by using the on-board GNSS receiver. The pilot’s commands are alwaysmixedwith on-boardsoftwarecontrol theandneveroverriddenbyon-boardnavigationsoftware innormal flightconditions.Theintegrationofon-boardSWis:HighThepilot’sworkloadis:Medium

IOC(IntelligentOrientationControl)

TheIOCoperatingmodeisasimplifiedflightmodeusefultoeasethepilotinnormalandemergencyflight manoeuvres and it is valuable for some VLOS operations. IOC can be switched only fromAssistedmodewithsufficientGNSSsatellitecoverage,used forRPApositiondetermination. In IOCflight mode the pilot’s console control sticks are independent from aircraft’s heading, but arereferred to the aircraft HOME point position. The integration of on-board SW is:High The pilot’sworkloadis:Medium

AUTO(Waypointnavigation)

InAuto(automatic)flightmodethepilothasnocontroloftheaircraftduring(autopilot)navigation,buthe/she canalwaysdisengageautopilot systemand takeback full controlof theaircraft in anymoment. In this mode the aircraft is capable to implement an automatic flight plan withprogrammedwaypoints.Theintegrationofon-boardSWis:HighThepilot’sworkloadis:Low

Page 44: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

45

Founding Members

Finally,thereisanadditionaloperationalflightmode(Failsafe)whichishandledinternallybytheFCUsoftware.Failsafeistriggeredbyeventsorsubsystemsfailures(e.g.LossofC2link),butitcanalsobeswitchedbythepilotinemergencyflightconditionsforcingtheaircrafttolandortoreturntohomeautonomouslyasitshouldbedescribedintheemergencyproceduresoftheRPAmanual.

In Figure 23 it is reported a graph showing the possible transitions among different operationalmodes (aircraft status). The red dotted arrows stands for autonomous transitions handled by on-boardsoftware,theblackonesstandsforpilot’sdrivenoperationalmodeschanges.

assisted automanual IOC

failsafe

SWSWSW SW

pilotpilot

pilot pilot

pilot pilot pilot

Figure28:exampleofpossibletransitionsamongdifferentflightmodes

Thefailsafeoperatingmode,whenisautomaticallydriventhroughtheon-boardsoftware,forcesthe

aircrafttoimplementautonomouslyoneofthefollowingprocedures: ü Return-to-Home: Failsafe RTH is activated automatically if the remote C2 signal is lost for

morethan3secondsprovidedthattheHomePointhasbeensuccessfullyrecordedandthe

compass is working normally. The pilot can interrupt (override) the Return-To-Home

procedureandregainfullcontroloftheaircraftiftheremotecontrollersignalisrecovered. ü Auto-Landing: Failsafeautolandingisactivatedautomaticallyiftheremotecontrollersignal

(includingvideorelaysignal) is lostformorethan3secondsandthere’snosufficientGNSS

signalforRTHprocedure.

Figure29:ReturntoHomeprocedureexample

Page 45: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

46

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.2.3 Pre-flight

Pre-flight operations refer to all those operations related to both aircraft and payload to beimplementedonsite,beforetake-off.

Figure30:UseCasepre-flightcheck

• Site survey:A local surveyof the sitemightbeneeded for checkinganydifferences to themission planned remotely. For example obstacles, RF hazards (e.g. local cellular telephonybase stations) couldn’t be visible during mission planning. Considering the actual C2technologies(e.g.proprietarySpreadSpectrumsystems)usedinCOTSRadioequipment,itisa good practice also to scan the local RF environment with a portable spectrum analyserworkingonmultiplebands(e.g.433MHz–898MHz-2.4GHz–5.8GHz)tocheckpossibleRFinterferencesorspurioussignals.

• Area of Buffer: to check on-site, in case of critical operations, if geo-fence limitations arecoherentorneedmodificationsaccordinglywithlocalwindmeasurementandsituation.ThePilotcanalsoagreetotaketheriskinvolvedintheoperationswithoutanylimitationsotherthanthedefaultgeo-fencesettings.

• PeopleinsideareaofOperations:tocheckifpeoplenotinvolvedinoperationsareinsidetheareatobe inspectedandeventually in theareaofbuffer.Othermechanismdefined in theoperator’smanualshouldinstructthecrewabouthowtocordontheareaofoperations.

• UAS Checklist: Normal checklist is executed according to UAS flight manual. In case ofautomatic flightmissionwithwaypoints, thepilotuploadsatthisstagealsothemissiononthedrone.

• Checking local weather conditions: to check visibility and local wind conditions with aportableanemometer(e.g.localwindnotexceeding10m/s).Temperaturerangesalsoshallbeconsideredcarefully,especiallyifLiPobatteriestechnologyisusedbelow4°C.

Commitment&Verification Planning Pre-Flight Execution Postflight

Page 46: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

47

Founding Members

• Instruct the crew:Accordingwith theoperationsmanual, the crewandanypossibleotherpeople present on site should be instructed by the pilot in command about the flightoperations and about contingency actions to be taken in case of emergency. A particularattentioningeneralisgiventowardssituationalawarenessofthesurroundingenvironmentandanypossibleothermanned/unmannedair traffic interference. Ingeneral, thepilot incommandduringtheUASflightissupportedbyanObserver,inspectingtheskyforpossibleGAorultra-lightflightinterference.

• Contact ATC: If the flight operation is taken inside a controlled airspace, it is necessary tocontactthelocalATCbeforestartingflightoperations.(itisassumedthatinthiscasetheATCisalreadyawareaboutaplannedunmannedflightoperations).

Figure31:Sequencediagramforpre-flightphase

Page 47: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

48

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure32:Exampleofautomaticwaypointmission

In Figure 32 it is reported an example of preparation of mission (waypoints upload) used on apopularMAVLINK[31]basedgroundstation.

3.2.4 ExecutionofMission

Theexecutionphaseisoftentheshortestphaseintheoveralltimelineofflightphases,withrespecttotheactualVLOSoperations.Inthisphasethereisprobablythebiggestgaptobefilledintermsoflackofaeronauticalinformationandinparticular:

• Actualcommercialsystemsdonotintegrateanyinformationaboutotherdronestraffic;

• No informationaboutothermannedtraffic isprovided (someprototypestarts to integratecooperativeADS-BinformationonGroundStations);

• Pilot’sobserverstillneededlimitedtolocalVLOSsituationalawareness

Commitment&Verification Planning Pre-Flight Execution Postflight

Page 48: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

49

Founding Members

Figure33:UseCaseMissionexecution

Figure34:ExampleofapopularGroundStation[30]

In Figure 34 it is reported an example of telemetry data used on a popularMAVLINK [31] basedgroundstation.

3.2.5 Postflight

Commitment&Verification Planning Pre-Flight Execution Postflight

Page 49: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

50

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Thepostflightoperations,fromaRPASOperatorprospectivearerelatedtogatheringdataacquiredduringthemissions.HoweverOperatorshavestillinthisphaseobligationstoachievesuchas:

• Post-flightchecklist;

• Updatesoflogbooks(aircraftlogbooksandpilotlogbook)

• AircraftChecking

Figure35:PostFlightOperationUsecase

Infactmanyproceduresasaircraftmaintenanceloggingactivitiesandhoursofflightregistrationonpersonallogbookareinmanycasesstillimplementedbyamanualprocess.

Figure36:ExampleofapaperPilotlogbookusedforRPASoperations

Considerations

The introduction of digital services for the implementation of logbook activities (e.g. flightregistration)candramaticallysavehourstoRPASOperatorsandlowerthepriceforservices.

Page 50: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

51

Founding Members

3.3 AssumptionsforScenarioidentification

Thefollowingassumptionsaremadetoanalyzeeachscenarioproposed:

• U-spaceservicesareconsideredas“atomicbricks”orelementarynodesofthesystem;

• EachScenarioisrepresentedbyoneormoreUse-Cases;

• ForeachUse-CaseuptothreeSequenceDiagramsareproposed;

• MitigationstopossiblecontingenciesarenotconsideredindefinitionofScenarios

• U-spaceControlleractorcanbeeitherahumanora“bot”1

• TheDroneitself(autonomoussystem)canbeconsideredasanactorintheecosystemwiththeincrementofautomation(U3).

Accordingwith thepreviousassumptions, thescenarios identifiedarereported inTable2with theapplicableflightphaseandU-spaceservicesgroup.

Table2:ScenariosvsU-spaceservicesandflightphases

1Asoftwareapplicationthatrunsautomatedtasks(scripts).Typically,botsperformtasksthatarebothsimpleandstructurallyrepetitive,atamuchhigherratethanwouldbepossibleforahumanalone.

Page 51: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

52

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.4 Scenario1:ElectronicRegistrationScenario1:ElectronicRegistration

Storyboard:

Bobdecidedtobuyacommercial-off-the-shelfdrone(>250grams)andnowheisabouttoassociatehisdronewithhisprofileontheU-spaceportalbeforeusingit.Infact,heisawareaboutdroneEURegulations(nowindraftform).

He ispromptedtotheU-spacepublicwebsiteandasnewuserhe is requestedtoregisterhimself,providing his account, password and personal information including his address and activemobilephonenumber.Bobisaleisuredroneuser.

During registration Bob is also requested to insert his ID card details and his Licence/Attestationinformation (if any) with associated validity and expiration dates in order to grant him access tocertaintypesofairspace.Boblearnedbyhimselftopilotadronebuthedoesnothaveanylicenceasthepurposeofhisflightsisjustforleisure.

Finally,theU-spaceregistrationprocesspromptsBobtothepaymentpagewhereheisrequestedtoinserthiscreditcarddetails(orothermeansofpayment)forregistrationservice.AfterpaymentBobreceivestheU-spaceregistrationuniquenumber.

Use-Case:ElectronicRegistration

FlightPhases:1.Planning

U-spaceservices:• U1:E-Registration

Actorsinvolved:DroneUser,DroneOperator,Authority

Sequencediagrams:1.DroneUserregistration(Leisure)

2.Droneregistration(AssociationPilot/Drone)

Page 52: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

53

Founding Members

3.DroneOperatorregistration(Professional)

Issues:• TrustedthirdpartyforIDverification;

• Modelforpayment(EUcitizenstaxes,users,freeservicespluspremiumservices,…)

3.4.1 DroneUserregistration(Leisure)

This first sequence highlights theDroneUser registering himself on theU-space portal for leisureusage.

1. TheDroneUserprovidesthefollowinginformationduringtheE-registrationprocedure:

a. Name,Surname,validaddressandvalidmobilenumber.Thephonenumberisusedfordoublecheckinghisidentity(e.g.SMStoconfirm),moreoveritcanbeusedalsoasredundantcommunicationchannelincaseoftemporarynetworkfailure;

b. Valid ID document (e.g. passport or national ID): in this case a trusted third party(outside the U-space services) might be integrated in the registration process toverify the identityof theDroneUser (e.g.e-bankingmechanismsornewpromisingtechnologiessuchasblockchain[22]).

c. Drone Pilot attestation/license with expiration dates and validity are optionalinformation and can unlock to user the possibility to register drones for specificoperationsorunlockoperationstocontrolledairspaces.

2. TheDroneUserisnotifiedbytheU-spaceservicethatevenifthedroneisusedforleisure,hewillbealwaysaccountableforflightoperations.

3. Finally,theU-spaceregistrationprocesspromptstheDroneUsertothepaymentpagewhereheisrequestedtoinserthiscreditcarddetails(orothermeansofpayment)forregistration

Page 53: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

54

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

service.TheDroneUseraccepts in thiscase topay for thebasicsetofservices inorder toperformhisleisureflights(e.g.annualfeeforbasicservices).

Attheendoftheprocessthee-registrationservicereturnstotheDroneUser:

o U-spaceIdentificationnumber;

o PermittoflyinVLOSconditionsonly;

o Green / Yellow / Red zones where flying for leisure is allowed and other information (bymeansofotherU-spaceservices)

3.4.2 Droneassociation

After theDroneuserhasobtainedhis uniquenumber to access to theU-space services, hemightwantto insertoneormoredrones inhisfleet.Eachdroneshouldhaveoneuniqueidentifiertobeassociatedtotheuse§(e.g.DroneManufacturer’sS/N)

1. TheDroneUserassociatestohisprofilethedronemodelheintendstooperatebyusingtheuniqueserialnumberprovidedbythedronemanufacturer.

2. The unique sequence generated by Drone user code and Drone Serial Number is stored/handledbytheE-registrationservice.

Page 54: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

55

Founding Members

3.4.3 Operatorregistration

Inthissequencediagram,itishighlightedtheregistrationofaprofessionalDroneOperatortotheU-spaceservices, requestingduring theregistrationprocess,moreprofessionalservicesgenerallynotallowedtoleisuredroneusers(e.g.nightflightoperations,BVLOSoperations,deliveryoperations,…)

1. TheDroneOperatorfollowsthesameprocedureoftheDroneUsershowedin§3.4.1.InthiscasehehasalreadyaddeddifferentdronesofhisfleetontheE-registrationserviceinterface,whichhasalreadyimplementedallthemechanismstoverifyhisidentity.

2. TheDroneOperatorinsertsonhisaccountalistofDroneusersworkingforhisorganization,byaddingDroneUserspersonal informationandemails.TheE-registration service sendsarequest (e.g. email) to the Drone User to confirm his role in the Operator’s organization.Once the E-registration service receives the confirmation from the Drone User, he ispromptedtosameinterfaceshowedin§3.4.1,forprofessionalDroneUsers(RPASpilots).

Considerations

ThesequencegeneratedbycombiningtheDroneuser(orDroneOperator)U-spaceregistrationcodeandDroneSerialNumbercanuniquelyidentifyanyregisteredflyingdronewithasimilarmechanismusedbycellulartelephonyoperators:

• Cellularphoneuniquevendor’scode(IMEI)

• S/NofSIMusedlinkedtothecontract(andID)ofthesubscriber

AsimilarmechanismcouldbeimplementedintheU-spaceforregistration.Thesameidentifiercanbe used (with minimal effort in configuration) on the “U-spaceBox” needed to broadcast suchidentificationcode(e-identificationservice)duringtheflight.

Page 55: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

56

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.5 Scenario2:ConcurrentOperationsScenario2:ConcurrentOperations

Storyboard:

ThreeUASareinvolvedinconcurrentoperationsinthesameuncontrolledairspace.ThefirstUASisarotary wing UAS (quad-copter) involved in one inspection mission over a large rooftop in VLOScondition; theareaofoperations isat the limitsofanurbanarea. The secondUAS isa fixedwingdrone involved in a mapping (site scanning) operation for the construction of a new site in asuburban/ruralarea.ThethirdUASisaheavyliftaerialfilmingplatform(hex-copter)usedforaerialfilmingproduction inVLOSconditions inan industrialarea.TheUASstartsatdifferent locations, inparticular the heavy lift drone starts from the rooftop of a nearby industrial building for filmingproductionreasons.

TheflightplanofUASfixedwingdronehasbeenpreviouslyapprovedbytheU-spaceController(e.g.“bot”)anditisalreadyintheexecutionphaseofitsautomaticwaypointsmission.Theother“stand-by”droneusersareabouttosubmittheirflightplanbeforetake-off.ThewindisincreasingbeyondthecapabilitiesforsomeUAS.

The scenario is focused on the concurrent flight operationswith particular reference to the flightplansubmissionandauthorization.

Use-Cases:FlightPlanAuthorizationRequest,LandImmediately

FlightPhases:1.Pre-flight

2.In-flight(execution)

U-spaceservices:• U1:Pre-tacticalgeofencing;

• U2:Strategicdeconfliction;Flightplanningmanagement,WeatherInformation

Actorsinvolved:U-SpaceController,DroneUser,Stand-byDroneUser,FlyingDroneUser

Sequencediagrams:1.FlightPlanapproveduponarequestfroma“Stand-byDroneUser”

2.FlightPlanrejecteduponarequestfroma“Stand-byDroneUser”

3.Broadcastnotificationtodroneuserstolandimmediately.

Page 56: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

57

Founding Members

Issues:• UASverticalseparation(geodeticorbarometricapproach?!)

• U-spaceasa“BOT”forflightPlanapproval

Figure37:Exampleofthescenariodescribed.

UAS1 UAS2 UAS3

Configuration QuadCopter Fixedwing Hexcopter

MTOM 2kg 0,69 15,5KgMax

characteristicdimension

0,26m 0,96m 1,7m

Maxoperational

speed12m/s 25m/s 18m/s

Endurance 25’ 50’ 30‘Table3:UASmaincharacteristicsofScenario2

3.5.1 FlightPlanapproveduponarequestfroma“Stand-byDroneUser”

Thisfirstsequencehighlightstheflightplansubmissionandapprovalfromthepointofviewofthestand-bydroneuser (UAS1 inFigure37,waiting forauthorizationbeforetake-off).Theoperationsforthisuserarelimitedtoasmallareabecauseofthetypologyofmission(rooftopinspections).The

UAS1-rooftopinspection

UAS3–aerialfilming

UAS2–sitescanning

railwayfence

Page 57: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

58

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

dronewillbeoperatedmanuallybythedroneuser(noautomaticmission)becauseoflimitedspaceofmanoeuvresamongcitybuildingswhichrequiresgoodpilotingskills.

It isassumed that the“Stand-ByDroneUser” isa registereduser.Moreover thedrone isuniquelyidentified and its uniquenumber (e-registration) and related information (capabilities) are alreadystoredontheauthorityregistry(orotherU-spacedatabasestructure).Thestand-bydroneuserisonthehomepointwaitingforauthorizationtotake-off.

1. During the Flight Plan submission themost relevant information sharedwith the U-spacefrontend(FlightPlanningManagementservice)is:

a. DroneIdentificationandcapabilities,droneuseridentification;

b. Positionofdroneandheight,timeofoperations;

c. Dronecapabilitiesandsettings.

2. TheFlight planningmanagement, acting as a front end for thedroneuser, uses the inputinformationprovidedforcheckinganypossiblerestrictedzonesinthesurroundingareaandany available aeronautical information, such as active NOTAMby specific queries towardsthePre-tactical geofencing service. This service has the internal business logic and all theinterfacingmechanismstowardsotherexternalservices,toreturntherequiredinformation.IntheexampleprovidedinFigure37theinformationofanearbyrailwayisnotified.

3. TheFlightPlanningManagement,afterthepositivecheck(noconflicts)forrestrictedareas,wraps the required input information towards the Strategic deconfliction service that hasaccesstoaclouddatabase(orotherdistributedstructures)wherealltheknownflightplansare stored. This service has also the internal logic in the time and space domain (e.g.geographicquery)tocomparethegivenflightplanwiththosealreadyknownandstoredinthedatabase.IntheexampleofFigure37,noconflictsaredetectedwiththeflightplanofthestand-bydroneuser(UAS1);

Page 58: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

59

Founding Members

4. AccordingtotheinternalbusinesslogicofFlightPlanningManagement,afinalauthorizationrequestisimplementedtowardstheU-spaceControllerafterthatallchecksaresuccessfullyachieved. This actor can be either a human or a “bot” and can operate autonomously orsemi-autonomously. TheU-space Controller takes in charge the request by cross checkingothersourcesofinformation,ifrequired,beforefinalclearance.Ifthefinalclearanceisgiven,thenotificationisforwardedtothestand-bydroneuserbymeansofthesameinterface(orredundantlyontwoindependentchannelssuchasinternetandSMS).

3.5.2 FlightPlanrejecteduponarequestfroma“Stand-byDroneUser”

Thissecondsequenceisrelatedtotheflightplansubmissionandrejectionfromthepointofviewofthe stand-by drone user (UAS 3,waiting for authorization before take-off). The operation for thisuser is related to awider area in conflictwith an existingmission. The sequence diagram for thisspecificsituationfollowsthesamemainflowdescribed in§3.5.1uptothe invocationofcheckandDeconflict Plan() method from Flight planning management service towards the Strategicdeconflictionservice.

1. The strategic deconfliction queries on the data base if the given flight plan submitted haspossibleconflictswithotherflightplans,alreadysubmittedandapproved.Infactthestand-bydroneuser (UAS3 ) is inconflict (altitude,positionandtime)withtheUAS2 flightplanwhichisalreadyinoperationphase.

2. Thestrategicdeconflictiononthebasisoftheconflictdetected,implementsinternalqueriesto provide a better time slot, or reasonable modification of the flight plan, or othermechanismstoprovideanalternativetoFlightplanningmanagement

Page 59: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

60

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3. The Flight planning management forwards the alternative solution to the stand-by droneuser;inthiscasethealternativeisrepresentedbyamodificationofthemaximumheightofoperationsinordertode-conflictwiththeexistingsitescanningactivity.

4. TheStand-bydroneuserisnotifiedabouttherejectionoftheflightplan,butisalsogivenapossible alternative. The new flight plan is modified accordingly with the new suggestedaltitudeandit issubmittedagaintotheU-space.Thissituationfollowsunderthesequencediagram§3.5.1(Flightplanapproval)previouslyanalysed.

3.5.3 Broadcastnotificationtodroneuserstolandimmediately.

This sequence diagram highlights the notification from the Weather information service about asuddenincreaseoflocalwindowconditions,forcingmostofUAStoland.

1. TheWeather information servicewhich is fed by sensors,meteorological stations (new oralreadyexisting)orotheraeronauticalservices,widelyspreadonaregionalarea,notifiestheFlightPlanningManagementaboutastrongwindalert

2. TheFlightPlanningManagementservice,whichhastheinformationofactiveflightplansinthearea,checks for theflyingdrones intheareawhichmightbeaffectedforbadweatherconditions,basingontheregisteredcapabilities.Theresultofthischeck isthelistofactiveflightplansofdronesinoperationsthatmustbewarned.

3. Before warning the drone Operators and Drone users (pilots), the Flight PlanningManagementservicemightalsorequesttothestrategicdeconflictionserviceamodificationto each flight plan in order to minimize conflicts during Return to Home or landingprocedures.

4. FinallytheDroneUsersandDroneOperatorsarealertedbytheFlightPlanningManagementservice of the prohibitive weather conditions and a suggestion on contingency actions isprovided.

Page 60: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

61

Founding Members

Considerations

In this example two drones taking off at different heights are showed. To ensure vertical safeseparationinuncontrolledairspace,ageodeticapproachwouldbemoreaccuratefordronesandformanned aircraft, especially if far from a controlled aerodrome. In fact, geodetic altitude relies onsatellitenavigationsystems,alreadywidelyusedbymannedaviation;furthermore,navigationsignalscoming fromsatellite constellationarenot influencedbyvariationofatmosphericpressureatVLL.Indeed, to ensure vertical safe separations, the precision and accuracy promised by the EuropeanGNSS (Galileo/EGNOS) in conjunction with other GNSS constellation can be also considered toaddressthisissue.

3.6 Scenario3:TerritoryControlScenario3:TerritoryControl

Storyboard:

A drone Operator has been accredited by the authorities to fly in a geo-fenced area in urbanenvironmentwherethemostimportantpubliccyclingeventoftheyearwilltakeplace.Thestartinglineoftheeventwillbecrowdedofcyclists,journalists,authorities(i.e.lawenforcement)andcitizensareenthusiastictoseethecompetition.

Theauthoritiesaremonitoringtheeventalsobymeansofatethereddroneintheproximityofthestarting line(about50metersAGL,100metershorizontally fromtheunusualgatheringofpeople).Thetethereddronepayloadisoperatedbythelocalpolicestationforpublicsecurity.Moreovertheauthorities have installed locally a Ground Surveillance anti drone system, capable to detectincomingdronesandneutralizethemincaseofunauthorizedincursion.

TheauthorizedDroneOperatorisflyingintheproximityofthestartlineofthecyclingeventwithoutoverflyingpeople,insidethegeo-fencedareaforlivevideobroadcastingactivitiesoftheevent.TheflightisinVLOSconditionsandtakesplaceinanuncontrolledairspace.

Suddenlybeforethestartoftheeventasecondandathirddroneappearinthegeo-fencedareawithinsufficientauthorizationsorregistrationtotheU-spaceservices.

Use-Cases:ElectronicIdentification

FlightPhases:

Page 61: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

62

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

1.In-flight

U-spaceservices:• U1:E-Identification

• U2:Monitoring,Tracking

Actorsinvolved:DroneUser,DroneOperator,Authority,UnauthorizedDroneUser,UnregisteredDroneUser

Sequencediagrams:1. Authoritycheckse-identificationofDrone2. RemoteIdentificationofunauthorizedDroneOperator3. IncursionofunidentifiedDrone

Issues:

• U-spaceboxindependentfromFlightControl• U-spaceboximplementedbymeansofIOTtechnology• SecuritysystemsinterfacestoU-spaceservicestoneutralizeunidentifieddrones

UAS1 UAS2 UAS3 UAS4

Configuration QuadCopter QuadCopter Hexcopter undefined

MTOM 1,9kg 1,6 8,2Kg undefined

Maxcharacteristicdimension

0,51m 0,42m 1,7m undefined

Maxoperational

speed18m/s 20m/s 18m/s undefined

Endurance 27’ 24’Virtuallyunlimited

undefined

NotesIdentifiedAuthorized

drone

IdentifiedUnauthorized

drone

Tetheredlowenforcement

drone

Unidentifieddrone(noU-spacebox)

Table4:UASmaincharacteristicsofScenario3

Page 62: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

63

Founding Members

3.6.1 RemoteIdentificationofauthorizedDroneOperator(electronicsignal)

The present sequence diagram highlights the usage of the electronic identification service duringflyingoperationsfromtheauthority(lawenforcement)prospective.

1. Thelawenforcement,thatispresentnearbytheareaofoperationsisawareaboutpossibledronesincursionsinthegeo-fencedarea.TheareawastemporaryclosedforthedayoftheeventbythePolice,accessingtotheU-spaceportalwithauthorityprivileges.

2. The Police officer has a visual contact with a Drone nearby the area of operations and,thoughisawareaboutoneauthorizedDroneOperatorforaerialwork,shehastochecktheidentity of the flying drone through her U-space Tablet application/equipment (e.g.AugmentedRealityapplicationforretrievingdroneinformationbypointingthetabletintheairtowardsthedrone).

3. The Drone is identified by the U-space application in real time, by querying through 4Gnetwork(ordedicatedLawEnforcementnetwork)theauthorityregistry(DB)containingtheinformation related to the Drone Operator and the Drone. The Drone e-identification iscontinuously broadcasted in the air during flight operations, through a keep-alive signalcontainingtheuniquecodeofthedrone(and likelyancillary informationalso), transmittedbyaccessingthe4G/5Gnetwork.

4. The authority registry is queried by the e-identification service by interfacing the FlightPlanningManagementservicewhichhastheinformationofactiveflightplansinareavolumeandholdsthelogicforretrievinginformationaboutDroneOperator,DroneUserinvolvedinoperationsaswellasDrone’scapabilities.

5. Finally thepoliceofficer isnotifiedabout theauthorizationof theDroneOperator throughher tablet application, after having successfully checked the drone IDwith e-identificationservice,withnorelevantrisksinthiscaseforcitizens’security.

6. The authority’s investigation can be also notified to DroneOperator (and DroneUser) forDroneoperatorsawareness.

Page 63: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

64

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Figure38:Exampleofe-identificationapplicationforlawenforcement

3.6.2 RemoteIdentificationofunauthorizedDroneOperator

ThepresentsequencediagramisrelevantforthecaseofaregisteredDroneOperatorthatbrakestheenvisagedregulations,flyinginageo-fencedvolumewithoutauthorityauthorization.ThesequencediagramexerciseisdevelopedfromtheAuthority(Lawenforcement)pointofview.

Page 64: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

65

Founding Members

1. ThePoliceOfficer,hasavisual contactwitha seconddronenearby theareaofoperationsandshechecksagaintheidentityoftheflyingdronethroughherU-spaceTabletapplication.

2. Inthiscasetheseconddrone is identifiedagainbytheU-spaceapplication inreal time,byquerying the authority registry (DB) containing the information related to the DroneOperatorandtheDrone.

3. The Flight Planning Management service is queried for flight plans approved in the geo-fencedareausingtheDroneuniqueidentificationprovidedbythee-identificationservice.InthiscasenoflightplanrelatedtotheDroneidentified(andtheassociatedDroneOperator)resultstobeapprovedinthelocalregistry.

4. Thepresenceofanon-authorizeddroneinsideageo-fencedareaisnotifiedtotheAuthoritywhomcanproceedtoordertotheDroneUser(andDroneOperator)toleavetherestrictedareaimmediatelyandland.

Figure39:Exampleofe-identificationapplication,retrievinginformationofunauthorizedoperator

Page 65: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

66

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.6.3 IncursionofunidentifiedDrone

This case is relevant for the third drone (introduced in the storyboard) not registered and notauthorized(e.g.self-builtplatformwithoutU-SpaceBOX)thatfullybreakstheenvisagedregulations,flying inageo-fencedvolumewithoutauthorizationandwithoutanypreviouse-registrationtotheU-space.

In this caseothermechanismsof alerts (andcountermeasures) suchasGroundDroneSurveillancesystemsmayalertintimetheauthoritysharingdataamongdifferentservices’interfaces:

1. TheGroundDrone Surveillance systemafter dronedetection (before visual contact) alertstheTrackingservicebyprovidingrelevantdataofdronelocallygenerated.

2. The Tracking service generates locally a temporary ID number for the unidentified drone(exposingthesame interfaceas itwouldbegeneratedthroughthee-identificationservice),markingitas“unidentified”drone,beforeupdatingtheMonitoringservice

3. TheMonitoring serviceprovides to fusedatacoming fromtheunidentifieddronewith theother data sources in order to create air situation for authorities, service providers andDroneoperators.

4. InthiscasetheAuthorityisalertedbythemonitoringservicebeforeanyvisualcontactwiththe drone and may operate all the countermeasures (e.g. provided by the same GroundDrone Surveillance system) to neutralize drone incursion (e.g. C2 spoofing, RF jamming toforce RTH or landing procedure,…) . In the sameway, other Actors (Drone Users, ServiceProviders,DroneOperators)maybenefitofthesamesituationalawarenessinformation.

Considerations

The“U-spaceBOX”guaranteestheaccesstotheU-space.ThispieceofHWshouldbeindependentfrom drone’s flight control system and could benefit of actual growing technologies such as IOT,adoptingalreadywellknown4G/M2Mcommunicationmechanisms.

Page 66: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

67

Founding Members

3.7 Scenario4:CooperativeGeo-taggingScenario4:CooperativeGeo-tagging

Storyboard:

Twoneighbouringmid-sizecitiesinEurope(about2500citizens/Km^2)inuncontrolledairspacehavetwohospitals,eachonewithanheliportontherooftop.Eachheliportisequippedwithonelandingpadformannedhelicoptersand5smalllandingpadsformulticopterdrones.Hospital1actsalsoasDroneOperator formedical equipmentdelivery.Hospital 2 offers only its heliport for landing andtake-off operations. There is no prohibited/ restricted zone, nor airport in the proximity of thehospitals.

TheHospital1isoutofastockofparticularmedicinedrug,neededassoonaspossibleforapatient,thereforerequeststoHospital2afastdronedelivery,aftercheckingviatelephonetheavailabilityofthe drug. The Hospital 2 acknowledges the delivery and prepares one of its UASs for the flightmission. As by normal procedures, the flight plan is successfully uploaded by the Drone UserappointedpersonnelbytheHospital2totheU-space,whichprovidesauthorizationforthemission.Therouteuploadedforthemissionhasnotbeenflownforalongtime.

TheUAS(1)usedbytheHospital2isaquadcopterwithDAAcapabilities(groundobstaclesdetectiononly), equippedwith parachute and flight termination systemwith the possibility of 1 Kg payloadcargo.

Duringtheflightroute,theUAS1encountersanunpredictedhazardrepresentedbyacranenearbyan unreported construction site. The UAS 1 slows down autonomously its velocity whilecircumnavigatestheobstacles,modifyingitspath.ThiseventisnotifiedtotherespectiveDroneUserthroughgroundcontrolstation.Theestimatedpositionofthecrane,obtainedthroughDDAandUASpositioninginformationbytheFlyingdroneis“Geo-tagged”(in4dimensions)andnotifiedtotheU-spaceforfencingpurposes.

In themeantime, twootherU-spaceusers (1 flyingUserand1Stand-byUser)withpossible routeconflictswiththecraneposition,arenotifiedbytheU-spaceforaflightplanorroutemodification.

The scenario is focused on the cooperative mechanism that drones use for geo-tagging newobstaclesandhowtheU-spacecouldnotifyinformationtotheotherusers.

Use-Cases:GroundObstaclesclearance;

FlightPhases:

Page 67: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

68

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

1. Planning;

2. Pre-flight

3. In-flight;

U-spaceservices:• U2:TacticalGeofencing,Flightplanningmanagement,Tracking

• U1:Pre-tacticalGeofencing

Actorsinvolved:FlyingDroneUser,Stand-byDroneUser

Sequencediagrams:1.FlyingUserdetectsanobstacle,FlyingUsernotifiesU-space;

2.U-spacenotifiesotherFlyingDroneUsers;

3.U-spacenotifiesotherStand-byDroneUsers;

Issues:• P2Pvideolinkrange(ITU/ETSIregulationsEIRPlimits)

• 4G/5GTerrestrialnetworkcoverageincaseofIPvideolink

• IndependentflightterminationsystemactivatedbyatypicalUASattitudes

• CooperativeLandingsystemfordronedeliveryapplication(BVLOS)

UAS1 UAS2 UAS3

Configuration QuadCopter QuadCopter QuadCopter

MTOM 5,5kg 6,5kg 2,6kg

Maxcharacteristicdimension

0,81m 0,75m 0,65m

Maxoperational

speed18m/s 18m/s 18m/s

Endurance 40’ 38’ 27’

NOTES

DDACAPABILITYPARACHUTEANDFTSCOOPERATIVELANDINGSYSTEM

PARACHUTEANDFTS

Table5:UASmaincharacteristicsofScenario4

Page 68: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

69

Founding Members

Figure40:UAS1duringdeliverymission

3.7.1 FlyingUserdetectsanobstacle,FlyingUsernotifiesU-space

ThisfirstsequenceisapplicabletotheflyingphaseandisrelatedtotheFlyingDroneUser(Hospital2)flyingintheproximityoftheunexpectedobstacle(crane).

1. TheDAAsensorsforgroundobstaclesdetectionontheUAS1allowtonotifytoFlyingDroneUserthepresenceofanunknowngroundobstaclethatforcesthedronetoloweritsvelocityand avoid the obstacle. Indeed, it is assumed that main data transmitted to the groundstation is telemetry data (e.g. drone housekeeping information, battery level,…) duringnormalflightBVLOSoperations.VideolinkfeedbacktoDroneUsershouldbeopenedonlyifneeded for deliverymissions (bandwidth saturation issues for IP streamsor potential EIRPemissions’ limitation for P2P communication). In this case the video link is activated(triggered by the event), regardless of the technology that will implement it, to enquireaboutthetypologyofgroundobstacle.

UAS1–deliverymission

Fence1–(pretactical)

Fence2–(pretactical)

Page 69: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

70

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

TheU-space service interface considered for thepresentUse case is:Tracking. In fact thisservice refers to the service provider using cooperative and non-cooperative surveillancedata tomaintain track-identity of individual drones;webelieve that the same interfaceofthis service can be used to feed the U-space also for temporary obstacles information,asynchronously. The main information shared from the drone to the Tracking serviceinterfaceis:

• UAS Surveillance information (e.g. Drone ID, Position, Altitude/height, velocity,heading,…)synchronouslyupdated;

• Ground Obstacle position information (e.g. crane’s 2D position estimation,crane’s height estimation, timestamp of detection,…), asynchronously handled(eventbased);

2. TheTrackingservicehasalltheinternalmechanismstocallotherU-spaceservicesinordertogenerate a unique identifier for the new obstacle discovered, providing its estimatedcharacteristics. InparticularTracking service,afternewobstaclevalidation,requeststotheTactical Geofencing service to update the geofencing areas with the new obstacle. The“Update Geofence()” request is referred directly to Tactical Geofencing service interface,howeversomeinternalcontrolmechanism(automaticorsemi-automatic)mightbeneededtoauthorizethepresenceofnewHazard.Afterthefenceisset(TacticalGeofenceservicebydefinition can update the fences in-flight), the Tracking service is notified back for fencevalidity,forwardingtheinformationtoFlyingDroneUsersinterested.

Figure41:UAS1afterDAAandcranegeo-tagging

3.7.2 U-spacenotifiesotherFlyingDroneUsers;

ThissequenceisapplicabletotheflyingphaseandisrelatedtootherFlyingDroneUserswhoseflightplansarepotentiallyaffectedbythenewunreportedobstacle(crane).

UAS1–deliverymission

Fence1–(pretactical)

Fence2–(pretactical)

Fence3–(tactical)

UAS2–inspectionmission

Page 70: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

71

Founding Members

1. The Tactical Geofencing service notifies to the Flight planning management service theGroundObstacle position information. The Flight planningmanagement, acting as a frontend for thedroneuser, uses such information to check internally on thebasis of thenewhazard position input (e.g. DB query), which is the impact on the active flight plans. Theresult of the query to DB (or other mechanism) returns the Flight plans (if any). In thissequenceoneFlightPlanassociatedtoaFlyingDroneUser (UAS2)hasapotentialconflictwiththeHazard,thereforetheFlightPlanManagementservicenotifiestheDroneUser.

2. TheFlightPlanManagementnotifiestheFlyingDroneUserofpossibleconflictwithherflightplan.Other FlyingDroneUsers sharing the sameairspace areonlynotified about thenewHazardupdate(noactionrequired).TheFlyingDroneUser(UAS2)receivesawarningonitsGroundControlStationandarequestformodificationofherflightplan.TheU-spacemightsuggesttoUseranalternativeFlightPlan(internallyrecalculatedbyFlightPlanManagementservice)orproposeotheroptionssuchas:

a. RequesttoDroneUsersflyingnearbytoenablevideoreturnLinkforgroundhazardsseparationpurposes;

b. RestrictingtheflightofthatareaonlytodroneswithcompliantDAAcapabilities;

c. RequestingRTH (Return tohome,abortingmission) todronewith insufficientDDAcapabilities;

Inourunderstanding,theDroneUsershallselectandacceptoneoftheoptionsproposedbytheU-spaceservices.

Page 71: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

72

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.7.3 U-spacenotifyotherStand-byDroneUsers

ThissectionreferstothoseDroneusersthatareinPre-flightphasewithauthorizedflightPlanwhichhasbeenapprovedbytheU-spacesomedaysbeforetheflight.Inparticular,DroneUserwithUAS3isabouttoperformaninspectionmissionontheharbour.ShewasawareaboutFence2(staticfenceforthepresenceofaStadiumwithaforthcomingfootballmatch),whenshedesignedanduploadedthe Flight Plan. However, she was not aware about the new Hazard (Fence 3), discovered andnotifiedbyUAS1totheU-space.

Figure42:Obstacledetectionsequencediagram

WhenStand-byDroneUserdeploysherdroneandprepareitforthemission(afterloggingin),sheisrequestedbytheU-spacetomodifyherFlightPlanforapotentialconflict.

IndeedtheFences listhasbeenupdatedforthatarea;Fence3 is inserted intheDBbyU2TacticalGeofencing service (or in combination with U1 pre-tactical Geofencing service). Therefore it isupdatednowtoastaticfence,recognizableduringpre-flightphase.

Fence3–(pre-tactical)

UAS2–inspectionmission

UAS3–inspectionmission

Fence2–(pre-tactical)

Page 72: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

73

Founding Members

TheStand-ByDroneUserisrequestedtomodifyherFlightPlanbytheFlightPlanningManagementservicetobeabletoperformhermission.

TheFlightPlanningManagementservicecalculatesinternallyanalternativeflightPlanandproposeittotheStand-ByDroneUser(GreenFlightPlaninFigure42)

Considerations

Someconsiderationsaboutthescenariosdescribedarehereafterreported:

• P2P video link range: in BVLOS application video link feedback to Drone User should beopened only if needed for bandwidth saturation issues (e.g. multiple drones sharing thesame4G/5GnetworkorpotentialEIRPemissions’limitationinP2Pcommunication).

• Actual European standards (e.g. ITU-T / ETSI) have quite strict limitations on RF poweremissionsincaseofP2Pcommunication(GroundStation-Drone)intheavailableradiobands,resulting sometimes in insufficient distance for BVLOS operations (3-5 km). A new bandallocationforvideolinkservicemightbeproposedincaseofP2PvideolinkserviceoraQoSfor4G/5Gnetworkincaseofvideolinkrelayservice.

• Cooperative landing systems for drone delivery application in BVLOS scenarios can be aviablesolutiontohandlethelandingphasewithoutvideolinkfeedback.

• Inurbanenvironmentan independent flight terminationsystem(withparachute)activatedautonomouslybyatypicalUASattitudes,couldrepresentastrongmitigationfactorforsafetyandarequiredcapabilityfordronestoaccessthesescenarios.

3.8 Scenario5:CTRCrossingScenario5:CTRCrossing

Storyboard:

AVTOLaircraftisinvolvedinadeliverymissionbetweentwohubsofanexpresscourier(alsoDroneOperator). The operation is conducted in BVLOS conditions and the distance between the hubs isabout 15 km; the first Hub is located in a villagewith low density population, the second Hub islocatedintheindustrialsuburbofaEuropeancityofaveragedimensions.ThesecondHubisinsidethe controlled airspace (e.g., CTR zone 1), however it is located atmore than 8 km from the cityairport.

Thescenarioisfocusedonthepre-tacticalphaseofmissionpreparationandtheinterfacesfromUTMandATMworlds.

Use-Cases:FlightPlanAuthorizationRequestforcrossingacontrolledairspace;

Page 73: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

74

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

FlightPhases:1.Planning

U-spaceservices:• U2:Flightplanningmanagement,ProceduralinterfacewithATC

Actorsinvolved:DroneOperator,U-spaceController

Sequencediagrams:1. Flightplanrejected;

2. Flightplanapproved;

Issues:• ATM/UTMinterfaces’boundaries.

Figure43:ExampleofCTRCrossing

HUB2

HUB1

CTR

Page 74: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

75

Founding Members

UAS1

Configuration ConvertibleOctoCopter/FixedWingUAS

MTOM 22kg

Maxcharacteristicdimension 2,30m

Maxoperationalspeed 42m/s

Endurance 250’

NOTES

DDACAPABILITYPARACHUTEANDFTSADS-BTRANSPONDERNAVIGATIONLIGHTS

Table6:UASmaincharacteristicsofScenario5

3.8.1 Proceduralflightplanrejected

The present sequence diagram is referred to the strategic phase of themissionwhere the DroneOperator submits to the U-space a flight plan that foresee a controlled airspace crossing. TheOperatorrequestsaflightaltitudeof130metersforthemissionimplementation.

1. TheDroneOperator submits a flightplan to theFlightPlanningManagement Service. Theservice parses the information provided by the Operator, recognizing the crossing of acontrolledairspace.

2. The Flight Planning Management service (or U-space Controller) interacts with theProceduralInterfacewithATCservicewhichinvolvesdigitalandnon-digitalmechanisms(e.g.voicecommunicationwithATCforcontingencysituations)

3. The Procedural Interface with ATC service interfaces the ATM world which rejects therequest ofDroneOperator. In fact even if dronehas enough capabilities for accessing theairspace, its flightplanmaycause interferencewithmannedapproach/takeoff routes.The

Page 75: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

76

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

alternative flightplanshouldbeaddressed tominimizesuch interferencebyproposing thenewroute.

4. The Flight PlanningManagement service rejects to flight plan to the DroneOperator, butproposesanalternativeforthemissionthatminimizethetimeofaccessingtheairspace.

3.8.2 Proceduralflightplanapproved

InthissequencediagramtheDroneOperatormodifiestheflightplanaccordingwiththealternativeproposedbytheFlightPlanningManagementservicewhichforeseesadifferentflightplaninordertominimizethetimeofcontrolledairspacecrossing.TheProceduralInterfacewithATCservicewhichacts as front end for theATMworld, returns the approval of the new flight plan. In this case theFlight PlanningManagement servicemay request to theU-space controller the final authorizationrequest.

Figure44:Exampleofflightplanwhichminimizeinterferencewithmannedtraffictake-off/landing

HUB2

HUB1

CTR

Page 76: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

77

Founding Members

Considerations

ThisexampleshowstheboundariesfromATMandUTMworld.TheProcedural interfacewithATMservice is the firstU-space interface to connect the twoworlds. In ourunderstanding, this serviceshouldsupportthecommercialDroneOperatorsofferingoneunique interfacetoaccesscontrolledairspacethroughU-spaceservices.

3.9 Scenario6:LongRangeOperationsScenario6:LongRangeOperations

Storyboard:

A Fixed wing drone is involved in a pipeline inspection in BVLOS conditions, in an uncontrolledairspacewithprevalenceoftreesandhillsinaruralenvironment.Novillagesorcitiesaresupposedto be encountered during the flight. TheMission of the fixed wing drone is aimed at identifyingpossible oil spilling on a given segment of the pipeline by means of hyper-spectral and thermalsensor payload. In order tomaximize the probability of faults detection on the pipeline, the fixedwingdronehas to fly at averageverticaldistanceof50meters from thepipeline,which standsatground level following the hills’ slopes. The segment of pipeline to inspect is 25 km long and thelongestdistancetobeflownbytheaircraftinthismissionis35kmfromthelaunchingpoint(HOMEpoint)foratotaldistanceof70kmtobeflown.Moreover,consideringthetypologyofmission,theGroundControl stationdoes not always guaranteeRLOS conditions toAircraft, due to thenaturalobstacles represented by the hills. The Scenario is representative of the tactical stage (Missionplanning) considering the data offered by the U-space services and third-party service providers.GeneralAviationpilotscanbenefitofsomeservicesofferedbytheU-space,duringflightphasewiththeaidofportableElectronicFlightBag(EFB)equipmentandallowedU-spacetabletapplication.

Use-Case:BVLOSAncillaryServices

FlightPhases:1.Planning

3.In-Flight

U-spaceservices:U2:WeatherInformation,Droneaeronauticalinformationmanagement,TrafficInformation,Monitoring,Tracking

Additionalservicesrequired:ServicesTerrainModel,4Gcoverage/SatelliteCoverage

Page 77: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

78

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Actorsinvolved:DroneOperator,MannedAircraftPilot

Sequencediagrams:1.SupporttoFlightPlanningforLongRangeoperations;

2.GAPilotsupportfordronesituationalawareness;

Issues:

• 4GcoverageserviceforlongrangeoperationsvsSatellitebasedservice(RLOSC2limits.satellitebasedoperations?)

• TerrainModelservicerequired;

• Videolinkavailability;

ThesuccessofalongrangeBVLOSoperationinaruralareabyaremotepilotedfixedwingaircraft,relies on the reliability, availability and integrity of data provided by different service providersrequiredforthisparticularmission.Infact,duringthetacticalstageofmissionpreparation,datasuchas:

• LocalWeatherInformation

• TerrainModel

• CoverageforC2andtelemetry/payloadcontrollinks.

• AeronauticalInformationServices(othermannedtrafficinGairspace)

is needed toplan themission. In Figure45and inTable7 it is reporteda suitableaircraft for thismissionandanexample,aswellasatargetUAScharacteristicsforthesafetyassessment.

Figure45:ExampleofterrainfollowingforBVLOSspecificmission

oilpipeline

50m

50m

Page 78: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

79

Founding Members

UAS1

Configuration FixedWingUAS

MTOM 27,5kg

Maxcharacteristicdimension

2,80m

Maxoperational

speed44m/s

Endurance 300’

NOTES DDACAPABILITYPARACHUTEANDFTS

Table7:UASmaincharacteristicsofScenario6

3.9.1 SupporttoFlightPlanningforLongRangeoperations;

ThepresentsequencediagramisrelatedtotheUsecase“BVLOSancillarydataservices”,relatedtothe tacticalphaseof themissionpreparationwhereservicesalreadyenvisagedby theU-spacearerequested as well as other services not yet defined in the U-space (e.g. first indication to gapanalysis)togatherinformation.

Itisassumedthatbeforethecreationandsubmissionoftheflightplan,theDroneOperatorhasthepossibility to refer todifferentservicesexposed togather“ancillary information” related toBVLOSoperationstogeneratethemostsuitable(andsafe)flightplan.

Page 79: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

80

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

1. The DroneOperator requestsweather forecast service fromU-spaceweather information(theserviceshouldrelyondifferentexistingmeteorologicalstationsspreadovertheareaofoperationssincemicroweatherconditionsmightsuddenlychangein60kmoperationsduetotheeffectoftopographyonwind.

2. TheDroneOperatorrequestsadetailedterrainmodel(thirdpartyservice)inordertocomplywith the requirementof themission to flyatanaveragedistanceof50metersAGL.Somepopularacademicautopilotprojects[30]alreadyoffersthepossibilitytoencompassdetailedterrain map models to be followed by the aircraft, starting from GNSS geodetic verticaldatum.

3. TheDroneOperatorrequeststhecoverageinformationofthe4Gnetwork(orsatellitebasednetwork)forC2link incaseofcontingencies. InfactdirectP2PlinkfromGroundStationtoaircraftmightbeunreliableduetotopographyassociatedtothiskindofmissions.

4. Other information such as population density of the overflown area aswell as otherGA /ultra-lightmannedtrafficmightbeneededinbothplanningandin-flightphase.

3.9.2 GAPilotsupportfordronesituationalawareness;

ThepresentsequencediagramisrelatedtotheUsecase“BVLOSancillaryservices”,fromaGeneralaviationmannedaircraftpilotprospective.Indeedmannedaircraftpilotsmayusedigitalapplicationson smartphone or tablet to have situational awareness of the presence of drones. This meansallowing such application to run on a portable Electronic Flight Bag (EFB), the use of which isharmonisedthroughEASAAMC20-25.

1. The GA pilot through EFB and U-space application requests to the Drone aeronauticalinformation management the Aeronautical information service which by definition is

Page 80: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

81

Founding Members

availablenotonly toDroneUsersandoperators,butalso tomannedoperatorsandpilots.Theaeronauticalinformationrequiredisaboutsituationalawarenessofdrones’presence.

2. TheDroneAeronauticalinformationManagement(withthesupportofTracking,MonitoringandTrafficinformationservices)updatesitsinformationbyrequestingtotheFlightPlanningManagement service the active flight plans in the surrounding area (and the presence ofdronesifany)

3. TheGAPilot issupportedbytheDroneAeronautical InformationManagementservicewiththerequireddronesituationalawarenessinformation.

4. Asynchronously, Flying drone users are also notified about the presence of GA mannedtrafficbymeansofthesameserviceinterface.

Figure46:ExampleofpossibleusageofU-spaceapplicationonaEFB

Considerations

Satellite based communication networks can represent a viable alternative (or redundant C2channel)whenRLOSisnotguaranteed.SmallandlightweighttransceiverscanbeboardedonsUASwithout the need of antenna pointing mechanisms; moreover the reasonable operating fees ofavailablesatellitenetworksmayrepresentanenablingfactor.TheIridiumNextconstellation[32]isarepresentativeexample.

3.10 Scenario7:DeconflictManagement

Scenario7:DeconflictManagement

Storyboard:

OnerotarywingUAS(quadcopter)isinvolvedinadeliverymissionapplicationinsideanuncontrolledairspaceinurbanenvironment.TheUASflight-planhasbeenpreviouslyapprovedandtheUASisin

U-spaceapp

Page 81: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

82

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

en-route phase. The scenario is focused onmodification of the flight route because of a possibleconflictduringUASflight.TheUASisflyingtowardsitsdestination(i.e.,therooftopofaHospitalforthedeliveryofmedicalaid).DuringthemissionapotentialconflictwithanotherUASisdetectedduetoarestrictionofarearequestedbylawenforcementforacaraccident.Infactlawenforcementisgoingtousetheirdroneforametricsurveyoftheareaoftheaccident,inordertoobtainevidentiarymaterials also from the sky. The law enforcement has a higher priority for requesting a temporalsegregation of the area to allow their drone to take-off, therefore after the obtainment of theauthorization for segregation, other flying drone users and other stakeholders in conflictwith thefencedareaare immediatelynotifiedandpossible contingencyactionsare suggested to thedroneusers.

Use-Case:DeconflictManagement

FlightPhase:3.In-flight

U-spaceservices:

• U2:Tacticalgeofencing;Fightplanningmanagement;Droneaeronauticalinformationservice;StrategicDeconfliction

Actorsinvolved:Authority,FlyingDroneUser,U-SpaceController

Sequencediagrams:1. Authorityrequeststemporalsegregationofarea;2. FlyingDroneUserisnotifiedformodificationofflightplan;

Issues:• Humanfactor

Page 82: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

83

Founding Members

PoliceDrone UAS

Configuration QuadCopter QuadCopter

MTOM 0,9kg 5,5kg

Maxcharacteristicdimension

0,35m 0,81m

Maxoperational

speed22m/s 18m/s

Endurance 27’ 40’

NotesPORTABLEPOLICE

DRONEDAACapacility

DDACAPABILITYPARACHUTEANDFTS

Table8:UASmaincharacteristicsofScenario7

3.10.1 Authorityrequestingtemporalsegregationofarea;

In this sequence diagram the Authority (Law enforcement) requests a temporal segregation of anareaduetothecaraccidenttoallowtheirdronetotake-offnearbythearea.

1. Atemporalsegregationofavolume(e.g.70metersvertical,150Horizontal)isrequestedtothe tactical geofencing service. The service that has the capability to handle real timerequests for flying drone users, requesting authorization to theU-space Controller (in thiscasea“BOT”U-spacecontrollercouldbeconsidered).

2. Once the authorization has been agreed, the tactical geofencing service updates both theDroneAeronautical InformationManagement and the Flight PlanningManagement . Suchasynchronousupdateunleashesmechanisms forboth services finalized todetectpotentialtrafficinconflict,notifyingtherespectiveDroneUsers(pilots)withawarning.

Page 83: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

84

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.10.2 FlyingDroneuserisnotifiedformodificationofflightplan

The tactical geofence serviceupdates in this case the FlightPlanningmanagement service, that incoordinationwiththeStrategicDeconflictionserviceisawareaboutallpotentialconflictswithothertraffic. Moreover the Strategic Deconfliction Service, relies on an internal engine forrecalculation/modification in real time of flight plans in conflict, proposing to the drone user analternative.

• TheFlightPlanningManagementrequeststotheflyingdroneusertomodifyhisflightplanfortheimminentconflict.

• TheDrone user is invited to accept the planmodification or in alternative he can hold itsposition(hovering/Loitering)tohavemoresecondstodecidetheactiontouptake.Finallyhecanalsodecideaslastresolution,toreturntohomepoint.

Considerations

IftheDroneUserisin“Hold”(Hovering/Loitering)forarelevantimpactonitsflightplanduetofenceandheisnotsureabouttheflightplansuggestedbytheFlightPlanningManagementservice,hecanalsodecide toedit anduploadanew flightplannot in conflictwith the fencedareawhile inholdmode and obtain a real-time authorization. Human factor in this situation is a relevant aspect,howevermitigationactionsandemergencyautonomousmanoeuvres(Returntohomeprocedures)arealreadywidelyimplementedonactualdrones(availableonthemarket)too.

Page 84: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

85

Founding Members

3.11 Scenario8:EmergencyManagement

Scenario8:EmergencyManagement

Storyboard:

St.MichaelHospitalusesdailyadronetodeliver tubeswithbloodsamples toanexternalAnalysisCenterslocatedinanotherhospitalinasouthernItalycity(about3000citizens/Km^2–uncontrolledairspace),andall theproceduresworks finesince thebeginningof theservicestartedtwomonthsago.Today isacolddayofFebruary,with temperaturesbelow0°C,quiteuncommonforSouthernItalyareas.TheDroneUser(Pilot)Luca,asusual,checksandsetupsthedroneoftheHospitalusedfordeliveryafterloadingthetubesinthedeliverybox,andafterobtainingtheflightauthorizationbytheU-Space,startstheaircraftforthismission.

Theexpectedflighttimeisabout12minutes,widelywithinthelimitsofdroneautonomy;but, justafter5minutesfromtake-off,whenthedroneisat90metersAGL,theflightcontrolunitdetectsanabrupt reductionofbatteryvoltageondifferentelements forbothbatteriespacks (likelydefectivecellsdegradedby lowtemperature).TheDroneUserLuca, isalertedonhisgroundstation(Controlroomof thehospital)of thissituationand isnotifiedbyEmergencyManagementserviceof theU-spaceabouttheclosestemergencylandingareas.

Luca,decidedtoacceptthealternativelandingpadsuggestedbytheserviceduetothecontingencysituationanduploadsthenewflightplanproposedbytheU-spaceonthedroneflightcontroller.Thedrone changes its trajectory and flies towards the emergency landing pad. The estimated time toreachthepadisabout90seconds.

Unfortunatelyduringthenewtrajectorythevoltageonthreecellsofonebatterydropsdowntozeroandfewsecondslaterithappensalsotothesecondbattery.TheDroneisunderpowered.

The critical situation isdetectedautonomouslyby theFlight controlunitwhichprovides to cut-offtheenginesandopentheparachuteactivatedbytheFlightterminationsystem.Theparachuteslowsthedronefalluptoaverticaldescendingspeedof4,5m/s

Whilethedronedescendsslowlyby,theU-spaceprovidestonotifytheemergencytoAuthorities,forafastinterventionontheinterestedarea.

Use-Cases:EmergencyLanding,LossofControl

FlightPhase:3.In-flight

Page 85: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

86

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

U-spaceservices:

• U2:EmergencyManagement;Tacticalgeofencing;Fightplanningmanagement;Droneaeronauticalinformationmanagement

Actorsinvolved:FlyingDroneUser,Authority,U-SpaceController,Drone(U3)

Sequencediagrams:1.EmergencyLandingprocedureforbatterylow;

2.LossofControlNotification;

Issues:• Liabilityboundaries(DroneOperator,U-space,DroneUser,DroneManufacturer,…)

UAS

Configuration QuadCopter

MTOM 5,5kg

Maxcharacteristicdimension

0,81m

Maxoperationalspeed 18m/s

Endurance 40’

Notes DDACAPABILITYPARACHUTEANDFTS

Table9:UASmaincharacteristicsofScenario7

3.11.1 EmergencyLandingprocedureforbatterylow

TheDroneuser isnotifiedby thegroundcontrol stationof itsdroneabout thevoltagedropof itsbattery packs. Therefore he notifies the emergency management service that provides a list ofemergencypads locatedon the topofexistingbuilding for theemergency landing. Indeed,even if

Page 86: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

87

Founding Members

thisinformationmighthavebeenacquiredbytheDroneUserattacticalstage,additionalinformationisrequiredduringexecutionphaseofthemissionaboutemergencypadsavailability(otherusersmayhaveoccupiedthem).

TheDroneUsershouldbeonlynotifiedandaccept/reject theproposedre-routeddestination.Thedroneitselfshouldhaveautonomouscapabilitiestoflytothenewdestination.

3.11.2 LossofControlNotification

Thedronedoesn’t succeed to reach theemergencypad;however the critical situation isdetectedautonomouslybytheFlightcontrolunitwhichprovidestocut-offpowertotheenginesandtoopentheparachuteactivatedbytheFlightterminationsystem.

1. TheDronenotifiesautonomously to theEmergencymanagement service theeventwitha“LossofControl”signal

2. The Emergency management service, acting as a “producer” of information notifies theeventtoall“consumer”servicesandActorsinvolved

Considerations

Ingeneral,forBVLOSmissionatVLLaltitudeswebelievethatthereactiontimeofthepilotmightbeinsufficient tohandle the contingency situationwithaRemotePilotedapproach. Independentandautonomous flight termination system activated by unusual drone attitudes orwhen high verticaldescendspeedisdetected,mayrepresentaviablemitigation.Thereforethedroneitselfbecomesan“actor” of the U-space (from U3) capable to take conditional decisions. The liability boundariesamong Drone Operator, U-space, Drone User, Drone Manufacturer is also a “warm” topic to beaddressedbyotherstudies.

Page 87: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

88

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.12 Scenario9:CapacityManagement

Scenario9:CapacityManagement

Storyboard:

Twoneighbouringmid-sizecitiesinEuropeinuncontrolledairspacein2025areconnecteddailywithhundreds of drones’ flights mainly for delivery missions. The take-off and landing areas for thedrones are placed on new or existing structures equipped with automatic recharging stations forbatteries, local weather stations and digital communication services with a minimal presence ofhumancrew.ExpresscouriersandHospitals forexamplehavedifferenthubsconnectedwithothertake-offandlandingareas,thatservemultipleconcurrentdronesoperations.

Everyrouteispredefinedandeachrelatedflightplanhasvalidityformoreoperations(e.g.aroutetoconnect2hubsisimplementeddailyatagiventimeforonemonth).

With the introductionofU3 servicesand the increased levelofautomation,dronesareconnecteddirectly with U-space services and are capable of taking conditional decisions. The level ofconnectivity with 5G network is high and high data rate services are supported. The appointedpersonnelfromDroneOperators’isinchargetomonitorandcontroldroneswithhandhelddevicesorbymeansofcontrolroomsandcantakeactionsincaseofcontingencysituations.

InthisscenarioDrone1(Figure47)hasanapprovedflightplantoperformadeliverymissiontoHUB1(andreturn)everydayat12:00.TheDronehasthecapabilitytorequestaccesstoairspacebeforetake-offtotheU-spaceController(BOT),thatcanexploittheDynamicCapacityManagementserviceformonitoringairspacedemand.Moreover,duringtheflight,theDroneisprovidedwithseparationmanagement by tactical Deconfliction service and is capable to perform actions to guaranteeseparationwithotherunmannedflights(e.g.reducespeed,climbtoadifferentaltitude,…)

Use-Cases:DynamicAccesstoAirspace,DynamicRoutemodification

FlightPhase:1. Planning;

2. Pre-flight;

3. In-flight;

U-spaceservices:• U2:Fightplanningmanagement• U3:DynamicCapacityManagement;DynamicGeofence;Tacticaldeconfliction;

Page 88: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

89

Founding Members

Actorsinvolved:Drone,DroneOperator,U-spaceController,DroneoperationsManager

Sequencediagrams:1. DronerequestsAccesstoairspace

2. Tacticaldeconfliction

3. Dronedynamicallymodifiesitsroute

Issues:• Datalinkandopenstandards

3.12.1 Dronerequestsaccesstoairspace

InFigure47it isshowedtheflightplanforDrone1foradeliverymissiontoHUB1.Theflightplanhasbeenalreadyapproved.

Figure47:Dronerequestsaccesstoairspace

Theflightplanapprovedforeseeonedeliverymissionperday(andreturn)fromtheharbour(whereDrone1is)andtheHUB1.Themissionisplannedeachworkingdayat12:00.

1. TheDroneitself(autonomous)requestsauthorizationfortake-offtotheU-spacecontroller(BOT)

2. The U-space controller verifies by querying other services the active flight plans and theactualflightsinthecontrolledarea.

3. The Dynamic Capacity Management service is stimulated by the Flight PlanningManagement service which requests a capacity check of the airspace considering thecapacitylimitsandtheactualnumberofflyingorstand-bydrones

HUB1

Drone1

Page 89: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

90

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4. The Dynamic Capacity Management service, in combination with other services, has theinformationofactualflightswhichatthelimitsofairspacecapacity.Howevertheservicehasthe logic and the internal model for the estimation of the best time slot for the bestbalancingofairspacedemand.

5. TheU-spacecontrollerisnotifiedaboutairspacesaturationandthebesttimeslottorequestagainaccessisnotifiedtotheDrone.

6. TheDronerequestsagainaccesstoairspace(e.g.12:12)or it isasynchronouslynotifiedforclearancebytheU-spacecontroller.

7. Finally, the Dynamic Capacity Management service is notified of Drone 1 Take-off. Theserviceincrementsitsinternalairspacecapacitycounter

Page 90: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

91

Founding Members

3.12.2 Tacticaldeconfliction

In this sequence diagram the Flying Drone is notified about a possible conflict and an action isassignedbytheU-spacecontroller.

Forexample,due todense traffic, theU-spacecontrollercommandsDrone1 to reducevelocity tostaywellclearfromotherunmannedtraffic.

3.12.3 Dronedynamicallymodifiesitsroute

Page 91: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

92

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

DuringtheflightofDrone1,anewprohibited(fenced)areasuddenlyappearsonitspredefinedrouteduetoanunplannedevent.

1. TheDynamicGeofencingserviceisupdatedbythegeofencesystemaboutanewprohibitedarea.

2. TheFlightPlanningManagementservice isnotified,checkingpotentialactiveflightplans inconflictwiththefencedarea. InfacttheflightplanofDrone1hasapotentialconflictwiththefencedarea,thereforetheservicecalculatesanalternativerouteinrealtimetofeedthedrone.

3. TheU-spaceController, acting as a front-end for thedroneat this stage, uploads thenewflightplantothedrone.

Figure48:Dronedynamicallymodifiesitsroute

Considerations

A standardization process for data link requirements and open standards needed to handleautomatic flight planmodification in real timemight be needed.MAVLINK openprotocol [31] (defactostandard)formicroaerialvehicles,alreadyhandlessuchfunctionality.

3.13 Scenario10:SecurityServiceScenario10:SecurityService

Storyboard:

The authority (law enforcement) is interested to acquire all surveillance videos and evidentiarymaterialsnearbyabanksubsidiaryinanurbancontest,whereabankraidhappenedthedaybefore.The lawenforcement alreadyacquiredall possible closed circuit videos from thebankandnearby

HUB1

Drone1

Page 92: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

93

Founding Members

surveillancecameras,buttheywouldliketointegrateitwithmoreevidentiarymaterials.

The law enforcement however can still interact with the U-space services in order to ask to theauthority (NAA) for the list of all DroneOperators that submitted and executed a valid flight planoverlappingintheproximityoftheareaoftheirinterest.Incaseofpossiblematchingflightplan,theNAA could provide directly to the law enforcement, the contacts of Drone Operators involved inoperations intheproximitiesoftheevent.Though,noguaranty isgivento lawenforcementaboutaerial filming capabilities of drone and recording state of payload, used by the drone operator, apotentialbigimpactcouldbegivenintermsofsecuritytoEUcitizensincaseofsuccess.

Use-Case:Gatheringsecurityinformation

FlightPhase:4.post-flight;

U-spaceservices:U2:FlightPlanningManagement

Actorsinvolved:Authority(LawEnforcement),DroneOperator,Authority(NAA)

Sequencediagrams:1.LawEnforcementrequestingtoNAAthecontactsofDroneOperators

3.13.1 GatherSecurityinformation

Page 93: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

94

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

The present sequence diagram highlights the possibility from the law enforcement (Authority) togatherpotentialsecuritydatabyaccessingtotheU-spaceservices.

1. TheLawenforcements(AuthorityActorinUML)requeststotheU-spacefront-endthelistofoperatorsthatmighthaveanyevidentiaryvideosrecordednearbythelocationoftheevent,forthepresumedtemporalwindow.

2. The front-end of the U-space for this particular request is the NAA (U-space controller inUML diagram) which after having verified the authority privileges to access the service,receivesininputthepositioninformation(e.g.polygonalofthearea)andtimeinterval.

3. TheU-spaceController(orotherdeputyfront-end)queriestherequesteddatatotheFlightPlan Management service which is assumed to have a proper internal business logic toaccesstotheauthorityregistrywherepreviousflightplansarestored.

4. The Flight PlanningManagement service returns the required information to the U-spacecontrollerthatcanforwardittotherequestingAuthority.Thelistisreturnedwiththegivenmatching criteria. For example the list is composed by 3 Drone Operators with theirrespective e-registration numbers and e-identification codes for each drone flying in thearea.

5. Finally, the authority is providedwith the DroneOperators’ contacts andmay proceed todirectlycontactthemforfurtherinvestigation.

3.14 Scenario11:PersonalMobility

Scenario11:PersonalMobility

Storyboard:

After landing at the airport of a big European city, a businessman decides to book a drone taxiservice to reach the city center. The reservation is made through a dedicatedmobile phone appcreated specifically for this purpose that interfaces directly with the Service Provider (Taxi DroneOperator). The drones used for this purpose are "parked" in a reserved area of the airport("skyport"). These drones (electric jet-powered) have both VTOL and Rapid Horizontal Flightcapabilities,anddonotneedtotake-offandlandonanairportrunwaybutinpre-establishedareas,at sufficientdistance fromthe take-offand landing runways.Thedrone flies inautonomousmodeand is equipped with recovery functions (parachutes or auto-landing in case of emergency) andredundanciesinthepropulsionsystem.

The business man books his taxi drone flight from his mobile phone and receives theacknowledgmentfromtheTaxiDroneOperatorafterpaymentwiththeinstructionstoreachthetaxidroneN°5intheskyport.

Rightafter thepayment theskyport station iswarnedabout thebookingandprepares (likelywithhelpofanassistant)thedronefortake-off.

Page 94: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

95

Founding Members

TAXI-DRONEfeatures

Configuration Multirotor(VTOL)

Maxpassengerweight 100kg

AircraftNetweight 260kg

Maxoperationalspeed 30m/s

ENDURANCE 25min

NOTE DAA

INDEPEDNDENTFTS&PARACHUTESYSTEM

AUTOLANDING

ADS-B

NAVIGATIONLIGHTS

Use-Case:TaxiDroneBookingService

FlightPhase:

1. Planning

2. Pre-Flight

U-spaceservices:

• Flightplanmanagement,collaborativeinterfacewithATC

Actorsinvolved:

Client(TaxiDronePassenger),U-Spacecontroller,Drone,DroneOperator,DroneSupervisor

Sequencediagrams:

• TaxiFlightplanrejectedduetooverloadofmannedtrafficintheairportenvironment

Issues:

• Publicacceptance

Page 95: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

96

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3.14.1 TaxiFlightplanrejected

TheflightplanningmanagementserviceiscoupledwiththatofcollaborativeinterfacewithATC;.Infact adequate drone take-off / landing proceduresmust be establishedwith ATC tominimize theimpactonmannedandautomatedtrafficinordertonotincreasetheworkloadofthecontrollerstoomuch.ThenominalcaseistheoneinwhichthereisnovoicecontactbetweenATCandU-SpacecontrollerbutthecollaborativeinterfaceservicewithATCispotentiallyactiveinordertoprevent/managethetake-off of taxi drones in critical situations. In fact the service encompasses shared situationalawarenessandprocedurestoenableatwo-waydialoguesupportingthesafeandflexibleoperationofdronesinairspacewhereANSareprovided.

1. TheDroneinthiscaseistheactorthatuploadstheflightplanwiththechoicemadebytheclient(passenger).Eachlandingstationinthecitycenterhaspredefinedroutes.Theroute followed by the drone-Taxi is consolidated (no obstacle presence, nor flight inrestrictedareas,etc...);howeverthedroneisalsoequippedwithaDAAfunction.

2. TheFlightPlanningManagementserviceinterfaceswithCollaborativeInterfacewithATCserviceinordertoupdateinformationaboutsituationalawarenessthatnotifiestheflightPlanningManagementserviceaboutahighdensityofmannedtrafficthanusualduetothe closure of a neighboring airport (some commercial flights are redirected, airportsecurityproblems,etc…)

3. The Flight Plan is rejected; however the drone is notified about the best time slot touploadagaintheflightplan.Theclientisalsonotifiedabouttheestimatedwaitingtime.

Page 96: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

97

Founding Members

3.14.2 Takeoffauthorization

TheFlightplanisuploadedsuccessfullyatthegivetimeslotandtheDroneisreadytotakeoffwithitspassenger.TheDronerequeststheTake-offauthorizationwhichpassthroughtheFlightPlanningManagement service again for final checks with Collaborative Interface with ATC service whichthroughthedefinedinterfacereportsanormaltrafficdensitysituation.

TheFlightPlanningManagementservicerequeststotheU-spaceControllerthefinalauthorizationtotake-offand,afterfinalapproval,forwardstheclearancetotheDronethatisreadytotakeoff.

Considerations

The role of Drone User, with the increasing of automation is substituted by the Drone itself thatneeds digital and reliable interfaces to exchange information. The role of Drone User (as pilot) isconvertedtotheroleofDroneSupervisorwithmoredronesinchargeofmonitoringandcontrol incase of contingency actions to be taken. However some gaps (not only technological) need to befilledfortheseenvisionedservicesintermsofpublicacceptance.

Page 97: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

98

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4 Requirementanalysis

4.1 IntroductionThischapterdescribestheU-Spaceusersinvolvedinthescenariosidentifiedinthepreviouschapterand the detail of services to support them. Furthermore, a concept of the U-Space systemarchitecture will be described taking into account all dependencies and data exchange among allsystemactors.Thelistofstakeholdersdescribedinthisdocumentisnotnecessarilyexhaustive:itislimited to thosewho are directly addressedby the concept of operations/scenarios.Other actors,suchas systemmanufacturersarenotdiscussedhere,although theywillplayan important role inthedevelopmentoftheU-spaceplatform.

Thelastpartofthechapterisdedicatedtotheanalysisofthedataflowandthelogicaldatamodelneededtosupporttheexecutionofthescenarios.

The team agreed to describe the needs of U-Space system by a textual description of itsrequirements. This method allows the reader to understand deeply the services and the dataanalysed in the U-space context even without a formal classification of the requirements.Nevertheless,therequirementscanbeaddressedbytheirrelatedparagraphnumbering.

4.2 U-Spaceusers’identificationThepeopleinvolvedinmanagingairtrafficarereferredtoastheDTMcommunityand,accordingtotheDroneManagementOperationalConceptproject[5],comprisebutarenotlimitedto:

1. National Aviation Authority (NAA): according to the Chicago Convention (ICAO Doc 7300/9),“[...]everyStatehascompleteandexclusivesovereigntyovertheairspaceaboveitsterritory.”Inconsequence, thismakes a national aviation authority the primary stakeholderwith regard toany aircraft traffic management operation. A national aviation authority would regulate allaspectsofdronetraffic,andtheirintegrationintotheairspace.Implementationsmaydifferfromstatetostate

2. Airspaceauthority:theauthorityprovidingreliabledataandupdatedinformationlinkedtotheairspace management (restricted areas, temporary restricted zones, etc.) especially specificinformation for drone operations (“no fly” zones, drone tracks, etc.). According to nationalorganisation,thisrolecouldbeattributedtoonesingleAuthorityorqualifiedentitiesdesignatedby the States. Either it is one Authority or any entity designated by the State providing theairspacedataorinformation,theywillbecalled“airspaceauthority”

3. Flight plan approval authority: the authority giving permit to fly to drone operators using acategoryofdronesforaspecificmission.Thisauthoritywouldforexamplegiveanauthorisationto fly Drone Dr1 in a particular portion of airspace to execute a specific mission. ThisauthorisationisissuedbeforetheDdayofflyingbythenationalcompetentauthority

4. Low enforcement: no regulation without enforcement. This authority is responsible forprosecutionoftrafficviolations

Page 98: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

99

Founding Members

5. DroneTrafficController(DTC):Theentityprovidingthedronetrafficcontrolservicesinagivenportionofairspaceandthedronesthatareunderitsmanagementoroperatingunderitsrules

6. AirTrafficController(ATC):theentityprovidingairtrafficcontrolservices inagivenportionofairspaceandtheaircraftthatareunderitsmanagementoroperatingunderitsrules.

7. DroneOperator:anorganizationorentitythatoperatesoneormoredronesforcommercialuseanddeterminesthemissionthedronewillperform.The“operator”istothe“dronepilot”whatthe“airline”istoa“pilot”.Theoperatorisaccountableforallthecommercialdroneoperations.Theoperatorisnotaperson,butacommercialentity.

8. DronePilot:professionalpilotuser (with license, insurance,payments)whomanageshis fleetsandprofessional typemissions (according to several criteria basedonpilot drone andmissiondata).

9. Leisure drone user: any citizen using an open category drone for a private usage. It’s up tonationalregulationbutitislikelythatthesedroneswillbeusedinVLOSoperations.Thisusercanmanagehisownfleetforrecreationalareamissions.

10. ConventionalAviationPilot:Current airspaceuser. Relies onAir Traffic Control for separationfromunmannedaircrafttraffic.

11. U-space services provider: an entity providing services to the end user (the drone operator,dronepilotor leisuredroneuser); itmightuse informationfromdifferentsources identifiedasdata or service providers. These data or service providers are not specific to the U-spaceecosystembut,theremightneedtoberecognisedasreliableorqualifiedtoprovidethesedatarelevant for U-space. Although each U-space service will be provided by a U-space serviceprovider,this isnotaone-to-onemapping,as it is likelythataserviceprovidermaybeabletoprovide, as part of their portfolio,many U-space services. A providermay also bring in otherproviderstoprovideawidersetofservicestocreatetheirbusinessmodel.

12. Data service provider: an entity that provides trustworthy information to theU-space serviceproviders, especially to support drone traffic management services. These providers are notspecific to the U-space ecosystem as they could provide data for different organisations fordifferentdomain.Forexample,acompanyproviding3Dmodellingofacitycouldprovidethesedataforcarindustryaswellasdroneindustry.

13. Systemintegrator:thirdpartiesinterestedonintegrationofDTMwiththeirsystemsforbusinesspurpose.

Within that DTM community, there are producers and consumers of aeronautical data andinformation, and then there is a particular user group that is directly and actively engaged in allfacetsof flightoperations. Theseusers are the controllers,pilots anddispatchers, andwe refer tothemastheDTM(operations)actors.Theseactorsrequiredirectoperationalaccesstoaeronauticalinformation. They are becoming increasingly and tightly interconnected, via broadband InternetProtocol(IP)connectionordatalink.

AnotherwayoflookingatwhowithintheDTMcommunityisanenduserofaeronauticalinformationis shown in the following table.Here,membersof theDTMcommunityare identifiedaccording to

Page 99: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

100

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

the different phases of the operation, namely Commitment&Verification, Planning, Pre-flight, In-flight and Post-flight phase. As we can see, all members of the DTM community are users ofaeronautical informationduringplanningandreferenceaswellasduringthepost-flightphase. It isduringthecriticalin-flightphase,thatonlytheaforementionedDTMactorsareinformationusers.

Commitment&Verification

Planning Pre-flight Execution Postflight

NAA x x x

Airspaceauthority x x x x x

Flight plan approvalauthority

x x

Lowenforcement x x

DTC x x x x

ATC x

DroneOperator x x x x

DronePilot x x x x

LeisureDroneUser x x x x

Conventionalaviationpilot x

U-spaceservicesprovider x x x x

Dataserviceprovider x x x x

SystemIntegrator x x x x

Table10:UsersvsFlightphases

Page 100: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

101

Founding Members

4.3 U-Spacesystemconceptview

ThepurposeoftheparagraphistolaydowntheconceptualfoundationforAeronauticalInformationManagement in support of the U-Space Concept. U-Space is a set of new services and specificprocedures designed to support safe, efficient and secure access to airspace for large numbers ofdrones. The intentofAeronautical InformationManagement is tooffer functional andoperationalbenefits, both tangibleand intangible, to theDTMcommunity through several features likedigitaldata format, international standards and exchange formats, availability during in-flight phase,accessibilityfromallstakeholders.

TheU-Spacewillbesupportedbyamodulararchitecturebasedonopenstandards,inordertoavoidmonopolistic situations, to allow for flexible evolution and to facilitate global interoperability andaccess by users from other regions. The solutionwill be in linewith the SWIM concept based oninteroperabilitystandardsandwillhaveaServiceOrientedArchitecture(SOA),usingdataexchangemodels and application interfaces compliant with the Aeronautical Information Reference Model(AIRM)andInformationServicesReferenceModel(ISRM)aswellastheframeworksprovidedbytheNM-SWIMplatform.Aregistry (yellowpages)willbedefined in theoverallCentralisedServiceNMSWIMconcept.

Each functionality available through a B2B interface in order to avoid dependencies on a singleprovider.

Figure49:U-Spacesystemconcept

Page 101: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

102

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.4 U-Spaceserviceanalysis

4.4.1 U1-U-spacefoundationservices(coreservices)

4.4.1.1 e-registrationThe service enables the registration of the operator with the appropriate informationaccordingtoRegulation.Alevelofsecurityoftheservicewillbedefined.According to the EASA regulation opinion (No 01/2018) [9], the registration would only bemandatory for UAS operatorswho conduct UAS operations usingUASwithMTOMs greaterthan250g (classesC1,C2,C3andC4).RegistrationsofsingleUAwillno longerberequired,unless, following the risk assessment required for operations in the ‘specific’ category, acertificateofairworthiness(CofA)oftheUAisrequired.Theveryminoradditionalactionandcostthatoperatorswouldfacewouldbeforthefire-resistantplacardthattheywouldneedtoapplytotheUA.Sinceit isexpectedthatsomeoftheservicesofferedbyU-SpacewillalsorequiretheuniqueidentificationoftheUA,astandardisedformatfortheUASNhastobeclarifiedinthetechnicalrequirementsofEASAregulationUASoperatorsthatuseaUAwithanMTOM,includingpayload,ofmorethan250g,shall:1. register themselves, in a manner and format established by EASA (e.g. 10-digit UAS

operatorregistrationnumber)2. registertheUAwhentheUAconcernedhasbeenissuedacertificateofairworthinessora

restrictedcertificateofairworthiness(onlyforUASoperationsinthe‘SPECIFIC’category)3. update their registration every time data is changed and renew the registration as

requiredbythecompetentauthority4. displaytheregistrationinformationontheUA5. ensure that this information is inserted into the electronic identification system, if

availableontheUAoronanadd-ondeviceinordertobetransmittedduringtheflight.Inordertosatisfytheregistrationneeds,itwasidentifiedthefollowingprocess.

Figure50:e-Registrationprocess

Figure50showsthefollowingsteps:

1. Droneispurchased(withitsownuniqueSN)2. Drone Operator register himself using the online Certificate Authority e-Registration

service.

Page 102: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

103

Founding Members

3. Certificate Authority validates the operator’s email address, phone number, name, andaddress.CertificateauthorityissuesanPKIcertificateforthatoperator.The certificate includes a unique identifying number, e.g. 10-digit UAS operatorregistrationnumberandafullyqualifieddomainname,knownasaRemoteIDURL,whereauthoritiescanaccessbasicinformationabouttheregistrant(city,state,country).

4. The operator registration number is inserted into the electronic identification system, ifavailableontheUAoronanadd-ondevice

5. Theoperatorcannowstartflyingbeingsurethatthedronewilltransmititsidentificationdatainbroadcast

6. AnyotherDronespurchasedsubsequentlybythesameoperatorcanbeinsertedthesameoperatorregistrationnumberintotheelectronicidentificationsystem.

4.4.1.2 e-IdentificationThe service allows the identification of a drone operator from a drone in operation. Theidentificationprovidesaccesstothe informationstored intheregistrybasedonan identifieremittedelectronicallybythedrone.The identificationservice includesthe localisationofthedrones(positionandtimestamp)

AccordingtotheEASADRAFTcommissiondelegateregulation,relativeonmakingavailableonthemarketofunmannedaircraftintendedforuseinthe‘open’categoryandonthird-countryUASoperators,UASproductsofC1,C2,C3shall:

haveanelectronicidentificationsystemoranelectronicidentificationadd-onthatshall:a) allowtheusertoinsertthe10-digitUASoperatorregistrationnumber;b) provide in real time during thewhole duration of the flight the following information

throughelectronicdata:i. UASoperatorregistrationnumber;ii. theuniqueserialnumberoftheUAortheadd-on;iii. geographicalpositionoftheUA,itsheightandassociatedtime;andiv. geographicalpositionoftheUAtake-offpoint;

c) theinformationshallbeprotectedagainstunauthorisedmodification

Inordertosatisfythee-Identificationneeds,itwasidentifiedthefollowingprocess:

Figure51:e-Identificationprocess

1. Unique Data set (Public Key) downloaded to drone enabling flight, and Public key isbroadcastedovertheairand/ornetworkedinfuturecaseofU-SpaceforIDandtracking.

2. UniqueDataset(PublicKey)numberprovideslawenforcementandotherstakeholdersinformationneededtopositivelyidentifytheIDofUASanditsowner/operator

Page 103: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

104

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

3. Basedontheaccessibilityofthenetworkconnection,itwillpossiblebylawenforcementto have detail information on UAS and its operator through the Operator and Droneregistries.

The preferred solution for broadcasting is Direct Radio Frequency, even if an internetconnection, such as LTE, can also be used, but local broadcast allows for data exchange inareaswithlimitedornodatacoverage.

TheRFbroadcastsolution,totransmit ID&Trackinginformationdirectlytogroundreceiverswhichdecodeit,hasthefollowingadvantages:

• Automatic, built into the drone at purchase (for the legacy ones can be used aneconomicadd-ondevice)

• Zerorecurringcosts(unlikeLTEconnection)

• Zeronetwork/infrastructurecostsormaintenancecosts

• Workseverywhere,regardlessofinternetconnectivityorusermobiledevice

• Internationalsolution:usesC2link

• Addressesdroneuserswhoflywithnointernetconnectionduringflightdueto:

Ø Nowirelesssignalinarea

Ø DesiretoreduceanyRFissuesduringflight(user-selected“airplanemode”)

Ø Savingbatterypowerofportabledevice

Ø Nodataplanwiththeportabledevicebeingusedtofly

Ø Portabledeviceiswifi-only(suchasaniPadw/oadataplan)

4.4.1.3 Pre-tacticalGeofencingThe service provides the operator with geo-information about predefined restricted areas(prisons, etc.) andavailable aeronautical information (NOTAM,AIRAC cycle) usedduring theflight preparation. This service requires the identification of accredited sources and theavailability of qualified geo-information related to restricted areas. This service providesinformation that allows the droneoperator tomake use of the geofencing capability of thedrone.

AccordingtotheEASANPA2015-10regulation,Geofencingmeansautomaticlimitationoftheairspace a drone can enter. In principle, the feature is already embedded in somecommercially available drones. There are relatively simple two-dimensional (2D) solutionspossiblerequiringsomemanualupdate,andinthefuturetheprinciplemightbeapplicableinadynamicwaytosupportoperatorsandpilotsincomplyingwithtemporarilylimitationsorevenlocal needs, e.g. to create a safe bubble around a rescue helicopter when landing at theaccidentsite.

Page 104: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

105

Founding Members

To ensure safety, environmental protection, and security and privacy, the competentauthorities can define ‘no-drone zones’ where no operation is allowed without authorityapproval, and ‘limited-drone zones’ where drones must provide a function to enable easyidentification and automatic limitation of the airspace they can enter and should have alimitedmass.

According to the EASA regulationopinion (No01/2018) [9], the termgeo-awarenesswill beused as synonym of U-Space Pre-tactical geofencing because this function is for awarenessonly,tosupporttheremotepilotincomplyingwiththelimitationsintheareadefinedbytheMSs.Theterm‘geo-fencing’hasbeenreplacedby‘geo-awareness’tobetterreflectthenatureoftherequirementalreadyproposedintheNPA. It ispreferabletogivetotheUASoperatorfullresponsibilityforflyingtheUAinareasawayfromprohibitedorrestrictedzones.

Inordertosatisfythepretacticalgeofencingserviceneeds,thefollowingrequirementshavebeenidentified:

1. Definitionandmanagementof“no-dronezones”and“limited-drone-zones”through:

a. AirspacesinformationrelevantforDroneoperation(from0to500ft)comingfromAeronauticalInformationPublication.

b. Additional“no-dronezones”and“limited-drone-zones”definedbycompetentAuthorities

2. Publicationof “no-drone zones”and “limited-drone-zones” throughaweb service inordertoallowoperators,applicationsanddronestoconsumesuchinformation.

4.4.1.4 U1-U-spacefoundationservices(non-coreservices)RegardingtheU-Spacefoundationservices,otherservicescanbeidentifiedinordertosupportand/orcompletethethreeforeseenservicesthatare:

1. Payment:thisservicecouldbeusedduringtheregistrationphaseforspecifictypeofdroneoperators(e.g.commercialoperators).

2. Insurance:asthePaymentservices,thisservicecouldbeusedbyAuthoritytocollectandverifytheoperatorinsuranceduringtheregistrationphase.

3. EuropeanDroneregistry:asthedroneregistration isnotneededanymore(seeEASAopinionNo 01/2018), in order to have access to theDrone data detail by Authority(e.g.lawenforcement)throughitsIDnumber(SN),acentralizedandaccessibledroneregistrycouldbeneeded.

Page 105: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

106

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.4.2 U2-U-spaceinitialservices(coreservices)

4.4.2.1 WeatherinformationThe service provides drone operators with forecast and actual weather information eitherbeforeor during the flight; it can also collect andmake availableweather information fromdifferentstakeholders.Thisservicehastoprovidedroneoperatorduringtheplanningandinflightphase,thecurrentand forecast weather information coming from official sources. The information to beprovided is Temperature, Pressure, Humidity, Wind, Turbulence, METAR Observation,horizontal/VerticalExtent,etc.This information has to be provided through a REST API which allows to query weatherinformationbyarea,instanttime/timerange,type,etc.andthepossibleoutputformatstobesupportedwillbe:image(png,jpeg)andvectorial(XML,JSON).

4.4.2.2 DroneaeronauticalinformationmanagementThisserviceisavailablenotonlytoDroneUsersandoperators,butalsotomannedoperatorsandpilotsprovidingtheaeronauticalinformationconsideredrelevantfordroneoperations.Itwillconnect totheAeronautical informationservice (AIS) toguaranteecoherent informationprovisionformannedandunmannedoperators.ThisserviceallowsallsystemstakeholderstohaveliveconnectionwithrelevantdatacomingfromAeronauticalInformationService(AIS)inordertobealwaysuptodate.Forthispurpose,the service has to provide two different mechanisms for retrieving information that arerequest/reply for synchronous requests/responses and publish/subscribe for eventsnotification.Regarding the first mechanism, two possible implementations are by REST service or OGCWFS/WMSservice,whileforthesecondcanbeusedamessagequeueserviceimplementation(AMQP).

4.4.2.3 TacticalgeofencingCompared toU1 pre-tactical geofencing, tactical geofencing brings the possibility to updatetheoperatorwithgeofencinginformationevenduringtheflight.Thisservicecouldbeavailableforanydroneoperator/userwithdifferentlevelsofrequirements.This servicewill provideoperatorswithnewgeofencing area impacting their flights bypushnotificationsontheirdesktopormobiledevices.Whenanewno-drone-zoneorlimited-drone-zoneoranewairspaceispublished,thisserviceperformanassessmentsearchingalltheflightplansimpactedbythisnewareaconsideringitsgeographicalandtimevalidityinformation.Forall the flight plans impacted, the service will send an alert (push notification) to theiroperators.

4.4.2.4 Dronetrafficmanagementservices

Page 106: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

107

Founding Members

• Flightplanningmanagement: This service covers the receptionof a flightnotificationor aflight plan and provides the appropriate answer according to the characteristics of themissionandapplicableregulations.Thisservicereceivesflightplansfromoperators,performsavalidationusingconfiguredrulesdefinedbytheCAAregulationandanswertheoperatorswithanapproval(authorizationtofly)orarejection(motivatedwiththelistofviolatedconstraints)ofthesubmittedflightplan.

• Strategicde-confliction:Theserviceprovidesde-conflictionassistancetodroneoperatorat

strategiclevel(whentheflightplanissubmitted,itiscomparedtootherknownflightplansandade-conflictionintimeorroutecouldbeproposed).Thisservicecouldbemandatoryoroptionalaccordingtotheoperatingenvironment.Inadditiontotheflightplanningmanagement,thisserviceprovidesthecapabilitytocheckanyconflictintimeandareabetweenthesubmittedflightplanandotherflightplansalreadysubmittedandapprovedinordertoalerttheapprovaloperatorpossibleoverbookingoftheairspace.

• Tracking:itistheabilityofaserviceprovidertomaintaintrack-identityofindividualdrones.

Itreliesongroundandairsystems.Theperformancerequirementsoftheservicewillvaryinaccordancewiththespecificrequirementsofeachapplication.This service is able to collect all the tracks coming from cooperative drones in order toprovidedataforidentification,monitoringandpostanalysispurposes.

• Monitoring: Subject to appropriate data-quality requirements, this service retrieves data

from the tracking service and fuses it with other surveillance information includinginformationrelatedtonon-cooperativeobstacles&vehicles inordertocreateairsituationfor authorities, service providers, and operators. This service may include conformancemonitoring.

• Trafficinformation:Thisserviceprovidesthedroneoperatorwithtrafficinformationcoming

fromanykindofmonitoringservices.

• Procedural interfacewithATC:Theserviceisasetofdefinedproceduresforsomemissiontypes where there may be an impact on ATC; for example, crossing certain types ofcontrolled airspace under prescribed conditions. The procedures ensure clear andunambiguous operation of the drone, and provide an appropriate flow of informationbetweenthedroneoperatorsandATC.Suchprocedureswillallowdronestoflyincontrolledairspace and near airports with more flexibility and may include proceduralapproval/rejectionbasedonagreedrules.

• Emergencymanagement:Theservicereceivesemergencyalertsfromoperators(e.g.lossofcontrol), and informs relevant actors of the ecosystem who could be, drone operatorsoperating drones nearby, ANSPs, police, airport authorities. The service also provides thedroneoperatorwithassistanceinformationtomanagetheemergencysituation(e.g.locationoflandingpads).

Page 107: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

108

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.4.2.5 U2-U-spaceinitialservices(non-coreservices)

4.4.2.6 AssistanceforflightplanningThisservicesupportsthedroneoperatorinfulfilhisflightplanorflightrequesttotherelevantentityThisservicesupportstheoperatortomanagethelifecycleofaflightplanfromitsdefinitionintermsofdatatobesubmitted,totheapprovalprocessandfromthestart,theexecutiontheterminationoftheoperationtotheplayback.

4.4.3 U3-U-spaceadvancedservices

4.4.3.1 DynamicgeofencingCompared to tactical geofencing inU2, the dynamic geofencing targets the drone itself andthenthisservicerequiresdatalinkconnectivitytoageofencingsystemthatallowsthedatatobeupdatedduringtheflight;

4.4.3.2 CollaborativeinterfacewithATCThe service provides a mechanism to ensure proper effective coordination when droneoperations usingU-space services impact ATC. It encompasses shared situational awarenessand procedures to enable a two-way dialogue supporting the safe and flexible operation ofdronesinairspacewhereANSareprovided;

4.4.3.3 TacticalDe-conflictionThis service provides information to the operators or the drones to ensure separationmanagementwhenflying.Thedifferenceswiththestrategicde-conflictiondescribedinU2aretwofold: thedronemayreceivethe informationandthisde-confliction isset forthe in-flightphase.ItwillbenecessarytoappropriatelydefinetheboundarieswiththeuseDetect&avoidcapabilities;

4.4.3.4 DynamiccapacitymanagementUponthedefinitionofdronedensitythresholds(thatcanbedynamicallymodified),theservicemonitorsdemandforairspace,andmanagesaccesstothatairspaceasnewflightnotificationsarereceived.Thisservicemaybecoupledwiththeflightplanningmanagementservice.Thereshouldbeappropriatesetofrulesandprioritiesforslotallocationwhenaportionofairspaceis expected to reach its capacity limits. Apart from the demand and capacity balancing, theservice couldmanage capacitydue tonon-nominaloccurrences, suchasweatherhazardsoremergencysituations.

4.4.4 U4-U-spacefullservices

U4-U-spacefullservices,particularlyservicesofferingintegratedinterfaceswithmannedaviation,support the full operational capability of U-space and will rely on very high level of automation,connectivityanddigitalisationforboththedroneandtheU-spacesystem.

Page 108: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

109

Founding Members

4.4.5 Scenariosandservices

The following table illustrates for each U-space service, the scenarios where it has been used(scenarioindicatedwithS#).

The services with the green check in the table, will be modelled and validated during thedevelopmentoftheproject.

U-Space Service Scenarios

U1

e-Registration S1

e-Identification S3

Pre-tacticalGeofencing S2,S4

U2

Weatherinformation S2,S6

Droneaeronauticalinformationmanagement S6,S7

Tacticalgeofencing S4,S7

Tracking S3,S4,S6

Flightplanningmanagement S2,S3,S4,S5,S6,S7,S8,S9,S10,S11

Strategicde-confliction S2,S7

ProceduralinterfacewithATC S5

Emergencymanagement S8

Monitoring S3,S6

Trafficinformation S6

U3

Dynamicgeofencing S9

CollaborativeinterfacewithATC S11

Tacticalde-confliction S9

Dynamiccapacitymanagement S9

U4Itisexpectedthattheneedfornewserviceswillariseduringtheroll-outofU3

Table11:U-spaceservicesvsScenarios

Page 109: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

110

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.5 DataflowAeronautical information needs to be correct, complete, accurate and reliable, discoverable,searchable, secure, affordable, and come from a trustworthy source. It needs to abide by openstandardssuchthat it iseasyto integrateother informationsourcesandthat itcanalsobereadilyexchanged among different stakeholders and their systems. Information needs to be displayablegraphically,incolour,intwoormoredimensions,andusingmovingmapdisplays.Informationneedstobetimely,anditneedstoreachtheuserswhereneeded,worldwide.Thatlastpointconcernsthedistributionofinformation.

ThedataflowsandinteractionofstakeholderswiththeDTMareillustratedinthediagrambelow.

Figure52:U-Spaceusersandmaindataflows

Page 110: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

111

Founding Members

The above illustration outlines the flow of data between key stakeholders assisted by the DroneTrafficManagement(DTM)system.Inthiscontext,astakeholdercanbeanyentitywithaninterestindrone trafficmanagement.OptimalDrone TrafficManagement is enabledby the cooperation andcollaborationbetweentherelevantstakeholders.Eachstakeholderplaysa fundamental role in theexchangeofcompletedroneinformation[1].

4.5.1 NationalAviationAuthority

Rationale

The national aviation authority is the foremost stakeholder that has vested interest in air trafficmanagementoperationforastateaspertheChicagoConvention(ICAODoc7300/9).

DTMInterest:

Thenationalaviationauthoritywillregulatedronetraffic inastate.Thisauthoritywillalsoassist intheintegrationofdroneintotheairspace[1].

DTMInteraction:

• Grantingofpermissionforflight

• Allocatingstatic/dynamicno-flyzones

4.5.2 LawEnforcement

Rationale

• Enforceregulationandmaintainlawandorder

DTMInterest:

The law enforcement authority will enforce the law and make sure traffic rules are obeyed.Moreover, the law enforcement will be able to receive state and intent information. Stateinformation of a drone relates to the position and velocity vectors of the drones [36]. Suchinformation is crucial for the safe operation of flight. Intent information refers to the intendedtrajectory of the drone [37]. Intent information is imperative in providing law enforcement of thedrone’s current and predicted situation. In addition, the law enforcementwill receive informationwith regard to drone identification and, also the drone’s mission. The latter will provide the lawenforcementwithcompletesituationalawareness.

DTMInteraction:

• Receivesdronestateandintentinformation

• Receivesinformationwithregardtodroneidentification

• Receivesinformationpertainingtodronemission

• Provideadvisoriespertainingtonaturalhazardssuchasfiresetc.

• Imposefinesforlaw-breakers

Page 111: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

112

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.5.3 EmergencyServices

Rationale

The emergency service stakeholder is an airspace userwhich operates helicopters or even rescueoperationdrones.

DTMInterest:

Receivessituationalawarenessinformationsuchasstateandintentofthedrone.

DTMInteraction:

• Enables dynamic location-based constraints, such as geofencing and geo-caging. Theselocation-basedconstraintscanbedynamic(boundedbytime)orstaticconstraints[35].

4.5.4 Community

Rationale:

Thecommunity, inthiscontext, isrelatedtothecitizensthatmaybeconcernedwithdronesflyingoverheadintheirvisuallineofsightor,incloseproximitytotheirproperty.

DTMInterest:

TheprovisionofinformationtothecommunitybytheDTMseekstocreateasenseoftrustamongstcommunitycitizensandthedrones.

DTMInteraction:

• Receiveinformationconcerningreal-timepositioningofthedrone

• Receiveawarenessondroneidentification

4.5.5 ConventionalAirspaceUsers

Rationale:

Traditional airspaceusersare related togeneral aviationaircraft andcommercial aircraft currentlyflyingincontrolledanduncontrolledairspace.

DTMInterest:

Conventional airspace users rely on ATC and the drone’s see and avoid algorithms for safeseparation.

DTMInteraction:

• Providestateandintentinformation

• Provideaircraftidentification

Page 112: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

113

Founding Members

• Receivesdroneidentification

• Receivesrealtimepositioningofdrones

• Receivesthedrone’sstateandintentinformation

4.5.6 DronePilot

Rationale:

Drone pilots can be categorized as users operating drones for non-commercial and commercialpurposes.Theycanalsobecategorizedbythetypeofoperation.

DTMInterest:

Thedronepilotisthedroneuser.Asaresult,theresponsibilityofthedronepilotsliesinmaintainingsafeoperationsandexecutingasafedroneflight.

DTMInteraction:

• Providedroneidentification

• Transmitreal-timepositiondata

• Transmitstateandintentinformation

• Characterisemissiontype

• Requestforflight

• Requestcontingencyinformation

• Receivesconflictadvisories

• Receiveslocation-basedconstraints

• Receivesnotifications,alerts,warnings

• Receivessituationalawarenesspertainingtootherdroneflightsandmannedflights

4.5.7 DroneOperator

Rationale

Theoperatorcanbeviewedasthe“airline”forapilot.

DTMInterest

Thedroneoperatorisacommercialentitythathasitsinterestvestedinthecommercialviabilityofdroneoperations.

DTMInteraction

Page 113: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

114

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

• Requestflightplanapproval

• ObtainsMeteorologicaldata

• ReceivesGeospatialdata

• ReceivesAeronauticaldata

• Receivesdataonlocation-basedconstraints

• Receivesnaturalhazardinformation

• Obtainsrevisedflightplan

4.5.8 DroneManufacturer

Rationale

Theoriginalequipmentmanufacturerofdronesensuresthatthedrone’sperformancecharacteristicsareup-to-dateandtrustworthy.

DTMInterest

The manufacturer will be interested in the specification of interfaces required for informationexchange.

DTMInteraction

• Providedroneperformancecharacteristicsdata

4.5.9 AirTrafficControl(ATC)

Rationale

TheATCensuresthesafeseparationofmannedtraffic.

DTMInterest

The ATC has complete situational awareness of all aircraft, both manned and unmanned traffic,withintheairspacesystem.

DTMInteraction

• ProvidesAeronautical informationsuchas;obstacledata,NOTAMsanddata relatedto theairspace

• Obtains overall situational awareness such as, state and intent information and, real-timepositioningdataofthedrone

Page 114: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

115

Founding Members

4.5.10 MeteorologicalDataProvider

Rationale

The Meteorological Data Providers ensures that correct dissemination of information concerningweatherelementsisprovided.U-spaceserviceprovidersensurethatinformationprovidedtodronepilotsiscorrect.

DTMInterest

Meteorological data provide critical weather related information for drone pilots and for droneoperatorstoensureasafeflightplan.

DTMInteraction

• Providespast,presentandpredictedwindinformation

• Providespast,presentandpredictedprecipitationdata

• Providesvisibilitydata

4.5.11 GeospatialInformationProvider

Rationale

Geospatialinformationcanbeprovidedbya3rdpartyinorderfordronepilotstogainbetterspatialawarenessandalsofordroneoperatorstogenerateoptimalandsafeflightplans.

DTMInterest

None

DTMInteraction

• Providegeospatialdataofsuburbanandurbanstructures

• Provideterraindata

4.6 DatadefinitionThe data available through the services will cover AIM context information, (i.e. contextualinformationneededtosupportflightoperations)willinclude:

• AISdata(i.e.ICAOAnnex15scope)includingdigitalNOTAM• ATFCMdata(e.g.trafficvolumes,airspacecapacities)• Airspaceutilisationrulesandavailability(e.g.RAD,LoA’s/Restrictions)• Aircraftdata(e.g.types,model,variant,performance,MTOW,ModeSequipment)• METEOInformation• NaturalHazardsInformation• Anyadditionaldatawhichmightberequiredinthefuture.

Page 115: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

116

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

ThedataavailablethroughtheU-Spaceserviceswillcontaininformationaboutthepast,presentandfuture status of airspace and all other aeronautical features, in order to support the long termplanningandthedailyoperations,includingsimulationsandpost-operationsanalysisneeds.

Theserviceswillprotectsensitivedatasuchasconfidential informationtobesharedonlybetweenlimitedactors.Accessibilitytosuchdatashallbelimitedtoauthorizedactorsonly.

ThenewdatasetneededforDTMpurposearedescribedinthenextparagraphs.

4.6.1 Droneoperator

Inputdata:

• Account:email,password

• General:firstname*,lastname*,dateofbirth*,Address,MobilePhonenumber*,ID(frontandbackpictures),Insurance,PilotLicence,Creditcardnumber

Outputdata:UniversalregistrationIdentifier

4.6.2 Drone

Inputdata:

• Nickname*, Model*, Status*(ready to fly, under maintenance, …), Serial number*, Usage(hobby,commercial,dayonly,night,experimental,racing,other),notes

Outputdata:UniversalregistrationIdentifier

4.6.3 DroneManufacturer

Inputdata:

• Name, Logo, VAT Code,mail, Address headquarter, Address legal site, web site, contacts,founder, establish year, CEO, Divisions, employees number, quality certification, ShareCapital(K$),Revenue(K$)

Outputdata:RegistrationIdentifier

4.6.4 DroneModel

Inputdata:

• General:Id,Model,Code,Manufacturer,image

• Engine/Movement:Type,PowerSupply,MaxHorizontalSpeed(m/s),MaxFlightTime(min),MaxAscent Speed (m/s), Flight Range (km),MaxDescent Speed (m/s), Flight Range Type,Vertical Hover, Accuracy GPS (m), Horizontal Hover Accuracy GPS (m), Vertical Hover

Page 116: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

117

Founding Members

Accuracy VIS (m), Horizontal Hover Accuracy VIS (m), Satellite Positioning (GPS, GLONASS,Galileo)

• Operational conditions: Min Temperature (°C), Max Temperature (°C), Wind ToleranceSteady(m/s),WindToleranceGusts (m/s),MaxTakeOffAltitude(m),MaxServiceAltitude(m),MaxHumidity(%)

• Structuralspecifications:Weight(kg),Length(cm),MaxPayload(kg),Width(cm),MaxTakeOffWeight(kg),Height(cm)

• Other specifications: FCSModel,GCSModel,GCSNotes,Cameraonboard,CameraNotes,Connectivity,Notes

Outputdata:RegistrationIdentifier

4.6.5 Droneflightplan

Inputdata:

• Name*,Status(draft,waitforapproval,rejected,planned,started,completed,expired,notauthorized),Description,Operationtype*(VOLS,EVLOS,BVLOS,Autonomous),Drone*,StartDate/Time (UTC)*,RepetitiveFlightMission,Flightduration (min)*,Maxaltitude (ft)AGL*,Pilot*, Pilot Phone*, Mission area* (Polygon, Rectangle, Circle, Linear path), Complianceinformation

Outputdata:RegistrationIdentifier

4.6.6 Tracking

Inputdata:

Type* (Drone, Pilot, Aircraft, …), Protocol, Device Time*, Server Time, Latitude*, Longitude*,Altitude*,Speed*,Course*,Accuracy

Outputdata:Identifier(progressnumber)

4.6.7 Geofencing

Inputdata:

Airspace identifier, Type, Class, Upper Limit (ft), Lower Limit (ft), Latitude, Longitude, Time,Restrictiontype,Restrictionrationaleandrecommendation

Outputdata:Staticgeofencedareaordynamicgeofencedarea(time-basedconstraint)

Page 117: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

118

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

4.6.8 Geocaging

Inputdata:

Airspace identifier, Type, Class, Upper Limit (ft), Lower Limit (ft), Latitude, Longitude, Time,RestrictionType,Restrictionrationaleandrecommendation

Outputdata:Staticgeocagedareaordynamicgeocagedarea(time-basedconstraint)

Page 118: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

119

Founding Members

5 ConclusionsIn this document a survey of potential scenarios and related information requirements has beenconducted. The list of scenarios and actors identified, though not exhaustive, represent a firstattempt to analyse more in details the interaction among actors and services starting from theirdefinition.Reasonableassumptionsaboutconceptofoperationshavebeendone.

ThelogicusedtoidentifythepotentialscenarioshastakenintoaccountdifferentfactorssuchasthecoverageofU-spaceserviceswithrespecttothedifferentphasesofflight,thebottom-upexperienceofactualRPASoperationsaswellas thepotentialmarketopportunities thatcanbeunlockedwiththeintroductionofnewU-spaceservices.Moreover,theactualproceduresusedbyRPASoperators(investigatedinchap§3)highlightedtheRPASoperatorneedsintermsofinformationmanagementthroughtheanalysisofeachphaseofflight.

This exercisehasbeen veryuseful for theDREAMS consortium tobuildupa list of representativeuse-casesforeachscenario,helpfultodefineservicesboundariesandtypologyofinformationtobesharedamongservicesandactors.

Thestudyhighlightedsomecategoriesofactorsand functionsuseful toanalyseand implementU-spaceservicesinthedifferentstagesofitsrollout,assessingtheevolutionoftheactors,rangingfromthehuman tohumanparadigm (e.g.Droneuser toU-spaceController) up tomachine tomachinemodel(Droneto“Bot”U-spaceController).

Themainoutcomesofthisworkcanbesummarizedinthefollowingpoints:

• experiencesoftheoperatorshavebeencollectedandrepresentedinaprocessshowingthecurrentstateoftheartforVLOSoperations;

• alistof“evolvingactors”forthedifferentstageshasbeenassessedandadefinitionhasbeenpresented;

• somesignificantscenarioshavebeencreatedforthemostlikelyandrecurringsituations;

• a requirementanalysis fordifferentU-space serviceshasbeenperformedwithpreliminarydatasharedandmaindataflow;

• a first contribution to remote pilot (and autonomous) operations in BVLOS scenarios hasbeengiven;

• a first contribution to integrate and interface U-space serviceswithmain actors has beenpresented.

Finally, the outcomes of thisworkwill serve both as input for Gap analysis and the next tasks ofDREAMSstudy,aswellasfirstindicationsforotherU-spacestudiesandsiblingsprojects.

Page 119: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

120

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

6 References[1] GUTMAUTMhttps://www.gutma.org/docs/Global_UTM_Architecture_V1.pdf

[2] SESARU-SpaceWorkshop20April,2017TheHague:https://www.sesarju.eu/sites/default/files/documents/events/SESAR%20U-Space%20Workshop.pdf

[3] SESARU-spaceBlueprinthttp://www.sesarju.eu/sites/default/files/documents/reports/U-space%20Blueprint.pdf

[4] Dronerules:https://ec.europa.eu/easme/en/news/drone-rules-all-one-place

[5] TOPICRPAS-01(CORUS)http://cordis.europa.eu/project/rcn/211096_en.html

[6] TOPICRPAS-04(CLASS)http://cordis.europa.eu/project/rcn/210633_en.html

[7] SESARatWorldATMCongress2016-Spectrumworkshophttps://www.slideshare.net/SESAREuropeanUnion/sesar-at-world-atm-congress-2016-spectrum-workshop

[8] EASARegulatoryframeworkfortheoperationofdroneshttps://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2015-10

[9] EASAOpinion01/2018onUASoperationsinthe‘open’and‘specific’categorieshttps://www.easa.europa.eu/document-library/opinions/opinion-012018#group-easa-downloads

[10] EurocontrolEuropeanAIS:http://www.eurocontrol.int/articles/ais-online

[11] AerionADS-Bsatellitebasedsurveillancesystemhttps://www.enav.it/sites/public/en/Servizi/AIREON.html

[12] DJIAEROSCOPE:https://www.dji.com/newsroom/news/dji-unveils-technology-to-identify-and-track-airborne-droneshttps://www.theregister.co.uk/2017/10/27/dji_aeroscope_short_range

[13] LAANC:https://www.faa.gov/uas/programs_partnerships/uas_data_exchange/;http://www.airtrafficmanagement.net/2017/03/faa-outlines-laanc-automated-drone-ops/;https://skyward.io/answers-to-your-questions-about-laanc-skyward/;https://www.airmap.com/airmap-unmanned-traffic-management-utm-matt-koskela-product/;https://www.airmap.com/airspace-authorization/;

[14] ICAOUTM,INTERNATIONALREGISTRY:https://www.icao.int/Meetings/UAS2017/Documents/UAS2017_RFI.pdf;http://www.unmannedairspace.info/utm-industry-leader-interview/suddenly-local-police-politicians-cheering-utm-benoit-curdy-global-utm-association/

Page 120: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

121

Founding Members

[15] NTUandCAASUTMprogramhttps://i-hls.com/archives/73933;http://media.ntu.edu.sg/NewsReleases/Pages/newsdetail.aspx?news=20327ba4-b019-4a38-a86f-47e64d89ba0d.

[16] NTUuses4.5GnetworkforUTM

https://www.uasvision.com/2017/12/11/ntu-singapore-uses-4-5g-network-for-drone-traffic-management/

[17] NokiasmartcitytestatTwenteairporthttps://mobileeurope.co.uk/press-wire/nokia-s-drones-take-off-at-twente-airport-in-traffic-management-test; https://www.nokia.com/en_int/news/releases/2016/09/26/nokia-and-europes-first-drone-based-smart-city-traffic-management-test-facility-collaborate-to-ensure-safe-global-aerial-operations

[18] DeutscheTelekomairtrafficcontrolprojecthttps://www.telekom.com/en/media/media-information/archive/high-level-cooperation-443952;https://mobileeurope.co.uk/press-wire/deutsche-telekom-to-test-connected-drones-in-air-traffic-control-project;https://www.microdrones.com/en/content/deutsche-flugsicherung-deutsche-telekom-and-dlrg-choose-microdronesr-to-jointly-test-the-remote-con/

[19] NTUandCAASUTMscenariohttps://i-hls.com/archives/73933;http://media.ntu.edu.sg/NewsReleases/Pages/newsdetail.aspx?news=20327ba4-b019-4a38-a86f-47e64d89ba0d

[20] AirMapandRakutenJapanUTMjointprojecthttps://global.rakuten.com/corp/news/press/2017/0315_01.html; https://www.rakuten-airmap.co.jp/english-information/

[21] U-spaceU1andU2capabilitiesdemonstrationshttps://www.airmap.com/switzerland-u-space-skyguide-demo/;https://www.suasnews.com/2017/09/skyguide-and-its-project-partners-announce-first-live-demonstration-in-europe-of-u-space-capabilities/

[22] Blockchaincapabilityhttps://www.coindesk.com/press-releases/3-problems-blockchain-solves-commercial-drone-market/;http://www.distributedsky.com/;https://docs.google.com/document/d/1yWD74LIEOqEDJ7_16rELTSFjkFE-ZDjKQwtpGF0Bwp8/edit.

[23] UnmannedAircraftCloudServiceshttps://droneregulations.info/China/CN.html?altLang=default#country-search;http://true.kaist.ac.kr/research-blog-traffic-management--control/unmanned-aircraft-system-traffic-management-utm-in-china

Page 121: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

122

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

[24] CommercialUAVmarketanalysishttp://www.businessinsider.com/commercial-uav-market-analysis-2017-8?IR=T;

[25] BVLOSCapabilityhttps://www.enac.gov.it/Home/Strillo_Primopiano/info-292671043.html;http://www.unmannedsystemstechnology.com/2017/03/airobotics-granted-approval-fly-fully-automated-commercial-drones/;http://www.unmannedsystemstechnology.com/2017/12/american-robotics-announces-new-autonomous-drone-based-precision-agriculture-solution/;http://www.unmannedsystemstechnology.com/2017/06/commercial-drone-completes-30-mile-bvlos-flight-via-3g/;http://www.bmvi.de/SharedDocs/EN/Articles/LR/clear-rules-for-the-operation-of-rules.html;http://www.quadricottero.com/2017/02/sensefly-con-il-drone-ebee-autorizzato.html

[26] DREAMSD2.1ProjectMasterPlan01.00.00

[27] UML2.0http://www.uml.org/what-is-uml.htm

[28] IntegratedUTM/ATMsolutionsforUK-Tabletapplication:https://www.altitudeangel.com/

[29] DJIDronemanufacturerhttps://www.dji.com/

[30] ETHPX4project:https://www.dronecode.org/http://px4.io/http://ardupilot.org/

[31] MAVLINKprotocolhttp://qgroundcontrol.org/mavlink/start

[32] IRIDIUMNEXTLowEarthOrbitSATCOMconstellationhttps://www.iridium.com/network/iridium-next/

[33] AnnexI-TechnicalSpecificationsCEF-SESAR-2018-1-Final

[34] RAKUTEN-AIRMAPDASHBOARDhttps://www.airmap.com/rakuten-airmap-launches-utm-platform-for-japan/

[35] E.Sunil, J.M.Hoesktra, J.Ellerbroek,F.Bussink,D.Nieuwenhuisen,A.Vidosavljevic,andS.Kern,Metropolis:RelatingAirspaceStructureandCapacityforExtremeTrafficDensities,ATMseminar2015,11thUSA/EUROPEAirTrafficManagementR&DSeminar(2015)

[36] Y.I.Jenie,E.vanKampen,C.C.deVisser,J.Ellerbroek,andJ.M.Hoekstra,SelectiveVelocityObstacle Method for Deconflicting Maneuver Applied to Unmanned Aerial Vehicles, AIAAJournalofGuidance,Control,andDynamic,Vol.38,No6,pp1140-1146(2015)

[37] G.MercadoVelasco,C.Borst,J.Ellerbroek,M.vanPaassen,andM.Mulder,TheUseofIntentInformation in Conflict Detection and Resolution Models Based on Dynamic VelocityObstacles,IntelligentTransportSystems,IEEETransactionson16,2297(2015)

[38] NASAUTMdocumentshttps://utm.arc.nasa.gov/documents.shtml

Page 122: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

123

Founding Members

[39] RAKUTEN-AIRMAPJointVenture:https://www.rakuten-airmap.co.jp/english-information/

[40] VerdantixDroneMarketSizeandForecastshttp://research.verdantix.com/index.cfm/papers/Products.Details/product_id/1066/drones-market-size-and-forecast-2017-2037-europe-/-

[41] Gartnerhttps://www.gartner.com/newsroom/id/3602317

[42] Economist,TechnologyQuarterlyhttp://www.economist.com/technology-quarterly/2017-06-08/civilian-drones

[43] AssureSuasAirborneCollisionReporthttp://www.assureuas.org/projects/deliverables/sUASAirborneCollisionReport.php?CFA=1;

[44] GoldmanSachs Technology Driving Innovation. Drones, Reporting for Workhttp://www.goldmansachs.com/our-thinking/technology-driving-innovation/drones/

[45] PwcDronesasaDataServicehttp://usblogs.pwc.com/emerging-technology/a-look-at-drones-as-a-data-service-infographic/

Page 123: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

124

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

Appendix A Web survey ThewebsurveyispresentonDREAMSwebsite:https://www.u-spacedreams.eu/questionnaire/

Thequestionsforthedifferentcategoriesarehereafterreported:

Category:DroneUser/DroneOperator

1. Inwhatfieldofapplicationdoyouintendtouseyourdronein?o Agriculture

o Deliveryande-commerce

o Energy

o Insurance

o Mobilityandtransport

o Miningandconstruction

o Publicsafetyandsecurity

o Photography

o Recreationalflying

o Telecommunication

o Others,pleasespecify

2. Atwhataltitude,abovegroundlevel(AGL),doyouintendtooperateyourdronein?o 0to100ft

o 100to200ft

o 200to300ft

o 300to400ft

o 400to500ft

o Others,pleasespecify

3. DoyouintendtoflyinUrbanEnvironment?o Never

o Occasionally

o Mostofthetimes

o Always

4. Whileoperatingyourdronewhichinformationwouldyouprefertohaveaccessto?(upto3preferences)

o Real-timepositioningofmannedaircrafttrafficwithrespecttoyourdroneposition

o Real-timepositioningofotherdronetrafficwithrespecttoyourdroneposition

o Locationofuncontrolledflyingobjects(e.g.flockofbirds)

o Obstaclesandterraindata(spatialgeography)

o Detailed3Delevationmap

o Micro-climatedata(wind,rain,gusts)

o Geofencedareas(no-flyzones)information

o Separationrulesfrommannedanddronetraffic

o Populationdensityofthedroneflightpath

o Others,pleasespecify

5. Withrespecttoyourdroneflyingexperiencewhichrisk(s)haveyouencounteredthusfar?(upto3preferences)o Presenceofmannedaircrafttraffic(e.g.helicopters)

Page 124: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

125

Founding Members

o Presenceofdronetraffico Presenceofbirdso Lossofcommandandcontrolo Lossofvideolinko PoorGPS/GNSSperformanceo Presenceofobstacleso Presenceofsuddenwindgusto Presenceofsuddenrainfallo Flyingoverhighlypopulatedareas

o Others,pleasespecify

6. With respect to your actual organization procedures, which activity in the flight planning preparation is more timedemanding?(1:fast,5:veryslow)

o Missionverificationandassessment• 1•2•3•4•5•

o Risk(Safety&Security)assessment• 1•2•3•4•5•

o Missionplanning• 1•2•3•4•5•

o Gatheringaeronauticaldata• 1•2•3•4•5•

o Gatheringmeteorologicaldata• 1•2•3•4•5•

o Gatheringterrainandcartographicdata• 1•2•3•4•5•

o ObtainingpermissionfromATStoaccessairspace• 1•2•3•4•5•

o Others,pleasespecify 1•2•3•4•5•

7. ForfuturelongrangeBVLOSoperations,whichrealtimedataismoreusefulduringtheexecutionphaseofmissionsbeyondvisuallineofsight?(1:useless,5:veryuseful)

o Real-timepositioningofmannedaircrafttrafficwithrespecttoyourdroneposition

1•2•3•4•5•

o Real-timepositioningofotherdronetrafficwithrespecttoyourdroneposition

• 1•2•3•4•5•

o Locationofuncontrolledflyingobjects(e.g.flockofbirds,reportedbyotherdroneusers)

• 1•2•3•4•5•

o Detailed3Delevationmap

• 1•2•3•4•5•

o Weatherinformation

• 1•2•3•4•5•

o Temporarilyrestrictedareasbypolice/securityauthorities(securityoperations)

• 1•2•3•4•5•

o ActiveNOTAMs

• 1•2•3•4•5•

o Population’sdensityofoverflownarea

• 1•2•3•4•5•

o Others,pleasespecify

Page 125: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

126

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

• 1•2•3•4•5•

8. During planning phase, which of the following information/functionality do you consider as mandatory to unlock futureBVLOSoperations?(nolimitsforpreferences)

o Flightplansinconflictwiththeotherdronestraffic

o Otherdronecapabilitiesandcontingencyproceduresavailableincaseofflight-planconflicts

o Populationdensityoftheoverflownareas

o Airspaceclassalongandabovetheplannedtrajectoryfortheentireoperation

o ActiveNOTAMsaffectingthedronetrajectory

o Detailed3Delevationmap

o Obstaclesandterraindata(spatialgeography)

o Localmicroweatherforecast(wind,rain,gusts)

o TemporaryNO-FLYzoneinformation

o Temporarypeopleaggregation

o Terrestrial4G(UMTS/LTE)coveragefordatalinkcommunication

o Satellite(LowEarthOrbit)coveragefordatalinkcommunication

o GNSS/GPSavailabilityandintegrityinformation

o Others,pleasespecify

9. Whattypeofuserinterfacedoyoupreferinordertoreceiveinformation?o Smartphoneapplication(integratedapplicationwiththepossibilitytobothvisualizeanduploaddata)

o Tabletapplication(integratedapplicationwiththepossibilitytobothvisualizeanduploaddata)

o Websitewiththepossibilitytobothvisualizeanduploadflightdata

o VirtualReality/AugmentedRealityglasses

o Programmingtools(e.g.API-ApplicationProgrammingInterface)toembedservicesinyourproprietarysystems

o Others,pleasespecify

10. Adrone userwants to use his drone for leisure to take somenice aerial shootswith his family for next Sunday outdoorjourney.Thedroneuserhasnoideaaboutthefeasibilityofflightinthetargetarea.Inthissituation,howwouldyouratetheutilityofa tabletapplication thatprovides the final response for the feasibilityof flight in the targetarea,makingall theanalysisforyou?(1:poor,10:excellent)

• 1•2•3•4•5•6•7•8•9•10•

________________________________________________________________________________

Category:Authority/MannedAircraftPilot/Other

1. Inwhatfieldofapplicationdoyouexpectarapidgrowthofdroneusers?o Agriculture

o Deliveryande-commerce

o Energy

o Insurance

o Mobilityandtransport

o Miningandconstruction

o Publicsafetyandsecurity

o Photography

o Recreationalflying

o Telecommunication

o Others,pleasespecify

Page 126: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

127

Founding Members

2. Atwhataltitude,abovegroundlevel(AGL),doyouexpectmoredronetraffic?o 0to100ft

o 100to200ft

o 200to300ft

o 300to400ft

o 400to500ft

o Others,pleasespecify

3. WhatdoyoupredictdronetrafficgrowthtobeinanUrbanEnvironmentby2021?o Nogrowth

o Lowgrowth

o Mediumgrowth

o Highgrowth

4. Which information do you think is important for a drone user to have access to while operating his drone? (up to 3preferences)

o Real-timepositioningofmannedaircrafttrafficwithrespecttouser’sdroneposition

o Real-timepositioningofotherdronetrafficwithrespecttouser’sdroneposition

o Locationofuncontrolledflyingobjects(e.g.flockofbirds)

o Obstaclesandterraindata(spatialgeography)

o Detailed3Delevationmap

o Micro-climatedata(wind,rain,gusts)

o Geofencedareas(no-flyzones)information

o Separationrulesfrommannedanddronetraffic

o Populationdensityofthedroneflightpath

o Others,pleasespecify

5. Whichrisk(s)doyoubelieveismorelikelyforadroneuser?(upto3preferences)o Presenceofmannedaircrafttraffic(e.g.helicopters)o Presenceofdronetraffico Presenceofbirdso Lossofcommandandcontrolo Lossofvideolinko PoorGPS/GNSSperformanceo Presenceofobstacleso Presenceofsuddenwindgusto Presenceofsuddenrainfallo Flyingoverhighlypopulatedareas

o Others,pleasespecify

6. Whichactivityintheflightplanningpreparationdoyouthinkismoretimeconsumingforadroneuser?(1:fast,5:veryslow)o Missionverificationandassessment• 1•2•3•4•5•

o Risk(Safety&Security)assessment• 1•2•3•4•5•

o Missionplanning• 1•2•3•4•5•

o Gatheringaeronauticaldata• 1•2•3•4•5•

o Gatheringmeteorologicaldata• 1•2•3•4•5•

o Gatheringterrainandcartographicdata• 1•2•3•4•5•

o ObtainingpermissionfromATStoaccessairspace• 1•2•3•4•5•

Page 127: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

128

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members

o Others,pleasespecify 1•2•3•4•5•

7. ForfuturelongrangeBVLOSoperations,whichrealtimedataismoreusefulduringtheexecutionphaseofmissionsbeyondvisuallineofsight?(1:useless,5:veryuseful)

o Real-timepositioningofmannedaircrafttrafficwithrespecttoyourdroneposition

1•2•3•4•5•

o Real-timepositioningofotherdronetrafficwithrespecttoyourdroneposition

• 1•2•3•4•5•

o Locationofuncontrolledflyingobjects(e.g.flockofbirds,reportedbyotherdroneusers)

• 1•2•3•4•5•

o Detailed3Delevationmap

• 1•2•3•4•5•

o Weatherinformation

• 1•2•3•4•5•

o Temporarilyrestrictedareasbypolice/securityauthorities(securityoperations)

• 1•2•3•4•5•

o ActiveNOTAMs

• 1•2•3•4•5•

o Population’sdensityofoverflownarea

• 1•2•3•4•5•

o Others,pleasespecify

• 1•2•3•4•5•

8. During planning phase, which of the following information/functionality do you consider as mandatory to unlock futureBVLOSoperations?(nolimitsforpreferences)

o Flightplansinconflictwiththeotherdronestraffic

o Otherdrones'capabilitiesandcontingencyproceduresavailableincaseofflight-planconflicts

o Populationdensityoftheoverflownareas

o Airspaceclassalongandabovetheplannedtrajectoryfortheentireoperation

o ActiveNOTAMsaffectingthedronetrajectory

o Detailed3Delevationmap

o Obstaclesandterraindata(spatialgeography)

o Localmicroweatherforecast(wind,rain,gusts)

o TemporaryNO-FLYzoneinformation

o Temporarypeopleaggregation

o Terrestrial4G(UMTS/LTE)coveragefordatalinkcommunication

o Satellite(LowEarthOrbit)coveragefordatalinkcommunication

o GNSS/GPSavailabilityandintegrityinformation

o Others,pleasespecify

9. Whattypeofuserinterfacedoyoupreferinordertoreceiveinformation?o Smartphoneapplication(integratedapplicationwiththepossibilitytobothvisualizeanduploaddata)

o Tabletapplication(integratedapplicationwiththepossibilitytobothvisualizeanduploaddata)

Page 128: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

D3.1-SCENARIOSIDENTIFICATIONANDREQUIREMENTANALYSIS

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

129

Founding Members

o Websitewiththepossibilitytovisualizeanduploadflightdata

o VirtualReality/AugmentedRealityglasses

o Programmingtools(e.g.API-ApplicationProgrammingInterface)toembedservicesinyourproprietarysystems

o Others,pleasespecify

10. Adrone userwants to use his drone for leisure to take somenice aerial shootswith his family for next Sunday outdoorjourney.Thedroneuserhasnoideaaboutthefeasibilityofflightinthetargetarea.Inthissituation,howwouldyouratetheutilityofa tabletapplication thatprovides the final response for the feasibilityof flight in the targetarea,makingall theanalysisforyou(1:poor,10:excellent)?

• 1•2•3•4•5•6•7•8•9•10•

Page 129: D3.1 - Scenarios identification and requirement analysis · 2019-03-12 · V2I Vehicle to Infrastructure communication V2V Vehicle to Vehicle ... secure access to airspace for large

EDITION00.01.00

130

©–2017–IDS,TUDelft,EUROUSC,TOPVIEWSRL.Allrightsreserved.LicensedtotheSESARJointUndertakingunderconditions

Founding Members