crystal structure of cs [w (cn) ⋅⋅⋅⋅3h ochemetal-journal.org/ejournal19/cma0344.pdfchem....

6
Chem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University of Lviv www.chemetal-journal.org Crystal structure of Cs 8 [W 2 (CN) 16 ]3H 2 O Dariya SEMENYSHYN 1 *, Iryna TYPILO 1 , Marek DASZKIEWICZ 2 , Lubomir GULAY 3 1 Institute of Chemistry and Chemical Engineering, National University “Lvivska Polytechnika”, Bandera St. 12, UA-79013 Lviv, Ukraine 2 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland 3 Department of Ecology and Protection of Environment, Eastern European National University, Voli Ave. 13, 43009 Lutsk, Ukraine * Corresponding author. Tel.: +380-676759235; e-mail: [email protected] Received October 31, 2016; accepted December 28, 2016; available on-line August 14, 2017 The Cs 8 [W 2 (CN) 16 ]3H 2 O compound crystallizes in the monoclinic system (space group P2 1 /с with cell parameters a = 22.7973(6), b = 9.3261(1), c = 18.4881(4) Å, β = 95.400(2)°, Z = 4, R1 = 0.0463). The W atoms occupy two crystallographically independent sites and the coordination polyhedra of the tungsten atoms are distorted trigonal prisms [W(1)(CN) 8 ] and [W(2)(CN) 8 ] with two additional atoms. The Cs atoms occupy eight sites and exhibit various coordination polyhedra: distorted tetragonal antiprisms, distorted pentagonal bipyramids, trigonal prisms with one addition atom, trigonal prisms with two additional atoms, and a 9-vertex polyhedron of irregular shape. Cesium octacyanotungstate(ΙV) / Crystal structure / X-ray single crystal diffraction 1. Introduction In recent years there has been strong interest in the study of octacyanide complexes of sd elements due to their interesting physical properties. They may indeed have good sorption, magnetic, optical and other properties. The earliest reported cyanide tungsten(IV,V) complexes were K 3 [W(CN) 8 ] [1,2] and K 4 [W(CN) 8 ]2H 2 O [1,3]. Small soluble salts Ag 4 [R], Mn 2 [R], Tl 4 [R], Cd 2 [R]·H 2 O, Zn 2 [R]4H 2 O, where R = [W(CN) 8 ] 4– [4,5] were selectively obtained using reaction deposition. Readily soluble salts such as: Na 4 [R]H 2 O, Rb 4 [R]3H 2 O, Sr 2 [R]H 2 O, Cd 2 [R]8H 2 O, Mg 2 [R]6H 2 O, Rb 4 [R]H 2 O, and Li 4 [R]H 2 O [4,5] were obtained by exchange reaction of Ag 4 [W(CN) 8 ] and metal chlorides. The complex acids H 4 [W(CN) 8 ]H 2 O [1,5], H 4 [W(CN) 8 ]2H 2 O, H 3 [W(CN) 8 ]H 2 O [6], Н 4 [W(CN) 8 ]6H 2 O [6,7] should also be mentioned. The complexes Cs 3 [W(CN) 8 ]2H 2 O [8], K 3 [W(CN) 8 ]H 2 O, Na 3 [W(CN) 8 ]4H 2 O, [n-Bu 4 N] 3 [W(CN) 8 ] [9] and K 4 [M(CN) 8 ], K 4 [M(CN) 6 ], K 3 [M(CN) 6 ], K 3 [M(CN) 8 ], (М = Мо, W), K 2 [W(CN) 5 H 2 O] [10] have also been investigated. One of the first crystal structures to be investigated was that of K 4 [W(CN) 8 ]2H 2 O [11], which is isomorphic with K 4 [Mo(CN) 8 ]2H 2 O [12]. The coordination polyhedron [W(CN) 8 ] 4– in this compound has the shape of a dodecahedron. Antiprismatic tetragonal configuration (symmetry D 4d ) of the [W(CN) 8 ] 4– ion was established by X-ray diffraction for H 4 [W(CN) 8 ]6H 2 O [7,13]. In the compounds H 4 [W(CN) 8 ]H 2 O, H 4 [W(CN) 8 ]4HCl12H 2 O [14], Kat m [W(CN) 8 ]nH 2 O, where Kat = H + , Na + , Ca 2+ [4,5], and Na 3 [W(CN) 8 ]4H 2 O [4,5], the complex anions have antiprismatic configuration. Saramaha and Dovgej [15] described the synthesis and crystal structure of the compound Na 3 H 3 O[W(CN) 8 ]2H 2 O, in which the anion [W(CN) 8 ] 4- has dodecahedral shape. The crystal structure of the complex Rb 4 [W(CN) 8 ]2H 2 O [16] is isostructural with K 4 [W(CN) 8 ]·2H 2 O. It appears that the crystal structures of octacyanotungstate(IV) complexes of alkali metal cations have been determined only for a few compounds. With the aim to study the effect of the nature of the outer s-cation on the structures of octacyanotungstates(IV) of alkali metals, we synthesized and investigated the crystal structure of a new compound, the cesium octacyanotungstate(IV) sesquihydrate Cs 8 [W 2 (CN) 16 ]3H 2 O. 2. Experimental Synthesis Octacyanotungstate(IV) acid required for the synthesis of the complex was obtained by passing a solution of

Upload: others

Post on 25-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

Chem Met Alloys 9 (2016) 147

Chem Met Alloys 9 (2016) 147-152 Ivan Franko National University of Lviv

wwwchemetal-journalorg

Crystal structure of Cs8[W 2(CN)16]sdotsdotsdotsdot3H2O Dariya SEMENYSHYN1 Iryna TYPILO1 Marek DASZKIEWICZ2 Lubomir GULAY3 1 Institute of Chemistry and Chemical Engineering National University ldquoLvivska Polytechnikardquo Bandera St 12 UA-79013 Lviv Ukraine 2 Institute of Low Temperature and Structure Research Polish Academy of Sciences PO Box 1410 50-950 Wrocław Poland 3 Department of Ecology and Protection of Environment Eastern European National University Voli Ave 13 43009 Lutsk Ukraine Corresponding author Tel +380-676759235 e-mail semenyshynpolynetlvivua Received October 31 2016 accepted December 28 2016 available on-line August 14 2017 The Cs8[W 2(CN)16] sdotsdotsdotsdot3H2O compound crystallizes in the monoclinic system (space group P21с with cell parameters a = 227973(6) b = 93261(1) c = 184881(4) Aring β = 95400(2)deg Z = 4 R1 = 00463) The W atoms occupy two crystallographically independent sites and the coordination polyhedra of the tungsten atoms are distorted trigonal prisms [W(1)(CN)8] and [W(2)(CN)8] with two additional atoms The Cs atoms occupy eight sites and exhibit various coordination polyhedra distorted tetragonal antiprisms distorted pentagonal bipyramids trigonal prisms with one addition atom trigonal prisms with two additional atoms and a 9-vertex polyhedron of irregular shape Cesium octacyanotungstate(ΙV) Crystal structure X-ray single crystal diffr action 1 Introduction In recent years there has been strong interest in the study of octacyanide complexes of sndashd elements due to their interesting physical properties They may indeed have good sorption magnetic optical and other properties The earliest reported cyanide tungsten(IVV) complexes were K3[W(CN)8] [12] and K4[W(CN)8]sdot2H2O [13] Small soluble salts Ag4[R] Mn2[R] Tl4[R] Cd2[R]middotH2O Zn2[R]sdot4H2O where R = [W(CN)8]

4ndash [45] were selectively obtained using reaction deposition Readily soluble salts such as Na4[R]sdotH2O Rb4[R]sdot3H2O Sr2[R]sdotH2O Cd2[R]sdot8H2O Mg2[R]sdot6H2O Rb4[R]sdotH2O and Li4[R]sdotH2O [45] were obtained by exchange reaction of Ag4[W(CN)8] and metal chlorides The complex acids H4[W(CN)8]sdotH2O [15] H4[W(CN)8]sdot2H2O H3[W(CN)8]sdotH2O [6] Н4[W(CN)8]sdot6H2O [67] should also be mentioned The complexes Cs3[W(CN)8]sdot2H2O [8] K3[W(CN)8]sdotH2O Na3[W(CN)8]sdot4H2O [n-Bu4N]3[W(CN)8] [9] and K4[M(CN)8] K4[M(CN)6] K3[M(CN)6] K3[M(CN)8] (М = Мо W) K2[W(CN)5H2O] [10] have also been investigated One of the first crystal structures to be investigated was that of K4[W(CN)8]sdot2H2O [11] which is isomorphic with K4[Mo(CN)8]sdot2H2O [12] The coordination polyhedron [W(CN)8]

4ndash in this compound has the shape of a dodecahedron Antiprismatic

tetragonal configuration (symmetry D4d) of the [W(CN)8]

4ndash ion was established by X-ray diffraction for H4[W(CN)8]sdot6H2O [713] In the compounds H4[W(CN)8]sdotH2O H4[W(CN)8]sdot4HClsdot12H2O [14] Katm[W(CN)8]sdotnH2O where Kat = H+ Na+ Ca2+ [45] and Na3[W(CN)8]sdot4H2O [45] the complex anions have antiprismatic configuration Saramaha and Dovgej [15] described the synthesis and crystal structure of the compound Na3H3O[W(CN)8]sdot2H2O in which the anion [W(CN)8]

4- has dodecahedral shape The crystal structure of the complex Rb4[W(CN)8]sdot2H2O [16] is isostructural with K4[W(CN)8]2H2O It appears that the crystal structures of octacyanotungstate(IV) complexes of alkali metal cations have been determined only for a few compounds With the aim to study the effect of the nature of the outer s-cation on the structures of octacyanotungstates(IV) of alkali metals we synthesized and investigated the crystal structure of a new compound the cesium octacyanotungstate(IV) sesquihydrate Cs8[W2(CN)16]sdot3H2O 2 Experimental Synthesis Octacyanotungstate(IV) acid required for the synthesis of the complex was obtained by passing a solution of

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 148

K4[W(CN)8]2H2O through a cation exchanger KU-2 in H+-form A Cs8[W2(CN)16]sdot3H2O powder sample was prepared by mixing aqueous solutions of H4[W(CN)8] and cesium carbonate The resulting solution was submitted to slow crystallization at room temperature in a dark place A few weeks later crystals suitable for X-ray diffraction studies had formed The yield of isolated product was 65 The composition of the single crystal used for the structure determination was confirmed by EDX analysis (EDAX PV9800 microanalyzer) X-ray diffraction X-ray diffraction data were collected on a KUMA Diffraction KM-4 four-circle diffractometer equipped with a CCD camera using graphite-monochromatized Mo Kα radiation (λ = 071073 Aring) The raw data were treated with the CrysAlis Data Reduction program [17] taking into account an absorption correction The intensities of the reflections were corrected for Lorentz and polarization factors The crystal structure was solved by the Patterson method and refined by the full-matrix least-squares method using SHELXL-97 [18]

3 Results and discussion Details of the structure investigation of Cs8[W2(CN)16]sdot3H2O are given in Table 1 whereas the atomic coordinates and equivalent (isotropic) displacement parameters are listed in Table 2 The displacement parameters of the C and N atoms were refined in isotropic approximation Selected bond lengths and angles are listed in Table 3 The content of one unit cell of Cs8[W2(CN)16]sdot3H2O and the coordination polyhedra of the W atoms are shown in Fig 1 The structure of Cs8[W2(CN)16]sdot3H2O consists of individual [W(CN)8]

4- ions which are located between the cesium cations and water molecules The tungsten atoms in the structure occupy two distinct sites Each tungsten atom is surrounded by eight cyano groups in the form of a trigonal prism with two additional atoms (Fig 1) The shortest W1ndashC and W2ndashC distances are in the ranges 214(2)-2171(17) and 2112(17)-2174(16) Aring respectively The bond lengths of CequivN at the W1 and W2 atoms have values within 1140(19)-1178(18) and 112(3)-1177(18) Aring respectively The WndashCN angles vary from 1729(19) to 1784(18)deg for W1 and from 1751(19) to 1791(19)deg for W2

Table 1 Experimental details of the structure refinement for Cs8[W2(CN)16]sdot3H2O

Parameters and their values Crystal color yellow Empirical formula C16 H6 N16 O3 Cs8 W2 Mr 190135 System monoclinic Space group Р21с Cell parameters (Aring) a = 227973(6)

b = 932614(18) c = 184881(4) β = 95400(2)deg

V (Aring3) 391334(16) Formula units per cell Z 4 Density Dx (g cmndash3) 3227 micro (mm-1) 13251 F(000) 3304 Radiation Мо Kα λ (Aring) 071073 Range θ (deg) 297 lt θ lt 2602 Index ranges -10 le h le 10 -11 le k le 11 -22 le l le 22 Number of measured reflections 24859 Number of independent reflections 4119 Number of reflections with I gt 2σ(I) 2918 Rint 00663 Number of refined parameters 231 Goodness of fit on F2 1166 R [I gt 2 σ(I)] R1 = 00463 wR2 = 00754 R (all data) R1 = 00849 wR2 = 00894 ∆ρmin∆ρmax (e Aringndash3) -09521451

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 149

Table 2 Atomic coordinates and equivalentisotropic displacement parameters for Cs8[W2(CN)16]sdot3H2O

Atom Wyckoff position

x y z UeqUiso (Aring2)

W1 4e 014339(5) 070792(7) 060056(3) 00261(4) W2 4e 038277(5) 023409(7) 034641(3) 00248(4) Cs1 4e 048034(7) 033079(11) 017332(6) 00360(6) Cs2 4e 024615(7) 081959(12) 043387(6) 00431(6) Cs3 4e 034465(8) 072890(12) 024609(7) 00488(6) Cs4 4e 041862(7) 062898(13) 053278(6) 00460(6) Cs5 4e 018735(7) 040027(12) 026902(6) 00490(6) Cs6 4e 027680(8) 030686(12) 056227(7) 00549(6) Cs7 4e 006348(8) 028734(14) 004657(7) 00606(7) Cs8 4e 008315(8) 098404(14) 029969(7) 00680(7) O1 4e 00267(9) 06817(18) 03157(9) 0119(7) O2 4e 03417(8) -00314(15) 05525(8) 0096(6) O3 4e 00909(10) 0290(2) 03711(10) 0151(8) N1 4e 03940(8) -01039(15) 04064(7) 0044(4) N2 4e 03904(8) 00308(14) 02003(7) 0042(4) N3 4e 04227(8) 02653(15) 05212(8) 0055(5) N4 4e 03021(8) 04988(16) 04046(7) 0050(5) N5 4e 03304(8) 04071(14) 01971(7) 0042(4) N6 4e 04572(8) 05409(16) 03523(7) 0053(5) N7 4e 01542(8) 04972(15) 04585(7) 0047(5) N8 4e 00746(8) 08861(15) 04623(7) 0048(5) N9 4e 02019(8) 10270(16) 05859(7) 0051(5) N10 4e 02463(10) 01110(18) 03462(8) 0066(6) N11 4e 00584(9) 09342(18) 06758(9) 0065(5) N12 4e 00145(11) 0553(2) 05968(9) 0077(7) N13 4e 02017(8) 07520(13) 07711(7) 0036(4) N15 4e 01620(7) 03758(14) 06666(7) 0038(4) N14 4e 05238(10) 01721(14) 03391(7) 0034(5) N16 4e 02854(10) 06508(14) 05889(7) 0034(5) C1 4e 03907(9) 00148(17) 03861(8) 0032(5) C2 4e 03870(9) 00993(16) 02515(8) 0030(5) C3 4e 04061(10) 02513(17) 04594(9) 0040(5) C4 4e 03280(10) 04022(18) 03847(8) 0032(5) C5 4e 03484(9) 03453(17) 02501(8) 0033(5) C6 4e 04315(9) 04345(17) 03488(8) 0029(5) C7 4e 01482(10) 05718(19) 05061(9) 0046(6) C8 4e 00968(10) 08172(17) 05087(9) 0035(5) C9 4e 01853(9) 09124(17) 05921(8) 0031(5) C10 4e 02942(12) 01491(19) 03449(9) 0039(6) C11 4e 00849(12) 0849(2) 06496(10) 0061(7) C12 4e 00586(13) 0606(2) 05970(10) 0051(6) C13 4e 01794(9) 07377(16) 07114(8) 0030(5) C14 4e 04735(15) 01889(18) 03418(8) 0035(6) C15 4e 01554(10) 04930(18) 06446(8) 0036(5) C16 4e 02364(14) 06684(16) 05947(8) 0026(5)

The cesium atoms occupy eight crystallographic positions and have different coordination polyhedra Cs(1)N7 ndash a pentagonal bipyramid Cs(2)N7O ndash a deformed tetragonal antiprism Cs(3)N7 ndash a slightly deformed trigonal prism with one additional atom Cs(4)N8O ndash a 9-vertex polyhedron of undefined shape Cs(5)N7O ndash a slightly deformed trigonal prism

with two additional atoms Cs(6)N7O ndash a trigonal prism with two additional atoms Cs(7)N6O2 ndash a deformed trigonal prism with two additional atoms Cs(8)N4O3 ndash a deformed trigonal prism with one additional atom The coordination polyhedra of the cesium atoms in the structure of Cs8[W2(CN)16]sdot3H2O are shown in Fig 2

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 150

Table 3 Selected bond lengths and angles for Cs8[W2(CN)16]sdot3H2O

Atoms δ (Aring) Atoms δ (Aring) Atoms ω (deg) W1ndashC11 214(2) C1ndashN1 1169(18) W1ndashC7N7 1760(2) W1ndashC9 2145(18) C2ndashN2 1151(17) W1ndashC8N8 1740(16) W1ndashC12 215(3) C3ndashN3 1177(19 W1ndashC9N9 1729(19) W1ndashC13 2153(16) C4ndashN4 116(2) W1ndashC11N11 1730(2) W1ndashC16 216(3) C5ndashN5 1178(18) W1ndashC12N12 1784(18) W1ndashC8 2170(17) C6ndashN6 1151(19) W1ndashC13N13 1769(18) W1ndashC7 2170(18) C7ndashN7 1140(19) W1ndashC15N15 1782(14) W1ndashC15 2171(17) C8ndashN8 1152(19) W1ndashC16N16 1771(14) W2ndashC3 2112(17) C9ndashN9 1144(19) W2ndashC1N1 1786(18) W2ndashC14 212(3) C10ndashN10 113(2) W2ndashC2N2 1779(17) W2ndashC5 2144(16) C11ndashN11 1142(18) W2ndashC3N3 1753(19) W2ndashC4 2164(19) C12ndashN12 112(3) W2ndashC4N4 1751(19) W2ndashC10 217(3) C13ndashN13 1177(18) W2ndashC5N5 1791(14) W2ndashC2 2168(15) C14ndashN14 116(3) W2ndashC6N6 1779(15) W2ndashC6 2173(18) C15ndashN15 1171(17) W2ndashC10N10 1760(18) W2ndashC1 2174(16) C16ndashN16 114(3) W2ndashC14N14 1763(16)

Fig 1 Unit cell of Cs8[W2(CN)16]sdot3H2O and coordination polyhedra of the W atoms

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 151

Fig 2 Coordination polyhedra of the cesium atoms in Cs8[W2(CN)16]sdot3H2O Conclusions The crystal structure of the Cs8[W2(CN)16]sdot3H2O (Cs4[W(CN)8]sdot15H2O) complex differs significantly from the structures of the complexes K4[W(CN)8]sdot2H2O [11] Rb4[W(CN)8]sdot2H2O [16] and K4[Mo(CN)8]sdot2H2O [1219] which are isomorphous and from the molybdenum complexes (NH4)4[Mo(CN)8]sdot05H2O and Rb4[Mo(CN)8]sdot3H2O [20] which have different crystal structures The size of the cesium cation (r(Cs+) = 165 Aring) differs significantly the sizes of the potassium ammonium and rubidium cations (r(K+) = 133 r(NH4

+) = 143 r(Rb+) = 149 Aring) Therefore the tungsten compounds with cesium are not isostructural Besides changing the number of water molecules in the complexes of molybdenum with ammonium (NH4)4[Mo(CN)8]sdot05H2O and rubidium Rb4[Mo(CN)8]sdot3H2O leads to significant differences in the structures which belong to different space groups The molybdenum atoms in the (NH4)4[Mo(CN)8]sdot05H2O compound occupy two distinct positions and have different coordination polyhedra [Mo1(CN)8]

4ndash dodecahedra and [Mo2(CN)8]

4ndash tetragonal antiprisms The coordination polyhedra of the molybdenum atoms in the structure of the Rb4[Mo(CN)8]sdot3H2O compound are exclusively dodecahedra Already in 1985 [20] the authors emphasized the influence of the number of molecules of crystallization water on the crystal structures of alkaline metal octacyanotungstates(IV) The

Rb4[W(CN)8]sdot2H2O [16] and Rb4[Mo(CN)8]sdot3H2O [20] complexes with different structures also contain different numbers of water molecules References [1] AR Rosenheim EA Dehn Ber Dtsch Chem

Ges 47 (1914) 397-399 [2] OL Olsson Ber Dtsch Chem Ges 47 (1914)

417-420 [3] AR Rosenheim Ber Dtsch Chem Ges 48

(1915) 1170-1174 [4] AM Golub X Keler VV Skopenko

Chemistry of Pseudohalogenides Kyiv Vyshcha shkola 1981 360 p (in Russian)

[5] HE Williams Cyanogen Compounds Their Chemistry Detection and Estimation Second edition 1948 432 p

[6] A Samotus B Kosowicz-Czajkowska Rocz Chem 45 (1971) 1623-1626

[7] H Mohan J Inorg Nucl Chem 38(7) (1976) 1303-1305

[8] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 415(1) (1975) 81-83

[9] PM Kiernon WP Griffith J Chem Soc Dalton Trans 11(23) (1975) 2489-2494

[10] YR Fowler Y Kleinberg Inorg Chem 9(5) (1970) 1005-1009

[11] H Baadsgaard W Treadwell Helv Chim Acta 38 (1955) 1669-1673

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128

Page 2: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 148

K4[W(CN)8]2H2O through a cation exchanger KU-2 in H+-form A Cs8[W2(CN)16]sdot3H2O powder sample was prepared by mixing aqueous solutions of H4[W(CN)8] and cesium carbonate The resulting solution was submitted to slow crystallization at room temperature in a dark place A few weeks later crystals suitable for X-ray diffraction studies had formed The yield of isolated product was 65 The composition of the single crystal used for the structure determination was confirmed by EDX analysis (EDAX PV9800 microanalyzer) X-ray diffraction X-ray diffraction data were collected on a KUMA Diffraction KM-4 four-circle diffractometer equipped with a CCD camera using graphite-monochromatized Mo Kα radiation (λ = 071073 Aring) The raw data were treated with the CrysAlis Data Reduction program [17] taking into account an absorption correction The intensities of the reflections were corrected for Lorentz and polarization factors The crystal structure was solved by the Patterson method and refined by the full-matrix least-squares method using SHELXL-97 [18]

3 Results and discussion Details of the structure investigation of Cs8[W2(CN)16]sdot3H2O are given in Table 1 whereas the atomic coordinates and equivalent (isotropic) displacement parameters are listed in Table 2 The displacement parameters of the C and N atoms were refined in isotropic approximation Selected bond lengths and angles are listed in Table 3 The content of one unit cell of Cs8[W2(CN)16]sdot3H2O and the coordination polyhedra of the W atoms are shown in Fig 1 The structure of Cs8[W2(CN)16]sdot3H2O consists of individual [W(CN)8]

4- ions which are located between the cesium cations and water molecules The tungsten atoms in the structure occupy two distinct sites Each tungsten atom is surrounded by eight cyano groups in the form of a trigonal prism with two additional atoms (Fig 1) The shortest W1ndashC and W2ndashC distances are in the ranges 214(2)-2171(17) and 2112(17)-2174(16) Aring respectively The bond lengths of CequivN at the W1 and W2 atoms have values within 1140(19)-1178(18) and 112(3)-1177(18) Aring respectively The WndashCN angles vary from 1729(19) to 1784(18)deg for W1 and from 1751(19) to 1791(19)deg for W2

Table 1 Experimental details of the structure refinement for Cs8[W2(CN)16]sdot3H2O

Parameters and their values Crystal color yellow Empirical formula C16 H6 N16 O3 Cs8 W2 Mr 190135 System monoclinic Space group Р21с Cell parameters (Aring) a = 227973(6)

b = 932614(18) c = 184881(4) β = 95400(2)deg

V (Aring3) 391334(16) Formula units per cell Z 4 Density Dx (g cmndash3) 3227 micro (mm-1) 13251 F(000) 3304 Radiation Мо Kα λ (Aring) 071073 Range θ (deg) 297 lt θ lt 2602 Index ranges -10 le h le 10 -11 le k le 11 -22 le l le 22 Number of measured reflections 24859 Number of independent reflections 4119 Number of reflections with I gt 2σ(I) 2918 Rint 00663 Number of refined parameters 231 Goodness of fit on F2 1166 R [I gt 2 σ(I)] R1 = 00463 wR2 = 00754 R (all data) R1 = 00849 wR2 = 00894 ∆ρmin∆ρmax (e Aringndash3) -09521451

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 149

Table 2 Atomic coordinates and equivalentisotropic displacement parameters for Cs8[W2(CN)16]sdot3H2O

Atom Wyckoff position

x y z UeqUiso (Aring2)

W1 4e 014339(5) 070792(7) 060056(3) 00261(4) W2 4e 038277(5) 023409(7) 034641(3) 00248(4) Cs1 4e 048034(7) 033079(11) 017332(6) 00360(6) Cs2 4e 024615(7) 081959(12) 043387(6) 00431(6) Cs3 4e 034465(8) 072890(12) 024609(7) 00488(6) Cs4 4e 041862(7) 062898(13) 053278(6) 00460(6) Cs5 4e 018735(7) 040027(12) 026902(6) 00490(6) Cs6 4e 027680(8) 030686(12) 056227(7) 00549(6) Cs7 4e 006348(8) 028734(14) 004657(7) 00606(7) Cs8 4e 008315(8) 098404(14) 029969(7) 00680(7) O1 4e 00267(9) 06817(18) 03157(9) 0119(7) O2 4e 03417(8) -00314(15) 05525(8) 0096(6) O3 4e 00909(10) 0290(2) 03711(10) 0151(8) N1 4e 03940(8) -01039(15) 04064(7) 0044(4) N2 4e 03904(8) 00308(14) 02003(7) 0042(4) N3 4e 04227(8) 02653(15) 05212(8) 0055(5) N4 4e 03021(8) 04988(16) 04046(7) 0050(5) N5 4e 03304(8) 04071(14) 01971(7) 0042(4) N6 4e 04572(8) 05409(16) 03523(7) 0053(5) N7 4e 01542(8) 04972(15) 04585(7) 0047(5) N8 4e 00746(8) 08861(15) 04623(7) 0048(5) N9 4e 02019(8) 10270(16) 05859(7) 0051(5) N10 4e 02463(10) 01110(18) 03462(8) 0066(6) N11 4e 00584(9) 09342(18) 06758(9) 0065(5) N12 4e 00145(11) 0553(2) 05968(9) 0077(7) N13 4e 02017(8) 07520(13) 07711(7) 0036(4) N15 4e 01620(7) 03758(14) 06666(7) 0038(4) N14 4e 05238(10) 01721(14) 03391(7) 0034(5) N16 4e 02854(10) 06508(14) 05889(7) 0034(5) C1 4e 03907(9) 00148(17) 03861(8) 0032(5) C2 4e 03870(9) 00993(16) 02515(8) 0030(5) C3 4e 04061(10) 02513(17) 04594(9) 0040(5) C4 4e 03280(10) 04022(18) 03847(8) 0032(5) C5 4e 03484(9) 03453(17) 02501(8) 0033(5) C6 4e 04315(9) 04345(17) 03488(8) 0029(5) C7 4e 01482(10) 05718(19) 05061(9) 0046(6) C8 4e 00968(10) 08172(17) 05087(9) 0035(5) C9 4e 01853(9) 09124(17) 05921(8) 0031(5) C10 4e 02942(12) 01491(19) 03449(9) 0039(6) C11 4e 00849(12) 0849(2) 06496(10) 0061(7) C12 4e 00586(13) 0606(2) 05970(10) 0051(6) C13 4e 01794(9) 07377(16) 07114(8) 0030(5) C14 4e 04735(15) 01889(18) 03418(8) 0035(6) C15 4e 01554(10) 04930(18) 06446(8) 0036(5) C16 4e 02364(14) 06684(16) 05947(8) 0026(5)

The cesium atoms occupy eight crystallographic positions and have different coordination polyhedra Cs(1)N7 ndash a pentagonal bipyramid Cs(2)N7O ndash a deformed tetragonal antiprism Cs(3)N7 ndash a slightly deformed trigonal prism with one additional atom Cs(4)N8O ndash a 9-vertex polyhedron of undefined shape Cs(5)N7O ndash a slightly deformed trigonal prism

with two additional atoms Cs(6)N7O ndash a trigonal prism with two additional atoms Cs(7)N6O2 ndash a deformed trigonal prism with two additional atoms Cs(8)N4O3 ndash a deformed trigonal prism with one additional atom The coordination polyhedra of the cesium atoms in the structure of Cs8[W2(CN)16]sdot3H2O are shown in Fig 2

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 150

Table 3 Selected bond lengths and angles for Cs8[W2(CN)16]sdot3H2O

Atoms δ (Aring) Atoms δ (Aring) Atoms ω (deg) W1ndashC11 214(2) C1ndashN1 1169(18) W1ndashC7N7 1760(2) W1ndashC9 2145(18) C2ndashN2 1151(17) W1ndashC8N8 1740(16) W1ndashC12 215(3) C3ndashN3 1177(19 W1ndashC9N9 1729(19) W1ndashC13 2153(16) C4ndashN4 116(2) W1ndashC11N11 1730(2) W1ndashC16 216(3) C5ndashN5 1178(18) W1ndashC12N12 1784(18) W1ndashC8 2170(17) C6ndashN6 1151(19) W1ndashC13N13 1769(18) W1ndashC7 2170(18) C7ndashN7 1140(19) W1ndashC15N15 1782(14) W1ndashC15 2171(17) C8ndashN8 1152(19) W1ndashC16N16 1771(14) W2ndashC3 2112(17) C9ndashN9 1144(19) W2ndashC1N1 1786(18) W2ndashC14 212(3) C10ndashN10 113(2) W2ndashC2N2 1779(17) W2ndashC5 2144(16) C11ndashN11 1142(18) W2ndashC3N3 1753(19) W2ndashC4 2164(19) C12ndashN12 112(3) W2ndashC4N4 1751(19) W2ndashC10 217(3) C13ndashN13 1177(18) W2ndashC5N5 1791(14) W2ndashC2 2168(15) C14ndashN14 116(3) W2ndashC6N6 1779(15) W2ndashC6 2173(18) C15ndashN15 1171(17) W2ndashC10N10 1760(18) W2ndashC1 2174(16) C16ndashN16 114(3) W2ndashC14N14 1763(16)

Fig 1 Unit cell of Cs8[W2(CN)16]sdot3H2O and coordination polyhedra of the W atoms

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 151

Fig 2 Coordination polyhedra of the cesium atoms in Cs8[W2(CN)16]sdot3H2O Conclusions The crystal structure of the Cs8[W2(CN)16]sdot3H2O (Cs4[W(CN)8]sdot15H2O) complex differs significantly from the structures of the complexes K4[W(CN)8]sdot2H2O [11] Rb4[W(CN)8]sdot2H2O [16] and K4[Mo(CN)8]sdot2H2O [1219] which are isomorphous and from the molybdenum complexes (NH4)4[Mo(CN)8]sdot05H2O and Rb4[Mo(CN)8]sdot3H2O [20] which have different crystal structures The size of the cesium cation (r(Cs+) = 165 Aring) differs significantly the sizes of the potassium ammonium and rubidium cations (r(K+) = 133 r(NH4

+) = 143 r(Rb+) = 149 Aring) Therefore the tungsten compounds with cesium are not isostructural Besides changing the number of water molecules in the complexes of molybdenum with ammonium (NH4)4[Mo(CN)8]sdot05H2O and rubidium Rb4[Mo(CN)8]sdot3H2O leads to significant differences in the structures which belong to different space groups The molybdenum atoms in the (NH4)4[Mo(CN)8]sdot05H2O compound occupy two distinct positions and have different coordination polyhedra [Mo1(CN)8]

4ndash dodecahedra and [Mo2(CN)8]

4ndash tetragonal antiprisms The coordination polyhedra of the molybdenum atoms in the structure of the Rb4[Mo(CN)8]sdot3H2O compound are exclusively dodecahedra Already in 1985 [20] the authors emphasized the influence of the number of molecules of crystallization water on the crystal structures of alkaline metal octacyanotungstates(IV) The

Rb4[W(CN)8]sdot2H2O [16] and Rb4[Mo(CN)8]sdot3H2O [20] complexes with different structures also contain different numbers of water molecules References [1] AR Rosenheim EA Dehn Ber Dtsch Chem

Ges 47 (1914) 397-399 [2] OL Olsson Ber Dtsch Chem Ges 47 (1914)

417-420 [3] AR Rosenheim Ber Dtsch Chem Ges 48

(1915) 1170-1174 [4] AM Golub X Keler VV Skopenko

Chemistry of Pseudohalogenides Kyiv Vyshcha shkola 1981 360 p (in Russian)

[5] HE Williams Cyanogen Compounds Their Chemistry Detection and Estimation Second edition 1948 432 p

[6] A Samotus B Kosowicz-Czajkowska Rocz Chem 45 (1971) 1623-1626

[7] H Mohan J Inorg Nucl Chem 38(7) (1976) 1303-1305

[8] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 415(1) (1975) 81-83

[9] PM Kiernon WP Griffith J Chem Soc Dalton Trans 11(23) (1975) 2489-2494

[10] YR Fowler Y Kleinberg Inorg Chem 9(5) (1970) 1005-1009

[11] H Baadsgaard W Treadwell Helv Chim Acta 38 (1955) 1669-1673

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128

Page 3: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 149

Table 2 Atomic coordinates and equivalentisotropic displacement parameters for Cs8[W2(CN)16]sdot3H2O

Atom Wyckoff position

x y z UeqUiso (Aring2)

W1 4e 014339(5) 070792(7) 060056(3) 00261(4) W2 4e 038277(5) 023409(7) 034641(3) 00248(4) Cs1 4e 048034(7) 033079(11) 017332(6) 00360(6) Cs2 4e 024615(7) 081959(12) 043387(6) 00431(6) Cs3 4e 034465(8) 072890(12) 024609(7) 00488(6) Cs4 4e 041862(7) 062898(13) 053278(6) 00460(6) Cs5 4e 018735(7) 040027(12) 026902(6) 00490(6) Cs6 4e 027680(8) 030686(12) 056227(7) 00549(6) Cs7 4e 006348(8) 028734(14) 004657(7) 00606(7) Cs8 4e 008315(8) 098404(14) 029969(7) 00680(7) O1 4e 00267(9) 06817(18) 03157(9) 0119(7) O2 4e 03417(8) -00314(15) 05525(8) 0096(6) O3 4e 00909(10) 0290(2) 03711(10) 0151(8) N1 4e 03940(8) -01039(15) 04064(7) 0044(4) N2 4e 03904(8) 00308(14) 02003(7) 0042(4) N3 4e 04227(8) 02653(15) 05212(8) 0055(5) N4 4e 03021(8) 04988(16) 04046(7) 0050(5) N5 4e 03304(8) 04071(14) 01971(7) 0042(4) N6 4e 04572(8) 05409(16) 03523(7) 0053(5) N7 4e 01542(8) 04972(15) 04585(7) 0047(5) N8 4e 00746(8) 08861(15) 04623(7) 0048(5) N9 4e 02019(8) 10270(16) 05859(7) 0051(5) N10 4e 02463(10) 01110(18) 03462(8) 0066(6) N11 4e 00584(9) 09342(18) 06758(9) 0065(5) N12 4e 00145(11) 0553(2) 05968(9) 0077(7) N13 4e 02017(8) 07520(13) 07711(7) 0036(4) N15 4e 01620(7) 03758(14) 06666(7) 0038(4) N14 4e 05238(10) 01721(14) 03391(7) 0034(5) N16 4e 02854(10) 06508(14) 05889(7) 0034(5) C1 4e 03907(9) 00148(17) 03861(8) 0032(5) C2 4e 03870(9) 00993(16) 02515(8) 0030(5) C3 4e 04061(10) 02513(17) 04594(9) 0040(5) C4 4e 03280(10) 04022(18) 03847(8) 0032(5) C5 4e 03484(9) 03453(17) 02501(8) 0033(5) C6 4e 04315(9) 04345(17) 03488(8) 0029(5) C7 4e 01482(10) 05718(19) 05061(9) 0046(6) C8 4e 00968(10) 08172(17) 05087(9) 0035(5) C9 4e 01853(9) 09124(17) 05921(8) 0031(5) C10 4e 02942(12) 01491(19) 03449(9) 0039(6) C11 4e 00849(12) 0849(2) 06496(10) 0061(7) C12 4e 00586(13) 0606(2) 05970(10) 0051(6) C13 4e 01794(9) 07377(16) 07114(8) 0030(5) C14 4e 04735(15) 01889(18) 03418(8) 0035(6) C15 4e 01554(10) 04930(18) 06446(8) 0036(5) C16 4e 02364(14) 06684(16) 05947(8) 0026(5)

The cesium atoms occupy eight crystallographic positions and have different coordination polyhedra Cs(1)N7 ndash a pentagonal bipyramid Cs(2)N7O ndash a deformed tetragonal antiprism Cs(3)N7 ndash a slightly deformed trigonal prism with one additional atom Cs(4)N8O ndash a 9-vertex polyhedron of undefined shape Cs(5)N7O ndash a slightly deformed trigonal prism

with two additional atoms Cs(6)N7O ndash a trigonal prism with two additional atoms Cs(7)N6O2 ndash a deformed trigonal prism with two additional atoms Cs(8)N4O3 ndash a deformed trigonal prism with one additional atom The coordination polyhedra of the cesium atoms in the structure of Cs8[W2(CN)16]sdot3H2O are shown in Fig 2

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 150

Table 3 Selected bond lengths and angles for Cs8[W2(CN)16]sdot3H2O

Atoms δ (Aring) Atoms δ (Aring) Atoms ω (deg) W1ndashC11 214(2) C1ndashN1 1169(18) W1ndashC7N7 1760(2) W1ndashC9 2145(18) C2ndashN2 1151(17) W1ndashC8N8 1740(16) W1ndashC12 215(3) C3ndashN3 1177(19 W1ndashC9N9 1729(19) W1ndashC13 2153(16) C4ndashN4 116(2) W1ndashC11N11 1730(2) W1ndashC16 216(3) C5ndashN5 1178(18) W1ndashC12N12 1784(18) W1ndashC8 2170(17) C6ndashN6 1151(19) W1ndashC13N13 1769(18) W1ndashC7 2170(18) C7ndashN7 1140(19) W1ndashC15N15 1782(14) W1ndashC15 2171(17) C8ndashN8 1152(19) W1ndashC16N16 1771(14) W2ndashC3 2112(17) C9ndashN9 1144(19) W2ndashC1N1 1786(18) W2ndashC14 212(3) C10ndashN10 113(2) W2ndashC2N2 1779(17) W2ndashC5 2144(16) C11ndashN11 1142(18) W2ndashC3N3 1753(19) W2ndashC4 2164(19) C12ndashN12 112(3) W2ndashC4N4 1751(19) W2ndashC10 217(3) C13ndashN13 1177(18) W2ndashC5N5 1791(14) W2ndashC2 2168(15) C14ndashN14 116(3) W2ndashC6N6 1779(15) W2ndashC6 2173(18) C15ndashN15 1171(17) W2ndashC10N10 1760(18) W2ndashC1 2174(16) C16ndashN16 114(3) W2ndashC14N14 1763(16)

Fig 1 Unit cell of Cs8[W2(CN)16]sdot3H2O and coordination polyhedra of the W atoms

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 151

Fig 2 Coordination polyhedra of the cesium atoms in Cs8[W2(CN)16]sdot3H2O Conclusions The crystal structure of the Cs8[W2(CN)16]sdot3H2O (Cs4[W(CN)8]sdot15H2O) complex differs significantly from the structures of the complexes K4[W(CN)8]sdot2H2O [11] Rb4[W(CN)8]sdot2H2O [16] and K4[Mo(CN)8]sdot2H2O [1219] which are isomorphous and from the molybdenum complexes (NH4)4[Mo(CN)8]sdot05H2O and Rb4[Mo(CN)8]sdot3H2O [20] which have different crystal structures The size of the cesium cation (r(Cs+) = 165 Aring) differs significantly the sizes of the potassium ammonium and rubidium cations (r(K+) = 133 r(NH4

+) = 143 r(Rb+) = 149 Aring) Therefore the tungsten compounds with cesium are not isostructural Besides changing the number of water molecules in the complexes of molybdenum with ammonium (NH4)4[Mo(CN)8]sdot05H2O and rubidium Rb4[Mo(CN)8]sdot3H2O leads to significant differences in the structures which belong to different space groups The molybdenum atoms in the (NH4)4[Mo(CN)8]sdot05H2O compound occupy two distinct positions and have different coordination polyhedra [Mo1(CN)8]

4ndash dodecahedra and [Mo2(CN)8]

4ndash tetragonal antiprisms The coordination polyhedra of the molybdenum atoms in the structure of the Rb4[Mo(CN)8]sdot3H2O compound are exclusively dodecahedra Already in 1985 [20] the authors emphasized the influence of the number of molecules of crystallization water on the crystal structures of alkaline metal octacyanotungstates(IV) The

Rb4[W(CN)8]sdot2H2O [16] and Rb4[Mo(CN)8]sdot3H2O [20] complexes with different structures also contain different numbers of water molecules References [1] AR Rosenheim EA Dehn Ber Dtsch Chem

Ges 47 (1914) 397-399 [2] OL Olsson Ber Dtsch Chem Ges 47 (1914)

417-420 [3] AR Rosenheim Ber Dtsch Chem Ges 48

(1915) 1170-1174 [4] AM Golub X Keler VV Skopenko

Chemistry of Pseudohalogenides Kyiv Vyshcha shkola 1981 360 p (in Russian)

[5] HE Williams Cyanogen Compounds Their Chemistry Detection and Estimation Second edition 1948 432 p

[6] A Samotus B Kosowicz-Czajkowska Rocz Chem 45 (1971) 1623-1626

[7] H Mohan J Inorg Nucl Chem 38(7) (1976) 1303-1305

[8] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 415(1) (1975) 81-83

[9] PM Kiernon WP Griffith J Chem Soc Dalton Trans 11(23) (1975) 2489-2494

[10] YR Fowler Y Kleinberg Inorg Chem 9(5) (1970) 1005-1009

[11] H Baadsgaard W Treadwell Helv Chim Acta 38 (1955) 1669-1673

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128

Page 4: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 150

Table 3 Selected bond lengths and angles for Cs8[W2(CN)16]sdot3H2O

Atoms δ (Aring) Atoms δ (Aring) Atoms ω (deg) W1ndashC11 214(2) C1ndashN1 1169(18) W1ndashC7N7 1760(2) W1ndashC9 2145(18) C2ndashN2 1151(17) W1ndashC8N8 1740(16) W1ndashC12 215(3) C3ndashN3 1177(19 W1ndashC9N9 1729(19) W1ndashC13 2153(16) C4ndashN4 116(2) W1ndashC11N11 1730(2) W1ndashC16 216(3) C5ndashN5 1178(18) W1ndashC12N12 1784(18) W1ndashC8 2170(17) C6ndashN6 1151(19) W1ndashC13N13 1769(18) W1ndashC7 2170(18) C7ndashN7 1140(19) W1ndashC15N15 1782(14) W1ndashC15 2171(17) C8ndashN8 1152(19) W1ndashC16N16 1771(14) W2ndashC3 2112(17) C9ndashN9 1144(19) W2ndashC1N1 1786(18) W2ndashC14 212(3) C10ndashN10 113(2) W2ndashC2N2 1779(17) W2ndashC5 2144(16) C11ndashN11 1142(18) W2ndashC3N3 1753(19) W2ndashC4 2164(19) C12ndashN12 112(3) W2ndashC4N4 1751(19) W2ndashC10 217(3) C13ndashN13 1177(18) W2ndashC5N5 1791(14) W2ndashC2 2168(15) C14ndashN14 116(3) W2ndashC6N6 1779(15) W2ndashC6 2173(18) C15ndashN15 1171(17) W2ndashC10N10 1760(18) W2ndashC1 2174(16) C16ndashN16 114(3) W2ndashC14N14 1763(16)

Fig 1 Unit cell of Cs8[W2(CN)16]sdot3H2O and coordination polyhedra of the W atoms

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 151

Fig 2 Coordination polyhedra of the cesium atoms in Cs8[W2(CN)16]sdot3H2O Conclusions The crystal structure of the Cs8[W2(CN)16]sdot3H2O (Cs4[W(CN)8]sdot15H2O) complex differs significantly from the structures of the complexes K4[W(CN)8]sdot2H2O [11] Rb4[W(CN)8]sdot2H2O [16] and K4[Mo(CN)8]sdot2H2O [1219] which are isomorphous and from the molybdenum complexes (NH4)4[Mo(CN)8]sdot05H2O and Rb4[Mo(CN)8]sdot3H2O [20] which have different crystal structures The size of the cesium cation (r(Cs+) = 165 Aring) differs significantly the sizes of the potassium ammonium and rubidium cations (r(K+) = 133 r(NH4

+) = 143 r(Rb+) = 149 Aring) Therefore the tungsten compounds with cesium are not isostructural Besides changing the number of water molecules in the complexes of molybdenum with ammonium (NH4)4[Mo(CN)8]sdot05H2O and rubidium Rb4[Mo(CN)8]sdot3H2O leads to significant differences in the structures which belong to different space groups The molybdenum atoms in the (NH4)4[Mo(CN)8]sdot05H2O compound occupy two distinct positions and have different coordination polyhedra [Mo1(CN)8]

4ndash dodecahedra and [Mo2(CN)8]

4ndash tetragonal antiprisms The coordination polyhedra of the molybdenum atoms in the structure of the Rb4[Mo(CN)8]sdot3H2O compound are exclusively dodecahedra Already in 1985 [20] the authors emphasized the influence of the number of molecules of crystallization water on the crystal structures of alkaline metal octacyanotungstates(IV) The

Rb4[W(CN)8]sdot2H2O [16] and Rb4[Mo(CN)8]sdot3H2O [20] complexes with different structures also contain different numbers of water molecules References [1] AR Rosenheim EA Dehn Ber Dtsch Chem

Ges 47 (1914) 397-399 [2] OL Olsson Ber Dtsch Chem Ges 47 (1914)

417-420 [3] AR Rosenheim Ber Dtsch Chem Ges 48

(1915) 1170-1174 [4] AM Golub X Keler VV Skopenko

Chemistry of Pseudohalogenides Kyiv Vyshcha shkola 1981 360 p (in Russian)

[5] HE Williams Cyanogen Compounds Their Chemistry Detection and Estimation Second edition 1948 432 p

[6] A Samotus B Kosowicz-Czajkowska Rocz Chem 45 (1971) 1623-1626

[7] H Mohan J Inorg Nucl Chem 38(7) (1976) 1303-1305

[8] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 415(1) (1975) 81-83

[9] PM Kiernon WP Griffith J Chem Soc Dalton Trans 11(23) (1975) 2489-2494

[10] YR Fowler Y Kleinberg Inorg Chem 9(5) (1970) 1005-1009

[11] H Baadsgaard W Treadwell Helv Chim Acta 38 (1955) 1669-1673

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128

Page 5: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 151

Fig 2 Coordination polyhedra of the cesium atoms in Cs8[W2(CN)16]sdot3H2O Conclusions The crystal structure of the Cs8[W2(CN)16]sdot3H2O (Cs4[W(CN)8]sdot15H2O) complex differs significantly from the structures of the complexes K4[W(CN)8]sdot2H2O [11] Rb4[W(CN)8]sdot2H2O [16] and K4[Mo(CN)8]sdot2H2O [1219] which are isomorphous and from the molybdenum complexes (NH4)4[Mo(CN)8]sdot05H2O and Rb4[Mo(CN)8]sdot3H2O [20] which have different crystal structures The size of the cesium cation (r(Cs+) = 165 Aring) differs significantly the sizes of the potassium ammonium and rubidium cations (r(K+) = 133 r(NH4

+) = 143 r(Rb+) = 149 Aring) Therefore the tungsten compounds with cesium are not isostructural Besides changing the number of water molecules in the complexes of molybdenum with ammonium (NH4)4[Mo(CN)8]sdot05H2O and rubidium Rb4[Mo(CN)8]sdot3H2O leads to significant differences in the structures which belong to different space groups The molybdenum atoms in the (NH4)4[Mo(CN)8]sdot05H2O compound occupy two distinct positions and have different coordination polyhedra [Mo1(CN)8]

4ndash dodecahedra and [Mo2(CN)8]

4ndash tetragonal antiprisms The coordination polyhedra of the molybdenum atoms in the structure of the Rb4[Mo(CN)8]sdot3H2O compound are exclusively dodecahedra Already in 1985 [20] the authors emphasized the influence of the number of molecules of crystallization water on the crystal structures of alkaline metal octacyanotungstates(IV) The

Rb4[W(CN)8]sdot2H2O [16] and Rb4[Mo(CN)8]sdot3H2O [20] complexes with different structures also contain different numbers of water molecules References [1] AR Rosenheim EA Dehn Ber Dtsch Chem

Ges 47 (1914) 397-399 [2] OL Olsson Ber Dtsch Chem Ges 47 (1914)

417-420 [3] AR Rosenheim Ber Dtsch Chem Ges 48

(1915) 1170-1174 [4] AM Golub X Keler VV Skopenko

Chemistry of Pseudohalogenides Kyiv Vyshcha shkola 1981 360 p (in Russian)

[5] HE Williams Cyanogen Compounds Their Chemistry Detection and Estimation Second edition 1948 432 p

[6] A Samotus B Kosowicz-Czajkowska Rocz Chem 45 (1971) 1623-1626

[7] H Mohan J Inorg Nucl Chem 38(7) (1976) 1303-1305

[8] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 415(1) (1975) 81-83

[9] PM Kiernon WP Griffith J Chem Soc Dalton Trans 11(23) (1975) 2489-2494

[10] YR Fowler Y Kleinberg Inorg Chem 9(5) (1970) 1005-1009

[11] H Baadsgaard W Treadwell Helv Chim Acta 38 (1955) 1669-1673

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128

Page 6: Crystal structure of Cs [W (CN) ⋅⋅⋅⋅3H Ochemetal-journal.org/ejournal19/CMA0344.pdfChem. Met. Alloys 9 (2016) 147 Chem. Met. Alloys 9 (2016) 147-152 Ivan Franko National University

D Semenyshyn et al Crystal structure of Cs8[W2(CN)16]sdot3H2O

Chem Met Alloys 9 (2016) 152

[12] JL Hoard HH Nordsieck J Am Chem Soc 61(10) (1939) 2853-2857

[13] SS Basson LDC Bok JG Leipold Acta Crystallogr 26(9) (1970) 1209-1216

[14] LDC Bok JG Leipoldt SS Basson Z Anorg Allg Chem 392 (1972) 303-304

[15] IV Saramaha VV Dovgej Ukr Khim Zh 64(12) (1998) 87-92

[16] IV Typilo RE Gladyshevskii DI Semenyshyn Ukr Khim Zh 76(10) (2010) 77-80

[17] Oxford Diffraction CrysAlis CCD and CrysAlis RED version 1171303 Oxford Diffraction Ltd Abingdon Oxfordshire UK 2006

[18] GM Sheldrick SHELXS-97 Universitaumlt Goumlttingen Germany 1999

[19] I Typilo O Sereda H Stoeckli-Evans R Gladyshevskii D Semenyshyn Chem Met Alloys 3 (2010) 49-52

[20] DI Semenyshyn T Glovjak MH Mysrsquokiv Koord Khim 11(1) (1985) 122-128