critical role of angiopoietin pathway in ischemia

105
CRITICAL ROLE OF ANGIOPOIETIN PATHWAY IN ISCHEMIA-REPERFUSION INJURY IN CARDIAC TRANSPLANTATION SIMO SYRJÄLÄ 2014

Upload: others

Post on 20-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Critical role of angiopoietin pathway in Ischemia

                                       

CRITICAL ROLE OF ANGIOPOIETIN PATHWAY IN ISCHEMIA-REPERFUSION INJURY IN CARDIAC TRANSPLANTATION SIMO SYRJÄLÄ 2014

Page 2: Critical role of angiopoietin pathway in Ischemia

2

   

Page 3: Critical role of angiopoietin pathway in Ischemia

3

 CRITICAL  ROLE  OF  ANGIOPOIETIN  PATHWAY  IN  

ISCHEMIA-­‐REPERFUSION  INJURY  IN  CARDIAC  TRANSPLANTATION  

           

Simo  Syrjälä,  MD              

Cardiopulmonary  Research  Group,  Transplantation  Laboratory,  Haartman  Institute,  

University  of  Helsinki,  Helsinki,  Finland                    

Academic  dissertation        

To  be  publicly  discussed  with  the  permission  of  the  Faculty  of  Medicine,  University  of  Helsinki,  in  Lecture  Hall  3,  Meilahti  Hospital,  

Haartmaninkatu  4,  on  12th  December,  at  12  o’clock  noon        

Page 4: Critical role of angiopoietin pathway in Ischemia

4

Helsinki  2014  Supervised  by  

 Professor  Karl  Lemström,  MD,  PhD  Cardiopulmonary  Research  Group,  

Transplantation  Laboratory,  Haartman  Institute,  University  of  Helsinki,  

Helsinki,  Finland        

Reviewed  by    

Professor  Timo  Paavonen,  Department  of  Pathology,  School  of  Medicine,  

University  of  Tampere,  Tampere,  Finland  

 And    

Professor  Hannu  Sariola,  Developmental  Biology,  Institute  of  Biomedicine  

University  of  Helsinki,  Helsinki,  Finland  

       

Discussed  with    

Professor  Daniel  Goldstein,  Yale  Cardiovascular  Research  Center,  School  of  Medicine,  

Yale  University,  New  Haven,  CT,  USA  

     

Page 5: Critical role of angiopoietin pathway in Ischemia

5

                           

To  my  family    

Page 6: Critical role of angiopoietin pathway in Ischemia

6

                                                         ISBN  978-­‐951-­‐51-­‐0390-­‐1  ISBN  978-­‐951-­‐51-­‐0391-­‐8    Author  contact  information:  Transplantation  Laboratory,  Haartman  Institute  P.O.  Box  21  (Haartmaninkatu  3)  FI-­‐00014  University  of  Helsinki,  Helsinki,  Finland  Tel:  +358-­‐9-­‐19126582  Fax:  +358-­‐9-­‐2411227  E-­‐mail:  [email protected]    

Page 7: Critical role of angiopoietin pathway in Ischemia

7

TABLE  OF  CONTENTS  

ORIGINAL  PUBLICATIONS  ............................................................  9  

ABBREVIATIONS  ........................................................................  10  

ABSTRACT  .................................................................................  12  

INTRODUCTION  .........................................................................  15  

REVIEW  OF  THE  LITERATURE  .....................................................  16  

1.  Clinical  heart  transplantation  .............................................  16  

1.1.  Background  ......................................................................  16  1.2.  General  histology  of  the  heart  ........................................  17  1.3.  Indications,  patient  characteristics,  and  outcome  ..........  18  1.4.  Risk  factors  ......................................................................  20  

2.  Ischemia-­‐reperfusion  injury  ...............................................  23  

2.1.  Ischemia  and  hypothermia  ..............................................  23  2.2.  Reperfusion  and  re-­‐oxygenation  .....................................  24  2.3.  Microvascular  dysfunction  ..............................................  26  

3.  Immunobiology  ..................................................................  28  

3.1.  Innate  immune  system  ....................................................  28  3.2.  Alloimmune  system  .........................................................  31  3.5.  Acute  rejection  ................................................................  36  3.6.  Immunosuppression  ........................................................  38  3.7.  Chronic  rejection  .............................................................  40  

4.  Angiopoietin  pathway  ........................................................  44  

4.1.  General  ............................................................................  44  4.2.  Angiopoietin-­‐1  .................................................................  45  4.3.  Angiopoietin-­‐2  .................................................................  47  

AIMS  OF  THE  STUDY  ..................................................................  49  

METHODS  .................................................................................  50  

1.  Experimental  rat  cardiac  transplantation  model  ................  50  2.  Transmission  electron  microscopy  analysis  .......................  51  3.  Immunohistochemistry  and  immunofluorescence            stainings  ..............................................................................  52  

Page 8: Critical role of angiopoietin pathway in Ischemia

8

4.  Histological  evaluation  .......................................................  53  5.  Enzyme-­‐linked  immunosorbent  assay  ................................  53  6.  Cell  culture  assays  ..............................................................  54  7.  Microvascular  leakage  and  perfusion  assay  .......................  54  8.  Gene  expression  analysis  ...................................................  55  9.  Heart  transplant  patients  ...................................................  56  10.  Statistical  analysis  .............................................................  56  

RESULTS  ....................................................................................  57  

1.  Prolonged  ischemic  preservation  promoted  ischemia-­‐          reperfusion  injury-­‐mediated  myocardial  injury  and                inflammation  in  rat  cardiac  allografts  (I)  ............................  57  2.  Prolonged  ischemic  preservation  enhanced  chronic            rejection  (I)  .........................................................................  57  3.  Hypoxia  induced  endothelial  cells  to  release  Ang2  ............  58  4.  Cardiac  transplantation  induces  immediate  changes          in  angiogenic  growth  factor  expression  in  human  and          in  rat  (III)  .............................................................................  61  5.  Targeting  Ang/Tie2  pathway  prevented  Tie2-­‐dependent                    endothelial  destabilization  and  microvascular          dysfunction  induced  by  ischemic  preservation  (II-­‐III)  .........  62  6.  Acute  rejection  can  be  restrained  by  endothelial            inactivation  (III)  ...................................................................  64  7.  Cardiac  allograft  vasculopathy  development  is          correlated  with  preoperative  ischemia  time  and  the          number  of  endothelial  cells  and  pericytes  (I-­‐III)  .................  65  

DISCUSSION  ..............................................................................  69  

YHTEENVETO  .............................................................................  81  

ACKNOWLEDGMENTS  ...............................................................  84  

REFERENCES  ..............................................................................  87  

Page 9: Critical role of angiopoietin pathway in Ischemia

9

ORIGINAL PUBLICATIONS

The  thesis  is  based  on  the  following  original  publications  referred  to  

in  the  text  by  their  Roman  numerals:  

I  Syrjälä  SO,  Keränen  MA,  Tuuminen  R,  Nykänen  AI,  Krebs  R,  

Lemström  KB:  Increased  Th17  rather  than  Th1  alloimmune  response  

is  associated  with  cardiac  allograft  vasculopathy  after  hypothermic  

preservation  in  the  rat.  J  Heart  Lung  Transplant.  2010  29(9):1047-­‐

1057.  

 

II  Syrjälä  SO,  Nykänen  AI,  Tuuminen  R  Raissadati  A,  Keränen  MAI,  

Arnaudova  R,  Krebs  R,  Koh  GY,  Alitalo  K,  Lemström  KB:  Donor  Heart  

Treatment  with  COMP-­‐Ang1  Limits  Ischemia-­‐Reperfusion  Injury  and  

Chronic  Rejection  of  Cardiac  Allografts.  SUBMITTED.  

 

III  Syrjälä  SO,  Tuuminen  R,  Nykänen  AI,  Raissadati  A,  Dashkevich  A,  

Keränen  MAI,  Arnaudova  R,  Krebs  R,  Leow  CC,  Saharinen  P,  Alitalo  K,  

Lemström  KB:  Angiopoietin-­‐2  Inhibition  Prevents  Transplant  

Ischemia-­‐  Reperfusion  Injury  and  Chronic  Rejection  in  Rat  Cardiac  

Allografts.  Am  J  Transplant.  2014  14(5):1096–108.  

   

Page 10: Critical role of angiopoietin pathway in Ischemia

10

ABBREVIATIONS   AMR     antibody-­‐mediated  rejection  Ang     angiopoietin  AP-­‐1     activation  protein  1  APC     antigen-­‐presenting  cell  CCL21     chemokine  (C-­‐C  motif)  ligand  21  CCR7     C-­‐C  chemokine  receptor  type  7  CD     cluster  of  differentiation  CMC     cardiomyocyte  CMV     cytomegalovirus  COMP     cartilage  oligomeric  matrix  protein  COX     cyclooxygenase  CTL     cytotoxic  lymphocyte  DA     Dark  Agouti  rat  DAMP     danger/damage-­‐associated  molecular  pattern  DNA     deoxyribonucleic  acid  DC     dendritic  cell  EC     endothelial  cell  ECM     extracellular  matrix  ELISA     enzyme-­‐linked  immunosorbent  assay  ET-­‐1     endothelin-­‐1  FITC     fluorescein  isothiocyanate  FOXP3     forkhead  box  p3  HAS     hyaluronic  acid  synthase  HIF-­‐1     hypoxia-­‐inducible  factor-­‐1  HLA     human  leukocyte  antigen  HMBG1     high-­‐mobility  box  group  1  ICAM-­‐1     intracellular  adhesion  molecule-­‐1  IFN-­‐g     interferon  gamma  IL     interleukin  IP-­‐10     IFN-­‐g-­‐inducible  protein  10  IRI     ischemia-­‐reperfusion  injury  i.v.     intravenously  KLF-­‐2     Krüppel-­‐like  factor-­‐2  LFA1     leukocyte  function  antigen  1  MHC     major  histocompatibility  complex  NF-­‐AT     nuclear  factor  of  activated  T  cells  NF-­‐κB     nucleic  factor  kappa  B  PAMP     pathogen-­‐associated  molecular  pattern  

Page 11: Critical role of angiopoietin pathway in Ischemia

11

PBS     phosphate-­‐buffered  saline  PC     pericyte  PMNC     polymorphonuclear  cell  Rbc     red  blood  cell  RhoA     Ras  homolog  gene  family  member  A  ROR     retinoic  acid  receptor-­‐related  orphan  receptor  ROS     reactive  oxygen  species  RT-­‐PCR     reverse-­‐transcription  polymerase  chain  reaction  s.c.     subcutaneously  SLO     secondary  lymphoid  organ  SMA     smooth  muscle  actin  SMC     smooth  muscle  cell  STAT     signal  transducer  and  activator  of  transcription  TGF     transforming  growth  factor  Th     T  helper  cell  TLR     Toll-­‐like  receptor  TNFa     tumor  necrosis  factor  alpha  TnT     troponin  T  TOR     target  of  rapamycin  Treg     regulatory  T  cell  VCAM-­‐1     vascular  endothelial  growth  factor-­‐1  VE-­‐cadherin     vascular  endothelial  cadherin  WF     Wistar  Furth  rat        

Page 12: Critical role of angiopoietin pathway in Ischemia

12

ABSTRACT  

 

Heart  transplant  is  disconnected  from  the  circulation  and  preserved  

in   hypothermia   before   transplantation.   Paradoxically,  

revascularization   of   the   heart   transplant   results   in   ischemia-­‐

reperfusion   injury   described   as   myocardial   injury,   microvascular  

dysfunction,  and  innate  and  adaptive  immune  activation.  The  innate  

response   consists   mainly   of   neutrophils   and   macrophages   and  

innate   lymphoid   cells   and  may   lead   to   sustained  adaptive   immune  

response   leading   to   chronic   rejection   and   late   graft   failure.   The  

heart   is   especially   susceptible   for   lack   of   oxygen;   therefore,   the  

ischemic  time  in  clinical  practice  is  critical.  Prolonged  ischemic  time  

–   due   to   long   distance   between   hospitals   or   technically   difficult  

operation   –   is   an   independent   risk   factor   for   primary   graft  

dysfunction  and  chronic  rejection.  

 

Angiopoietin-­‐1   and   -­‐2   (Ang1   and   2)   are   vascular   growth   factors  

binding   to   Tie2   receptor   with   indispensible   role   in   embryonic  

vascular   development,   but   also   in   endothelial   maintenance   in  

mature   vasculature.   Vascular   supporting   cells   constantly   secrete  

Ang1,   which   maintains   the   endothelium   in   quiescent   state.   In  

contrast,  Ang2  is  produced  and  released  from  the  endothelial  cells  in  

response   to   stress   stimuli,   such   as   hypoxia   and   inflammation,  

destabilizing   and   activating   the   endothelium   in   order   to   ease  

inflammatory  cell  accumulation  and  transmigration.    

 

Page 13: Critical role of angiopoietin pathway in Ischemia

13

This  study  utilized  experimental  animal  model  to  describe  the  effect  

of   cardiac   allograft   ischemia-­‐reperfusion   injury   on   innate   immune  

activation   and   adaptive   immune   responses,   such   as   the  

development   of   acute   and   chronic   rejection.   This   study   further  

investigated   the   effects   of   either   activating   or   inhibiting   the  

angiopoietin/Tie2-­‐signaling   pathway   in   this   disease   process.   The  

results   show   that   prolonged   hypothermic   preservation   enhanced  

ischemia-­‐reperfusion   injury-­‐related   innate   immune   activation   and  

adaptive   immune   and   worsened   the   prognosis   of   the   cardiac  

allografts.   Analysis   of   samples   from   clinical   heart   transplant  

recipients   revealed   increase   in  peripheral  blood  Ang2   levels  during  

the  first  day  after  the  operation.  Similar  findings  were  evident  in  the  

recipients  of  rat  cardiac  allografts.  

 

Ang1  was  proven  protective  when  injected  into  allograft  coronaries  

prior  to  the  preservation:  the  treatment  stabilized  the  endothelium,  

reduced   myocardial   injury   and   inflammation,   and   hindered   the  

development   of   chronic   rejection.   Donor   heart   treatment   with  

Ang2-­‐blocking   antibody   had   similar   effects   on   endothelium,   but  

further   inhibited   the   activation   of   endothelial   cells,   acute   and  

chronic   rejection.   Furthermore,   recipient   treatment   with   multiple  

doses   of   the   anti-­‐Ang2   antibody   immediately   after   transplantation  

significantly   prolonged   allograft   survival   and   had   superior   effect  

when  compared  to  heart  donor  treatment.  

 

Page 14: Critical role of angiopoietin pathway in Ischemia

14

Primary   and   late   graft   dysfunction,   either   due   to   ischemia-­‐

reperfusion   injury,  or  acute  and  chronic  rejection,   limit  the  survival  

of   patients   with   solid   organ   transplant.   According   to   this   study,  

targeting   Ang/Tie2-­‐signaling   prevents   early   allograft   endothelial  

activation  and  inflammatory  cell  accumulation.  Of  studied  treatment  

protocols,   early   systemic   recipient   treatment   with   anti-­‐Ang2  

antibody   had   the   most   robust   effect   in   preventing   allograft  

dysfunction.  Ang2-­‐targeted  antibody   treatment  would  have   clinical  

implications   in   induction   therapy   of   transplant   patients,   as   the  

dosage  of  other  immunosuppressive  drugs  may  be  lowered  and  the  

adverse  side  effects  of  these  drugs  avoided.  These  results  encourage  

further   studies   to   determine   the   clinical   significance   of   Ang/Tie2-­‐

pathway  modification.  

   

Page 15: Critical role of angiopoietin pathway in Ischemia

15

INTRODUCTION  

Cardiovascular   diseases   are   the   leading   cause  of   death   in  Western  

countries.   After   advances   in   surgical   techniques   and   the  

introduction   of   immunosuppressive   medication,   cardiac  

transplantation  has  become  plausible  treatment  for  many  end-­‐stage  

heart  diseases.   The   shortage  of  organ  donors   limits   the  availability  

of  heart  transplants  and  presents  challenges  to  donor  management.    

Acute  rejection,  primary  graft  dysfunction,  infections,  malignancies,  

and   chronic   allograft   dysfunction   limit   the   survival   of   cardiac  

transplant   patients.   Of   these,   acute   rejection   and   infections   are  

effectively   managed   with   adjustments   in   immunosuppressive  

medication   and   antibiotics;   however,   the   side   effects   of  

immunosuppressive  drugs  and  the  development  of  chronic  rejection  

continue  to  puzzle  the  clinicians  and  scientists.    

Angiopoietins  are  vascular  growth  factors  with   indispensible  role   in  

embryonic   vascular   development,   but   also   in   the   stabilization   of  

mature  vasculature.  The  angiopoietin  signaling  has  been  suggested  a  

potential   immunomodulatory   pathway   in   regulating   microvascular  

dysfunction  and  inflammation  after  cardiac  transplantation.  

The  purpose  of   this   study  was   to   characterize,   in   experimental   rat  

cardiac   transplantation   model,   the   effects   of   ischemia-­‐reperfusion  

injury  on  transplant   inflammation  and  to  elaborate  the  therapeutic  

potential   of   angiopoietin-­‐1   supplementation   and   angiopoietin-­‐2  

blocking  in  this  setting.  

   

Page 16: Critical role of angiopoietin pathway in Ischemia

16

REVIEW  OF  THE  LITERATURE  

 

1.  Clinical  heart  transplantation  

 

1.1.  Background  

The   first   documentations   of   tissue   replacement   are   based   on   the  

work   of   Gasparo   Tagliacozzi   –   an   Italian   surgeon   performing  

successful   autologous   skin   transplantations   in   the   16th   century.  He  

also   repeatedly   failed  with   allogeneic   transplantations,   introducing  

the   idea   of   rejection   in   his   publication  De   Curtorum   Chirurgia   per  

Instionem  in  1596.  Alexis  Carrel  and  Charles  Guthrie  developed  new  

suturing   techniques   for   transplanting   arteries   and   veins,  

subsequently   enabling   vascular   anastomosis   operations   and   solid  

organ  transplantation  (Carrel  and  Guthrie  1905).  Joseph  Murray  and  

J.  Hartwell  Harrison  performed  the  first  technically  successful  kidney  

transplantation  between  identical  twins   in  1954  (Guild  et  al.  1955),  

raising   further   interest   in   clinical   solid   organ   transplantation.  

Eventually,   the   development   of   heart-­‐lung   machine   enabled  

surgeons  to  perform  open-­‐heart  surgery,  and  Christiaan  Barnard  to  

perform   the   first   allogeneic  heart   transplantation   in  1967   (Barnard  

1967).  The  first  patient  died  unfortunately  due  to  pneumonia  early  

after   the   successful   operation.   Nevertheless,   Barnard   inspired  

others   to   establish   several   heart   transplantation   programs.   Acute  

rejection   resulting   from   tissue   type  mismatching  was   fatal   to  most  

of   the   recipients,   however,   and   the   hype   quickly   subsided.   The  

introduction   of   immunomodulatory   drugs   –   corticosteroids,  

azathioprine,  and  most  importantly  cyclosporine  in  1976  (Borel  et  al.  

Page 17: Critical role of angiopoietin pathway in Ischemia

17

1976)   –   enabled   long-­‐time   survival   of   recipient   and   finally   made  

solid   organ   transplantation   a   plausible   treatment   for   many   end-­‐

stage  diseases.  

 

1.2.  General  histology  of  the  heart  

Histologically,   the   heart   consists   of   myocardium,   supporting  

connective  tissue,  and  vascular  structures.  Vascular  structure  can  be  

divided   into   large   coronary   arteries,   veins,   arterioles,   venules,  

capillaries,  and  lymphatic  vessels.  Lymphatic  vessels  are  responsible  

for   trafficking   inflammatory   cells   from   the   heart   into   secondary  

lymphatic   organs.   The   vasculature   feeds   the   myocardium   with  

oxygen  and  nutrients,  but  also  enables  circulating  inflammatory  cells  

to   enter   the   tissue.   Mesenchyme   derived   pericytes   (PC),   smooth  

muscle  cells  (SMC),  fibroblasts,  and  extra-­‐cellular  matrix  (ECM)  form  

the   connective   tissue   surrounding   and   supporting   the   vascular  

structures   and   the   myocardium.   The   myocardium   is   formed   by  

delicately   organized   and   interconnected   cardiomyocytes   that   are  

responsible  for  the  contractile  function  of  the  myocardium.  

 

Endothelial   cells   (EC)   line   the   inner   lumen   of   the   blood   vessels,  

cardiac  chambers,  and  the  lymphatics  forming  a  barrier  between  the  

circulation  and  the  tissues.  EC  play   important  role   in   inflammation,  

as  inflammatory  cells  must  pass  through  the  endothelium  in  order  to  

reach   target   tissue.   As   a   response   to   inflammation,   EC   express  

adhesion   molecules   on   their   luminal   surface.   These   adhesion  

Page 18: Critical role of angiopoietin pathway in Ischemia

18

molecules   enable   circulating   leukocytes   to   attach   to   vascular  wall,  

slow  down,  and  eventually  transmigrate  through  the  endothelium.  

 

All   cells   express   self-­‐antigens   on   their   cell   surface   with   major  

histocompatibility   complex   (MHC)   class   I   receptors.   Antigen-­‐

presenting  cells  (APC;  macrophages  and  dendritic  cells)  also  express  

MHC  class  II  receptors  and  are  able  to  present  foreign  peptides  –  i.e.  

non-­‐self   antigens   –   to   T   cells   with   these   receptors.   In   MHC-­‐

mismatched   organ   transplantation,   the   donor   tissue   type   differs  

from   the   recipient   tissue   type   –   the   transplant   is   therefore  

allogeneic  and  called  an  allograft.  

1.3.  Indications,  patient  characteristics,  and  outcome  

The  International  Society  of  Heart  and  Lung  Transplantation  (ISHLT)  

Registry   data   show   that   between   2006   and   2012,   22   318   adult  

transplantations   have   been   performed   around   the   world   with   the  

most  common  indications  being  non-­‐ischemic  cardiomyopathy  (54%  

of  the  patients)  and  coronary  artery  disease  (37%).  Other  indications  

were   valvular   (2.8%),   congenital   heart   disease   (2.9%),   and  

retransplantation  (2.5%).  Over  35%  of  patients  were  bridged  to  the  

transplantation   with   mechanical   circulatory   assist   devices.   The  

median  age  of  the  heart  transplant  recipients  was  54  years,  and  the  

median   age   of   the   donors   was   35   years.   The   cause   of   death   for  

organ   donation   was   head   trauma   (46   %),   stroke   (24%),   or   other  

(30%)  (Lund  et  al.  2013).  

 

Page 19: Critical role of angiopoietin pathway in Ischemia

19

The  survival  of  cardiac  transplant  recipients  has  changed  little  during  

the  last  30  years;  the  median  survival  of  cardiac  transplant  recipients  

is   11   years,   however,   patients   surviving   the   first   year   after   the  

transplantation   have   median   survival   of   14   years   (Stehlik   et   al.  

2011).   The   latest   data   shows   that   1-­‐year   survival   of   all   cardiac  

transplant   patients   is   81%,   and   5-­‐year   survival   is   69%.   Figure   1  

demonstrates   the   median   survival   of   transplant   recipients   on  

different   decades.   The   patient   mortality   is   the   highest   during   the  

first   year   after   the   transplantation   due   to   graft   failure   (36%   of  

deaths),   non-­‐CMV   infections   (12%),   acute   rejection   (4%),   or   other  

reasons   (46%).   After   the   first   year,   graft   failure,   cardiac   allograft  

vasculopathy,   and   malignancies   are   the   main   survival-­‐limiting  

factors  (Lund  et  al.  2013).  

                                 Figure   1.   The   median   survival   of   all   cardiac   transplant   patients  operated  between  1982-­‐2011.  Modified  from  Stehlik  et  al  2013.  

Average annual center heart transplant volume (all

Page 20: Critical role of angiopoietin pathway in Ischemia

20

After   the   transplantation,   the   patients   usually   gain   significant  

improvement  of  life  and  can  perform  normally  in  daily  activities.  The  

Registry   data   show,   however,   that   only   35%   of   the   recipients   are  

employed   1   year   after   the   transplantation,   and   46%   at   3   years,  

possibly  due  to  regional  employer-­‐related  factors  (Lund  et  al.  2013).  

 

1.4.  Risk  factors  

Immunologic   and   non-­‐immunologic   factors   pose   risks   to   allograft  

and   patient   survival.   The   donor-­‐derived   non-­‐immunologic   factors  

are   the   cardiovascular   status   of   the   donor,   the   body-­‐mass   index,  

blood   glucose   levels   and   direct   donor   organ   trauma.   Immunologic  

risk   factors   include   donor   brain   death,   tissue-­‐type   mismatch  

between   the   donor   and   the   recipient,   and   recipient   antibody  

production.   Donor   brain   death   produces   systemic   cytokine   storm  

making  the  grafts  even  more  susceptible  to  IRI  and  rejection  (Takada  

et  al.  1998;  Wilhelm  et  al.  2000).  

 

Due   to   the   acute   nature   of   cardiac   diseases   leading   to  

transplantation   and   shortage   of   organ   donors,   cardiac  

transplantations  are  performed  between  donors  and  recipients  with  

mismatching   tissue   type,   or   major   histocompatibility   class   (MHC;  

human  leukocyte  antigen,  HLA,  in  humans).  Furthermore,  due  to  the  

shortage  of  organ  donors,  older  and  sicker  patients  are  accepted  as  

donors.  Episodes  of  acute  rejection  are  common  during  the  first  year  

after  transplantation,  as  25%  of  patients  are  diagnosed  with  mild-­‐to-­‐

severe   acute   rejection.   However,   acute   rejection   is   efficiently  

Page 21: Critical role of angiopoietin pathway in Ischemia

21

treated   with   immunosuppressive   medication,   as   acute   rejection  

accounts   only   4%   of   deaths   during   the   first   year.   The   age   of   the  

donor  has  linear  correlation  with  the  risk  of  mortality  during  the  first  

year   after   the   transplantation.   Similarly,   prolonged   allograft  

ischemia  –  especially  when  exceeding  200  min  –   is  associated  with  

increased  early  mortality  risk.  Other  recipient-­‐derived  risk  factors  for  

early  mortality  are   renal  dysfunction,  and   the  need   for  mechanical  

circulatory  support  before  transplantation.  In  addition  to  the  1-­‐year  

risk   factors,   risk   factors   for  mortality   during   the   first   5   years   after  

transplantation   include   episodes   of   acute   rejection,   the   need   for  

dialysis  or  treated  infection  during  hospitalization,  and  the  absence  

of   certain   immunosuppressive   drugs   1   year   after   the  

transplantation.  Interestingly,  donor  age  and  ischemic  time  continue  

to  affect  the  survival  of  the  recipients  15  years  after  transplantation  

(Stehlik  et  al.  2012).  

 

Immunosuppression  fails,  however,  to  protect  the  allograft  and  the  

recipient   from   several   important   risk   factors:   ischemia-­‐reperfusion  

injury,  chronic  rejection,  the  toxicity  of  immunosuppressive  therapy,  

and   the   exposure   to   infections.   Episodes   of   acute   rejection   are  

linked   to   chronic   rejection   development,   and   depending   on   the  

severity  of   rejection,   even  one  acute   rejection   requiring   treatment  

decreases  the  overall  survival  of  the  patients.    

 

The  use  of   immunosuppressive  medication   is  necessary   to  prevent  

allograft   rejection,   but   inhibition   of   the   normal   function   of   T   cells  

Page 22: Critical role of angiopoietin pathway in Ischemia

22

increases   the   risk   of   infections.   Viral   infections   pose   the   greatest  

risks   to   solid   organ   transplant   recipients,   but   also   to   the   allograft  

itself.  Cytomegalovirus  (CMV)  infection  increases  the  risk  of  allograft  

rejection   and   cardiac   allograft   vasculopathy.   Immunosuppression  

also   increases   the   risk   of   malignancies.   The   incidence   of   non-­‐skin  

malignancies  increases  progressively  and  accounts  for  20%  beyond  5  

years  after  transplantation  (Stehlik  et  al.  2012).  

     

Page 23: Critical role of angiopoietin pathway in Ischemia

23

2.  Ischemia-­‐reperfusion  injury  

 

2.1.  Ischemia  and  hypothermia  

The  procurement  of  heart   transplants   requires   that   the  blood   flow  

to   the   organ   be   stopped   for   the   transportation   and   during   the  

surgery.   Lack  of   circulation   renders   the   transplant   into  oxygen  and  

nutrient   deprived   ischemic   state.   Current   organ   preservation  

techniques   rely   on   cooling   of   the   allograft   (Jacobs   et   al.   2010).  

Ischemia  results  in  accumulation  of  anaerobic  metabolites,  changes  

in   electrolyte   balance,   and   hypoxic   tissue   injury   (McCord   1985).  

Ischemic  time  depends  on  the  distance  between  the  donor  hospital  

and   the   transplantation   center,   and   with   heart   transplantation,   is  

approximately   3   hours   (Stehlik   et   al.   2012).   The   kidney,   however,  

endures   ischemia   better,   and   can   be   transplanted   even   after   16  

hours   of   ischemia   (Southard   and   Belzer   1995).   Transplantation-­‐

related   ischemia   is   divided   into   cold   and  warm   ischemia,   of  which  

cold   ischemia   is   regarded   as   organ   protective   and   warm   ischemia  

organ  damaging  phase.  Physiologically,  during  hypothermia,  the  cell  

metabolism  and  oxygen  consumption  are   reduced,  whereas  during  

warm   ischemia,   the   tissue   remains   metabolically   active   but   lacks  

oxygen   and   nutrients   driving   itself   into   anaerobic   state.  

Furthermore,  hypothermia  protects  endothelial  cells  from  apoptosis  

(Yang   et   al.   2009).   Ischemia,   on   the   other   hand,   results   in  

mitochondrial   damage   and   release   of   reactive   oxygen   species,  

accumulation  of  lactate,  and  downregulation  of  Krüppel-­‐like  factor  2  

(KLF2)  expression,  as  endothelial  shear  stress   is  diminished  (Dekker  

Page 24: Critical role of angiopoietin pathway in Ischemia

24

et  al.  2002).  KLF2  is  essentially  involved  in  vascular  development  and  

sustaining  physiological  quiescence  by  negatively  regulating  vascular  

inflammation,   permeability   and   angiogenesis   (SenBanerjee   et   al.  

2004;  Bhattacharya  et  al.  2005;  Dekker  et  al.  2006;  Lin  et  al.  2006).    

 

Hypoxia-­‐inducible  factor-­‐1  (HIF1)  is  a  transcription  factor  constantly  

produced  in  various  cell  types  in  response  to  tissue  hypoxia  and  it  is  

rapidly   degraded   in   normoxia   by   von  Hippel-­‐Lindau   protein   (Wang  

and  Semenza  1993;  Maxwell  et  al.  1999).  HIF1  affects  wide  range  of  

downstream   proteins,   most   relevant   to   microvascular   dysfunction  

being  vascular  endothelial  growth  factor  (VEGF),  angiopoietin-­‐1,  and  

angiopoietin-­‐2   (Semenza   2014).   VEGF   is   pro-­‐angiogenic   and   pro-­‐

inflammatory  growth   factor,  partly   inducing   its   effects   via   increase  

in  endothelial  permeability  and   recruiting   smooth  muscle   cells  and  

endothelial   cells   to   form   new   vessels   (Yancopoulos   et   al.   2000).  

VEGF   also   induces   adhesion   molecule   expression   on   the   luminal  

surfaces   of   the   EC,   luring   inflammatory   cells   to   the   site   of   it’s  

secretion   (Kim  et  al.  2001a).   Interestingly,  KLF2  plays  major   role   in  

ischemic  allograft  as  it  also  regulates  HIF1  expression  (Kawanami  et  

al.  2009).  Figure  2  describes  the  factors  involved  and  their  interplay.  

2.2.  Reperfusion  and  re-­‐oxygenation  

Revascularization   of   the   transplant   is   vital   for   the   organ   but,  

paradoxically,   results   in   ischemia-­‐reperfusion   injury   (IRI).  

Reperfusion   of   ischemic   tissue   with   oxygenated   blood   results   in  

release  of  lactate,  reactive  oxygen  species  (ROS),  capillary  perfusion  

and  permeability  disorder,  endothelial  activation,  and  inflammatory  

Page 25: Critical role of angiopoietin pathway in Ischemia

25

cell  influx  (Eltzschig  and  Carmeliet  2011;  Lampe  and  Becker  2011).  In  

allogeneic  environment,   initial  macrophage  and  neutrophil   influx   is  

followed  immediately  by  sustained  NK  and  T  cell  infiltration  (El-­‐Sawy  

et  al.  2004).  Therefore,  IRI  of  allogeneic  solid  organ  transplant  differs  

from  IRI  of  other  origin,  such  as  revascularization  in  acute  coronary  

syndrome  and   in  stroke.   IRI  of   transplant   is   referred  as  Tx-­‐IRI   from  

now  on  to  emphasize  the  importance  of  the  difference.  

 

The   IRI   induces   the   release   of   endogenous   molecules   called  

danger/damage-­‐associated   molecular   patterns   (DAMP),   which   are  

structural   proteins   normally   bound   to,   or   part   of   the   extracellular  

matrix.  These  molecules  are  recognized  by  the  TLR-­‐receptors  of  the  

innate   immune   system   cells,  which   in   allogeneic   environment  may  

accelerate  alloimmune  and  rejection  responses.  

Page 26: Critical role of angiopoietin pathway in Ischemia

26

     Figure  2.  The  effects  of  hypoxia  and  ischemia  on  microvascular  wall  in   the   heart.   Ang,   angiopoietin;   COX,   cyclooxygenase;   ET-­‐1,  endothelin-­‐1;  EC,  endothelial  cell;  PC,  pericyte;  CMC,  cardiomyocyte;  ICAM-­‐1,   intracellular   adhesion   molecule-­‐1;   IL,   interleukin;   HIF-­‐1,  hypoxia-­‐inducible   factor-­‐1;   Rbc,   red   blood   cell;   RhoA,   Ras   homolog  gene   family   member   A;   SMA,   smooth   muscle   actin;   TLR,   Toll-­‐like  receptor;  TNF-­‐a,  tumor  necrosis  factor  alpha;  TnT,  troponin  T,  VCAM-­‐1,   vascular   endothelial   growth   factor-­‐1;   VE-­‐cadherin,   vascular  endothelial  cadherin;  VEGF,  vascular  endothelial  growth  factor.      2.3.  Microvascular  dysfunction  

Hypoxia   induces   EC   instability   by   formation   of   cell   membrane  

protrusion   and   disintegration   (Aono   et   al.   2000).   Ischemia   and  

reperfusion   activates   cytoskeletal   modulators   of   endothelial   cells,  

Extracellular space

EC

HIF1a

VEGFAng2

PC

ECCOX-2

PGEPGI 2

2

Capillary lumen

Macrophage

Granulocyte

VCAM-1

IL-1`TNF-_

VEGF

RhoA

_-SMA

Ang1Ang2ET-1

HYPOXIA

HIF1a

TnT

CMC

VEGF

EC

VEGFR-1

Tie2

Macrophage

ICAM-1

TLR2/4

VE-Cadherin

VE-Cadherin

Rbc

Rbc

Page 27: Critical role of angiopoietin pathway in Ischemia

27

but   more   importantly   results   in   PC   constriction   reducing  

microvascular  blood  flow  and  tissue  perfusion  (Yemisci  et  al.  2009).  

Rho  GTPases  Rac1,  and  RhoA  regulate  these  membrane  morphology  

changes,   and   PC   and   SMC   constriction.   In   detail,   RhoA   and   Rac1  

have  opposite  function  in  hypoxia/reoxygenation,  as  RhoA  regulates  

endothelial   barrier   function   and   stress-­‐fiber   formation,   whereas  

Rac1   is   required   for   endothelial   recovery.   (Wang   et   al.   2001)   Rho-­‐

kinase   phosphorylates   adducin   and   therefore,   phosphorylated  

adducin  may  be  regarded  as  a  parameter  for  Rho  activity  (Fukata  et  

al.  1999).  

 

The   perfusion   defect   worsens   allograft   function   and   may   inflict  

fibrosis   development.   Tx-­‐IRI   also   induces   EC-­‐EC   junction  disruption  

and   microvascular   leakage.   Leaky   vessels   are   more   susceptible   to  

tissue  edema  and  inflammatory  cell   influx.  IRI  affects  microvascular  

endothelium,   PC   and   underlying   tissue   resulting   in   microvascular  

dysfunction,   endothelial   barrier   function   disruption   and  

cardiomyocyte  damage  in  cardiac  allografts  (Tuuminen  et  al.  2011).  

The  activation  of  EC  during   ischemia  and  Tx-­‐IRI   induces  expression  

of   endothelial   cell   adhesion   molecules   attracting   circulating  

macrophages,   neutrophils,   NK   cells,   and   T   cells.   Therefore,  

microvascular   dysfunction   results   in   local   inflammation,  

accumulation   of   inflammatory   cells   and   innate   and   adaptive  

immune  activation   in   cardiac  allografts   (Carden  and  Granger  2000;  

Boros  and  Bromberg  2006;  Dumitrescu  et  al.  2007).  

   

Page 28: Critical role of angiopoietin pathway in Ischemia

28

3.  Immunobiology  

 

3.1.  Innate  immune  system  

The  innate  immune  system  consists  of  plasma  complement  system,  

circulating   inflammatory   cells,   such   as   neutrophil   granulocytes,  

monocytes,  and  natural  killer  (NK)  cells,  and  of  circulating  and  tissue  

residing  macrophages,   and  dendritic   cells   (Janeway  and  Medzhitov  

2002).   It   is   congenital   first-­‐line  defense  against   invading  pathogens  

but   is   also   responsible   for   the   cleaning   and  degradation  of   injured  

tissue  (Xu  et  al.  2006).  The  complement  system  may  directly  destroy  

pathogens   or   help   the   other   inflammatory   cells   to   do   so   (Müller-­‐

Eberhard  1986).  

 

Neutrophils  and  monocytes/macrophages  are  phagocytes  capable  of  

internalizing   and   ingesting   pathogens   and   particles.   They   originate  

from  same  common  myeloid  progenitor  cells  and  subsequently  from  

myeloblasts.   Neutrophils   are   the   first-­‐responders   to   inflammation,  

and  migrate  to  the  site  of  inflammation  within  minutes  with  the  help  

of  IL-­‐8-­‐  and  C5d-­‐mediated  chemotaxis.  They  also  need  to  adhere  to  

the   vascular   wall   and   transmigrate   through   the   endothelium   by  

interacting  with  selectins,  integrins,  and  adhesion  molecules  –  most  

predominantly  P-­‐selectin,   LFA-­‐1,   ICAM-­‐1,  and  VCAM-­‐1.  Neutrophils  

have  characteristic  cytoplasmic  granules  containing  substances,  such  

as  myeloperoxidase   (MPO),   lysozyme,   and   collagenase   that   enable  

them   to   degrade   phagocytized   bacteria   and   obliterate   internalized  

particles  (Kolaczkowska  and  Kubes  2013).  

Page 29: Critical role of angiopoietin pathway in Ischemia

29

Macrophages  participate  in  host’s  first-­‐line  defense  against  invading  

pathogens,   but   also   take  part   in   scavenging   aging   cells   and  debris.  

Furthermore,   macrophages   are   able   to   boost   adaptive   immune  

response  in  transplantation  by  presenting  internalized  antigens  to  T  

cells,  but  also  directly  attacking  allogeneic  T  cells  (Xu  et  al.  2006;  Liu  

et  al.  2012;  Canton  et  al.  2013).    

 

Toll-­‐like  receptors  (TLR)  of  innate  immune  cells  recognize  pathogen-­‐

associated   molecular   patterns   (PAMP),   such   as   bacterial  

lipopolysaccharide,   lipoproteins,   peptidoglycan,   and   flagellin,   viral  

DNA  and  RNA  (Aderem  and  Ulevitch  2000).  When  encountered  with  

appropriate   ligand,   TLR   activates   innate   immune   cells   to   induce  

adaptive  immune  responses.  Of  10  identified  functional  human  TLR  

(13   in   mouse   and   rat),   TLR2   and   4   also   recognize   endogenous  

structural  molecules  exposed  during  tissue  injury  (Roach  et  al.  2005;  

Land   2011).   These   danger/damage-­‐associated   molecular   patterns  

(DAMP)   include   biglycan,   fibrinogen,   fibronectin,   hyaluronic   acid  

(HA),   heat-­‐shock   proteins   and   high-­‐mobility   group   box   1   (HMGB1)  

(Smiley  et  al.  2001;  Tsan  and  Gao  2004;  Schaefer  et  al.  2005;  Yu  et  

al.   2006).   TLR2   or   4   activation   on   APC   surface   results   in   MyD88-­‐

dependent   NF-­‐kB   and   mitogen-­‐activated   protein   kinase   signaling,  

and  innate  immune  activation  (Barton  and  Medzhitov  2003).  Innate  

immune   activation   includes   DC   maturation   seen   as   increased  

superficial   co-­‐stimulatory  molecule   expression,   and   release   of   pro-­‐

inflammatory   chemokines   and   cytokines   (Figure   3)   (Janeway   and  

Medzhitov  2002;  Rossi  and  Young  2005;  Kaczorowski  et  al.  2007).  

Page 30: Critical role of angiopoietin pathway in Ischemia

30

                       Figure  3.  The  activation  and  maturation  of   immature  dendritic  cells  upon   encountering   of   danger/damage-­‐associated   molecular  patterns,  and  allogeneic,  foreign  peptides.  The  DC  recognize  DAMPs  with  TLR-­‐receptors  and  begin  expressing  proinflammatory  cytokines  through  NF-­‐kB  transcription   factor  activation.  CCR7,  C-­‐C  chemokine  receptor   type   7;   CD,   cluster   of   differentiation;   DC,   dendritic   cell;  DAMP,  danger/damage-­‐associated  molecular  patterns;  MHC,  major  histocompatibility  complex;  NF-­‐kB,  nucleic  factor  kappa  B;  TLR,  Toll-­‐like  receptor.        Maturation   increases   the   superficial   expression   of   costimulatory  

molecules   CD80,   CD83,   CD86,   CD40.   DC   migration   to   secondary  

lymphoid  organs  (SLO),  such  as  lymph  nodes  and  spleen  is  facilitated  

by  increased  expression  of  CCR7  –  a  receptor  for  constantly  secreted  

lymphatic   chemokine   CCL19   and   21   (Banchereau   and   Steinman  

1998;   Förster   et   al.   2008).   Activation   of   DC   is   important   step   in  

linking  innate  and  alloimmune  responses  (Figure  4).  

   

TLR4 CD80

MHC-II

CD83

CD86

CD40

CCR7

MHC-II

DAMPs

Foreign

antigen

NFgB

Immature DC Mature DC

Page 31: Critical role of angiopoietin pathway in Ischemia

31

                                   Figure   4.   Cross-­‐linkage   of   innate   and   adaptive   immune   responses  during   ischemia-­‐reperfusion   injury.   CCL21,   Chemokine   (C-­‐C   motif)  ligand   21;   CCR7,   C-­‐C   chemokine   receptor   type   7;   CD,   cluster   of  differentiation;   CMC,   cardiomyocyte;   DAMP,   danger/damage-­‐associated  molecular  pattern;  DC,  dendritic  cell;  EC,  endothelial  cell;  IFN-­‐g,   interferon  gamma;   IL,   interleukin;  PMNC,  polymorphonuclear  cell;   Th,   T   helper   cell;   TLR,   Toll-­‐like   receptor;   VEGF,   vascular  endothelial   growth   factor;   VEGFR,   vascular   endothelial   growth  factor  receptor.      3.2.  Alloimmune  system  

The  alloimmune  system  consist  of  B  and  T  cells,  of  which  the  latter  

can   be   further   divided   into   CD4+   T   helper   cells   (Th),   and   CD8+  

cytotoxic   lymphocytes   (CTL).  The  CD4+  T  cells  are   further  classified  

into   subtypes  presented   in  Table  1.  CD4+CD25+FoxP3+   subset  of  T  

cells   is   a   crucial   cell   population   for   immunological   balance   and  

Capillary lumen

SMC

TLR2TLR4

DC

NF-gB

Macrophage

CCL21

SLO

Th17expansion

DC

IL-6VEGF-A

Th1expansion

IL-2

IFN-a

IL-12

IL-23

Th17

IL-17

IL-6IL-8

CD4+

CD4+

CD4+

CD4+

VEGFR-2

CCR7

VEGFR-3

Cardiac parenchyma

TLR2TLR4

DAMPs

VEGF-C

CD80

CD83

IL-1IL-6TNF-_

EC

CMC

PMNC

Page 32: Critical role of angiopoietin pathway in Ischemia

32

tolerance.   These   cells   are  named   regulatory   T   cells   (Treg)   for   their  

suppressive  properties  (Wood  et  al.  2012;  Lazarevic  et  al.  2013).  

 

In   direct   allorecognition,   the   donor-­‐derived   passenger   DC   and  

macrophages   of   the   allograft   travel   to   SLO   and   present   donor  

peptides   with   MHC   class   I   receptors   directly   to   cytotoxic   CD8+   T  

cells,   or   with  MHC   class   II   to   naïve   CD4+   T-­‐cells.   T   cells   may   also  

recognize  foreign  peptides  directly  on  allograft  endothelial  cell  MHC  

class  I  receptors  (Ali  et  al.  2013).  

 

In  indirect  allorecognition,  once  the  recipient  APC  encounter  foreign  

protein,  they  internalize  it,  activate  and  increase  their  expression  of  

CD80,  CD83,  CD86,  and  CCR7  on  their  surfaces  and  migrate  to  SLO  to  

present  the  internalized  foreign  material  to  naïve  CD4+  T  cells  with  

MHC   class   II   receptors   (Janeway   and   Medzhitov   2002;   Rossi   and  

Young  2005;  Kaczorowski  et  al.  2007).  The  T  cells  recognize  peptides  

presented  in  MHC  class  II  receptors  with  their  T  cell  receptors  (TCR),  

and   if   accompanied   with   co-­‐stimulatory   signal   between   CD28   and  

CD80/CD86,   the   transcription   factor   of   activated   T   cells   (NF-­‐AT)   is  

activated   by   calcineurin.   This   leads   to   interleukin-­‐2   (IL-­‐2)  

transcription   and,   by   paracrine   signaling   through   IL-­‐2R,   to   clonal  

proliferation  of  alloreactive  T  cells  (Figure  5)  (Lee  et  al.  1994).  

 

In   a   relatively   lately   discovered   phenomenon,   semi-­‐direct  

allorecognition,  donor-­‐derived  peptides  are  presented  unprocessed  

Page 33: Critical role of angiopoietin pathway in Ischemia

33

to   T   cells   by   recipient   APC.   This   constitutes   a   small   minority   of  

allorecognition  and  probably  has  little  clinical  significance.  

   Table   1.   Different   T   helper   cell   subsets.   IL,   interleukin;   IFN,  interferon;   STAT,   signal   transducer   and   activator   of   transcription;  TGF,  transforming  growth  factor;  ROR,  retinoic  acid  receptor-­‐related  orphan  receptor;  FOXP3,  forkhead  box  p3.    T  cell  subtype  

Function  normally  /    In  transplantation  

Transcription  factors  and  hallmark  cytokines    

Th1   Cellular  immune  defence;  boosts  macrophage  and  CD8+  T  cell  killing  ability  /  Cell-­‐mediated  rejection    

T-­‐bet;  IL-­‐2,  IL-­‐12,  IFN-­‐γ,  STAT4  

Th2   Humoral  immune  defence;  B  cell  stimulation  /  Antibody-­‐mediated  rejection    

GATA3;  IL-­‐4,  IL-­‐10,  STAT6  

Th3   Mucosal  immunity  in  the  gut  /  unknown    

IL-­‐4,  IL-­‐10,  TGF-­‐β  

Th17   Anti-­‐microbial  immunity  /  Cell-­‐mediated  rejection    

RORγ, STAT3;  IL-­‐6,  IL-­‐17,  IL-­‐23    

Treg   Immune  balance  /  Tolerance?    

FOXP3;  IL-­‐10,  TGF-­‐b    

                   

Page 34: Critical role of angiopoietin pathway in Ischemia

34

                           Figure  5.  Antigen  presentation  and  costimulation  between  dendritic  cell   (DC)   and  naïve   CD4+   T   cell.   If   accompanied  with   costimulatory  signal,   antigen   presentation   results   in   clonal   expansion   of  alloreactive   T   cells.   CD,   cluster   of   differentiation;  DC,   dendritic   cell;  IL,  interleukin;  NF-­‐AT,  nuclear  factor  of  activated  T  cells;  MHC,  major  histocompatibility  complex.      Alloreactive   cytotoxic   CD8+   T   cells   are   the   prime   effector   cells  

responsible  for  allograft   injury  and  may   inflict  graft  rejection   in  the  

absence   of   CD4+   T   cell   help.   Acute   rejection   is   considered   to  

originate  from  direct  allorecognition  and  from  MHC  class-­‐I  signaling  

between  CD8+  T  cells  and  allogeneic  cells,  whereas  chronic  rejection  

is   indirect   allorecognition-­‐mediated   (Liu   et   al.   1993;   Rogers   and  

Lechler  2001;  Schmauss  and  Weis  2008).  

 

Th17  T  cells  produce  mainly  IL-­‐17A  and  participate  normally  in  host  

pathogen   defense,   but   also   in   multiple   autoimmune   diseases   and  

chronic   inflammation.   IL-­‐17A   has   been   linked   to   neutrophil  

multiplication   and   recruitment   via   granulocyte   colony-­‐stimulating  

MHC-II

CD40

TCR

CD40L

Antigen

CD80/86

CD28

Mature DCNaïve CD4+ T cell

NF-AT

IL-2R

IL-2Calcineurin

Page 35: Critical role of angiopoietin pathway in Ischemia

35

factor  and  CXC  chemokines  (Laan  et  al.  1999;  Ley  et  al.  2006).  IL-­‐23  

signaling  via  IL-­‐23R  is  crucial  for  Th17  T  cells  effector  function  and  IL-­‐

17   mediated   inflammation   (Korn   et   al.   2009).   The   role   of   Th17  

response   in   allograft   rejection   was   demonstrated   with   T-­‐box21-­‐

deficient  mice,  which  lack  Th1  alloimmune  response.  The  findings  of  

Yuan   et   al.   suggest   that   the   absence   of   Th1-­‐transcription   factor   T-­‐

box21   (murine  analog   for  Tbet)   results   in  clonal  expansion  of   IL-­‐17  

producing   T   cells   and   accelerated   allograft   rejection.   (Yuan   et   al.  

2008)   Furthermore,   in  wild-­‐type  mice,   TLR-­‐signaling   promotes   IL-­‐6  

and   IL-­‐17-­‐dependent   acute   rejection   bridging   Th17   response   and  

innate  immune  activation  (Chen  et  al.  2009).  

 

Tregs  are  a  subset  of  T  cells  naturally  originating  from  thymus  with  

important   role   in   balancing   immune   system   during   everyday   life,  

especially   during  microbial   infections   and   pregnancy.   Disruption   in  

Treg   population   may   result   in   unwanted   conditions   such   as  

autoimmune  diseases,  allergies,  and  tumor  immunity.  Furthermore,  

generation   of   alloantigen-­‐specific   Tregs   may   induce   transplant  

tolerance   by   inhibiting   costimulatory   signals   of   T   cells   and   thus  

preventing   generation   of   alloreactive   effector   T   cells.   (Sakaguchi  

2005;  Ochando  et  al.  2006)  Recent  findings  suggest  clinical  potential  

for   adoptive   transfer   of   ex   vivo-­‐expanded   antigen-­‐specific   Tregs  

generated   from   naïve   T   cells   in   prevention   of   allograft   rejection  

(Takasato  et  al.  2014).  

Page 36: Critical role of angiopoietin pathway in Ischemia

36

3.5.  Acute  rejection  

Fully   allogeneic   transplant   is   foreign   tissue   to   the   recipient   and,  

therefore,   is   considered  a   threat.   PMC,  macrophages,   and  NK   cells  

are   the   first   allograft-­‐infiltrating   inflammatory   cells   early   after   the  

reperfusion.   Leukocyte   infiltration   is   physiological   response   to   IRI  

and   occurs   both   in   syn-­‐   and   allografts,   and  may   inflict   early   graft  

injury  without   antigen  processing  and  allorecognition.   In   syngrafts,  

this  acute   inflammation  subsidizes   in  hours.   In  allografts,  however,  

the  direct  and  indirect  allorecognition  produces  alloreactive  effector  

T-­‐cells,   which   invade   the   allograft.   The   presence   of   CD8+   T   cells  

boosts   innate   immune   mediated   inflammation   and   inflicts  

prolonged  neutrophil-­‐mediated  response.  The  CD8+  T-­‐cells  are  also  

responsible   for   direct,   MHC   class-­‐I-­‐mediated   destruction   of  

allogeneic  tissue  (El-­‐Sawy  et  al.  2004).  

 

Hyperacute   rejection   of   a   solid   organ   transplant   is   a   rare  

phenomenon   seen   in   sensitized   recipients   with   donor-­‐specific  

antibodies,   resulting   from   pre-­‐existing   antibodies   against  

incompatible   ABO   blood   group   or   HLA-­‐antigens.   The   allograft   is  

destroyed   within   minutes   by   thrombosis   and   devascularization.  

Hyperacute  rejection   is   the  main   limitation  for  xenotransplantation  

(Williams  et  al.  1968;  Mengel  et  al.  2012).  

 

Acute  cellular   rejection  results   from  alloreactive  T  cell  proliferation  

and  infiltration  after  allorecognition.  CD8+  T  cells  and  NK  cells  attack  

foreign  cells  either  through  foreign  peptide  encountering  with  MHC  

Page 37: Critical role of angiopoietin pathway in Ischemia

37

class   I  receptor  or  via  “non-­‐self”  recognition.  CD4+  Th1-­‐type  T  cells  

and  macrophages   are   responsible   for   delayed   hypersensitivity   and  

inflammation.  CD4+  Th2-­‐type  T  cells  and  B  cells  are  responsible  for  

antibody-­‐mediated   rejection.   (Rogers   and   Lechler   2001;   Lakkis   and  

Lechler  2013)  Table  2.  describes   the  2004   revised  grading  of  acute  

cellular   and   antibody-­‐mediated   rejection   in   heart   transplants  

according  to  ISHLT  consensus.    

 Table   2.   International   Society   of   Heart   and   Lung   Transplantation  standardized  grading  of  cardiac  biopsy  for  acute  cellular  rejection  (R)  and   antibody-­‐mediated   rejection   (AMR).  Modified   from   Stewart   et  al.  J  Heart  Lung  Transplant,  2005.    Grade  0   No  rejection  Grade  1  R,  mild   Interstitial  and/or  perivascular  

infiltrate  with  up  to  1  focus  of  myocyte  damage  

Grade  2  R,  moderate   Two  or  more  foci  of  infiltrate  with  associated  myocyte  damage  

Grade  3,  R  severe   Diffuse  infiltrate  with  multifocal  myocyte  damage  ±  edema,  ±  hemorrhage  ±  vasculitis    

 AMR  0     Negative  for  acute  antibody-­‐

mediated  rejection  No  histologic  or  immunopathologic  features  of  AMR    

AMR  1    

Positive  for  AMR  Histologic  features  of  AMR  Positive  immunofluorescence  or  immunoperoxidase  staining  for  AMR  (CD68+,  C4d+)    

 

Page 38: Critical role of angiopoietin pathway in Ischemia

38

3.6.  Immunosuppression  

In  order  to  prevent  acute  allograft  rejection  and  to  prolong  allograft  

survival,   the   alloimmune   response   is   suppressed   with   various  

immunosuppressive   drugs   (Table   3).   Usual   clinical   protocol   with  

triple-­‐drug   maintenance   therapy   consists   of   steroids,   calcineurin  

inhibitor   cyclosporine   A   or   tacrolimus,   and   of   antimetabolite  

azathioprine   or   mycophenolate   mofetil,   or   T   cell   proliferation  

inhibitor   sirolimus   or   everolimus.   Induction   therapy   with   anti-­‐

thymocyte  globulin  or  with  anti-­‐IL2R-­‐antibodies  results   in  profound  

perioperative   immunosuppression.   With   immunosuppressive  

medication,   acute   T-­‐cell-­‐mediated   rejection   is   preventable.   The  

immunosuppressive  drugs,  however,  have  undesirable   side  effects,  

and  require  constant  monitoring.  High   level  of   immunosuppression  

also   increases   the   risk  of  opportunistic   infections   (Lindenfeld  et   al.  

2004a;  2004b;  Baran  2013).  

     

Page 39: Critical role of angiopoietin pathway in Ischemia

39

Table  3.  Immunosuppressive  drugs,  their  mechanism  of  action,  and  clinical  use.  AP-­‐1,  activation  protein-­‐1;  IL,  interleukin;  NF-­‐kB,  nucleic  factor  kappa  B;  TOR,  target  of  rapamycin.    Drug   Mechanism   Use  Corticosteroids   AP-­‐1,  NF-­‐kB  

inhibition  Induction,  maintenance,  antirejection  therapy    

Azathioprine   Cell  cycle  inhibitor  of  T  (and  B)  cells    

Maintenance  therapy  (to  lesser  extent)  

Cyclosporine  A   Calcineurin  (and  subsequently  IL-­‐2)  inhibition    

Maintenance  therapy  

Tacrolimus   Calcineurin  (and  subsequently  IL-­‐2)  inhibition    

Maintenance  therapy  

Mycophenolate  mofetil  

Inhibitor  of  T  and  B  cell  proliferation    

Maintenance  therapy  

Sirolimus   TOR-­‐dependent  inhibition  of  lymphocyte  proliferation    

Maintenance  therapy  

       

Page 40: Critical role of angiopoietin pathway in Ischemia

40

3.7.  Chronic  rejection    

Chronic   rejection   in   cardiac   allografts   is   described   histologically   as  

cardiac   allograft   vasculopathy   (CAV)   and   clinically   as   allograft  

dysfunction   resulting   probably   from   prolonged   and   sustained  

chronic  inflammation  driven  by  ischemic  injury  and  acute  rejection,  

and   from   subsequent   vascular   remodeling.   The   pathogenesis   of  

chronic   rejection,   however,   is   poorly   understood   but   prognostic  

factors   include  preoperative  graft   ischemia   time,  episodes  of  acute  

rejection,   donor   age,   and   cytomegalovirus   infection.   In   contrast   to  

common   coronary   artery   disease,   allograft   vasculopathy   is  

histologically   described   as   diffuse   luminal   occlusion   of   cardiac  

arteries  and  fibrosis  development.  The  incidence  of  cardiac  allograft  

dysfunction  increases  over  time  and  limits  the  survival  of  transplant  

patients.  Current  immunosuppressive  treatment  fails  to  prevent  the  

development   of   vasculopathy   and   cardiac   fibrosis   and   subsequent  

dysfunction,  and  the  only  effective   treatment   for   the  disease   is   re-­‐

transplantation  (Tanaka  et  al.  2005;  Stehlik  et  al.  2012).  

 

The  scientific  community  generally  considers  indirect  allorecognition  

and   sustained   Th1-­‐   and   IFN-­‐g-­‐mediated   alloimmune   inflammation  

the  driving   force  behind   the  development  of   vasculopathy.   Several  

other   factors,   however,   contribute   to   vascular   inflammation   and  

microvascular   dysfunction   leading   subsequently   to   graft   failure  

(Figure   6).   Therefore,   a   combination   of   chronic   inflammation   and  

response-­‐to-­‐injury  better  describes  the  phenomenon.  

   

Page 41: Critical role of angiopoietin pathway in Ischemia

41

                                                   Figure   6.   The   interactions   between   factors   affecting   the  pathogenesis   of   cardiac   allograft   dysfunction   and   vasculopathy  (modified  from  Schmauss  and  Weis,  Circulation  2008).    Early  innate  immune  response  and  following  alloimmune  activation  

described   above   are   the   initiating   events   in   pathological   vascular  

remodeling.   Inflammatory   cytokines   IL-­‐1,   IL-­‐6,   and   TNF-­‐α   promote  

vascular   inflammation   and   SMC   proliferation.   Microvascular  

dysfunction   after   cardiac   transplantation   results   in   disruption   in  

endothelial   barrier   function   and  microvascular   leakage,   but   also   in  

Alloimmune-independent factors

Alloimmune response

- Brain death- Preservation injury- Ischemia-reperfusion injury- Innate immune response

Direct allorecognition(donor DC)

Monocyte/DCinfiltration/activation

Indirect allorecognition(recipient APC)

T cell activation/clonal expansion

CD8+ T cell cytotoxicityB cell antibody production

Proinflammatory cytokine release

Vascular inflammationEndothelial cell activation - expression of MHC-II, TNF-a, Ang2 - adhesion molecules - chemokines, cytokines

Endothelial dysfunctionJunctional disruption, apoptosis,SMC proliferation, vascular leakage,no-reflow, endothelial-mesenchymaltransition

Recipient-dependent factors- Metabolic disorders (hyperlipidemia, hyperglycemia)- Hypertension

Transplant coronary artery disease (TxCAD)

Infection (CMV)- Systemic and vascular cytokine release- Vascular oxidative stress- eNOS-dysregulation

Inappropriate repairmechanisms- Dysfunction of hematopoietic/ circulating progenitor and cardiac stem cells- Dysregulated intragraft angiogenesis

Page 42: Critical role of angiopoietin pathway in Ischemia

42

no-­‐reflow  phenomenon.  No-­‐reflow  occurs  as  a  response  to  ischemic  

insult   when   the   small   arterioles   and   capillaries   remain   contracted  

and  blood  flow  to  the  tissue  is  impaired,  possibly  due  to  contraction  

of   endothelial   cells   and   pericytes.   Due   to   loss   of   capillaries   and  

myocardial  inflammation,  the  myocardium  is  gradually  replaced  with  

fibrotic   tissue,   accompanied   with   impaired   contractile   function.  

(Reffelmann  et  al.  2003;  Schmauss  and  Weis  2008;  Tuuminen  et  al.  

2011)   Chronic   cardiac   allograft   dysfunction  manifests   histologically  

as   cardiac   fibrosis   and   allograft   vasculopathy,   which   in   turn   is  

characterized   clinically   by   diastolic   dysfunction   and   heart   failure  

(Hollenberg  et  al.  2001;  Haddad  et  al.  2012).    

 

Pollack   et   al.   (2013)   have   recently   reviewed   extensively   the  

diagnostic   methods   of   evaluating   CAV.   Diagnosis   of   CAV   is  

somewhat   complicated,   as   the   innervation   of   the   heart   is  

interrupted  after  the  transplantation  and  the  recipients  do  not  feel  

any  heart-­‐related  chest  pain.  The  progressive  intimal  stenosis  results  

ultimately   in   graft   failure   and,   therefore,   the   clinical   symptoms  

implicating   problems   appear   too   late.   Current   clinical   protocols  

usually  embrace   routine   transvenous  biopsies   taken   regularly   after  

the   transplantation.   Angiography   is   the   most   usual   method   of  

evaluating   coronary   arteries,   however,   the   method   is   highly  

susceptible  for  interpretation  error,  as  the  occluded  arteries  seem  to  

be  in  better  shape  than  they  actually  are.  Intravenous  ultrasound  is  

the   most   reliable   method   of   evaluating   the   degree   of   intimal  

occlusion.   Cardiac   magnetic   resonance   is   novel   method   of  

Page 43: Critical role of angiopoietin pathway in Ischemia

43

evaluating   risk   of   CAV   development   and   CAV-­‐associated   changes,  

but  does  not  directly  detect  or  determine  severity  of  CAV  (Hofmann  

et  al.  2014;  Braggion-­‐Santos  et  al  2014).  

 

The   incidence   of   CAV   increases   over   time.   According   to   the   ISHLT  

Registry   data,   approximately   10%   of   patients   are   diagnosed   with  

CAV  one  year  after  the  transplantation.  At  ten  years,  approximately  

half  of  the  patients  have  developed  CAV-­‐associated  changes.  (Stehlik  

et   al.   2012)   Therapeutic   options   in   the   treatment   of   CAV   remain  

limited,   as   coronary   dilatation   with   angioplasty   or   stenting,   and  

coronary  by-­‐pass  operations  have  resulted  in  high  morbidity  and  are  

nowadays   considered   as   palliative   procedures.   (Halle   et   al.   1995;  

Bader  et  al.  2006)  Therefore,  re-­‐transplantation  remains  as  the  only  

definitive   treatment   for   CAV,   however,   patients   that   have  

undergone   re-­‐transplantation   have   reduced   survival   after   the  

operation  (Srivastava  et  al.  2000;  Johnson  et  al.  2007).  

       

Page 44: Critical role of angiopoietin pathway in Ischemia

44

4.  Angiopoietin  pathway  

 

4.1.  General  

The   angiopoietins   are   vascular   growth   factors   consisting   of  

angiopoietin-­‐1,  -­‐2,  and  -­‐4  (Ang1,  Ang2,  Ang4),  of  which  Ang1  and  -­‐2  

act   through  their   shared  receptor   tyrosine  kinase  Tie2   (Jones  et  al.  

2001).  The  physiological  role  of  Ang4  has  not  yet  been  defined.  Tie1  

and   Tie2   are   endothelial   cell   membrane   receptors   with   high  

structural  homology.  Although  discovered  earlier  than  Tie2  receptor,  

little   is   known   about   the   physiological   role   of   Tie1   receptor.   Tie1  

seems   crucial   for   endothelial   cell   survival,   but   not   vasculogenesis  

(Partanen  et  al.  1996).  Tie1  has  been  suggested  to  have  blood  flow-­‐

dependent   impact   on   arteriosclerotic   plaque   formation,   as   Tie1  

deletion  reduces  arteriosclerotic  lesion  formation  (Woo  et  al.  2011).  

Tie1   and   Tie2   both   have   cytoplasmic   tyrosine   kinase   domains   and  

are   composed   of   two   extracellular   IgG-­‐like   domains,   followed   by  

three   EGF-­‐like   domains,   another   Ig-­‐like   domain,   and   three  

fibronectin  type  III  domains  (Figure  8).  

 

Angiopoietins  regulate  physiological  microvascular  integrity  but  also  

pathophysiological   dysfunction.   Ang/Tie2-­‐signaling   is   essential   for  

embryonic  development,  as  Tie2-­‐defiency  results  in  early  embryonic  

lethality  (Davis  et  al.  1996).  

   

Page 45: Critical role of angiopoietin pathway in Ischemia

45

                                           Figure  8.   The  angiopoietin/Tie2   signaling   system.  Ang1  and  2  both  ligate   to   the   same   Tie2   receptor   tyrosine   kinase.   Ang2   acts   as   a  context-­‐dependent   agonist   or   antagonist   to   the   receptor.   Tie2  phosphorylation   results   in   activation   of   PI3K/Akt   pathway   and  downregulation   of   FOXO1   transcription   factor,   which   in   turn  downregulates  Ang2  expression   (modified   from  Augustin   et   al.  Nat  Rev  Mol  Cell  Biol  2009).    

4.2.  Angiopoietin-­‐1  

Ang1   has   essential   role   in   embryonic   vascular   development   and  

vessel   maturation;   Ang1-­‐deficient   mice   die   early   during   the  

embryogenesis   (Hanahan   1997).   Ang1   stabilizes   the   immature   and  

leaky   vessels   by   promoting   interactions   between   the   ECs   and  

perivascular  structures   (Gamble  et  al.  2000;  Saharinen  et  al.  2008),  

and   by   regulating   the   endothelial   cytoskeleton   (Mammoto   et   al.  

Ang1 Ang2

Ig-like domain

EGF-like domain

Fibronectin type III

Tyrosine kinase

Tie2 Tie2

PI3K/Akt

FOXO1

???

Page 46: Critical role of angiopoietin pathway in Ischemia

46

2007).   Ang1   is   constitutively   secreted   by   endothelial   supporting  

cells,  such  as  pericytes  and  SMC,  but  also  by  fibroblasts,  and  several  

types   of   tumor   cells   (Davis   et   al.   1996;   Stratmann   et   al.   1998;  

Sugimachi  et  al.  2003).  

 

Tie2  phosphorylation  by  Ang1   induces   signaling   cascade   that   leads  

to   recruitment   of   p85   subunit   of   phophoinositide   3-­‐kinase   (PI3K),  

and  the  activation  of  transcription  factor  Akt.  Akt  signaling  promotes  

survival-­‐associated   pathways,   and   suppresses   apoptotic   pathways.  

Interestingly,   Akt   also   inactivates   Ang2-­‐targeting   forkhead  

transcription   factor   FOXO1   resulting   in   negative   feedback   loop   on  

Ang2   production.   On   the   other   hand,   inactivation   of   PI3K/Akt  

signaling   activates   FOXO1   and   increases   Ang2   production   and   EC  

destabilization   (Papapetropoulos   et   al.   2000;   Kontos   et   al.   2002;  

Daly  et  al.  2004;  DeBusk  et  al.  2004).    

 

Ang1/Tie2-­‐signaling  regulates  EC-­‐EC  permeability  by  inhibiting  VEGF-­‐

dependent   adherens   junction   protein   vascular   endothelial   (VE)-­‐

cadherin   internalization   from   junctional   complexes   (Gavard   et   al.  

2008).  In  addition,  Ang1  and  Tie2  form  junctional  complexes  further  

stabilizing   endothelium,   but   also   its   binding   to   extracellular  matrix  

(Saharinen  et  al.  2008).  

 

Ang1   acts   as   an   anti-­‐inflammatory   cytokine   as   it   inhibits   leukocyte  

recruitment   by   preventing   VEGF-­‐induced   endothelial   adhesion  

molecule  expression  and  after  LPS  induced  endotoxic  shock  (Kim  et  

Page 47: Critical role of angiopoietin pathway in Ischemia

47

al.  2001b;  Witzenbichler  et  al.  2005).  In  addition,  Ang1  induces  KLF2  

expression   on   endothelial   cells   counteracting   VEGF-­‐mediated  

VCAM-­‐1   expression   and   inflammatory   cell   adhesion   (Sako   et   al.  

2009).   Furthermore,   Ang1/Tie2-­‐signaling   inhibits   NF-­‐kB-­‐mediated  

inflammation   via   A20   binding   inhibitor   of   NF-­‐kB   (ABIN)   protecting  

the  endothelial  cells  from  inflammation  and  apoptosis  (Hughes  et  al.  

2003;  Tadros  et  al.  2003).  

 

4.3.  Angiopoietin-­‐2  

Originally  discovered  1997  as  Ang1  and  Tie2  receptor  antagonist,  the  

complex   mechanism   of   Ang2   physiology   remains   somewhat  

unknown   (Maisonpierre   et   al.   1997;   Eklund   and   Saharinen   2013).  

Ang2  is  not  crucial  for  embryogenesis,  as  seemingly  normal  mice  are  

born   with   Ang2-­‐knockout   background.   However,   the   mice   lacking  

Ang2  soon  develop  severe  chylous  ascites  and  die  postnatally.  Ang2  

is   normally   stored   in   the   Weibel-­‐Palade   bodies   of   EC   with  

endothelin-­‐1   (ET-­‐1)   and   von   Willebrand   factor   and   IL-­‐8,   and   is  

exocytosed   upon   stress,   i.e.,   in   ischemia,   shear   stress,   and   VEGF.  

Hypoxia   induced   RhoA   activation   and   cytoskeletal   changes   have  

essential  role  in  Weibel-­‐Palade  body  exocytosis.  (Vischer  et  al.  2000;  

Fiedler   et   al.   2004;   Kuo   et   al.   2008).   Recent   studies   have   further  

shed   light   on   Ang2   secretion   by   showing   that   Ang2   is   released   in  

exosomes  when  PI3K  and  Akt  are  inhibited,  and  that  the  release  was  

regulated  by  syndecan/syntenin  pathway.  (Tsigkos  et  al.  2006;  Ju  et  

al.  2014)  Ang2  selectively  competes  with  Ang1  in  binding  to  the  Tie2  

receptor   and   is   considered   to   have   antagonistic   function   on   the  

Page 48: Critical role of angiopoietin pathway in Ischemia

48

receptor  signaling  in  resting  endothelium  (Maisonpierre  et  al.  1997).  

However,  exogenous  and  endogenous  Ang2  has  been  demonstrated  

to   induce  Tie2  phosphorylation  under  certain  conditions  (Kim  et  al.  

2000;   Daly   et   al.   2006).   Ang2   has,   therefore,   context   dependent  

function  and  can  enhance  neovascularization,  promote  EC  survival,  

or  increase  vascular  permeability  (Oliner  et  al.  2004;  Nag  et  al.  2005;  

Gallagher  et  al.  2007).    

 

Ang2   expression   increases   in   peripheral   blood   in   several   types   of  

malignancies.   Its  role   in  tumor  environment  has  been  suggested  to  

be   closely   linked   to   neovascularization,   tumor   growth   and  

metastasizing.   (Etoh   et   al.   2001;   Scholz   et   al.   2007;   Schulz   et   al.  

2011)   Furthermore,   increased   expression   of   Ang2   has   been  

associated  with  primary  graft  failure  in  lung  transplant  patients  and  

cardiac   allograft   vasculopathy   development   (Diamond   et   al.   2012;  

Daly   et   al.   2013).   The   inflammatory   function   of   Ang2   partly  

manifests   as   sensitization   of   endothelial   cells   to   TNF-­‐a   and   by  

increase  of  endothelial  adhesion  molecules  (Fiedler  et  al.  2006).    

       

Page 49: Critical role of angiopoietin pathway in Ischemia

49

AIMS  OF  THE  STUDY  

 

The  aim  of  this  study  was  to  characterize  the  effects  of  hypothermic  

preservation  on  ischemia-­‐reperfusion  injury  and  innate  and  adaptive  

immune   responses   in   rat   cardiac   allografts,   and   to   investigate   the  

therapeutic   effects  of   targeting   the  angiopoietin-­‐1   and   -­‐2   signaling  

with  clinically  relevant  protein  and  antibody  treatment  in  this  animal  

model.  

 

The  specific  aims  of  were:  

1.     to   describe   the   effects   of   hypothermic   preservation   on  

ischemia-­‐reperfusion   injury   and   innate   and   adaptive   immune  

responses,   and   on   the   development   of   cardiac   fibrosis   and  

allograft  vasculopathy;  

2.   to   investigate   the   effect   of   donor   heart   treatment   with  

recombinant   and   stable   variant   of   native   angiopoietin-­‐1   on  

ischemia-­‐reperfusion   injury   and   subsequent   development   of  

innate  and  adaptive  immune  responses  in  cardiac  allografts;  

3.   to   investigate   the   kinetics   and   mechanisms   of   angiopoeitin-­‐2  

during   ischemia-­‐reperfusion   injury   and   adaptive   immune  

responses  in  rat  cardiac  allografts.    

Page 50: Critical role of angiopoietin pathway in Ischemia

50

METHODS  

 

1.  Experimental  rat  cardiac  transplantation  model  

Specific   pathogen-­‐free,   inbred   Dark   Agouti   (DA,   RT1av1)   rats  

weighing   200-­‐250   g   were   used   as   cardiac   allograft   donors.   The  

donor  rat  heart  was  perfused  with   ice-­‐cold  heparinized  phosphate-­‐

buffered   saline   (PBS),   and   excised.   In   the   treatment   studies,   the  

coronaries   were   then   perfused   with   200   µl   of   anti-­‐Ang2   antibody  

(MEDI3617;   150   ng/ml,   in   PBS;   MedImmune),   or   non-­‐specific   IgG  

(150   ng/ml,   in   PBS;   MedImmune),   or   with   recombinant   Ang2   (50  

µg/ml,  in  PBS)(Hwang  et  al.  2005),  COMP-­‐Ang1  (10  µg/ml,  in  PBS)  or  

PBS.  The  donor  heart  was  preserved   in  PBS  at  4°C     (cold   ischemia)  

for  2  to  4  h,  depending  on  the  study  model  (Tuuminen  et  al.  2011).  

Warm   ischemia   was   standardized   to   1   h.   After   preservation,  

heterotopic  cardiac  transplantations  were  performed  between  fully  

MHC-­‐mismatched,  pathogen-­‐free,  inbred  8-­‐  to  12-­‐week-­‐old  male  DA  

donor   and   Wistar   Furth   (WF,   RT1u)   recipient   rats   (Harlan  

Laboratories,  Boxmeer,  The  Netherlands).  

 

To   prevent   irreversible   episodes   of   acute   allograft   rejection,   to  

achieve  long-­‐term  allograft  survival,  and  to  enable  the  development  

of   chronic   rejection,   the   recipients   in   chronic   rejection   groups  

received   cyclosporine  A   (Novartis,   Basel,   Switzerland)   2  mg/kg/day  

s.c.   for   the   first  7  days  and  1  mg/kg/day  thereafter.  For  anesthesia  

and   perioperative   analgesia,   the   recipient   rats   inhaled   isoflurane  

Page 51: Critical role of angiopoietin pathway in Ischemia

51

(Isofluran,   Baxter,   Deerfield,   IL)   and   received   s.c.   buprenorphine  

(Temgesic,  Schering-­‐Plough,  Kenilworth,  NJ).  

 

The   effect   of   cold   preservation   on   the   integrity   of   microvascular  

endothelial  cells  was  analyzed  by  transmission  electron  microscopy  

in   the   non-­‐transplanted   DA   donor   hearts.   After   reperfusion,   the  

recipients  of  cardiac  allografts  were  sacrificed  at  30  min  to  analyze  

the   effect   on   microvascular   perfusion   and   permeability   with  

Lycopersicon   esculentum   (Tomato)   lectin   perfusion   and   modified  

Miles   assay,   at   6   h   to   analyze   endothelial   activation   and  

inflammatory   cell   influx   with   immunohistochemistry,   myocardial  

injury   with   serum   troponin   T   (TnT)   analysis,   and   innate   immune  

activation  with  real-­‐time  quantitative  reverse-­‐transcription  PCR,  and  

at   8   weeks   to   analyze   the   degree   of   cardiac   fibrosis   and   allograft  

vasculopathy  with  histological  stainings.  

 

The  State  Provincial  Office  of  Southern  Finland  approved  all  animal  

experiments.   The   animals   received   care   in   compliance   with   the  

Guide  for  the  Care  and  Use  of  Laboratory  Animals  as  outlined  by  the  

National  Academy  of  Sciences  (ISBN  0-­‐309-­‐05377,  revised  1996).    

 

2.  Transmission  electron  microscopy  analysis  

The   mid-­‐cardiac   specimens   were   fixed   in   2.5%   glutaraldehyde   in  

phosphate   buffer   (pH   7.4).   The   Advanced   Microscopy   Unit  

(Haartman   Institute,   University   of   Helsinki,   Helsinki,   Finland)  

prepared   the   samples   by   TEM-­‐routine:   samples  were   post-­‐fixed   in  

Page 52: Critical role of angiopoietin pathway in Ischemia

52

1%   osmium   tetroxide,   then   dehydrated   in   graded   ethanol,   and  

embedded   in   Epoxy   resin   LX-­‐112.   Ultra-­‐thin   sections   were   cut   at  

around  80  nm.  Electron  staining  was  performed  with  uranyl  acetate  

and   lead   citrate   in   Leica  EM  STAIN  automatic   stainer.   The   sections  

were  then  examined  with  JEM-­‐1400  TEM  (JEOL,  Tokyo,  Japan)  at  80  

KV   and   analyzed   the   incidence   of   endothelial   cell   (EC)-­‐EC   junction  

gaps  and  EC  blebbing  with  25000x  magnification.  

 

3.  Immunohistochemistry  and  immunofluorescence  stainings  

Cryostat  sections  were  stained  for  subsets  of  inflammatory  cells  and  

microvascular  vessels  using  the  peroxidase  ABC  method  (Vectastain  

Elite  ABC  Kit,  Vector  Laboratories)  and  the  reaction  was  developed  

with   3-­‐amino-­‐9-­‐ethylcarbazole   (AEC,   Vectastain).  

Immunofluorescent   stainings  were   performed   using   Alexa   568   red  

and  Alexa  488  green  (Promega,  Madison,  WI)  secondary  antibodies.    

 

The   following   antibodies   and   dilutions  were   used:   Ang2   (10μg/ml,  

AF623,   R&D   Systems);   RECA-­‐1   for   rat   endothelium   (50   μg/ml,  

MCA97,   AbD   Serotec,   Dusseldorf,   Germany);   FLAG   for   COMP-­‐Ang1  

(10μg/ml,  Sigma-­‐Aldrich  Co,  St.  Louis,  MO);  CD4  for  T  cells  (5  µg/ml,  

22021D,   BD  Pharmingen,   San  Diego,   CA),   CD8   for   T   cells   (5   µg/ml,  

22071D   BD   Pharmingen),   ED1   for  macrophages   (5   µg/ml,   22451D,  

BD   Pharmingen);  MPO   for   neutrophils   (20   µg/ml,   ab9535,   Abcam,  

Cambridge,   UK);   OX62   for   dendritic   cells   (10   µg/ml,   MCA   1029G,  

Serotec,   Oxford,   UK);   VCAM-­‐1   (10   μg/ml,   MMS-­‐141P,   Covance,  

Princeton,    NJ);   ICAM-­‐1   (10  μg/ml,  1A29,  Seikagaku,  Tokyo,   Japan).  

Page 53: Critical role of angiopoietin pathway in Ischemia

53

The   immunoreactivity   was   quantified   in   a   blinded   manner   using  

400x  magnification.  

 

4.  Histological  evaluation  

Paraformaldehyde-­‐fixed   paraffin   mid-­‐cardiac   cross   sections   were  

used   for   histological   stainings.   The   degree   of   cardiac   fibrosis   was  

determined   from   cross   sections   subjected   to   Masson’s   trichrome  

staining   and   computer-­‐assisted   image   processing   (Zeiss   Axiovision  

4.4,  Munich,  Germany)  by  measuring  the  average  proportional  area  

stained   for   fibrosis   from   photographs   captured   with   100x  

magnification.   Cardiac   allograft   vasculopathy   was   evaluated   from  

cross  sections  stained  with  hematoxylin-­‐eosin,  and  Resorcin-­‐Fuchsin  

for   internal   elastic   lamina,   by   measuring   the   area   between   the  

internal   elastic   lamina   and   vessel   lumen.   The   ratio   of   neointimal  

area   to   internal   elastic   lamina   determined   the   arterial   occlusion  

percentage.  

 

5.  Enzyme-­‐linked  immunosorbent  assay  

To   quantify   Ang1   and   Ang2   from   human   and   rat   serum   samples,  

ELISA  was   performed   according   to   the  Manufacturer’s   instructions  

with   following   kits:   human   Ang1   (DANG10;   R&D   Systems   Inc.,  

Minneapolis,  MN);  human  Ang2   (DANG20;  R&D  Systems);   rat  Ang2  

(E90009Ra;  Uscn  Life  Science  Inc.,  Wuhan,  China).  

 

Page 54: Critical role of angiopoietin pathway in Ischemia

54

6.  Cell  culture  assays  

Human   dermal   blood   microvascular   endothelial   cells   (BECs)  

(PromoCell,  Heidelberg,  Germany)  were  maintained  on  fibronectin-­‐

coated   dishes   in   Endothelial   Cell   Basal   Medium   MV   (ECBM,  

PromoCell)  with  growth  supplements  provided  by  the  manufacturer  

and  used  in  passages  2-­‐6.  Hypoxic  treatment  (1%  O2)  was  carried  out  

in  Invivo2  400  hypoxia  chamber  (Ruskinn  Technology,  Bridgend,  UK).  

Tie2-­‐GFP   retroviral   transfected   cells   were   produced   as  

described(Saharinen   et   al.   2008).   Cells   were   treated   with   non-­‐

specific   IgG  (2  mg/ml;  MedImmune,  Gaithesburg,  MD)  or  anti-­‐Ang2  

antibodies  (MEDI3617;  2  mg/ml;  MedImmune)  or  with  COMP-­‐Ang1  

(Cho  et  al.  2004)  (50  ng/ml).  The  cells  were  fixed,  permeabilized,  and  

stained  for  Ang2,  Tie2,  or  COMP-­‐Ang1.  

 

7.  Microvascular  leakage  and  perfusion  assay  

A   modified   Miles   assay   was   used   to   measure   extravasation   of  

plasma  proteins  from  the  microvasculature  into  the  interstitial  space  

of   cardiac   allografts:   immediately   after   reperfusion,   the   recipients  

were   injected   i.v.   with   Evans   Blue   dye   (Sigma-­‐Aldrich;   30   mg/ml  

diluted   in  0.9  %  NaCl),  and  allowed   this   to  circulate   for  30  min.  To  

detect  perfused  vessels  30  min  after  reperfusion,  50  ml  FITC-­‐labeled  

Lycopersicon   esculentum   (Tomato)   lectin   (Vector   Laboratories,  

Burlingame,  CA)  diluted  in  150  ml  of  0.9%  NaCl  was  injected  to  the  

aortic   root   a   few   minutes   before   removing   the   allografts.  

Immediately   thereafter,   the   right   auricle   was   incised   and   the  

coronary  network  was  flushed  with  5  ml  of  1  %  PFA  in  0.05  M  citrate  

Page 55: Critical role of angiopoietin pathway in Ischemia

55

buffer,  pH  3.5.  For  quantification  of  extravasated  Evans  Blue,  100  mg  

of  apical  myocardium  was  incubated  into  500  ml  of  formamide  on  a  

shaker  at  +60   °C   for  24  h.   The  absorbance  of  dissolved  Evans  Blue  

dye  was  then  measured  from  the  formamide  by  spectrophotometry  

at   610   nm   wavelength.   The   mean   density   of   FITC   positive  

microvascular   vessels  was   quantified   from  mid-­‐axial   cross   sections  

from  10  random  fields  of  each  cardiac  cross  section  by  fluorescence  

microscopy.  

 

8.  Gene  expression  analysis  

Total   RNA   was   isolated   from   tissue   samples   dissected   from   the  

myocardial  midpiece  of  the  allografts  using  RNeasy  kit  according  to  

the   Manufacturer’s   instructions   (Qiagen,   Hilden,   Germany)   and  

reverse   transcribed   by   using   the   High-­‐RNA-­‐to-­‐cDNA   kit   (Applied  

Biosystems,   Foster   City,   CA).   Quantitative   real-­‐time   PCR   was  

performed   on   a   RotorGene-­‐6000   (Corbett   Research,   Doncaster,  

Australia)   using   2X   DyNAmo   Flash   SYBR   Green   Master   mix  

(Finnzymes,   Espoo,   Finland)   and   the   mRNA   quantities   of   the  

following   factors  were  measured   from  each  group:   innate   immune  

receptors   TLR2   and   TLR4,   their   ligands   biglycan,   HAS1-­‐3,   HMGB1,  

transcription   factor   NF-­‐kB,   dendritic   cell   (DC)   maturation   markers  

CD80,  CD86,  and  CD83,  as  well  as  inflammatory  cytokines  TNF-­‐a,  IL-­‐

1b,  IP-­‐10,  TGF-­‐b,  IL-­‐6  and  IL-­‐10.  The  number  of  mRNA  copies  of  the  

gene  of  interest  was  calculated  from  a  corresponding  standard  curve  

using   the   RotorGene   software.   Of   the   tested   housekeeping   genes  

(18SRNA,   GAPDH,   b-­‐actin   and   TBP),   18SRNA   was   most   stably  

Page 56: Critical role of angiopoietin pathway in Ischemia

56

expressed   and   therefore   all   RT-­‐PCR   data   were   normalized   against  

18SRNA.  

 

9.  Heart  transplant  patients  

The   data   consists   of   11   cardiac   allograft   donors   (8   men)   and   11  

recipients   (8   men)   operated   between   2010   and   2011   in   Helsinki  

University   Central   Hospital,   Helsinki,   Finland.   Healthy   volunteers  

were  used  as  a  control  group  (n  =  24;  9  men).  The  mean  age  of  the  

donors   was   40.9±14.1   years   (range   19-­‐56   years),   of   the   recipients  

47.4±11.4  years   (range  29-­‐63  years),  and  of   the  healthy  volunteers  

34.9±11.9   years   (range   22-­‐61).   Blood   samples   were   collected  

preoperatively   from   cardiac   allograft   donors   and   postoperatively  

from   the   recipients   1,   6,   and   24   h   after   transplantation   and   ELISA  

was  used  to  measure  the  serum  levels  of  Ang1  and  Ang2.  The  Ethical  

Committee  of  University  of  Helsinki,  Helsinki,  Finland  approved  the  

use  of  the  patient  samples,  and  each  patient  gave  written  informed  

consent.    

 

10.  Statistical  analysis  

All   data   are   two   group   comparisons   were   performed   by   Mann-­‐

Whitney   U   test;   multiple   group   comparisons   were   performed   by  

Kruskal-­‐Wallis   analysis   with   Dunn   correction,   or   by   repeated  

measures  ANOVA  using  PASW  Statistics  19.0  (SPSS  Inc.,  Chicago,  IL).  

P<0.05  was  considered  statistically  significant.  

   

Page 57: Critical role of angiopoietin pathway in Ischemia

57

RESULTS  

 

1. Prolonged ischemic preservation promoted ischemia-

reperfusion injury-mediated myocardial injury and inflammation

in rat cardiac allografts (I)

Myocardium   is   highly   susceptible   to   hypoxic   injury.   Cardiomyocyte  

injury   is   therefore   inevitable   during   organ   recovery   and  

preservation.   Prolonged   ischemic   time   resulted   in   profound  

myocardial  injury,  but  also  increased  the  influx  of  inflammatory  cells  

into   the   allograft.   The   acute   Tx-­‐IRI   phase   was   characterized   by  

increased   expression   of   innate   immune   activating   endogenous  

danger   molecules   and   influx   of   innate   immune   macrophages   and  

neutrophils  alongside  with  induction  of  inflammatory  cytokines  IFN-­‐

γ,  IL-­‐6,  and  TNF-­‐α.  

 

2. Prolonged ischemic preservation enhanced chronic rejection

(I)

As   regards   alloimmune   activation,   allografts   transplanted   after  

prolonged  ischemic  preservation  exhibited  increased  influx  of  CD4+  

and   CD8+   T   cells,   as   well   as   macrophages,   10   days   after   the  

transplantation   and   under   subclinical   immunosuppression.  

Interestingly,   during   Th1-­‐inhibiting   CsA   immunosuppression,  

prolonged  preoperative  ischemic  preservation  resulted  in  shifting  of  

the   cytokine   profile   of   allograft-­‐infiltrating   T   cells   towards   Th17  

alloimmune  response.  This  was  seen  as  increased  IL-­‐17  and  IL-­‐23p19  

gene  expression.  Paradoxically,  Treg-­‐associated  FoxP3   transcription  

factor   expression   was   also   robustly   induced   during   alloimmune  

Page 58: Critical role of angiopoietin pathway in Ischemia

58

response.   Increased   myocardial   injury,   acute   and   sustained  

inflammation   reflected   as   accelerated   the   development   of   cardiac  

fibrosis,   loss   of   functional   capillary   network,   and   arterial   luminal  

occlusion.  

 

These   findings   emphasize   the   importance   of   early   allograft   injury  

and   inflammation   in   the   development   of   late   dysfunction,   and  

suggests   early   protection   of   allografts   as   potential   target   for  

treatment  with  long-­‐lasting  effects.  

 

3. Hypoxia induced endothelial cells to release Ang2

(unpublished)

Previous  findings  indicate  that  hypoxia  regulates  Ang2  expression  in  

human  umbilical  vein  endothelial  cells  (Pichiule  et  al.  2004).  Human  

blood   microvascular   endothelial   cells   were   incubated   in   hypoxic  

environment   for   1,   3,   8,   12,   or   24   hours,   and   the   culture  medium  

was   analyzed   for   Ang2   with   ELISA.   In   congruence   with   previous  

findings,   the   data   showed   2-­‐fold   increase   in   Ang2   secretion   in  

response  to  hypoxia  during  24-­‐hour   incubation,  when  compared  to  

cells  incubated  in  normoxia  (Figure  9).  

 

Page 59: Critical role of angiopoietin pathway in Ischemia

59

 Figure  9.  Ang2  release  by  human  microvascular  cells  in  normoxia  or  hypoxia.      When   Tie2-­‐overexpressing   ECs   were   incubated   in   hypoxia,   the  

secreted   Ang2   localized   into   EC-­‐EC   junctions   and   associated   with  

Tie2.   Application   of   anti-­‐Ang2   antibody   blocked   this   Ang2/Tie2   co-­‐

localization   (Figure   9A).   Similarly,   exogenous   Ang1   applied   to   the  

culture  localized  with  Tie2  receptor  in  normoxia,  but  to  lesser  extent  

during   hypoxia   indicating   competitive   binding   to   Tie2   with   Ang2  

(Figure  10  B-­‐C).  

 

1 3 8 12 24

3000

4000

2000

5000

0

1000

Med

ium

Ang

2 (p

g/m

l)

Incubation time (h)

Normoxia

Hypoxia

Page 60: Critical role of angiopoietin pathway in Ischemia

60

 Figure   10.  Hypoxia   induces   Ang2   deposition   in   endothelial   cell-­‐cell  junctions   and   inhibits   Ang1-­‐Tie2   binding   in   endothelial   cells.   A,  Human   dermal   blood   microvascular   cells   (BECs)   transfected   with  Tie2-­‐GFP  retrovirus  were  subjected  to  normoxia  or  hypoxia  (1%  O2)  for   16   h   in   the   presence   of   control-­‐IgG   or   anti-­‐Ang2   antibody   (2  μg/ml).   Immunofluorecent   staining   shows   the   localization   of   Tie2  (green)   and   Ang2   (red);   DAPI   indicates   nuclei   (blue).   B,   Tie2-­‐GFP  retrovirus   transfected   BECs   were   cultured   in   normoxia   or   hypoxia  (1%  O2)  for  24  h,  and  stimulated  with  COMP-­‐Ang1-­‐FLAG  (50  ng/ml)  for   the   last   30  min.  C,   fractional  area  of   Tie2/FLAG  double-­‐positive  pixels   from   total   area   quantified   from   samples   incubated   in  normoxia   and   hypoxia   with   or   without   COMP-­‐Ang1.  Immunofluorecent   staining   shows   the   localization   of   Tie2   (green)  and  COMP-­‐Ang1  (FLAG;  red).  DAPI  indicates  nuclei  (blue).  Scale  bars  =  20  μm.    

COMP-

Ang1CTRL

COMP-

Ang1CTRL

Normoxia Hypoxia

25

50

0

Tie2

+/FL

AG

+ar

ea (%

)

IgG IgG anti-Ang2 abNormoxia 16h Hypoxia 16h

Tie2

DA

PIA

ng2D

API

Tie2

Ang

2DA

PI

PBS

Hypoxia 24h

PBS COMP-Ang1

Normoxia 24h

COMP-Ang1

Tie2

DA

PIFL

AG

DA

PITi

e2FL

AG

DA

PI

A B

C

Page 61: Critical role of angiopoietin pathway in Ischemia

61

4. Cardiac transplantation induces immediate changes in

angiogenic growth factor expression in human and in rat (III)

Heart   transplant   donors   and   recipients   were   analyzed   for   serum  

levels  of  Ang1  and  Ang2  before  organ  donation  and  during  the  first  

24   h   after   the   transplantation.   No   changes   were   observed   in   the  

serum  levels  of  Ang1   in  the  donors   (Figure  11A).  The  expression  of  

Ang2  was  increased  in  brain  dead  heart  donors  compared  to  healthy  

volunteers   (Figure   11B).   In   the   recipient   patients,   heart  

transplantation   induced   progressive   decrease   in   Ang1   levels   and  

increase   Ang2   expression   during   the   first   24   h   (Figure   11C,D).  

Similarly,   in   experimental   rat   cardiac   transplantation,   allogeneic  

heart   transplantation   resulted   in   serum   release   of   Ang2,   but  

interestingly   reduced   expression   of   Ang1   in   peripheral   blood.  

Syngeneic   transplant   recipients,   however,   showed   no   changes   in  

serum  levels  of  Ang2.  

   

Page 62: Critical role of angiopoietin pathway in Ischemia

62

 

                   Figure  11.  Peripheral  blood  analysis  for  Ang1  and  2  levels  in  cardiac  allograft  donors  after  brain  death  and  in  cardiac  allograft  recipients  after   transplantation.   A   and   B,   Human   plasma   samples   from  hemodynamically   stable  cardiac  allograft  donors   (D;  n  =  19)  before  organ  procurement  and  compared  to  healthy  controls  (CTRL;  n  =  24)  analyzed  by   enzyme-­‐linked   immunosorbent   assay   (ELISA).  C  and  D,  Human   plasma   samples   form   cardiac   allograft   recipients   (n=19)  before   transplantation   (0   h)   and   6,   and   24   h   after   transplantation  analyzed  by  ELISA.  Data  are  given  as  scatter  plot  where  the  black  bar  indicates  mean.  ***P<0.001  by  Repeated  ANOVA  measurements.      5. Targeting Ang/Tie2 pathway prevented Tie2-dependent

endothelial destabilization and microvascular dysfunction

induced by ischemic preservation (II-III)

Rat   heart   procurement   and   hypothermic   preservation   resulted   in  

endothelial   destabilization,   morphological   changes   in   EC,   and  

disruption   of   EC-­‐EC   connections   observed   with   transmission  

electron   microscopy   analysis.   When   the   allografts   were   ex   vivo  

perfused  either  with  recombinant  Ang1  or  with  anti-­‐Ang2  antibody,  

these  changes  were  absent.  

 

CTRL

10

0

5

7.5

2.5Hu

ma

n p

las

ma

An

g1

(n

g/m

l)

CTRL D DCTRL

Hu

ma

n p

las

ma

An

g2

(n

g/m

l)

10

0

5

7.5

2.5

CTRL6h 24h

10

0

5

7.5

2.5Hu

ma

n p

las

ma

An

g1

(n

g/m

l)

6h 24h

20

10

30

0

Hu

ma

n p

las

ma

An

g2

(n

g/m

l)

*********A B C D

Page 63: Critical role of angiopoietin pathway in Ischemia

63

Allograft  tissue  perfusion  was  measured  from  the  apex  of  the  heart  

with   laser   Doppler   velocimetry   immediately   after   reperfusion.   Ex  

vivo   donor   heart   treatment   either   with   COMP-­‐Ang1   or   with   anti-­‐

Ang2   antibody   resulted   in   significantly   improved  myocardial   tissue  

perfusion   during   the   first   10  minutes   after   reperfusion.   This   effect  

was   dependent   on   functional   capillaries,   as   the   histologically  

determined   numbers   of   perfused   vessels   were   increased   30   min  

after  the  reperfusion  in  the  treatment  groups,  whereas  the  absolute  

numbers  of  vessels  were  indifferent.    

 

Endothelial   stability  was   further  assessed  by  microvascular   leakage  

in   modified   Miles   assay,   in   which   the   recipient   is   perfused   with  

albumin-­‐binding  Evans  Blue  dye,  and  the  extravasation  of  the  dye  is  

assessed  30  min  after  the  reperfusion.  Both  donor  heart-­‐targeted  ex  

vivo   COMP-­‐Ang1   and   anti-­‐Ang2   antibody   treatment   stabilized   the  

allograft   endothelium   and   preserved   functional   capillary   network,  

whereas   Tx-­‐IRI   in   control   allografts   resulted   in   reduced   capillary  

density  and  increased  Evans  Blue  extravasation.  

 

Ex   vivo   donor   heart   treatment   with   COMP-­‐Ang1   or   anti-­‐Ang2  

antibody   prevented   such   early   inflammatory   response   by   reducing  

the  influx  of   inflammatory  cells  as  well  as  downregulating  the  gene  

expression   of   TLR-­‐activating   ligands.   Importantly,   these   findings  

were   associated   with   significantly   lower   immunoreactivity   of  

endothelial  adhesion  molecules  ICAM-­‐1  and  VCAM-­‐1.    

 

Page 64: Critical role of angiopoietin pathway in Ischemia

64

6. Acute rejection can be restrained by endothelial inactivation

(III)

Alloimmune   response   is   imminent   after   allogeneic   solid   organ  

transplantation.  Prolonged  preoperative  ischemia  prior  to  allogeneic  

cardiac  transplantation,  however,  worsens  the  acute  innate  immune  

response   in   the  absence  of   immunosuppressive  medication.   In  our  

experimental   model,   the   fully   MHC-­‐mismatched   cardiac   allografts  

are   rejected   in   5   or   6   days,   if   the   recipients   are   not  

immunosuppressed.  When   daily   administration   of   CsA   1mg/kg   i.p.  

was  applied,  the  allograft  survival  extended  to  10-­‐15  days.  Recipient  

treatment  with   single-­‐dose  of  anti-­‐Ang2  antibody   failed   to  prolong  

allograft   survival   with   this   background   immunosuppression.  

However,  when  the  administration  was  continued  on  days  1,  3,  and  

5   after   the   transplantation,   the   survival   was   highly   significantly  

prolonged  (Figure  12).  

   

Page 65: Critical role of angiopoietin pathway in Ischemia

65

 

                       Figure   12.   The   effect   of   systemic   recipient   anti-­‐Ang2   antibody  treatment  on  rat  cardiac  allograft  survival.  Red  dash  line  represents  the   survival   of   allografts   transplanted   after   4-­‐h   hypothermic  preservation   and   without   any   immunosuppression.   Red   line  represents   allograft   survival   in   recipients   treated   CsA   1  mg/kg   s.c.  and  with  non-­‐specific   IgG   i.p.   4h  before   the   transplantation.  Green  line   represents   allograft   survival   in   recipients   treated   CsA   1  mg/kg  s.c.  and  with  anti-­‐Ang2  antibody   i.p.  4h  before  the  transplantation.  Blue   line   represents   allograft   survival   in   recipients   treated   CsA   1  mg/kg  s.c.  and  with  anti-­‐Ang2  antibody   i.p.  4h  before,  and  on  days  1,  3,  and  5  after  the  transplantation.  Data  are  presented  by  Kaplan-­‐Meier  survival  plot.  ***P<0.001  by  Log  Rank  analysis.      7. Cardiac allograft vasculopathy development is correlated

with preoperative ischemia time and the number of endothelial

cells and pericytes (I-III)

Cardiac   allograft   vasculopathy   was   associated  with   gradual   loss   of  

rat   endothelial   cell   antigen-­‐1   (RECA-­‐1)   positive   capillaries,   but   also  

NG2-­‐positive   pericytes.   Donor   heart   treatment   with   COMP-­‐Ang1  

inhibited   early   endothelial   activation,   but   also   preserved   the  

numbers   of   capillaries   and   the   pericytes   surrounding   them   (Figure  

13).  

Surv

ival

(%) 80

60

40

20

0

Time (weeks)654321 7 80

100

IgG + CyA 1mg/kg/d1x Anti-Ang2 + CyA 1mg/kg/d4x Anti-Ang2 + CyA 1mg/kg/d

No treatment

***

Page 66: Critical role of angiopoietin pathway in Ischemia

66

                           Figure  13.  The  density  of  RECA-­‐1+  EC  (A)  and  NG2+  pericytes   (B)   in  COMP-­‐Ang1-­‐   and   PBS-­‐treated   allografts   at   6   h,   10   d,   56   d.  Representative   immunofluorescence   images   from   different  timepoints   (C).   Scale  bar  =  40  µm.  Data  are  given  as  mean  ±  SEM.  *P<0.05,  **P<0.01  by  the  Mann-­‐Whitney  U  test.      Ischemic   time   in   clinical   cardiac   transplantation   is   an   independent  

risk   factor   for   cardiac   allograft   vasculopathy   development.   In   a  

chronic  rejection  model,  rat  cardiac  allografts  were  transplanted  to  

recipient   rats   receiving   subclinical   immunosuppression   to   prevent  

episodes  of  acute  rejection.  This  treatment  protocol  enabled  chronic  

rejection   associated   arterial   luminal   occlusion   and   myocardial  

fibrosis   development   in   2-­‐month   follow-­‐up.   Cardiac   allograft  

vasculopathy   changes   were   correlated   with   allograft   preoperative  

ischemic  time  (Figure  14).  

   

500

0

1500

1000

REC

A-1

+ce

lls/m

m2

A

**

500

0

1500

1000

NG

2+ce

lls/m

m2

B

*

6 h 10 d 56 d

PBS

COMP-Ang1 C

CO

MP

-An

g1

PB

S

RECA-1NG2

6 h

RECA-1NG2

10 d 56 d

RECA-1NG2

RECA-1NG2

RECA-1NG2

RECA-1NG2

Page 67: Critical role of angiopoietin pathway in Ischemia

67

                                                         Figure   14.   Cardiac   allograft   vasculopathy   analyzed   56   d   after   rat  allogeneic   heart   transplantation.   A,   B,   and   C,   the   incidence,  occlusion,  and  representative  histological   images  of  arterial   luminal  occlusion   in   allografts   transplanted   after   0,   2,   or   4   h   hypothermic  preservation.   D   and   E,   myocardial   fibrosis   analyzed   semi-­‐quantitatively  from  Masson-­‐Trichrome  stainings.  Scale  bar  =  40  µm.  Data  are  given  as  mean  ±  SEM.  *P<0.05,  **P<0.01,  ***P<0.001  by  the  Mann-­‐Whitney  U  test.      

Page 68: Critical role of angiopoietin pathway in Ischemia

68

Donor  heart  ex  vivo  treatment  either  with  recombinant  COMP-­‐Ang1  

protein,   or   with   anti-­‐Ang2   antibody   significantly   inhibited   the  

development   of   aforementioned   chronic   rejection-­‐associated  

changes.  Systemic  recipient  treatment  with  anti-­‐Ang2  antibody  had  

similar   effects   on   allograft   vasculopathy   development,   indicating  

that  early  inflammation  is  crucial.  

     

Page 69: Critical role of angiopoietin pathway in Ischemia

69

DISCUSSION  

Solid   organ   transplantation   can   be   regarded   as   one   of   the   crown  

achievements   of  modern   surgery.   Replacing   failing   livers,   lungs,   or  

hearts  with   functional   grafts   from  brain   dead   donors   gives   second  

chance  to  those  patients  with  otherwise  virtually  no  hope  for  living.  

The  median   survival   of   heart   transplant   recipients   has   exceeded   a  

decade  many  years  ago,  and  it  keeps  prolonging  (Stehlik  et  al.  2012).  

Primary  graft  dysfunction  and  allograft   vasculopathy  are   important  

factors   limiting   short-­‐   and   long-­‐term   survival   of   cardiac   transplant  

recipients.   This   study   emphasizes   the   role   of   hypothermic  

preservation,   and   moreover,   IRI   as   an   inductor   of   microvascular  

dysfunction,  and  innate  and  adaptive  immune  responses  leading  to  

primary  and  late  allograft  dysfunction  after  cardiac  transplantation.  

The  results  presented  here  shed   light  on  the  characteristics  behind  

IRI-­‐induced  inflammation  and  allograft  dysfunction,  and  their  impact  

on   the   development   of   cardiac   fibrosis   and   allograft   vasculopathy.  

Tie2   signaling   was   proven   important,   as   supplementation   of  

recombinant   Tie2   agonist   COMP-­‐Ang1   or   inhibition   of   Tie2  

antagonist   Ang2   with   specific   antibody   resulted   in   significant  

improvement   in   microvascular   function   and   allograft   survival,   as  

well  as  inhibition  of  innate  and  adaptive  immune  responses  and  the  

development  of  cardiac  fibrosis  and  allograft  vasculopathy.  

 

Donor  aspects  and  preservation  

Incredible   success   of   clinical   heart   transplantation   has   with  

increasing  numbers  of  heart  transplant  recipient  candidates  resulted  

Page 70: Critical role of angiopoietin pathway in Ischemia

70

in   chronic   shortage   of   donated   organs.   This   shortage   has   required  

extending  the  donor  pool   to  marginal,  or  extended  criteria  donors,  

who   are   older   and   sicker   than   previously   accepted.   Furthermore,  

the   brain   death   of   organ   donor   may   induce   a   release   of  

catecholamines,   a   systemic   inflammatory   response,   microvascular  

endothelial   cell   and   pericyte   dysfunction,   and   myocardial   injury  

(Venkateswaran   et   al.   2009).   Both   longer   ischemic   time   and  

increased   donor   age   are   independent   risk   factors   for   1-­‐year  

mortality  after  the  transplantation  (Lund  et  al.  2013).  

 

Grafts  from  donors  with  extended  criteria  are  especially  susceptible  

to   primary   graft   dysfunction   and   injury   requiring   novel   treatment  

strategies   to   prevent   Tx-­‐IRI-­‐induced   effects   (Iyer   et   al.   2011;  

Abecassis   et   al.   2012).   An   experimental   rat   study   demonstrated  

worse  cardiac   function   in  grafts   from  older  donor   rats  during  early  

reperfusion   phase   compared   to   grafts   from   younger   donors  

(Korkmaz  et  al.  2013).  Recipients  with  grafts   from  marginal  donors  

have   higher   risk   for   primary   graft   failure   and   require   temporary  

circulatory  support  with   i.e.  extracorporeal  membrane  oxygenation  

(Listijono   et   al.   2011).   The   use   of   temporary   circulatory   support,  

however,  is  again  a  significant  risk  factor  for  1-­‐  and  5-­‐year  mortality  

(Lund  et  al.  2013).  

 

Current   clinical   organ   preservation   protocols   abrogate   Tx-­‐IRI   only  

partially.  With  current  immunosuppressive  regimen,  the  episodes  of  

acute   rejection   are   preventable,   but   chronic   rejection   still  

Page 71: Critical role of angiopoietin pathway in Ischemia

71

significantly  limits  the  survival  of  cardiac  allograft  recipients  (Lund  et  

al.   2013).   According   to   2012   ISHLT   Registry   data,  median   ischemic  

time  for  cardiac  transplant  is  3.1  hours.  At  the  same  time,  ischemic  

time  exceeding  200  minutes  is  an  independent  risk  factor  for  cardiac  

allograft  vasculopathy  development.  (Stehlik  et  al.  2012)  

 

The  problems  with  donors  with  extended  criteria  and  ischemic  time  

may  be  manageable  with  novel  preservation   techniques,   solutions,  

or   treatment   options.   Ex   vivo   heart   perfusion   machines   are   long  

studied   with   little   progression   regarding   the   heart   (Jacobs   et   al.  

2010).   However,   Organ   Care   System   for   ex   vivo   perfusion   of   lung  

allografts   has   shown   promising   potential   and   is   currently   further  

investigated   (Warnecke   et   al.   2012).   Novel   preservation   solutions  

are   investigated   in   order   to   preserve   grafts   longer   and   in   warmer  

temperatures   (Thatte  et   al.   2009;   Lowalekar  et   al.   2013).   Similarly,  

solution   with   small   interfering   RNA   against   proinflammatory  

cytokines   and   complement   has   proven   potential   in   prolonged  

allograft  preservation  (Zheng  et  al.  2009).    

 

Reperfusion  phase  

Ischemia   is  not  the  sole  determining  factor   for  myocardial   injury   in  

Tx-­‐IRI,  as  syngeneic  rat  cardiac  transplants  with  similar  preoperative  

ischemic  time  exhibit  significantly  milder  cardiomyocyte  injury  than  

allogeneic  transplants  (Keränen  et  al.  2013).  Allorecognition  initiates  

after   allogeneic   solid   organ   transplantation   regardless   of   T   cell-­‐

targeted   immunosuppression.   The   duration   of   hypothermic  

Page 72: Critical role of angiopoietin pathway in Ischemia

72

preservation,   however,   dictates   the   intensity   of   innate   immune  

response  after  reperfusion  of  the  allograft  (I).  

 

Tx-­‐IRI   is   an   inevitable   factor   in   solid   organ   transplantation,   but  

differs   greatly   from   conventional   IRI   occurring   in   the   treatment   of  

stroke  or  acute  coronary  syndrome.  Rapid  neutrophilic  infiltration  is  

resolved  in  24  h  in  syngrafts,  whereas  infiltrating  CD8+  T  cells  induce  

sustained   neutrophilic   influx   to   allografts   (El-­‐Sawy   et   al.   2004).  

Furthermore,  hypothermic  preservation  of  cardiac  allografts  during  

organ   recovery   and   transportation   induces   ischemic   injury   to  

cardiomyocytes,   but   also   inflicts   endothelial   cell   and   pericyte  

detachment  from  one  another  and  disruption  of  endothelial  barrier  

(Tuuminen   et   al.   2011).   Longer   preservation   promotes   endothelial  

and   pericyte   dysfunction   that   manifests   as   myocardial   capillary  

perfusion   defect,   microvascular   leakage,   vasoconstriction,   and   EC  

activation.  Activated  EC  increase  adhesion  molecule  expression  and  

EC-­‐EC   junction   disruption   allows   easier   transmigration   of  

inflammatory   cells.   Together   with   increased   accumulation   of  

inflammatory   cells   and   secreted   proinflammatory   cytokines,  

perfusion   defect   induces   significantly   worse   cardiomyocyte   injury  

after  prolonged  preservation.  (II-­‐III)  

 

Immunological  issues  

Foreign   tissue   transplanted   to   allogeneic   recipient   is,   without  

immunosuppression,   rapidly   rejected   by   innate   immune   cells   such  

and   NK   cells   and   adaptive   immune   response   involving   antigen-­‐

Page 73: Critical role of angiopoietin pathway in Ischemia

73

presenting   cells   and   the   generation   of   allograft-­‐specific   IFN-­‐γ  

producing  Th1-­‐type  T   cells   (Lehmann  et   al.   1997).   Endothelial   cells  

are  extremely  important  in  the  course  of  immunological  recognition,  

inflammatory  cell  recruitment,  and  myocardial  perfusion.  EC  express  

both   MHC   class   I   and   class   II   molecules   on   their   cytoplasmic  

surfaces,  and  therefore,  can  communicate  with  both  CD4+  and  CD8+  

T  cells  and  induce  IL-­‐2  production.  EC  have,  however,  been  shown  to  

stimulate   only   memory,   but   not   naïve   CD8+   T   cells   to   become  

cytolytic   T   cells.   (Hancock   et   al.   1982)   Activated   EC   may   drive  

sustained   inflammation  behind  allograft   rejection  by   inducing   local  

IFN-­‐γ   secretion  by   T   cells   (Salomon  et   al.   1991;   Tellides   and  Pober  

2007).  Type  I  activation  of  EC  is  gene  transcription-­‐independent  and  

results  from  histamine  or  thrombin,  and  manifests  as  nitric  oxide  or  

prostaglandin  secretion,  or  Weibel  Palade  body  exocytosis,  resulting  

in   vasodilatation,   increased   perfusion,   and   permeability   disorder.  

Type   II  activation   is  described  as   transcription-­‐dependent  adhesion  

molecule  upregulation  induced  by  cytokines  such  as  TNF-­‐α,  and  IL-­‐1  

(Pober  and  Sessa  2007).  Activated  EC  promote   leukocyte  activation  

and   transmigration   by   secretin   cytokines   and   chemokines,   i.e.  

PECAM-­‐1,  IL-­‐8,  IP-­‐10,  MCP-­‐1,  and  RANTES  (Al-­‐Lamki  et  al.  2008).  

 

Endothelium   is   the   physiological   first   line   barrier   and   defence  

between  circulating  inflammatory  cells  and  the  allograft.  Therefore,  

injury   to   EC   greatly   contributes   to   cardiac   allograft   vasculopathy  

development.   In   allogeneic   environment,   macrophages,   cytotoxic  

CD8+  T  cells  and  natural  killer  cells   induce  EC  apoptosis  by  non-­‐self  

Page 74: Critical role of angiopoietin pathway in Ischemia

74

recognition,   Bax-­‐induction,   death   receptor-­‐signaling,   or   by   TNF-­‐

related   apoptosis-­‐inducing   ligand   (Zheng   et   al.   2000;   Hsieh   et   al.  

2002;   Bleackley   2005;   Wyburn   et   al.   2005).   EC   are,   however,  

resistant  to  injury  and  apoptosis  by  upregulating  anti-­‐apoptotic  zinc  

finger   protein   A20,   heme   oxygenase-­‐1,   Bcl-­‐2,   or   the   PI3k/Akt  

pathway.  (Soares  et  al.  1999;  Madge  and  Pober  2000)  

 

Our  findings  suggest  that  early  EC  activation  may  be  a  key  mediator  

of  chronic   inflammation,  and  that  preventing  this  activation  results  

as  significant  improvement  in  allograft  function  and  survival.  (II-­‐III)  

 

Cardiac  allograft  vasculopathy  and  late  graft  dysfunction  

The   early   innate   immune   response   following   solid   organ  

transplantation   is   described   by   infiltration   of   inflammatory   cells  

consisting   mainly   of   macrophages,   neutrophils   and   NK   cells  

depending   on   cellular   adhesion   molecules   (El-­‐Sawy   et   al.   2004;  

2005).   Dendritic   cells   and   macrophages   rapidly   recognize   foreign,  

allogeneic  antigens,  but  also  allograft-­‐derived  TLR-­‐activating  danger  

molecules   result   in   innate   and   alloimmune   activation   (Goldstein  

2004).   Immunosuppressive  drugs  mainly  target   IL-­‐2-­‐mediated  T  cell  

activation   and   proliferation;   corticosteroids   also   inhibit   but   fail   to  

completely   prevent   innate   immune   activation.   Of   inflammatory  

cytokines,  IL-­‐6  is  extremely  important  in  early  CD4+  T  cell  mediated  

inflammation   and   allograft   rejection.     In   allogeneic  murine   cardiac  

transplant   model,   recipient   anti-­‐IL-­‐6   antibody   treatment   results   in  

prolonged  survival  (Lei  et  al.  2010).  In  a  similar  experimental  setting,  

Page 75: Critical role of angiopoietin pathway in Ischemia

75

but  with   recipient  mice  depleted  of  CD8+,   IL-­‐6   inhibition   results   in  

virtually   non-­‐existent   rejection,   even  when   administered   6   d   after  

transplantation  (Booth  et  al.  2011).    

 

The  answer  to  the  pathophysiology  of  cardiac  allograft  vasculopathy  

remains  yet  to  be  fully  elucidated.  On  the  cellular  level,  T  cell  driven  

alloimmune   response   may   be   considered   the   main   driving   force  

behind   allograft   vasculopathy   development.   Accelerated   Th17  

alloimmune   response   results   in   allograft   rejection   in   Th1-­‐deficient  

mice   (Yuan   et   al.   2008),   and   also   seemed   to   promote   chronic  

rejection  development  in  our  experimental  model  (I).  Different  T  cell  

depletion   strategies   are   used   in   clinical   practice   mainly   as   an  

induction   therapy   in  kidney   transplantation,  but   to   lesser  extent   in  

other   organs.   Rapid   release   of   cytokines,   opportunistic   infections,  

lymphoproliferative   diseases,   and   T   cell   repopulation   are   most  

common   problems,   and   despite   of   effectively   promoting  

immunosuppression  early  after  transplantation,  T  cell  depletion  fails  

to  induce  tolerance  (Page  et  al.  2013).  

 

As  described  above,  EC  have  high  potential  in  inducing  or  regulating  

inflammatory  responses  after  allogeneic  solid  organ  transplantation.  

Based   on   results   presented   in   papers   II   and   III,   endothelial  

stabilization   and   inactivation   are   crucial   for   allograft   survival   and  

evasion  from  rejection.  With  inactivated  endothelium,  the  need  for  

T  cell  depletion-­‐mediated  induction  therapy  may  reduce.  

 

Page 76: Critical role of angiopoietin pathway in Ischemia

76

Angiopoietins  in  solid  organ  transplantation  

Angiogenic   growth   factors   are   intensively   studied   in   the   field   of  

cancer   science,   as   angiogenesis   is   crucial   for   tumor   growth   and  

metastasis   (Welti   et   al.   2013).   Interestingly,   the   same   factors   that  

promote   tumor   growth   elicit   vascular   instability   in   solid   organ  

transplantation.    

 

Endothelial  detachment  is  essential  for  neovascularization  and  VEGF  

is  a  potent  angiogenic  growth   factor   inducing   rapid  and  prominent  

vascular   leakage   (Nagy   et   al.   2012).   VEGF   activates   EC   in  

transplantation   setting,   and   neutralization   of   VEGF   has   anti-­‐

inflammatory  effect  in  cardiac  allografts  by  inhibiting  the  expression  

of  endothelial  cell  adhesion  molecules  and  the  production  of  several  

chemokines  (Lemström  et  al.  2002;  Reinders  et  al.  2003).These  VEGF  

mediated   pro-­‐inflammatory   effects   are   possibly   downstream   of  

Ang2   signaling,   and   preventable   by   Ang2   inhibition   (III).   Another  

study   shows   that   neutralization   of   Ang2   reduces   endothelial  

adhesion   molecule   expression   in   murine   ischemic   limb   model  

(Tressel   et   al.   2008).   Rat   cardiac   allograft   treatment   ex   vivo   with  

anti-­‐Ang2  antibody  reduces  VEGF  and  TGF-­‐b  mRNA  expression  after  

the  transplantation  and  subsequently   inhibits  vascular  permeability  

and  perfusion  disorder,  and  fibrosis  development  (III).  

 

Ang1   elicits   vascular   stability   and   homeostasis   during   normal  

physiology.   Ang1   signaling   through   Tie2   receptor   promotes   anti-­‐

apoptotic   signals   particularly   by   activating   PI3k/Akt   pathway   and  

Page 77: Critical role of angiopoietin pathway in Ischemia

77

ABIN   (Papapetropoulos   et   al.   2000;   Tadros   et   al.   2003).  

Furthermore,  type  I  endothelial  activation  may  be  avoided  by  Ang1,  

which   prevents  VEGF-­‐induced  plasma   leakage   and   enhances   EC-­‐EC  

connections   at   cell   junctions.   Ang1   also   reinforces   blood   vessel  

coating  by  pericytes  and  surrounding  extracellular  matrix.  (Thurston  

et   al.   2000;   Saharinen   et   al.   2008)   Donor   heart-­‐targeted   Ang1  

treatment   stabilized   microvascular   endothelium   of   the   allografts  

and  inhibited  innate  and  alloimmune  responses  (II).  Maintaining  EC  

viability   and   quiescence   is   therefore   of   great   importance   for  

allograft  survival.  

 

Future  prospects  

A.  Donor  perspective  

Currently,   transplant  units  suffer   from  chronic  shortage  of  donated  

organs.   Recognizing   potential   organ   donors   is   a   key   factor   in  

increasing   the  numbers  of   solid  organ   transplants.   In  addition,  due  

to   the   shortage   of   organ   donors,   older   and   sicker   patients   are  

accepted   as   organ   donors.   This   makes   donor   management  

important   issue.   Brain   death   of   heart   transplant   donors   causes  

systemic   cytokine   storm.   Circulating   inflammatory   cytokines   may  

prime   the   heart   for   subsequent   inflammation   and   injury.   Current  

clinical  protocols  include  donor  treatment  with  systemic  steroids  to  

prevent   the   adverse   effects   of   this   cytokine   storm,   but   more  

targeted   treatment   may   be   advantageous.   Donor   preoperative  

simvastatin   treatment   in   experimental   rat   cardiac   transplantation  

model  protects  the  allograft  from  post-­‐operative  problems,  such  as  

Page 78: Critical role of angiopoietin pathway in Ischemia

78

Tx-­‐IRI   and   chronic   rejection   development   (Tuuminen   et   al.   2011).  

Our   studies   have   pointed   Ang2   to   be   increased   in   the   donor  

peripheral   blood   before   organ   procurement,   and   therefore   a  

potential  target  for  donor  treatment.  

 

B.  Allograft  (preservation)  perspective  

The   allograft   is   subjected   to   hypothermia   and   ischemia   during   the  

preservation.  Organ  preservation   solutions  are  designed   to  protect  

the  allograft   from  adverse  effects  of  hypoxia,  acidosis,   low  glucose  

levels,   and   edema   (Jacobs   et   al.   2010).   Antioxidants   are   included  

also   in   some.   Potential   treatment   targets   are   the   oxygen  

metabolism   producing   reactive   oxygen   species   during   ischemic  

preservation,  endothelial  protection  and  inactivation,  or  prevention  

of  allorecognition.  Solution  with  small   interfering  RNA  against  TNF-­‐

α,  C3,  and  Fas  has  shown  promising  potential  in  prolonged  allograft  

preservation  (Zheng  et  al.  2009).  Also,  novel  preservation  solutions  

are   designed   to   enable   the   allografts   to   be   preserved   in   milder  

hypothermia,  or  even  normothermia  (Thatte  et  al.  2009;  Lowalekar  

et   al.   2013).   Restoration  of   circulation  with   perfusion   system  after  

allograft  recovery  has  been  studied  for  decades,  however,  the  costs  

and   perfusion   system   management   issues   have   resulted   this  

technique   to   be   concluded   as   inferior   to   static   hypothermic  

preservation  of  the  grafts  (Cobert  et  al.  2008;  Jacobs  et  al.  2010).  

 

 

 

Page 79: Critical role of angiopoietin pathway in Ischemia

79

C.  Recipient  perspective  

Current   immunosuppressive   protocols  mostly   target   IL-­‐2-­‐mediated  

adaptive  immunity.  Novel  immunomodulatory  strategies  that  target  

anything   else   may   reduce   the   need   for   classical  

immunosuppressants.   Recipient   treatment   with   statins   has   long  

been   standard   treatment   for   their   anti-­‐inflammatory   properties  

(Kobashigawa   et   al.   1995;   Shimizu   et   al.   2003).   Angiopoietins   play  

crucial   role   in  maintaining  EC  quiescence.  The  endothelium  acts  as  

the  definitive  barrier  between  the   transplant  and  the  effector  cells  

of   alloimmune   system,   and   therefore   it  may   be   hypothesized   that  

the   alloimmune   response   may   be   absent   if   the   endothelium   is  

preserved  intact  and  non-­‐adhesive  to  inflammatory  cells.  Our  results  

show   that   Ang1   substitution   or   Ang2   neutralization   inhibit   early  

influx   of   inflammatory   cells,   and   also   the   early   alloimmune  

response,  as  the  gene  expression  of  hallmark  cytokines  IL-­‐2,  IL-­‐6,  IL-­‐

12   were   downregulated.   Ang1   has   therefore   potential   in   allograft  

protection   during   the   preservation.   Ang2   competes   with   Ang1   in  

binding   to   the   Tie2   receptor,   promotes   inflammation   and  

endothelial   activation,   and   acts   as   a   chemokine   to   inflammatory  

cells.  Neutralization  of  Ang2  may  therefore  be  beneficial  during  the  

preservation,  but  also  during  the  acute  phase  of  inflammation  after  

the  reperfusion.  

 

 

 

 

Page 80: Critical role of angiopoietin pathway in Ischemia

80

Limitations  

The  experimental  rat  cardiac  allograft  model  used   in  this  study   is  a  

non-­‐functional   and   heterotopic   model.   Therefore,   the   model  

represents   clinical   cardiac   transplantation   mainly   immunologically.  

The   model   excludes   donor   brain   death,   which   produces   systemic  

cytokine  storm  and  induces  early  innate  immune  response  in  clinical  

patients.  The  treatment  agents  used  in  this  study  are  not  in  clinical  

use,  but  are  currently  in  clinical  trials.  

 

Conclusions  

This   study  emphasizes   the   importance  of   ischemia  and  reperfusion  

on   endothelial   integrity   in   cardiac   allografts.   With   functional   and  

intact   endothelium,   the   key   mediators   of   inflammation   and  

alloimmune  response  are  unable  to  reach  the  allograft.  This  results  

in   delayed   allorecognition   and   subsequently   reduced   development  

of  cardiac  allograft  vasculopathy.  Angiopoietin  signaling  was  proven  

important  in  endothelial  stabilization,  either  by  supplementation  of  

Ang1   or   inhibition   of   Ang2.   Further   studies   are   warranted   to  

investigate   the   clinical   potential   of   Ang1   and   inhibition   of   Ang2   in  

human   solid   organ   transplant   recipients.   In   human   patients,  

recombinant  Ang1  may  be  added  to  cardioplegia  solutions  and  anti-­‐

Ang2   antibody   may   be   beneficial   in   induction   therapy   of   the  

allograft  recipient.  

 

 

   

Page 81: Critical role of angiopoietin pathway in Ischemia

81

YHTEENVETO    

Elinsiirrettä   irrotettaessa   verenkierto   katkaistaan   ja   elin  

jäähdytetään   kudosvaurion   minimoimiseksi.   Verenkierron  

palauttaminen   siirteeseen   aiheuttaa   paradoksaalisesti   iskemia-­‐

reperfuusiovaurioksi   kutsutun   ilmiön,   johon   liittyy   verisuoniston  

seinämän  aktivoituminen  ja  synnynnäisen  immuniteetin  aiheuttama  

neutrofiili-­‐  ja  makrofagivaltainen  tulehdusreaktio.  Tämä  alkuvaiheen  

tulehdusreaktio   altistaa   elinsiirteen   myöhäisvaiheen   krooniselle  

tulehdusreaktiolle,   jonka   vuoksi   siirteen   toiminta   voi   pettää.   Sydän  

on   erityisen   herkkä   hapenpuutteelle,   minkä   vuoksi   sydänsiirteen  

iskemia-­‐aika   pyritään   pitämään   mahdollisimman   lyhyenä.  

Pidentynyt   iskemia-­‐aika   –   sairaaloidenvälisen   pitkän   matkan   tai  

teknisesti   vaikean   leikkauksen   vuoksi   –   on   itsenäinen   riskitekijä  

myöhään  kehittyvälle  hyljintäreaktiolle.  

 

Angiopoietiini-­‐1   ja   -­‐2   (Ang1   ja   2)   ovat   Tie2-­‐reseptoriin   sitoutuvia  

verisuonikasvutekijöitä,   joilla   on   tärkeä   merkitys  

verenkiertoelimistön   sikiöaikaisessa   kehityksessä.   Verisuonten  

tukisolut   erittää   jatkuvasti   Ang1:tä,   joka   ylläpitää   verisuonen  

seinämän   tasapainoa   kehittyneessä   verisuonistossa.   Ang2  

puolestaan   vapautuu   verisuonen   seinämän   endoteelisoluista  

hapenpuutteen   tai   tulehduksen   vaikutuksesta   ja   houkuttelee  

paikalle   tulehdussoluja   sekä   muuttaa   verisuonen   seinämän  

läpäisevämmäksi.  

 

Page 82: Critical role of angiopoietin pathway in Ischemia

82

Tässä   tutkimuksessa   kuvattiin   koe-­‐eläinmallilla   sydänsiirteen  

kylmäsäilytyksen   vaikutus   luonnollisen   immuniteetin  

aktivoitumiseen   ja   kroonisen   hyljintäreaktion   kehittymiseen.  

Tutkimuksessa   selvitettiin   myös   Ang1-­‐   ja   Ang2-­‐signalointiteiden  

vahvistamisen   tai   estämisen   vaikutusta   sydänsiirteen   iskemia-­‐

reperfuusiovaurioon   ja   hyljintäreaktion   kehittymiseen.   Pidentynyt  

kylmäsäilytys  lisäsi  tulehdusvastetta  ja  huononsi  siirteen  ennustetta.  

Tutkimuksessa   havaittiin,   että   Ang2   vapautuminen   verenkiertoon  

lisääntyy   sydänsiirteen   saaneella   potilaalla   1.   vuorokauden   aikana  

leikkauksen   jälkeen.   Sama   ilmiö   osoitettiin   myös   rotan  

sydänsiirtomallissa   ja   samalla   todettiin   tulehdusreaktion   olevan  

hapenpuutetta  merkittävämpi  Ang2  vapauttaja.  

 

Tutkimuksessa   rotan   sydänsiirtomallissa   siirteen   sepelvaltimoihin  

irrotuksen   yhteydessä   ruiskutettu   Ang1-­‐proteiini   stabiloi   siirteen  

verisuoniston   seinämän   ja   Ang2-­‐vasta-­‐aine   esti   iskemia-­‐

reperfuusiovaurioon  liittyvän  tulehduksen  ja  sydänlihasvaurion,  sekä  

hiussuoniston   läpäisevyys-­‐   ja   perfuusiohäiriön.   Tämä   alkuvaiheen  

suojavaikutus  hillitsi  myös  siirteiden  kroonisen  hyljinnän  muutoksien  

kehittymistä.   Sydänsiirteen   vastaanottajalle   systeemisesti   annettu  

vasta-­‐aine   ei   vaikuttanut   verisuoniston   läpäisevyyteen,   mutta   esti  

siirteen   tulehduksen,   akuutin   hyljintäreaktion   ja   kroonisen  

hyljintäreaktion  kehittymisen.  

 

Elinsiirtopotilaan   ennustetta   rajoittavat   merkittävästi   siirteen  

varhaisvaiheen  pettäminen  ja  kroonisen  hyljintäreaktion  aiheuttama  

Page 83: Critical role of angiopoietin pathway in Ischemia

83

hitaasti   kehittyvä   siirteen   toiminnan   hiipuminen.   Tutkimuksen  

tulosten   perusteella   Ang1-­‐signaloinnin   vahvistaminen   ja   Ang2-­‐

signaloinnin   vaimentaminen   estää   sydänsiirteen   verisuoniston  

seinämän   endoteelisoluja   aktivoitumasta,   houkuttelemasta   ja  

läpäisemästä   tulehdussoluja.   Vasta-­‐ainehoidolle   olisi   kliinistä  

käyttöä   elinsiirtopotilaiden   induktiohoidossa,   jolloin  

vaihtoehtoisella,   elimistön   immuunipuolustukseen  

vaikuttamattomalla   hoidolla   voidaan   vähentää   potilaiden  

tarvitsemien   immunosuppressiivisten   lääkkeiden   määrää   ja   näin  

ollen  lääkkeistä  aiheutuvia  haittavaikutuksia.  

 

Tässä   tutkimuksessa   osoitettiin   koe-­‐eläinmallissa,   että   estämällä  

angiopoietiini-­‐2   (Ang2)   vaikutus   vasta-­‐aineella   paikallisesti  

sydänsiirteessä   tai   siirteen   vastaanottajassa   vähennetään   siirteen  

varhaisvaiheen   sydänlihasvauriota   ja   tulehdusvastetta.  

Varhaisvaiheen  hoidolla  oli  myös  pitkäaikainen  hyöty,  sillä  hoidetut  

siirteet   selvisivät   pidempään   ilman   akuuttia   ja   kroonista  

hyljintäreaktiota.  

 

   

Page 84: Critical role of angiopoietin pathway in Ischemia

84

ACKNOWLEDGMENTS  

This   study   was   carried   out   in   the   Transplantation   Laboratory,  

Haartman   Institute,   University   of   Helsinki,   and   Helsinki   University  

Central   Hospital.   This   work   was   supported   by   grants   from   the  

Helsinki  University   Central   Hospital   Research   Funds,   the  University  

of  Helsinki,   the  Sigrid  Juselius  Foundation,  the  Academy  of  Finland,  

the  Finnish  Foundation  for  Cardiovascular  Research,  the  Päivikki  and  

Sakari   Sohlberg   Foundation,   the   Paulo   Foundation,   the   Aarne  

Koskelo   Foundation,   the   Ida   Montin   Foundation,   and   the   Emil  

Aaltonen  Foundation.  

I   wish   to   express  my   sincere   gratitude   to  my   Supervisor   Professor  

Karl  Lemström  for  his  enthusiastic  guidance  and  passion  for  science.  

You  have  allowed  me   to  quite   freely   fulfill  myself   scientifically,   yet  

you   have   kept  my   feet   on   the   ground   and   persistently   demanded  

top  performance  and  hard  work.  I  feel  privileged  to  have  been  able  

to  work  for  and  with  you.  

I  also  wish  to  return  special  thanks  to:  

The   Reviewers   of   this  work   appointed   by   the   Faculty   of  Medicine,  

Professor   Timo   Paavonen   and   Professor   Hannu   Sariola   for   your  

advice  and  insight  over  the  topic.    

Professor  and  Dean  of  the  Faculty  of  Medicine  Risto  Renkonen,  the  

Head  of   the   Transplantation   Laboratory,   for   introducing  me   to   the  

academic   world   and   to   my   Supervisor,   and   for   constant  

encouragement  and  support.  

 

Page 85: Critical role of angiopoietin pathway in Ischemia

85

Professor  Emeritus  Pekka  Häyry  for  establishing  our  laboratory,  and  

for   inspiring   stories   of   science,   traveling,   and   the   dawn   of  

transplantation  medicine.  

My   co-­‐authors   Kari   Alitalo   for   sharing   invaluable   ideas   and  

connections   around   the   world;   Gou   Young   Koh   for   providing  

recombinant  Ang1   and  2;   Ching  Ching   Leow   from  MedImmune   for  

providing   anti-­‐Ang2   antibody;   Pipsa   Saharinen   for   sharing   your  

expertise   of   angiopoietin   signaling;   Markku   Tammi   for   your   help  

with   hyaluronic   acid;   Antti   Nykänen   for   your   help,   friendship,   and  

excellent   discussions;   Raimo   Tuuminen,   Alireza   Raissadati,   Alexey  

Dashkevich  for  your  help  and  friendship  throughout  the  years;  Ralica  

Arnaudova   for   your   help   in   lab   work;   Rainer   Krebs   for   being   the  

wizard  you  are;  Mikko  Keränen  for   introducing  me  to  the  everyday  

life  of  the  Transplantation  Laboratory,  for  your  help,  friendship,  and  

shared  experiences  around  the  world.  

The   other   members   of   our   research   group:   Eeva   Rouvinen   for  

teaching  me   laboratory  practice   and   for   your   extremely   invaluable  

technical   assistance;   Jussi   Tikkanen,   Jussi   Ropponen,   and   Janne  

Jokinen   for   your   friendship,   support,   and   for   our   shared   journeys  

over  the  years.    

Leena   Saraste   for   your  humor,   assistance  with  everyday  problems,  

and  for  reviewing  our  manuscripts,  letters,  and  presentations.  

The  staff  of  Transplantation  Laboratory  and  H3  Animal  Unit  for  your  

kind  help   and   support.   The  heart   and   lung   transplant   coordinators  

Page 86: Critical role of angiopoietin pathway in Ischemia

86

Marja-­‐Liisa   Hellstedt   and   Catharina   Yesil   from   Helsinki   University  

Central  Hospital  for  obtaining  the  clinical  samples.  

All   my   friends   for   support,   encouragement,   and   for   the  

extracurricular   activities:   Joonas,   Kalle,   Sandor,   and   Tomi;   all   the  

friends  in  the  medical  school,  especially  Tuomas  J.,  Jussi,  Juhani,  Ora,  

Antti,  and  Lauri,  and  also  Ilkka,  Tuomas  K.,  Juhana,  Timo,  Kapo,  Vera,  

Julia,   and   the   late   Petri   for   sharing   your   time   during   (scientific!)  

lunch,  tennis,  work,  skiing,  or  whatever  reason;  all  the  friends  at  the  

Blood  Service,  especially  Aleksi,  Heidi,  John,  Tea  K.,  and  Tea  S.  

My  family:  Satu  and  Martti,  Ossi  and  Rina,  Mikko  and  Anna  for  your  

love,   support,   and   encouragement   throughout  my   life;   and   all  my  

other  relatives  for  your  support.  Tintti  and  Hanski,  Hessu  and  Anna,  

Harri  and  Hannis  for  your  support  and  good  times  spent  together.  

My  deepest  gratitude  I  owe  to  the  most  important  person  in  my  life,  

Heli,   thank   you   for   your   support,   love,   and   patience   during   this  

project.  

 

 

In  Helsinki,  October  2014    

Page 87: Critical role of angiopoietin pathway in Ischemia

87

REFERENCES

Abecassis  M,  Bridges  ND,  Clancy  CJ,  Dew  MA,  Eldadah  B,  Englesbe  MJ,  Flessner  MF,  Frank  JC,  Friedewald  J,  Gill  J,    Gries  C,  Halter  JB,  Hartmann  EL,  Hazzard  WR,  Horne  FM,  Hosenpud  J,  Jacobson  P,  Kasiske  BL,  Lake  J,  Loomba  R,  Malani  PN,    Moore  TM,  Murray  A,  Nguyen  MH,  Powe  NR,  Reese  PP,  Reynolds  H,  Samaniego  MD,  Schmader  KE,  Segev  DL,  Shah  AS,  Singer  LG,  Sosa  JA,  Stewart  ZA,  Tan  JC,  Williams  WW,  Zaas  DW,  and  High  KP.  Solid-­‐organ  transplantation  in  older  adults:  current  status  and  future  research.  Am  J  Transplant.  2012.  12(10):2608–22.    

Aderem  A,  Ulevitch  RJ.  Toll-­‐like  receptors  in  the  induction  of  the  innate  immune  response.  Nature.  2000  406(6797):782–7.    

Al-­‐Lamki  RS,  Bradley  JR,  Pober  JS.  Endothelial  cells  in  allograft  rejection.  Transplantation.  2008  86(10):1340–8.    

Ali  JM,  Bolton  EM,  Bradley  JA,  Pettigrew  GJ.  Allorecognition  pathways  in  transplant  rejection  and  tolerance.  Transplantation.  2013  96(8):681–8.    

Aono  Y,  Ariyoshi  H,  Sakon  M,  Ueda  A,  Tsuji  Y,  Kawasaki  T,  Monden  M.  Human  umbilical  vein  endothelial  cells  (HUVECs)  show  Ca(2+)  mobilization  as  well  as  Ca(2+)  influx  upon  hypoxia.  J  Cell  Biochem.  2000  Jun  6;78(3):458–64.    

Bader  FM,  Kfoury  AG,  Gilbert  EM,  Barry  WH,  Humayun  N,  Hagan  ME,  Thomas  H,  Rendlun  D.  Percutaneous  coronary  interventions  with  stents  in  cardiac  transplant  recipients.  J  Heart  Lung  Transplant.  2006  25(3):298–301.    

Banchereau  J,  Steinman  R.  Dendritic  cells  and  the  control  of  immunity.  Nature.  1998  392(6673):245–52.    

Baran  DA.  New  directions  in  immunosuppression  after  heart  transplantation.  Nat  Rev  Cardiol.  2013  10(7):422–7.    

Barnard  CN.  The  operation.  A  human  cardiac  transplant:  an  interim  report  of  a  successful  operation  performed  at  Groote  Schuur  Hospital,  Cape  Town.  S  Afr  Med  J.  1967  41(48):1271–4.    

Page 88: Critical role of angiopoietin pathway in Ischemia

88

Barton  GM,  Medzhitov  R.  Toll-­‐like  receptor  signaling  pathways.  Science.  2003  300(5625):1524–5.    

Bhattacharya  R,  SenBanerjee  S,  Lin  Z,  Mir  S,  Hamik  A,  Wang  P,  Mukherjee  P,  Mukhopadhyay  D,  Jain  MK.  Inhibition  of  vascular  permeability  factor/vascular  endothelial  growth  factor-­‐mediated  angiogenesis  by  the  Kruppel-­‐like  factor  KLF2.  J  Biol  Chem.  2005  280(32):28848–51.    

Bleackley  RC.  A  molecular  view  of  cytotoxic  T  lymphocyte  induced  killing.  Biochem  Cell  Biol.  2005  83(6):747–51.    

Booth  AJ,  Grabauskiene  S,  Wood  SC,  Lu  G,  Burrell  BE,  Bishop  DK.  IL-­‐6  promotes  cardiac  graft  rejection  mediated  by  CD4+  cells.  The  Journal  of  Immunology.  2011  187(11):5764–71.    

Borel  JF,  Feurer  C,  Gubler  HU,  Stähelin  H.  Biological  effects  of  cyclosporin  A:  a  new  antilymphocytic  agent.  Agents  Actions.  1976  6(4):468–75.    

Boros  P,  Bromberg  JS.  New  cellular  and  molecular  immune  pathways  in  ischemia/reperfusion  injury.  Am  J  Transplant.  2006  6(4):652–8.    

Braggion-­‐Santos  MF,  Lossnitzer  D,  Buss  S,  Lehrke  S,  Doesch  A,  Giannitsis  E,  Korosoglou  G,  Katus  HA,  Steen  H.  Late  gadolinium  enhancement  assessed  by  cardiac  magnetic  resonance  imaging  in  heart  transplant  recipients  with  different  stages  of  cardiac  allograft  vasculopathy.  Eur  Heart  J  Cardiovasc  Imaging.  2014  15(10):1125-­‐32  

 Canton  J,  Neculai  D,  Grinstein  S.  Scavenger  receptors  in  homeostasis  

and  immunity.  Nat  Rev  Immunol.  2013  13(9):621–34.    

Carden  D,  Granger  D.  Pathophysiology  of  ischaemia-­‐reperfusion  injury.  J  Pathol.  2000  190(3):255–66.    

Carrel  A,  Guthrie  CC.  Functions  of  a  transplanted  kidney.  Science.  1905  22(563):473.    

 

Page 89: Critical role of angiopoietin pathway in Ischemia

89

Chen  L,  Ahmed  E,  Wang  T,  Wang  Y,  Ochando  J,  Chong  A,  Alegre  M.  TLR  signals  promote  IL-­‐6/IL-­‐17-­‐dependent  transplant  rejection.  J  Immunol.  2009  182(10):6217–25.    

Cho  C,  Kammerer  R,  Lee  H,  Steinmetz  M,  Ryu  Y,  Lee  S,  Yasunaga  K,  Kim  K,  Kim  I,  Choi  H,  Kim  W,  Kim  S,  Park  S,  Lee  G,  Koh  G.  COMP-­‐Ang1:  a  designed  angiopoietin-­‐1  variant  with  nonleaky  angiogenic  activity.  Proc  Natl  Acad  Sci  USA.  2004  101(15):5547–52.    

Cobert  ML,  West  LM,  Jessen  ME.  Machine  perfusion  for  cardiac  allograft  preservation.  Curr  Opin  Organ  Transplant.  2008  13(5):526–30.    

Daly  C,  Pasnikowski  E,  Burova  E,  Wong  V,  Aldrich  TH,  Griffiths  J,  et  al.  Angiopoietin-­‐2  functions  as  an  autocrine  protective  factor  in  stressed  endothelial  cells.  Proc  Natl  Acad  Sci  U  S  A.  2006  103(42):15491–6.    

Daly  C,  Wong  V,  Burova  E,  Wei  Y,  Zabski  S,  Griffiths  J,  Lai  K-­‐M,  Lin  HC,  Ioffe  E,  Yancopoulos  GD,  Rudge  JS.  Angiopoietin-­‐1  modulates  endothelial  cell  function  and  gene  expression  via  the  transcription  factor  FKHR  (FOXO1).  Genes  Dev.  2004  18(9):1060–71.    

Daly  KP,  Seifert  ME,  Chandraker  A,  Zurakowski  D,  Nohria  A,  Givertz  MM,  Karumanchi  SA,  Briscoe  DM.  VEGF-­‐C,  VEGF-­‐A  and  related  angiogenesis  factors  as  biomarkers  of  allograft  vasculopathy  in  cardiac  transplant  recipients.  J  Heart  Lung  Transplant.  2013  32(1):120–8.    

Davis  S,  Aldrich  TH,  Jones  PF,  Acheson  A,  Compton  DL,  Jain  V,  Ryan  TE,  Bruno  J,  Radziejewski  C,  Maisonpierre  PC,  Yancopoulos  GD.  Isolation  of  angiopoietin-­‐1,  a  ligand  for  the  TIE2  receptor,  by  secretion-­‐trap  expression  cloning.  Cell.  1996  87(7):1161–9.    

DeBusk  LM,  Hallahan  DE,  Lin  PC.  Akt  is  a  major  angiogenic  mediator  downstream  of  the  Ang1/Tie2  signaling  pathway.  Exp  Cell  Res.  2004  298(1):167–77.    

 

Page 90: Critical role of angiopoietin pathway in Ischemia

90

Dekker  RJ,  Boon  RA,  Rondaij  MG,  Kragt  A,  Volger  OL,  Elderkamp  YW,  Meijers  JCM,  Voorberg  J,  Pannekoek  H,  Horrevoets  AJG.  KLF2  provokes  a  gene  expression  pattern  that  establishes  functional  quiescent  differentiation  of  the  endothelium.  Blood.  2006  107(11):4354–63.    

Dekker  RJ,  van  Soest  S,  Fontijn  RD,  Salamanca  S,  de  Groot  PG,  VanBavel  E,  Pannekoek  H,  Horrevoets  AJG.  Prolonged  fluid  shear  stress  induces  a  distinct  set  of  endothelial  cell  genes,  most  specifically  lung  Krüppel-­‐like  factor  (KLF2).  Blood.  2002  100(5):1689–98.    

Diamond  JM,  Porteous  MK,  Cantu  E,  Meyer  NJ,  Shah  RJ,  Lederer  DJ,  Kawut  SM,  Lee  J,  Bellamy  SL,  Palmer  SM,  Lama  VN,  Bhorade  SM,  Crespo  M,  Demissie  E,  Wille  K,  Orens  J,  Shah  PD,  Weinacker  A,  Weill  D,  Arcasoy  S,  Wilkes  DS,  Ware  LB,  Christie  JD.  Elevated  plasma  angiopoietin-­‐2  levels  and  primary  graft  dysfunction  after  lung  transplantation.  PLoS  ONE.  2012  7(12):e51932.    

Dumitrescu  C,  Biondi  R,  Xia  Y,  Cardounel  A,  Druhan  L,  Ambrosio  G,  Zweier  J.  Myocardial  ischemia  results  in  tetrahydrobiopterin  (BH4)  oxidation  with  impaired  endothelial  function  ameliorated  by  BH4.  Proc  Natl  Acad  Sci  USA.  2007  104(38):15081–6.    

Eklund  L,  Saharinen  P.  Angiopoietin  signaling  in  the  vasculature.  Exp  Cell  Res.  2013  319(9):1271–80.    

El-­‐Sawy  T,  Belperio  JA,  Strieter  RM,  Remick  DG,  Fairchild  RL.  Inhibition  of  polymorphonuclear  leukocyte-­‐mediated  graft  damage  synergizes  with  short-­‐term  costimulatory  blockade  to  prevent  cardiac  allograft  rejection.  Circulation.  2005  112(3):320–31.    

El-­‐Sawy  T,  Miura  M,  Fairchild  R.  Early  T  cell  response  to  allografts  occurring  prior  to  alloantigen  priming  up-­‐regulates  innate-­‐mediated  inflammation  and  graft  necrosis.  Am  J  Pathol.  2004  165(1):147–57.    

 

 

Page 91: Critical role of angiopoietin pathway in Ischemia

91

Eltzschig  HK,  Carmeliet  P.  Hypoxia  and  inflammation.  N  Engl  J  Med.  2011  364(7):656–65.    

Etoh  T,  Inoue  H,  Tanaka  S,  Barnard  GF,  Kitano  S,  Mori  M.  Angiopoietin-­‐2  is  related  to  tumor  angiogenesis  in  gastric  carcinoma:  possible  in  vivo  regulation  via  induction  of  proteases.  Cancer  Res.  2001  61(5):2145–53.    

Fiedler  U,  Reiss  Y,  Scharpfenecker  M,  Grunow  V,  Koidl  S,  Thurston  G,  Gale  NW,  Witzenrath  M,  Rosseau  S,  Suttorp  N,  Sobke  A,  Herrmann  M,  Preissner  KT,  Vajkoczy  P,  Augustin  HG.  Angiopoietin-­‐2  sensitizes  endothelial  cells  to  TNF-­‐alpha  and  has  a  crucial  role  in  the  induction  of  inflammation.  Nat  Med.  2006  12(2):235–9.    

Fiedler  U,  Scharpfenecker  M,  Koidl  S,  Hegen  A,  Grunow  V,  Schmidt  JM,  Kriz  W,  Thurston  G,  Augustin  HG.  The  Tie-­‐2  ligand  angiopoietin-­‐2  is  stored  in  and  rapidly  released  upon  stimulation  from  endothelial  cell  Weibel-­‐Palade  bodies.  Blood.  2004  103(11):4150–6.    

Förster  R,  Davalos-­‐Misslitz  AC,  Rot  A.  CCR7  and  its  ligands:  balancing  immunity  and  tolerance.  Nat  Rev  Immunol.  2008  8(5):362–71.    

Fukata  Y,  Oshiro  N,  Kinoshita  N,  Kawano  Y,  Matsuoka  Y,  Bennett  V,  Matsuura  Y,  Kaibuchi  K.  Phosphorylation  of  adducin  by  Rho-­‐kinase  plays  a  crucial  role  in  cell  motility.  J  Cell  Biol.  1999  145(2):347–61.    

Gallagher  DC,  Bhatt  RS,  Parikh  SM,  Patel  P,  Seery  V,  McDermott  DF,  Atkins  MB,  Sukhatme  VP.  Angiopoietin  2  is  a  potential  mediator  of  high-­‐dose  interleukin  2-­‐induced  vascular  leak.  Clin  Cancer  Res.  2007  13(7):2115–20.    

Gamble  J,  Drew  J,  Trezise  L,  Underwood  A,  Parsons  M,  Kasminkas  L,  Rudge  J,  Yancopoulos  G,  Vadas  M.  Angiopoietin-­‐1  is  an  antipermeability  and  anti-­‐inflammatory  agent  in  vitro  and  targets  cell  junctions.  Circ  Res.  2000  87(7):603–7.    

 

Page 92: Critical role of angiopoietin pathway in Ischemia

92

Gavard  J,  Patel  V,  Gutkind  JS.  Angiopoietin-­‐1  prevents  VEGF-­‐induced  endothelial  permeability  by  sequestering  Src  through  mDia.  Dev  Cell.  2008  14(1):25–36.    

Goldstein  DR.  Toll-­‐like  receptors  and  other  links  between  innate  and  acquired  alloimmunity.  Curr  Opin  Immunol.  2004  16(5):538–44.    

Guild  WR,  Harrison  JH,  Merrill  JP,  Murray  J.  Successful  homotransplantation  of  the  kidney  in  an  identical  twin.  Trans  Am  Clin  Climatol  Assoc.  1955  67:167–73.    

Haddad  F,  Khazanie  P,  Deuse  T,  Weisshaar  D,  Zhou  J,  Wook  Nam  C,  Vu  TA,  Gomari  FA,  Skhiri  M,  Simos  A,  Schnittger  I,  Vrotvec  B,  Hunt  SA,  Fearon  WF.  Clinical  and  Functional  Correlates  of  Early  Microvascular  Dysfunction  Following  Heart  Transplantation.  Circ  Heart  Fail.  2012  5(6):759-­‐68    

 Halle  AA,  DiSciascio  G,  Massin  EK,  Wilson  RF,  Johnson  MR,  Sullivan  

HJ,  Bourge  RC,  Kleiman  NS,  Miller  LW,  Aversano  TR.  Coronary  angioplasty,  atherectomy  and  bypass  surgery  in  cardiac  transplant  recipients.  J  Am  Coll  Cardiol.  1995  26(1):120–8.    

Hanahan  D.  Signaling  vascular  morphogenesis  and  maintenance.  Science.  1997  277(5322):48–50.    

Hancock  WW,  Kraft  N,  Atkins  RC.  The  immunohistochemical  demonstration  of  major  histocompatibility  antigens  in  the  human  kidney  using  monoclonal  antibodies.  Pathology.  1982  14(4):409–14.    

Hollenberg  SM,  Klein  LW,  Parrillo  JE,  Scherer  M,  Burns  D,  Tamburro  P,  Oberoi  M,  Johnson  MR,  Costanzo  MR.  Coronary  endothelial  dysfunction  after  heart  transplantation  predicts  allograft  vasculopathy  and  cardiac  death.  Circulation.  2001  104(25):3091–6.    

       

Page 93: Critical role of angiopoietin pathway in Ischemia

93

Hofmann  NP,  Steuer  C,  Voss  A,  Erbel  C,  Doesch  A,  Ehlermann  P,  Giannitsis  E,  Buss  SJ,  Katus  HA,  Korosoglou  G.  Comprehensive  Bio-­‐Imaging  Using  Myocardial  Perfusion  Reserve  Index  During  Cardiac  Magnetic  Resonance  Imaging  and  High-­‐Sensitive  Troponin  T  for  the  Prediction  of  Outcomes  in  Heart  Transplant  Recipients.  Am  J  Transplant.  2014,  epub  ahead  of  print;  Oct  7.  

 Hsieh  CL,  Obara  H,  Ogura  Y,  Martinez  OM,  Krams  SM.  NK  cells  and  

transplantation.  Transpl  Immunol.  2002  9(2-­‐4):111–4.    

Hughes  DP,  Marron  MB,  Brindle  NPJ.  The  antiinflammatory  endothelial  tyrosine  kinase  Tie2  interacts  with  a  novel  nuclear  factor-­‐kappaB  inhibitor  ABIN-­‐2.  Circ  Res.  2003  92(6):630–6.    

Hwang  S-­‐J,  Choi  HH,  Kim  K-­‐T,  Hong  HJ,  Koh  GY,  Lee  GM.  Expression  and  purification  of  recombinant  human  angiopoietin-­‐2  produced  in  Chinese  hamster  ovary  cells.  Protein  Expr  Purif.  2005  39(2):175–83.    

Iyer  A,  Kumarasinghe  G,  Hicks  M,  Watson  A,  Gao  L,  Doyle  A,  Keogh  A,  Kotlyar  E,  Hayward  C,  Dhital  K,  Granger  E,  Jansz  P,  Pye  R,  Spratt  P,  Macdonald  PS.  Primary  graft  failure  after  heart  transplantation.  J  Transplant.  2011;2011:175768.    

Jacobs  S,  Rega  F,  Meyns  B.  Current  preservation  technology  and  future  prospects  of  thoracic  organs.  Part  2:  heart.  Curr  Opin  Organ  Transplant.  2010  15(2):156–9.    

Janeway  C,  Medzhitov  R.  Innate  immune  recognition.  Annu  Rev  Immunol.  2002  20:197–216.    

Johnson  MR,  Aaronson  KD,  Canter  CE,  Kirklin  JK,  Mancini  DM,  Mehra  MR,  Radovancevic  B,  Taylor  DO,  Webber  SA.  Heart  retransplantation.  Am  J  Transplant.  2007  7(9):2075–81.    

Jones  N,  Iljin  K,  Dumont  D,  Alitalo  K.  Tie  receptors:  new  modulators  of  angiogenic  and  lymphangiogenic  responses.  Nat  Rev  Mol  Cell  Biol.  2001  2(4):257–67.    

 

Page 94: Critical role of angiopoietin pathway in Ischemia

94

Ju  R,  Zhuang  ZW,  Zhang  J,  Lanahan  AA,  Kyriakides  T,  Sessa  WC,  Simons  M.  Angiopoietin-­‐2  secretion  by  endothelial  cell  exosomes:  regulation  by  the  phosphatidylinositol  3-­‐kinase  (PI3K)/Akt/endothelial  nitric  oxide  synthase  (eNOS)  and  syndecan-­‐4/syntenin  pathways.  J  Biol  Chem.  2014  289(1):510–9.    

Kaczorowski  D,  Nakao  A,  Mollen  K,  Vallabhaneni  R,  Sugimoto  R,  Kohmoto  J,  Tobita  K,  Zuckerbraun  B,  McCurry  K,  Murase  N,  Billiar  T.  Toll-­‐like  receptor  4  mediates  the  early  inflammatory  response  after  cold  ischemia/reperfusion.  Transplantation.  2007  84(10):1279–87.    

Kawanami  D,  Mahabeleshwar  GH,  Lin  Z,  Atkins  GB,  Hamik  A,  Haldar  SM,  Maemura  K,  Lamanna  JC,  Jain  MK.  Kruppel-­‐like  factor  2  inhibits  hypoxia-­‐inducible  factor  1alpha  expression  and  function  in  the  endothelium.  J  Biol  Chem.  2009  284(31):20522–30.    

Keränen  MAI,  Tuuminen  R,  Syrjala  S,  Krebs  R,  Walkinshaw  G,  Flippin  LA,  Arend  M,  Koskinen  PK,  Nykänen  AI,  Lemström  KB.  Differential  Effects  of  Pharmacological  HIF  Preconditioning  of  Donors  Versus  Recipients  in  Rat  Cardiac  Allografts.  Am  J  Transplant.  2013  13(3):600-­‐10.    

 Kim  I,  Kim  JH,  Moon  SO,  Kwak  HJ,  Kim  NG,  Koh  GY.  Angiopoietin-­‐2  at  

high  concentration  can  enhance  endothelial  cell  survival  through  the  phosphatidylinositol  3'-­‐kinase/Akt  signal  transduction  pathway.  Oncogene.  2000  19(39):4549–52.    

Kim  I,  Moon  SO,  Kim  SH,  Kim  HJ,  Koh  YS,  Koh  GY.  Vascular  endothelial  growth  factor  expression  of  intercellular  adhesion  molecule  1  (ICAM-­‐1),  vascular  cell  adhesion  molecule  1  (VCAM-­‐1),  and  E-­‐selectin  through  nuclear  factor-­‐kappa  B  activation  in  endothelial  cells.  J  Biol  Chem.  2001a  276(10):7614–20.    

Kim  I,  Moon  SO,  Park  SK,  Chae  SW,  Koh  GY.  Angiopoietin-­‐1  reduces  VEGF-­‐stimulated  leukocyte  adhesion  to  endothelial  cells  by  reducing  ICAM-­‐1,  VCAM-­‐1,  and  E-­‐selectin  expression.  Circ  Res.  2001b  89(6):477–9.    

 

Page 95: Critical role of angiopoietin pathway in Ischemia

95

Kobashigawa  JA,  Katznelson  S,  Laks  H,  Johnson  JA,  Yeatman  L,  Wang  XM,  Chia  D,  Terasaki  PI,  Sabad  A,  Cogert  GA.  Effect  of  pravastatin  on  outcomes  after  cardiac  transplantation.  N  Engl  J  Med.  1995  333(10):621–7.    

Kolaczkowska  E,  Kubes  P.  Neutrophil  recruitment  and  function  in  health  and  inflammation.  Nat  Rev  Immunol.  2013  13(3):159–75.    

Kontos  CD,  Cha  EH,  York  JD,  Peters  KG.  The  endothelial  receptor  tyrosine  kinase  Tie1  activates  phosphatidylinositol  3-­‐kinase  and  Akt  to  inhibit  apoptosis.  Mol  Cell  Biol.  2002  22(6):1704–13.    

Korkmaz  S,  Bährle-­‐Szabó  S,  Loganathan  S,  Li  S,  Karck  M,  Szabó  G.  Marginal  donors:  can  older  donor  hearts  tolerate  prolonged  cold  ischemic  storage?  Aging  Clin  Exp  Res.  2013  25(5):597–600.    

Korn  T,  Bettelli  E,  Oukka  M,  Kuchroo  V.  IL-­‐17  and  Th17  Cells.  Annu  Rev  Immunol.  2009  27:485–517.    

Kuo  M-­‐C,  Patschan  D,  Patschan  S,  Cohen-­‐Gould  L,  Park  H-­‐C,  Ni  J,  Addabbo  F,  Goligorsky  MS.  Ischemia-­‐induced  exocytosis  of  Weibel-­‐Palade  bodies  mobilizes  stem  cells.  J  Am  Soc  Nephrol.  2008  19(12):2321–30.    

Laan  M,  Cui  ZH,  Hoshino  H,  Lötvall  J,  Sjöstrand  M,  Gruenert  DC,  Skoogh  BE,  Lindén  A.  Neutrophil  recruitment  by  human  IL-­‐17  via  C-­‐X-­‐C  chemokine  release  in  the  airways.  J  Immunol.  1999  162(4):2347–52.    

Lakkis  FG,  Lechler  RI.  Origin  and  biology  of  the  allogeneic  response.  Cold  Spring  Harb  Perspect  Med.  2013  3(8).    

Lampe  JW,  Becker  LB.  State  of  the  art  in  therapeutic  hypothermia.  Annu  Rev  Med.  2011  62:79–93.    

Land  WG.  Emerging  role  of  innate  immunity  in  organ  transplantation  Part  II:  potential  of  damage-­‐associated  molecular  patterns  to  generate  immunostimulatory  dendritic  cells.  Transplant  Rev.  2012  26(2):73-­‐87.  

     

Page 96: Critical role of angiopoietin pathway in Ischemia

96

Lazarevic  V,  Glimcher  LH,  Lord  GM.  T-­‐bet:  a  bridge  between  innate  and  adaptive  immunity.  Nat  Rev  Immunol.  2013  13(11):777–89.    

Lee  RS,  Grusby  MJ,  Glimcher  LH,  Winn  HJ,  Auchincloss  H.  Indirect  recognition  by  helper  cells  can  induce  donor-­‐specific  cytotoxic  T  lymphocytes  in  vivo.  J  Exp  Med.  1994  179(3):865–72.    

Lehmann  M,  Graser  E,  Risch  K,  Hancock  WW,  Muller  A,  Kuttler  B,  Hahn  HJ,  Kupiec-­‐Weglinski  JW,  Brock  J,  Volk  H-­‐D.  Anti-­‐CD4  monoclonal  antibody-­‐induced  allograft  tolerance  in  rats  despite  persistence  of  donor-­‐reactive  T  cells.  Transplantation.  1997  64(8):1181–7.    

Lei  J,  He  F,  Wu  M,  Zheng  X,  Chen  X,  Chen  Z.  Administration  of  anti-­‐interleukin-­‐6  monoclonal  antibody  prolongs  cardiac  allograft  survival.  Transpl  Int.  2010  23(12):1271–81.    

Lemström  KB,  Krebs  R,  Nykänen  AI,  Tikkanen  JM,  Sihvola  RK,  Aaltola  EM,  Häyry  PJ,  Wood  J,  Alitalo  K,  Ylä-­‐Herttuala  S,  Koskinen  PK.  Vascular  endothelial  growth  factor  enhances  cardiac  allograft  arteriosclerosis.  Circulation.  2002  105(21):2524–30.    

Ley  K,  Smith  E,  Stark  MA.  IL-­‐17A-­‐producing  neutrophil-­‐regulatory  Tn  lymphocytes.  Immunol  Res.  2006  34(3):229–42.    

Lin  Z,  Hamik  A,  Jain  R,  Kumar  A,  Jain  MK.  Kruppel-­‐like  factor  2  inhibits  protease  activated  receptor-­‐1  expression  and  thrombin-­‐mediated  endothelial  activation.  Arterioscler  Thromb  Vasc  Biol.  2006  26(5):1185–9.    

Lindenfeld  J,  Miller  GG,  Shakar  SF,  Zolty  R,  Lowes  BD,  Wolfel  EE,  Mestroni  L,  Page  RL,  Kobashigawa  J.  Drug  therapy  in  the  heart  transplant  recipient:  part  I:  cardiac  rejection  and  immunosuppressive  drugs.  Circulation.  2004a  10(24):3734–40.    

Lindenfeld  J,  Miller  GG,  Shakar  SF,  Zolty  R,  Lowes  BD,  Wolfel  EE,  Mestroni  L,  Page  RL,  Kobashigawa  J.  Drug  therapy  in  the  heart  transplant  recipient:  part  II:  immunosuppressive  drugs.  Circulation.  2004b  110(25):3858–65.    

 

Page 97: Critical role of angiopoietin pathway in Ischemia

97

Listijono  DR,  Watson  A,  Pye  R,  Keogh  AM,  Kotlyar  E,  Spratt  P,  Granger  E,  Dhital  K,  Jansz  P,  Macdonald  PS,  Hayward  CS.  Usefulness  of  extracorporeal  membrane  oxygenation  for  early  cardiac  allograft  dysfunction.  J  Heart  Lung  Transplant.  2011  30(7):783–9.    

Liu  W,  Xiao  X,  Demirci  G,  Madsen  J,  Li  XC.  Innate  NK  cells  and  macrophages  recognize  and  reject  allogeneic  nonself  in  vivo  via  different  mechanisms.  J  Immunol.  2012  188(6):2703–11.    

Liu  Z,  Sun  YK,  Xi  YP,  Maffei  A,  Reed  E,  Harris  P,  Suciu-­‐Foca  N.  Contribution  of  direct  and  indirect  recognition  pathways  to  T  cell  alloreactivity.  J  Exp  Med.  1993  177(6):1643–50.    

Lowalekar  SK,  Lu  XG,  Thatte  HS.  Further  evaluation  of  somah:  long-­‐term  preservation,  temperature  effect,  and  prevention  of  ischemia-­‐reperfusion  injury  in  rat  hearts  harvested  after  cardiocirculatory  death.  Transplant  Proc.  2013  45(9):3192–7.    

Lund  LH,  Edwards  LB,  Kucheryavaya  AY,  Dipchand  AI,  Benden  C,  Christie  JD,  Dobbels  F,  Kirk  R,  Rahmel  AO,  Yusen  RD,  Stehlik  J.  The  Registry  of  the  International  Society  for  Heart  and  Lung  Transplantation:  thirtieth  official  adult  heart  transplant  report-­‐-­‐2013;  focus  theme:  age.  J  Heart  Lung  Transplant.  2013  32(10):951–64.    

Madge  LA,  Pober  JS.  A  phosphatidylinositol  3-­‐kinase/Akt  pathway,  activated  by  tumor  necrosis  factor  or  interleukin-­‐1,  inhibits  apoptosis  but  does  not  activate  NFkappaB  in  human  endothelial  cells.  J  Biol  Chem.  2000  275(20):15458–65.    

Maisonpierre  PC,  Suri  C,  Jones  PF,  Bartunkova  S,  Wiegand  SJ,  Radziejewski  C,  Compton  D,  McClain  J,  Aldrich  TH,  Papadopoulos  N,  Daly  TJ,  Davis  S,  Sato  TN,  Yancopoulos  GD.  Angiopoietin-­‐2,  a  natural  antagonist  for  Tie2  that  disrupts  in  vivo  angiogenesis.  Science.  1997  277(5322):55–60.    

Mammoto  T,  Parikh  SM,  Mammoto  A,  Gallagher  D,  Chan  B,  Mostoslavsky  G,  Ingber  DE,  Sukhatme  VP.  Angiopoietin-­‐1  requires  p190  RhoGAP  to  protect  against  vascular  leakage  in  vivo.  J  Biol  Chem.  2007  282(33):23910–8.    

Page 98: Critical role of angiopoietin pathway in Ischemia

98

Maxwell  PH,  Wiesener  MS,  Chang  GW,  Clifford  SC,  Vaux  EC,  Cockman  ME,  Wykoff  CC,  Pugh  CW,  Maher  ER,  Ratcliffe  PJ.  The  tumour  suppressor  protein  VHL  targets  hypoxia-­‐inducible  factors  for  oxygen-­‐dependent  proteolysis.  Nature.  1999  399(6733):271–5.    

McCord  JM.  Oxygen-­‐derived  free  radicals  in  postischemic  tissue  injury.  N  Engl  J  Med.  1985  312(3):159–63.    

Mengel  M,  Husain  S,  Hidalgo  L,  Sis  B.  Phenotypes  of  antibody-­‐mediated  rejection  in  organ  transplants.  Transpl  Int.  2012  25(6):611–22.    

Müller-­‐Eberhard  HJ.  The  membrane  attack  complex  of  complement.  Annu  Rev  Immunol.  1986  4:503–28.    

Nag  S,  Papneja  T,  Venugopalan  R,  Stewart  DJ.  Increased  angiopoietin2  expression  is  associated  with  endothelial  apoptosis  and  blood-­‐brain  barrier  breakdown.  Lab  Invest.  2005  85(10):1189–98.    

Nagy  JA,  Dvorak  AM,  Dvorak  HF.  Vascular  hyperpermeability,  angiogenesis,  and  stroma  generation.  Cold  Spring  Harb  Perspect  Med.  2012  2(2):a006544.    

Ochando  JC,  Homma  C,  Yang  Y,  Hidalgo  A,  Garin  A,  Tacke  F,  Angeli  V,  Li  Y,  Boros  P,  Ding  Y,  Jessberger  R,  Trinchieri  G,  Lira  SA,  Randolph  GJ,  Bromberg  JS.  Alloantigen-­‐presenting  plasmacytoid  dendritic  cells  mediate  tolerance  to  vascularized  grafts.  Nat  Immunol.  2006  7(6):652–62.    

Oliner  J,  Min  H,  Leal  J,  Yu  D,  Rao  S,  You  E,  Tang  X,  Kim  H,  Meyer  S,  Han  SJ,  Hawkins  N,  Rosenfeld  R,  Davy  E,  Graham  K,  Jacobsen  F,  Stevenson  S,  Ho  J,  Chen  Q,  Hartmann  T,  Michaels  M,  Kelley  M,  Li  L,  Sitney  K,  Martin  F,  Sun  J-­‐R,  Zhang  N,  Lu  J,  Estrada  J,  Kumar  R,  Coxon  A,  Kaufman  S,  Pretorius  J,  Scully  S,  Cattley  R,  Payton  M,  Coats  S,  Nguyen  L,  Desilva  B,  Ndifor  A,  Hayward  I,  Radinsky  R,  Boone  T,  Kendall  R.  Suppression  of  angiogenesis  and  tumor  growth  by  selective  inhibition  of  angiopoietin-­‐2.  Cancer  Cell.  2004  6(5):507–16.    

Page 99: Critical role of angiopoietin pathway in Ischemia

99

Page  E,  Kwun  J,  Oh  B,  Knechtle  S.  Lymphodepletional  strategies  in  transplantation.  Cold  Spring  Harb  Perspect  Med.  2013  3(7);  a015511.  

   Papapetropoulos  A,  Fulton  D,  Mahboubi  K,  Kalb  RG,  O'Connor  DS,  Li  

F,  Altieri  DC,  Sessa  WC.  Angiopoietin-­‐1  inhibits  endothelial  cell  apoptosis  via  the  Akt/survivin  pathway.  J  Biol  Chem.  2000  275(13):9102–5.    

Partanen  J,  Puri  MC,  Schwartz  L,  Fischer  KD,  Bernstein  A,  Rossant  J.  Cell  autonomous  functions  of  the  receptor  tyrosine  kinase  TIE  in  a  late  phase  of  angiogenic  capillary  growth  and  endothelial  cell  survival  during  murine  development.  Development.  1996  122(10):3013–21.    

Pichiule  P,  Chavez  JC,  Lamanna  JC.  Hypoxic  regulation  of  angiopoietin-­‐2  expression  in  endothelial  cells.  J  Biol  Chem.  2004  279(13):12171–80.    

Pober  JS,  Sessa  WC.  Evolving  functions  of  endothelial  cells  in  inflammation.  Nat  Rev  Immunol.  2007  7(10):803–15.    

Reffelmann  T,  Hale  SL,  Dow  JS,  Kloner  RA.  No-­‐reflow  phenomenon  persists  long-­‐term  after  ischemia/reperfusion  in  the  rat  and  predicts  infarct  expansion.  Circulation.  2003  108(23):2911–7.    

Reinders  MEJ,  Sho  M,  Izawa  A,  Wang  P,  Mukhopadhyay  D,  Koss  KE,  Geehan  CS,  Luster  AD,  Sayegh  MH,  Briscoe  DM.  Proinflammatory  functions  of  vascular  endothelial  growth  factor  in  alloimmunity.  J  Clin  Invest.  2003  112(11):1655–65.    

Roach  JC,  Glusman  G,  Rowen  L,  Kaur  A,  Purcell  MK,  Smith  KD,  Hood  LE,  Aderem  A.  The  evolution  of  vertebrate  Toll-­‐like  receptors.  Proc  Natl  Acad  Sci  U  S  A.  2005  102(27):9577–82.    

Rogers  NJ,  Lechler  RI.  Allorecognition.  Am  J  Transplant.  2001  1(2):97–102.    

Rossi  M,  Young  J.  Human  dendritic  cells:  potent  antigen-­‐presenting  cells  at  the  crossroads  of  innate  and  adaptive  immunity.  J  Immunol.  2005  175(3):1373–81.    

Page 100: Critical role of angiopoietin pathway in Ischemia

100

Saharinen  P,  Eklund  L,  Miettinen  J,  Wirkkala  R,  Anisimov  A,  Winderlich  M,  Nottebaum  A,  Vestweber  D,  Deutsch  U,  Koh  GY,  Olsen  BR,  Alitalo  K.  Angiopoietins  assemble  distinct  Tie2  signalling  complexes  in  endothelial  cell-­‐cell  and  cell-­‐matrix  contacts.  Nat  Cell  Biol.  2008  10(5):527–37.    

Sakaguchi  S.  Naturally  arising  Foxp3-­‐expressing  CD25+CD4+  regulatory  T  cells  in  immunological  tolerance  to  self  and  non-­‐self.  Nat  Immunol.  2005  6(4):345–52.    

Sako  K,  Fukuhara  S,  Minami  T,  Hamakubo  T,  Song  H,  Kodama  T,  Fukamizu  A,  Gutkind  JS,  Koh  GY,  Mochizuki  N.  Angiopoietin-­‐1  induces  Kruppel-­‐like  factor  2  expression  through  a  phosphoinositide  3-­‐kinase/AKT-­‐dependent  activation  of  myocyte  enhancer  factor  2.  J  Biol  Chem.  2009  284(9):5592–601.    

Salomon  RN,  Hughes  CC,  Schoen  FJ,  Payne  DD,  Pober  JS,  Libby  P.  Human  coronary  transplantation-­‐associated  arteriosclerosis.  Evidence  for  a  chronic  immune  reaction  to  activated  graft  endothelial  cells.  Am  J  Pathol.  1991  138(4):791–8.    

Schaefer  L,  Babelova  A,  Kiss  E,  Hausser  H,  Baliova  M,  Krzyzankova  M,  Marsche  G,  Young  M,  Mihalik  D,  Gotte  M,  Malle  E,  Schaefer  R,  Grone  H.  The  matrix  component  biglycan  is  proinflammatory  and  signals  through  Toll-­‐like  receptors  4  and  2  in  macrophages.  J  Clin  Invest.  2005  115(8):2223–33.    

Schmauss  D,  Weis  M.  Cardiac  allograft  vasculopathy:  recent  developments.  2008  117(16):2131–41.    

Scholz  A,  Rehm  VA,  Rieke  S,  Derkow  K,  Schulz  P,  Neumann  K,  Koch  I,  Pascu  M,  Wiedenmann  B,  Berg  T,  Schott  E.  Angiopoietin-­‐2  serum  levels  are  elevated  in  patients  with  liver  cirrhosis  and  hepatocellular  carcinoma.  Am  J  Gastroenterol.  2007  102(11):2471–81.    

Schulz  P,  Fischer  C,  Detjen  KM,  Rieke  S,  Hilfenhaus  G,  Marschall  von  Z,  et  al.  Angiopoietin-­‐2  drives  lymphatic  metastasis  of  pancreatic  cancer.  FASEB  J.  2011  25(10):3325–35.    

 

Page 101: Critical role of angiopoietin pathway in Ischemia

101

Semenza  GL.  Hypoxia-­‐inducible  factor  1  and  cardiovascular  disease.  Annu  Rev  Physiol.  2014  76:39–56.    

SenBanerjee  S,  Lin  Z,  Atkins  GB,  Greif  DM,  Rao  RM,  Kumar  A,  Feinberg  MW,  Chen  Z,  Simon  DI,  Luscinskas  FW,  Michel  TM,  Gimbrone  MA,  García-­‐Cardeña  G,  Jain  MK.  KLF2  Is  a  novel  transcriptional  regulator  of  endothelial  proinflammatory  activation.  J  Exp  Med.  2004  199(10):1305–15.    

Shimizu  K,  Aikawa  M,  Takayama  K,  Libby  P,  Mitchell  RN.  Direct  anti-­‐inflammatory  mechanisms  contribute  to  attenuation  of  experimental  allograft  arteriosclerosis  by  statins.  Circulation.  2003  108(17):2113–20.    

Smiley  S,  King  J,  Hancock  W.  Fibrinogen  stimulates  macrophage  chemokine  secretion  through  toll-­‐like  receptor  4.  J  Immunol.  2001  167(5):2887–94.    

Soares  MP,  Lin  Y,  Sato  K,  Stuhlmeier  KM,  Bach  FH.  Accommodation.  Immunol  Today.  1999  20(10):434–7.    

Southard  JH,  Belzer  FO.  Organ  preservation.  Annu  Rev  Med.  1995  46:235–47.    

Srivastava  R,  Keck  BM,  Bennett  LE,  Hosenpud  JD.  The  results  of  cardiac  retransplantation:  an  analysis  of  the  Joint  International  Society  for  Heart  and  Lung  Transplantation/United  Network  for  Organ  Sharing  Thoracic  Registry.  Transplantation.  2000  70(4):606–12.    

Stehlik  J,  Edwards  LB,  Kucheryavaya  AY,  Benden  C,  Christie  JD,  Dipchand  AI,  Dobbels  F,  Kirk  R,  Rahmel  AO,  Hertz  MI.  The  Registry  of  the  International  Society  for  Heart  and  Lung  Transplantation:  29th  official  adult  heart  transplant  report-­‐-­‐2012.  J  Heart  Lung  Transplant.  2012  31(10):1052–64.    

Stehlik  J,  Edwards  LB,  Kucheryavaya  AY,  Benden  C,  Christie  JD,  Dobbels  F,  Kirk  R,  Rahmel  AO,  Hertz  MI.  The  Registry  of  the  International  Society  for  Heart  and  Lung  Transplantation:  Twenty-­‐eighth  Adult  Heart  Transplant  Report-­‐2011.  J  Heart  Lung  Transplant.  2011  30(10):1078–94.    

Page 102: Critical role of angiopoietin pathway in Ischemia

102

Stratmann  A,  Risau  W,  Plate  KH.  Cell  type-­‐specific  expression  of  angiopoietin-­‐1  and  angiopoietin-­‐2  suggests  a  role  in  glioblastoma  angiogenesis.  Am  J  Pathol.  1998  153(5):1459–66.    

Sugimachi  K,  Tanaka  S,  Taguchi  K,  Aishima  S,  Shimada  M,  Tsuneyoshi  M.  Angiopoietin  switching  regulates  angiogenesis  and  progression  of  human  hepatocellular  carcinoma.  J  Clin  Pathol.  2003  56(11):854–60.    

Tadros  A,  Hughes  DP,  Dunmore  BJ,  Brindle  NPJ.  ABIN-­‐2  protects  endothelial  cells  from  death  and  has  a  role  in  the  antiapoptotic  effect  of  angiopoietin-­‐1.  Blood.  2003  102(13):4407–9.    

Takada  M,  Nadeau  KC,  Hancock  WW,  Mackenzie  HS,  Shaw  GD,  Waaga  AM,  Chandraker  A,  Sayegh  MH,  Tilney  NL.  Effects  of  explosive  brain  death  on  cytokine  activation  of  peripheral  organs  in  the  rat.  Transplantation.  1998  65(12):1533–42.    

Takasato  F,  Morita  R,  Schichita  T,  Sekiya  T,  Morikawa  Y,  Kuroda  T,  Niimi  M,  Yoshimura  A.  Prevention  of  allogeneic  cardiac  graft  rejection  by  transfer  of  ex  vivo  expanded  antigen-­‐specific  regulatory  T-­‐cells.  PLoS  ONE.  2014  9(2):e87722.    

Tanaka  M,  Mokhtari  G,  Terry  R,  Gunawan  F,  Balsam  L,  Hoyt  G,  Lee  K,  Tsao  P,  Robbins  R.  Prolonged  cold  ischemia  in  rat  cardiac  allografts  promotes  ischemia-­‐reperfusion  injury  and  the  development  of  graft  coronary  artery  disease  in  a  linear  fashion.  J  Heart  Lung  Transplant.  2005  24(11):1906–14.    

Tellides  G,  Pober  JS.  Interferon-­‐gamma  axis  in  graft  arteriosclerosis.  Circ  Res.  2007  100(5):622–32.    

Thatte  HS,  Rousou  L,  Hussaini  BE,  Lu  X-­‐G,  Treanor  PR,  Khuri  SF.  Development  and  evaluation  of  a  novel  solution,  Somah,  for  the  procurement  and  preservation  of  beating  and  nonbeating  donor  hearts  for  transplantation.  Circulation.  2009  120(17):1704–13.    

Thurston  G,  Rudge  JS,  Ioffe  E,  Zhou  H,  Ross  L,  Croll  SD,  Glazer  N,  Holash  J,  McDonald  DM,  Yancopoulos  GD.  Angiopoietin-­‐1  protects  the  adult  vasculature  against  plasma  leakage.  Nat  Med.  2000  6(4):460–3.    

Page 103: Critical role of angiopoietin pathway in Ischemia

103

Tressel  SL,  Kim  H,  Ni  C-­‐W,  Chang  K,  Velasquez-­‐Castano  JC,  Taylor  WR,  Yoon  Y-­‐S,  Jo  H.  Angiopoietin-­‐2  stimulates  blood  flow  recovery  after  femoral  artery  occlusion  by  inducing  inflammation  and  arteriogenesis.  Arterioscler  Thromb  Vasc  Biol.  2008  28(11):1989–95.    

Tsan  M,  Gao  B.  Endogenous  ligands  of  Toll-­‐like  receptors.  J  Leukoc  Biol.  2004  76(3):514–9.    

Tsigkos  S,  Zhou  Z,  Kotanidou  A,  Fulton  D,  Zakynthinos  S,  Roussos  C,  Papapetropoulos  A.  Regulation  of  Ang2  release  by  PTEN/PI3-­‐kinase/Akt  in  lung  microvascular  endothelial  cells.  J  Cell  Physiol.  2006  207(2):506–11.    

Tuuminen  R,  Syrjälä  S,  Krebs  R,  Keränen  MAI,  Koli  K,  Abo-­‐Ramadan  U,  Neuvonen  PJ,  Tikkanen  JM,  Nykänen  AI,  Lemström  KB.  Donor  simvastatin  treatment  abolishes  rat  cardiac  allograft  ischemia/reperfusion  injury  and  chronic  rejection  through  microvascular  protection.  Circulation.  2011  124(10):1138–50.    

Venkateswaran  RV,  Dronavalli  V,  Lambert  PA,  Steeds  RP,  Wilson  IC,  Thompson  RD,  Mascaro  JG,  Bonser  RS.  The  proinflammatory  environment  in  potential  heart  and  lung  donors:  prevalence  and  impact  of  donor  management  and  hormonal  therapy.  Transplantation.  2009  88(4):582–8.    

Vischer  UM,  Barth  H,  Wollheim  CB.  Regulated  von  Willebrand  factor  secretion  is  associated  with  agonist-­‐specific  patterns  of  cytoskeletal  remodeling  in  cultured  endothelial  cells.  Arterioscler  Thromb  Vasc  Biol.  2000  20(3):883–91.    

Wang  GL,  Semenza  GL.  General  involvement  of  hypoxia-­‐inducible  factor  1  in  transcriptional  response  to  hypoxia.  Proc  Natl  Acad  Sci  U  S  A.  1993  90(9):4304–8.    

Wang  Z,  Jin  N,  Ganguli  S,  Swartz  DR,  Li  L,  Rhoades  RA.  Rho-­‐kinase  activation  is  involved  in  hypoxia-­‐induced  pulmonary  vasoconstriction.  Am  J  Respir  Cell  Mol  Biol.  2001  25(5):628–35.    

 

Page 104: Critical role of angiopoietin pathway in Ischemia

104

Warnecke  G,  Moradiellos  J,  Tudorache  I,  Kühn  C,  Avsar  M,  Wiegmann  B,  Sommer  W,  Ius  F,  Kunze  C,  Gottlieb  J,  Varela  A,  Haverich  A.  Normothermic  perfusion  of  donor  lungs  for  preservation  and  assessment  with  the  Organ  Care  System  Lung  before  bilateral  transplantation:  a  pilot  study  of  12  patients.  Lancet.  2012  380(9856):1851–8.    

Welti  J,  Loges  S,  Dimmeler  S,  Carmeliet  P.  Recent  molecular  discoveries  in  angiogenesis  and  antiangiogenic  therapies  in  cancer.  J  Clin  Invest.  2013  123(8):3190–200.    

Wilhelm  MJ,  Pratschke  J,  Beato  F,  Taal  M,  Kusaka  M,  Hancock  WW,  Tilney  NL.  Activation  of  the  heart  by  donor  brain  death  accelerates  acute  rejection  after  transplantation.  Circulation.  2000  102(19):2426–33.    

Williams  GM,  Hume  DM,  Hudson  RP,  Morris  PJ,  Kano  K,  Milgrom  F.  “Hyperacute”  renal-­‐homograft  rejection  in  man.  N  Engl  J  Med.  1968  279(12):611–8.    

Witzenbichler  B,  Westermann  D,  Knueppel  S,  Schultheiss  H-­‐P,  Tschope  C.  Protective  role  of  angiopoietin-­‐1  in  endotoxic  shock.  Circulation.  2005  111(1):97–105.    

Woo  KV,  Qu  X,  Babaev  VR,  Linton  MF,  Guzman  RJ,  Fazio  S,  Baldwin  HS.  Tie1  attenuation  reduces  murine  atherosclerosis  in  a  dose-­‐dependent  and  shear  stress-­‐specific  manner.  J  Clin  Invest.  2011  121(4):1624–35.    

Wood  KJ,  Bushell  A,  Hester  J.  Regulatory  immune  cells  in  transplantation.  Nat  Rev  Immunol.  2012  12(6):417–30.    

Wyburn  KR,  Jose  MD,  Wu  H,  Atkins  RC,  Chadban  SJ.  The  role  of  macrophages  in  allograft  rejection.  Transplantation.  2005  80(12):1641–7.    

Xu  W,  Roos  A,  Daha  MR,  van  Kooten  C.  Dendritic  cell  and  macrophage  subsets  in  the  handling  of  dying  cells.  Immunobiology.  2006  211(6-­‐8):567–75.    

 

Page 105: Critical role of angiopoietin pathway in Ischemia

105

Yancopoulos  GD,  Davis  S,  Gale  NW,  Rudge  JS,  Wiegand  SJ,  Holash  J.  Vascular-­‐specific  growth  factors  and  blood  vessel  formation.  Nature.  2000  407(6801):242–8.    

Yang  D,  Guo  S,  Zhang  T,  Li  H.  Hypothermia  attenuates  ischemia/reperfusion-­‐induced  endothelial  cell  apoptosis  via  alterations  in  apoptotic  pathways  and  JNK  signaling.  FEBS  Lett.  2009  583(15):2500–6.    

Yemisci  M,  Gursoy-­‐Ozdemir  Y,  Vural  A,  Can  A,  Topalkara  K,  Dalkara  T.  Pericyte  contraction  induced  by  oxidative-­‐nitrative  stress  impairs  capillary  reflow  despite  successful  opening  of  an  occluded  cerebral  artery.  Nat  Med.  2009  15(9):1031–7.    

Yu  M,  Wang  H,  Ding  A,  Golenbock  D,  Latz  E,  Czura  C,  Fenton  M,  Tracey  K,  Yang  H.  HMGB1  signals  through  toll-­‐like  receptor  (TLR)  4  and  TLR2.  Shock.  2006  26(2):174–9.    

Yuan  X,  Paez-­‐Cortez  J,  Schmitt-­‐Knosalla  I,  D'Addio  F,  Mfarrej  B,  Donnarumma  M,  Habicht  A,  Clarkson  MR,  Iacomini  J,  Glimcher  LH,  Sayegh  MH,  Ansari  MJ.  A  novel  role  of  CD4  Th17  cells  in  mediating  cardiac  allograft  rejection  and  vasculopathy.  The  Journal  of  experimental  medicine.  2008  205(13):3133–44.    

Zheng  L,  Dengler  TJ,  Kluger  MS,  Madge  LA,  Schechner  JS,  Maher  SE,  Pober  JS,  Bothwell  AL.  Cytoprotection  of  human  umbilical  vein  endothelial  cells  against  apoptosis  and  CTL-­‐mediated  lysis  provided  by  caspase-­‐resistant  Bcl-­‐2  without  alterations  in  growth  or  activation  responses.  J  Immunol.  2000  164(9):4665–71.    

Zheng  X,  Lian  D,  Wong  A,  Bygrave  M,  Ichim  T,  Khoshniat  M,  Zhang  X,  Sun  H,  De  Zordo  T,  Lacefield  J,  Garcia  B,  Jevnikar  A,  Min  W.  Novel  small  interfering  RNA-­‐containing  solution  protecting  donor  organs  in  heart  transplantation.  Circulation.  2009  120(12):1099–107.