cpc solar mini

Upload: gustavo-ronceros-rivas

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 CPC Solar Mini

    1/12

    Investigation on a mini-CPC hybrid solar thermoelectric generator unit

    Y.J. Dai  a ,  *, H.M. Hu  a , T.S. Ge   a, R.Z. Wang  a , Per Kjellsen   a, b

    a Institute of Refrigeration and Cryogenics, Research Center of Solar Power and Refrigeration, M.O.E, Shanghai Jiao Tong University, Shanghai, Chinab Norwegian University of Science and Technology, Trondheim, Norway

    a r t i c l e i n f o

     Article history:

    Received 31 August 2015

    Received in revised form

    20 January 2016

    Accepted 20 January 2016

    Available online xxx

    Keywords:

    Solar hot water

    Thermoelectric generator

    Mini-CPC

    Ef ciency

    a b s t r a c t

    A hybrid solar hot water and Bi2Te3-based thermoelectric generator (TEG) unit using a heat pipe evac-

    uated tube collector with mini-compound parabolic concentrator (mini-CPC) is proposed. In this unit, theheat from the heat pipe evacuated tube solar collector is transferred to the hot side of TEG. Simulta-

    neously, water cooling is used at the cold side to maintain the temperature difference. Electricity is

    generated by TEG and the remaining heat is transferred to water at the same time. This paper in-

    vestigates how to convert excess solar heat into electricity more effectively. A mathematical model

    regarding this unit is developed and validated. It is found that the mini-CPC can signi cantly improve the

    electrical ef ciency. The optimal thermal conductance of TEG is determined, which could make the best

    use of excess solar heat. The excess solar heat can be effectively converted into electricity when ZT of 

    Bi2Te3 can be improved from 100  C to 200  C. Using TEG with ZT ¼ 1.0 and a geometrical concentrating

    ratio at 0.92, electrical and thermal ef ciencies of this system are predicted to be 3.3% and 48.6% when

    solar radiation and water temperature are 800 Wm2 and 20  C, respectively.©  2016 Published by Elsevier Ltd.

    1. Introduction

    Increasing pressure from environment and energy crisis attracts

    the development of solar thermal technologies for industrial and

    domestic applications. Operation data in the USA show that water

    heating accounts for 20% of household energy use  [1]. Flat plate

    solar collector and evacuated glass tube solar collector are

    commonly used for solar water heating system. In China, evacuated

    glass tube collector is more popularly used due to the improved

    thermal performance and low cost.

    Most of the evacuated glass tube solar collectors are non-

    concentrating, and the operation temperature is normally low.

    Recently, low concentrating solar evacuated collector has been

    developed to be both cheaper and more compact. Li et al.   [2]investigated thermal performance of evacuated collectors with

    3 and 6 CPC reectors. It is found that thermal ef ciencies (hths)are ashigh as51% and 54% byusing 3 CPC and 6 CPCwhen watertemperature (T w) is150

    C.Pei etal. [3] compared the performancesof solar evacuated collectors with and without mini-CPC. It is found

    that solar evacuated collector with mini-CPC has a higher thermal

    ef ciency than that without mini-CPC at high water temperature.

    Zambolin  [4]  investigated the thermal performances of   at plate

    and evacuated tube solar collectors with external CPC reectors.

    The ef ciency curves in steady-state and quasi-dynamic methods

    are obtained. Kossyvakis et al. [5] modeled the solar thermoelectric

    generator using ANSYS workbench software. The computational

    results reveal that the performance can be signicantly improved

    by optical concentrated congurations.

    The ef ciencies of evacuated glass tube collectors with and

    without low concentrating CPC are normally above 50% and 60%,

    respectively, even if the water temperature is up to 90   C. Thetemperature range meets the operational requirement of thermo-

    electric generator (TEG). The combined technology of TEG and

    evacuated glass tube solar collector has received increasing atten-

    tion. Chen et al.  [6,7] proposed the concept of thermal concentra-tion to obtain a large temperature drop across thermoelectric (TE)

    legs in a very cost-effective way. The experimental results showed

    that electrical ef ciency (he) is around 4.6% with solar radiation (G)

    at 1000 Wm2 and cold-side temperature of 20   C. However,commercial TEG could not be employed in this system because the

    thermal concentration of the commercial TEG is not more than 10

    [8], while in that system the thermal concentration is around 200

    [7]. McEnaney et al.   [9]   also extended the concept of thermal

    concentration into concentrating solar TEG. The results showed

    that he can be 10% when geometric optical concentration ratio is 45

    using skutterudite and Bi2Te3   materials. Lesage et al.   [10]   have*   Corresponding author.

    E-mail address: [email protected] (Y.J. Dai).

    Contents lists available at ScienceDirect

    Renewable Energy

    j o u r n a l h o m e p a g e :   w w w . e l s e v i e r . co m / l o c a t e / r e n e n e

    http://dx.doi.org/10.1016/j.renene.2016.01.060

    0960-1481/©

     2016 Published by Elsevier Ltd.

    Renewable Energy 92 (2016) 83e94

    mailto:[email protected]://www.sciencedirect.com/science/journal/09601481http://www.elsevier.com/locate/renenehttp://dx.doi.org/10.1016/j.renene.2016.01.060http://dx.doi.org/10.1016/j.renene.2016.01.060http://dx.doi.org/10.1016/j.renene.2016.01.060http://dx.doi.org/10.1016/j.renene.2016.01.060http://dx.doi.org/10.1016/j.renene.2016.01.060http://dx.doi.org/10.1016/j.renene.2016.01.060http://www.elsevier.com/locate/renenehttp://www.sciencedirect.com/science/journal/09601481http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2016.01.060&domain=pdfmailto:[email protected]

  • 8/19/2019 CPC Solar Mini

    2/12

  • 8/19/2019 CPC Solar Mini

    3/12

    Fig. 2 show the specication and schematic of heat pipe evacuatedglass tube solar collector with mini-CPC. The prototype of SHTG is

    mounted facing south and inclined at 30 from the horizon using asupport. The angle of inclination for SHTG is nearly identical with

    latitude of Shanghai (latitude 31.14) in order to obtain largestannual solar gain   [13]. According to the study of Mills   [14], the

    geometrical concentration ratio (C ) can be dened as:

    C  ¼ W CPC pDi

    (1)

    3. Mathematical model

     3.1. Optical analysis

    In order to evaluate the performance of SHTG, a three dimen-

    sional ray tracing program Tracepro (Lambda Research Corporation,

    Littleton, MA) is employed to determine angular acceptance of 

    mini-CPC reector. The transversal projection angle of the rays is

    varied in steps of 10  from 70  to þ70. As shown in Fig. 3, it canbe noted that the longitudinal projection angle of the rays is

    changed from þ60   to 0   to þ60  in the whole day. So the longi-tudinal projection angle of the rays is varied in the steps of 10 from0   to þ60 .

    The angular acceptance at a given incident angle can be calcu-

    lated by Ref. [2]:

    haðqÞ ¼ hað0; 0ÞhaðqT ; 0Þhað0; 0Þ

    hað0; qLÞhað0; 0Þ

      (2)

    Fig. 4   shows the variation of the angular acceptances at any

    given incident angle. It is noted that there exists a drop at  qT ¼  ±60 , because part of incident rays reected by reector cannot reachthe absorber. It is also found that averageha ismore than84% at any

    given incident angle in the whole day. It indicates that   ha   can

    remain at a very high value without tracking system.

     3.2. Thermal performance modeling 

    One-dimensional analytical mathematical model of SHTG is

    established. The following assumptions have been made without

    losing signicant accuracy:

    (1) Heat transfer is assumed to be steady state.

    (2) Thermal resistance along the heat pipe is neglected.

    (3) Thermal properties of selective coating are constant.

    Fig. 1.   A general view of SHTG.

    Fig. 2.  Construction of heat pipe collector with mini-CPC.

     Table 1

    The specication of heat pipe collector with mini-CPC.

    ai   εi   ao ¼  εo   to   Do  (mm) Di  (mm) L  tube (m) L  cpc  (m) Wcpc  (mm)0.86 0.10 0.80 0.90 47 58 1.75 1.75 136

    South   North

    East

    West

    θ

    30o

    SHTG

    θT

    Fig. 3.  Position of SHTG.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e94   85

  • 8/19/2019 CPC Solar Mini

    4/12

    (4) The Thomson effect of TEG is neglected.

    (5) Heat transfers of the air gap inside TEG module are

    neglected.

    Fig. 5   shows the thermal network of SHTG. The mini-CPC

    reector concentrates solar energy onto the selective coating and

    then the thermal energy (S ) is produced, which contains useful

    energy (Q U ) and thermal loss (Q L).   Q U    is the thermal energy

    absorbed on the hot side of TEG. Based on the energy balance for

    the TEG,   Q U   converts into electrical energy (P ) by TEG and the

    remaining   Q U   is absorbed by hot water. So   Q U   contains electrical

    energy (P ) and thermal energy (Q th).

     3.2.1. Thermal loss coef  cient 

    It is found that  Q U  can be expressed as [15]:

    Q U  ¼  S   Q L ¼ GCAihref hatoai  Q L   (1)where G is the solar irradiance, C is the concentration ratio, Ai is the

    area of the inner glass tube and  a i is the absorptance of the inner

    glass tube. The thermal loss can be expressed as [16]:

    Q L ¼ U L AiðT i  T aÞ   (2)

    where U L, T i and T a are the thermal loss coef cient, the temperature

    of the inner glass tube and the ambient temperature. Then, the

    thermal loss coef cient can be expressed as  [16]:

    U L ¼  1

     Ai

      1

    hi;o Aiþ   1

    ho;a þ ho;s Ao!1

    (3)

    where   hi,o   is the radiation heat transfer coef cient between the

    inner tube and outer glass tube. ho,a is the convection heat transfer

    coef cient between outer glass tube and ambient, and  ho,s   is the

    radiation heat transfer coef cient between outer glass tube andsky.

     Ao  is the surface area of outer glass tube.

    hi,o can be expressed as [16]:

    hi;o ¼s

    T 2

    i þ T 2o

    ðT i þ T oÞ

    1εi

    þ  A i Ao

    1εo

    1   (4)

    where   T o   is the temperature of outer glass tube.   s   is the Ste-

    faneBoltzmann constant.   εi   and   εo   are the emittances of the

    absorber tube and outer glass tube, respectively.ho,s can be expressed as [16]:

    ho;s ¼  sεo

    T 2o þ T 2sky

    T 2o þ T 2sky

      (5)

    where T sky is the temperature of the sky,  T sky ¼ 0.0522T1:5a   .ho,a can be expressed as [16]:

    ho;a ¼ 5:7 þ 3:8v   (6)

    where v  is the wind speed.

    As shown in Fig. 5, the energy balance of the outer glass tube can

    be expressed as:

    GCAihref haao þ hi;o AiðT i  T oÞ ¼ Aoho;sT o  T skyþ ho;aðT o  T aÞ

      (7)

    where ao is the absorptance of the outer glass tube. T i is assumed to

    be T h here, thus  U L can be obtained from Eq. (3)  to Eq. (7).

     3.2.2. Useful ef  ciency

    As shown in Fig. 5, the useful energy contains the electric energy

    and thermal energy. It can be expressed as:

    Q U  ¼  P  þ Q th   (8)As shown in Appendix B, the ef ciencyof useful energy, which is

    de

    ned as useful ef 

    ciency (hU ), can be expressed as:

    Fig. 4.  The optical results of mini-CPC: a) the illustration ray tracing program for the

    mini-CPC and b) variations of ha (0, qL ) and ha (0, qT) with longitudinal projection angleand longitudinal projection angle.

    Fig. 5.  Thermal network of SHTG.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e9486

  • 8/19/2019 CPC Solar Mini

    5/12

    hU  ¼  Q U GCAi

    ¼ F 0href haaito 

     U LGC 

     ðT h  T aÞ

      (9)

    It is noted that C is WCPC/pDi, namely, 1/p for non-concentrating

    evacuated collector. F0   is the collector ef ciency factor in Eq. (9). Itcan be expressed as [16]:

    F 0 ¼   1=U LW 

    "  1

    WFU Lþ   Lb

    k find finþ LtubeRhp

    #   (10)

    where W  is the circumferential distance of the inner tube,  Lb is the

    average length of the bond, Ltube is the length of the tube, F is the n

    ef ciency of straight n and Rhp is the resistance from n tohotside

    of TEG. W   is about  pDi/2. R hp is the thermal resistance of the heat

    pipe. It is given in Appendix A. F can be expressed as [16]:

    F  ¼ tanh½mW =2mW =2

      (11)

    where m  is expressed as:

    m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    U Lk find fin

    s   (12)

    where k n and d n are the thermal conductivity and the thickness of 

    the  n. The details of the derivation of the heat transfer model for

    this  n-type heat pipe are given in Appendix B.

    (1). Maximum electrical ef ciency of SHTG

    The energy balance equation of the hot side of TEG can be

    expressed as:

    GCAihU  ¼  nateIT h þ kte AteLte ðT h  T c Þ 1

    2I 2

    rte

    Lte

     Ate

      (13)

    where n is the number of thermoelectric legs.  Ate  and  Lte  are the

    cross area and the length of TE legs.  ate, kte and  rte are the Seebeck

    coef cient, thermal conductivity and electrical resistivity of TE legs,

    respectively. In the present study, the TE legs are composed by the

    Bi2Te3-based TE material. The properties of the TE material are

    temperature dependent. Properties of Bi2Te3   are   tted in   Fig. 6

    based on the experimental data from Ferrotec Company  [17]. And

    it is found that the ZT of commercial TEG available is around 0.59 at

    the room temperature, which is far less than that discussed in the

    previous studies (ZT ¼ 1)  [12].

    ate ¼

    0:004111T 2m þ 2:84T m  272:2

    106

    VK 1

    (14)

    rte ¼

    8:735 105T 2m þ 0:1241T m  15:85

    106 ðUmÞ(15)

    kte ¼ 6:954 105T 2m  0:03767T m þ 6:491

    WK 1m1

    (16)

    where  T m is (T h þ T c )/2.The electrical power produced by TEG is  [18]:

    P  ¼ nateðT h  T c Þnrte

    Lte Ate

    þ RL R2L ¼  n

    ateI ðT h  T c Þ  I 2rte Lte Ate

      (17)

    where  RL  is the electrical resistance of the external load.

    Thus, the electrical ef ciency of SHTG is:

    he ¼  P 

    GCAi(18)

    According to the study of solar thermoelectric generator from

    Chen [6,7], the optimal current (I opt ) or optimal load (RL,opt ), leading

    to maximum electrical ef ciency of the system, are found to be:

    I opt  ¼   ateðT h  T c Þ1 þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT mp    rte Lte Ate (19)

    RL;opt  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    1 þ ZT mp 

      rteLte

     Ate(20)

    where Z ¼ a2te=ðkterteÞ. We substitute Eq.  (19) to Eq.  (13) and it isfound that:

    280 320 360 400 440190

    200

    210

    220 

    measured

     fit of

    ρ measured

     fit of ρk  measured

     fit of k 

    T/K

        S    /    V    K  -    1

        ρ    /      Ω   m

           k    /    W   m  -    1    K  -    1

    12

    15

    18

    21

    1.2

    1.6

    2.0

    2.4

    2.8

    280 320 360 400 4400.2

    0.3

    0.4

    0.5

    0.6

    0.7

     ZT measured

    ZT= 2

    T/(k ρ)

           Z       T

    T/K

    Fig. 6.  Experimental data and 

    tted curve of properties of TE material.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e94   87

  • 8/19/2019 CPC Solar Mini

    6/12

    nkte AteLte ¼ K TEG ¼ GCAihU 

    ,ðT h  T c Þ24 ZT h

    1 þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT mp    þ 1 1

    2

     Z ðT h  T c Þ1 þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT mp    2

    35

    (21)

    where K TEG  is the thermal conductance of TEG in SHTG. It is found

    that K TEG is related to the structure parameters of lowconcentrating

    solar evacuated collector such as   Ai   and   C , and is also related to

    operating parameters including  G  and  T c . More importantly, some

    manufactures (Marlow, Ferrotec and Kryotherm) have already

    given the thermal conductance of TEG. So the suitable TEG can be

    directly obtained based on  K TEG.

    So Eq. (13) can be expressed as:

    GCAihU  ¼ K TEGðT h  T c Þ0@  ZT h

    1 þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT mp    þ 1

    12

     Z ðT h  T c Þ1 þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT mp    2

    1A   (22)

    Substituting Eqs.  (17), (19) and (21) to Eq.  (18), the maximum

    electrical ef ciency of SHTG can be expressed as:

    he ¼  hU   ðT h  T c Þ

     ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 þ ZT m

    p    1T h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    1 þ ZT mp    þ T c =T h

      ¼  hU   hTEG   (23)

    where the electrical ef 

    ciency of SHTG is the useful ef 

    ciency (hU )

    of SHTG multiplied by the maximum electrical ef ciency (hTEG) of 

    TEG. It can be noted that the maximum  he  can be obtained at theK TEG and  I opt  or  RL,opt, respectively.

    (2) Thermal ef ciency of SHTG.

    The energy balance on the cold side of TEG can be expressed as

    [18]:

    T c   T wRw

    ¼ n

    ateIT c  þ kte AteLte

    ðT h  T c Þ þ1

    2I 2rte

    Lte Ate

      (24)

    where   T w  and   Rw  are the temperature of water and the thermal

    resistance between cold side and water, respectively.   Rw   is

    approximated to be 0.026 KW1 in this system [19].

    The current of TEG is xedto be I opt , so Eq. (24) can be expressedas:

    T c   T wRw

    ¼ GCAihU ð1  hTEGÞ   (25)

    Hence, the thermal ef ciency of SHTG is dened as:

    hth ¼ T c   T w

    Rw

    GCAi ¼ hU ð1  hTEGÞ   (26)

    Input structure parameters

    and operation parameters

    Calculate U L and ηu

    Determine T o using Eq.(7)

    Guess T i 

    Guess T c 

    Calculate ηe and ηth

    Determine T c  using

    Eq.(26)

    Find maximum ηe under

    T i s

    Determine corresponding

    T o, ηth, K TEG 

    Input K TEG 

    Determine T c using Eq.(22)

    Determine T h using Eq.(26)

    Determine corresponding ηthand ηe

    Variable KTEG Fixed KTEG

    Guess T o

    Fig. 7.  Flowchart of SHTG model.

    20 40 60 80 100

    160

    170

    180

    190

    200

    Tw /oC

        T    h    /   o    C

    G=solar constant

    C=0.92

    Fig. 8.  Variations of Th  with Tw.

    0.2 0.4 0.6 0.8 1.0 1.2

    1.0

    1.5

    2.0

    2.5 η

    η

    η

    ∆T

    C

        η

        &    η

        /    %

    G=800Wm

    T =45 C44

    48

    52

    56

        η

        /    %

    60

    80

    100

    120

         ∆    T    /    C

    Fig. 9.  Variations of  he, hTEG, hth  and  DT with C.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e9488

  • 8/19/2019 CPC Solar Mini

    7/12

     3.3. Solution

    The M language in MATLAB is adopted to establish the mathe-

    matic model described above. The  owchart of SHTG calculation is

    shown in Fig. 7. There are two kinds of calculation processes. One isto obtain maximum electrical ef ciency based on variable K TEG, the

    other is to investigate the performance under  xed suitable K TEG at

    different solar irradiations and water temperatures.

    4. Results and discussion

    As the two calculation processes discussed in  Fig. 7, the calcu-

    lation process based on variable K TEG is used to investigate limited

    T h of TEG, and effect of concentration ratio (C), operating parame-

    ters and ZT of TEG on the performance of SHTG under the

    maximum electrical ef ciency condition of SHTG. The calculation

    process based on  xed KTEG is adopted to investigate performance

    of SHTG under different  xed KTEGs at different solar irradiations,

    which would be discussed in section   4.3. The reference value of solar irradiance is assumed to be 800 Wm2 for common data inShanghai [20]. The experimental validation is discussed in section

    4.6.

    4.1. Theoretical limits of hot side temperature of TEG

    There exists a temperature limit on the hot side of TEG to avoid

    melting of the solders, which are used to connect the TE legs to the

    electrical connector. Hence, it is important to predict the hot side

    temperature of TEG of SHTG in extreme condition.

    Fig. 8 shows variations of  T h  with  T w  in the extreme condition.

    The solar irradiance is set to be solar constant (assumed to be

    1368 Wm2) [16]. It can be seen that  T h increases with the increase

    10 20 30 40 50

    0.60

    0.65

    0.70

    T / C

       K

       /   W   K

    1.2

    1.5

    1.8

    2.1

    2.4

     K

    η

    η

          η

       /   %

    G=800Wm

    C=0.92

    52

    53

    54

    55

    56

    57

    58

          η

       /   %

    Fig. 10.   Variations of KTEG, he  and  hth  with Tw.

    0 200 400 600 800 1000

    0.2

    0.4

    0.6

    0.8

    1.0

        K

       /   W   K

     K

    η

    η

    G/Wm

    0.5

    1.0

    1.5

          η

       /   %

    30

    35

    40

    45

    50

    55

          η

       /   %

    T =45 C

    C=0.92

    Fig. 11.   Variations of KTEG, he  and  hth  with G.

    Fig.12.  Variations of he and hth with G with respect to different K TEGs: a) he and b) hth.

    0 200 400 600 800 1000 1200

    80

    120

    160

    200

     Th for practical ZT

     Th for constant ZT

       T   h

       /  o   C

    0.2

    0.4

    0.6

    0.8KTEG for constant ZT

     KTEG

     for practical ZT

       K   T   E   G

       /   W   K  -   1

    G/Wm-2

    Tw=45

    oC

    C=0.92

    Fig. 13.   Variations of Th  and KTEG  for practical ZT and constant ZT with G.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e94   89

  • 8/19/2019 CPC Solar Mini

    8/12

    of  T w and the largest value of  T h  is 201 C when T w is 100 C. The

    commercial TEGs of some manufactures (Ferrotec, Marlow) can be

    operated steadily below 250 C, so SHTG can work steadily.

    4.2. Effect of concentration ratio (C)

    Fig. 9 shows the variations of  he, hTEG, hth and DT  with C  when T wis45 C and G is setto be800 W/m2. C increases from 0.32, which isnon-concentrating system, to 1.12. The temperature of 45   C canmeet the needs of domestic hot water [11]. Firstly, it is noted that

    hTEG  increases from 1.8% to 2.5%. It agrees with the variation of  DT 

    with respect to the commercial TEG. It indicates that  hTEG increases

    with the increase of C due tothe increase of DT . Secondly, it is found

    that  hth   increases from 45.0% to 56.2%. It is because  hU  increases

    with the increase of C based on Eq.  (9). Finally,  he   increases from

    0.8% to 1.4%. It is noted that  he   increases by more than 50%. It is

    because both of  hTEG and  hU  increase with the increase of C. It in-dicates that the low concentrating system can improve   hesignicantly.

    4.3. Effects of operating parameters (T w and G)

    The operating parameters (T w and G) are variable in SHTG. Thus,

    the thermal conductance of TEG (K TEG) is variable along the process.

    As a result, it is important to investigate the effects of these oper-

    ating parameters on  K TEG.

    Fig. 10  shows the variations of  K TEG,  he  and  hth  as  T w  increases

    from 10 C to 50 C. he drops from 2.2% to 1.3% and  hth drops from57.4% to 53.8% in the process. It is noted thathe drops by nearly 50%,

    while hth drops slightly. It indicatesa high electrical ef ciency in the

    process of heating watercan be obtained without severely reducingthermal ef ciency. It is also noted that K TEG increases slightly from

    0.60 W/K to 0.71 W/K in this process. Thus, the impact of T w on K TEGcan be neglected in the process.

    Fig. 11 shows the variations of  K TEG, he and hth with G. It is found

    that both  he   and  hth   increase with the increase of   G, because   hU increases with increasing of  G  according to Eq. (9). It is also noted

    that he increases more drastically than  hth. K TEG increases from 0.15

    WK1 to 0.85 WK1 when   G   increases from 100 Wm2 to1000 Wm2. It implies that   K TEG   changes dramatically with   G.However, variable K TEG could not be employed in SHTG in practice.

    Hence, the optimal value, K TEG, is selected based on the large solar

    irradiance and low solar irradiance in the following.

    Fig. 12   shows the effect of   G   on   hth   and   he   with respect to

    different K TEG including variable K TEG, summer K TEG, winter K TEG and

    0 200 400 600 800 1000

    0.5

    1.0

    1.5

    2.0

    constant ZT

    pratical ZT

        η   e    /    %

    G/Wm-2

    constant ZT

    Tw=45

    oC

    C=0.92

    30

    40

    50

    60

        η    t    h

        /    %

    Fig. 14.  Variations of  he  and  hth  for constant ZT and practical ZT with G.  10 20 30 40 50

    2

    3

    4

    5 ZT=0.5

     ZT=1.0

     ZT=1.5

          η    e

         /     %

    Tw

     /o

    C

    C=0.92

    G=800Wm-2

    a)

    10 20 30 40 50

    45.0

    46.5

    48.0

    49.5

    51.0  ZT=0.5 ZT=1.0

     ZT=1.5

          η    t    h

       /   %

    Tw /

    oC

    C=0.92

    G=800Wm-2

     b)

    10 20 30 40 50155

    160

    165

    170

    175

    180

     ZT=0.5

     ZT=1.0

     ZT=1.5

         T     h

         /    o     C

    Tw

     /o

    C

    C=0.92

    G=800Wm-2

    c)

    Fig. 15.  Effect of ZT of TEG on performance of SHTG. a) Variations of   he   with  T w, b)

    Variations of  hth  with T w and c) Variations of  T h with  T w.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e9490

  • 8/19/2019 CPC Solar Mini

    9/12

    nonTEG. Summer K TEG and winter K TEG are the  K TEG based on high

    solar irradiance (1000 Wm2) and poor solar irradiance(100 Wm2), respectively. Variable K TEG is adopted on the basis of avariable solar irradiance, which leads to the largest electrical ef -

    ciency under different solar irradiances. NonTEG is just a solar

    evacuated heater without TEG. It is noted that  hths for variable K TEGand nonTEG increase along with  G due to the increase of  hU  shown

    in Eq.   (9).   hth   for variable   K TEG   is 30%e40% lower than that for

    nonTEG. However,  hth   for summer  K TEG  increases   rstly and then

    decreases as G  further increases. So there exists a maximum value

    (60%) around 300 Wm2

    , which is caused by the variation of  hU . Asshown in Eq. (9), when G is low, hU can be improved by G. When G is

    high, the increase of  hL and Th due to the increase of  T i leads to the

    decrease of  hU . Moreover,  h th   for summer  K TEG   is close to that for

    nonTEG when G is at 300e500 Wm2, while hth for summer K TEG isclose to that for variable  K TEG  when  G   is higher than 500 Wm

    2.Meanwhile,   he   for both variable   K TEG  and summer   K TEG   increase

    with  G. However,  he   for summer  K TEG   is close to that for variable

    K TEG. Furthermore, it is found that hth for winter K TEG decreases with

    increasing of  G  due to small K TEG. Though he for winter K TEG is close

    to the maximum he at lower G  level, hth for winter K TEG is far lower

    than that for nonTEG. It can be seen that the summer  K TEG can be

    used in SHTG to fully use excess solar heat without reducing

    thermal ef ciency when solar radiation is low.

    4.4. Effect of temperature dependent properties of TE material

    Fig. 13   shows variations of   T h   and   K TEG   for practical ZT and

    constant ZT (ZT ¼ 0.59) with  G. It is noted that T h for constant ZT ishigher than that for practical ZT, especially at large G. When G is

    1000 Wm2, T h is 159 C and 192 C for practical and constant ZT,respectively. The reason is that ZT of traditional Bi2Te3  decreases

    with the increase of temperature. Further,  K TEG  for constant ZT is

    lower than that for practical ZT, especially at large G. Low T h can be

    kept in orderto increasehU when K TEG is high at practical ZT. Thus, it

    is effective to increase ZT value at high temperature from 100 C to200 C for Bi2Te3 TE material.

    Fig. 14 shows variations of  he and  hth for constant ZT and prac-

    tical ZT with G. Similarly, he for constant ZT is higher than that forpractical ZT while hth for constant ZT is lower than that for practical

    ZT, especially at high   G. It indicates that TEG cannot effectively

    convert solar heat into electricity due to performance degradation

    of TE material at high temperature.

    4.5. Effect of ZT of TEG

    ZT of TEG is the most important parameter to improve the

    performance of SHTG. Though practical ZT for traditional Bi2Te3 is

    temperature dependent, constant ZT with respect to different

    values is adopted to investigate its effect in a straightforward way.

    Fig.15 shows the effect of ZTof TEG on the performance of SHTG

    under   G   and  C   is 800 Wm2 and 0.92, respectively. Recently, ZT

    values at 0.5, 1.0 and 1.5 refer to common, good and excellent TEGs,respectively. The TEG, whose ZT is 1.0, can be fabricated by nano-

    composites Bi2Te3   TE material and it is available in some manu-

    factures [21]. The TEG, of which ZT is 1.5, can be prepared at the

    Fig. 16.  The experimental test system of SHTG.

     Table 2

    Specication of the experimental apparatus.

    Apparatus Specication Production site Parameter

    TEG 9500/127/060 B China L    W  H (mm): 39.7  39.7  4.1Thermostatic TZL-1015D China Water temperature: 0e100 (oC)

    Side rheostat BC1e25 W 10U   China Accuracy:0.1U

    Temperature sensor PT1000 Germany Accuracy:  ±0.15 CPyranometer CM22, Kipp&Zonen Netherlands Accuracy:  ±1%

    Flowmeter LFS15 China Accuracy:  ±2.5%

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e94   91

  • 8/19/2019 CPC Solar Mini

    10/12

    laboratory level. As shown in Fig. 15 a), it is noted that  he increases

    distinctly with the increase of ZT, especially at the low ZT. For

    example, hes are 2.0%, 3.3% and 4.3% when ZTs are 0.5, 1.0 and 1.5 at

    T w ¼ 20 C, respectively. It implied that the low ZT (ZT ¼ 0.5) valueshould be increased. It suggests that some commercial TE material

    should be improved by nanocrystallization and doping  [21]. More

    importantly, hth  could not decrease obviously with the increase of 

    ZT. As shown in Fig. 15 b),  hth is 46.0%, 45.0% and 44.3% when ZT is

    0.5, 1.0 and 1.5 when T w ¼ 50 C Fig.15 c) shows the variations of  T hwith  T w under different ZTs. It can be seen that  T h  decreases with

    the increase of ZT and all of  T hs are below 200 C. So in SHTG, highperformance TEG can ensure that   T h   is lower than melting tem-

    perature of solders.

    4.6. Experimental validation

    In order to validate the simulation analysis, experimental setup

    is established as shown in Fig.16. Experiments areconducted to test

    the electrical and thermal performance of SHTG. The TEG of SHTG is

    9500/127/060B from the Ferrotec Company (Hangzhou, China) and

    its thermal conductance is about 0.64 W/K, which is  K TEG for this

    SHTG at 700 Wm2e800 Wm2 of solar irradiance. The specica-tion, mount and inclination of SHTG are described in Section 2. In

    this testing system, various inlet water temperatures have been

    maintained by using a thermostatic waterbath (Poxiwar China) and

    the water is circulated using brushless DC pumps. The slide rheo-

    stat (0e10U, 0.1U) is employed as electrical load and connected

    with the TEG. The side rheostat is xed at 3.2 Uwhich is around the

    optimal value of load (R opt).

    he and  hth can be measured by:

    he ¼  P 

    GACPC ¼

    U 2Load

    .RL

    GACPC (27)

    hth ¼ C  pmwðT out   T inÞ

    GACPC (28)

    where ACPC   is the area of the CPC,  U Load  is the voltage of external

    load, RL is the resistance of the load, C p is the specic heat of water,

    mw is the mass ow rate of water, T in is the inlet water temperature

    and T out  is the outlet water temperature.

    Physical measurement parameters include the water temper-

    ature at inlet and outlet of SHTG, the ambient temperature, the

    ow rate of water, the incident solar irradiance and electrical

    power of SHTG. The temperature sensors (PT1000) were used tomeasure the water temperatures of the inlet and outlet, and

    ambient temperature. A pyranometer (CM22, Kipp&Zonen) was

    employed to measure the global irradiance on SHTG. The output

    voltage was measured by Keithley 2700 directly. The data of 

    temperatures and solar irradiance were transmitted to a data

    logger (Keithley 2700) and then to computer for analysis shown

    in Fig. 16. The  owmeter (Rotameter) was employed to measure

    the water   ow rate. The specication of the experimental appa-

    ratus is shown in Table 2.

    Fig.17 shows the variations of experimental data and simulation

    data with   T ws when   G   is around 750Wm2. From Fig. 17   a), the

    uctuation of  P   is small under the variable  G  due to the thermal

    capacity of SHTG. It implies that continuous electricity can be

    produced. From Fig. 17  b), it can be seen that the results of themodel agree with that of the experiment. The largest relative errors

    of  he and  hth are 4.5% and 6.0%, respectively. Further,  he drops from

    1.88% to 1.23% and hth drops from 56.7% to 47.1% when T w increases

    from 20 C to 50 C. The he and hth are higher than that predicted byMiao et al. [12], because the mini-CPC and TEG with suitable K TEGare employed in the present study.

    Generally, the cost of thermoelectric generator module using in

    SHTG is about 4e5 $/piece. This data is from a Chinese largest

    online shop (Alibaba) or Amazon. The cost is very low compared to

    evacuated tube solar collectors ($830/m2)   [22]. In AM1.5G and

    Tw ¼ 25  C, he is about 1.9%. As for this SHTG, P is about 4.5 W forone TEG. It indicates that the increased cost is about 1 $/W. This

    value is close to that for solar PV.

    5. Conclusion

    A SHTG using heat pipe evacuated glass tube collector with

    mini-CPC has been presented in this study. The following conclu-

    sions can be obtained:

    (1)   ha  of mini-CPC is more than 80% from 70   to 70  withouttracking system and the mini-CPC reector can signicantly

    improve  he.

    (2) The optimal KTEG should be determined by high solar irra-

    diance and is almost independent on the temperature of the

    0 1 2 3 4 5 6 7

    700

    800

     T =30 C

     T =20 C

     T =50 C

     T =40 C

        G    /    W   m  -    2

    t/min

    2.4

    2.6

    2.8

    3.0

    3.2

    3.4

        P

        /    W

    P for T =30 C

    P for T =20 C

    P for Tw=40 CP for T

    w=50

    oC

    a)

    20 25 30 35 40 45 500.0

    0.4

    0.8

    1.2

    1.6

    2.0

     simulation

     experiment

        η   e

        /    %

    Tw /

    oC

    45

    50

    55

    60

    65

        η    t    h

        /    %

     b)

    Fig. 17.  Variations of experimental data and simulation data with T ws, a) experimental

    data for P at different Gs, b) variations of  he  and  hth.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e9492

  • 8/19/2019 CPC Solar Mini

    11/12

    hot water. SHTG with optimal KTEG   can effectively convert

    the excess solar heat into electricity.

    (3) The excess solar heat can be effectively utilized if ZT of Bi2Te3TE material at the temperature from 100   Ce200   C isimproved to a great extent.

    (4)  he and hth of SHTG are predicted to be 3.3% and 48.6% when C ,

    ZT, G  and  T w are 0.92, 1.0, 800 Wm2 and 20 C, respectively.

     Acknowledgments

    This work is supported by the National Science and Technology

    Support Project of China under the Contract No.2012BAA05B04.

     Appendix A. Thermal resistance of heat pipe

    R w,E   R E   R C   R w,CR  b   R con

    T b   Th

    R hp

    Fig. 18.  Thermal network of the heat pipe.

    As shown in Fig. 18, thermal resistance of the heat pipe can be

    expressed as [23]:

    Rhp ¼ Rw;E  þ RE  þ RC  þ Rw;C  þ Rcon   (29)

    where R w,E   and R w,C   are the wall radial thermal resistances of 

    evaporation and condensation sections. R E and R C are evaporation

    and condensation interfacial thermal resistances. R con is the contact

    resistance between the heat pipe and hot side of TEG. R con   is

    assumed to be 0.02 W K1 [12]. The thermal resistance of the vaporow is negligible.

    Rw;E  ¼ln

    Do;E 

    Di;E 

    2pLE kw(30)

    RE  ¼  1

    pDi;E hE LE (31)

    RC  ¼  1

    pDi;C hC LC (32)

    Rw;C  ¼ln

    Do;C 

    Di;C 

    2pLC kw(33)

    The evaporation and condensation heat transfer coef cients can

    be expressed as [24,25]:

    hE  ¼ A"

      r21 gh fg k3l

    mlðT w:E   T sat :E ÞLE 

    #0:25(34)

     A ¼h

    0:997 0:334ðcos qÞ0:108i"  LE 

    Di;E 

    #½0:254ðcos  qÞ0:385(35)

    hC  ¼ 0:943"r1 g  cos  qðr1  rvÞh fg k3l

    mlðT sat :C   T w:C ÞLC 

    #0:25(36)

    where q

     is the incline angle for the SHTG (30   in this study).

     Appendix B. Derivation of heat transfer for  n-type heat pipe

    Fig. 19.   The details of the unfolding  n.

    Based on  Fig. 2, the details of the unfolding   n are shown in

    Fig. 19. The half of the unfolding  n inside of the inner glass tube is

    selected due to symmetry.

    Fig. 20.  Energy balance on the  n element.3

    As shown in Fig. 20, the element balance on the  n element can

    be expressed as:

    S D x Ai

     U LD xð

    T  

     T aÞ þ  k find

    dT 

    dx

     x

     k finddT 

    dx

     xþD x

    Ltube

    ¼ 0 (37)The   n is directly connected with the inner glass tube of the

    evacuatetube. So the input thermal energy per unit of length due to

    solar energy is SDx/Ai. The corresponding output thermal energy

    per unit of length is UL Dx (TTa).

     Ai ¼ WLtube   (38)

    W  ¼  pDi   (39)

    Boundary conditions:

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e94   93

  • 8/19/2019 CPC Solar Mini

    12/12

    dT 

    dx

     x¼0

    ¼ 0 (40)

    It is insulated when x ¼ 0 due to thermal symmetry.

    T j x¼W =2 ¼ T b   (41)

    The useful energy collected by  n can be expressed as:

    Q U  ¼  F ½S   U L AiðT b  T aÞ   (42)

    F  ¼ tanh½mW =2mW =2

      (43)

    The useful energy is transferred to the hot side of TEG. There

    exist two thermal resistances: one is the bond resistance, the other

    is the thermal resistance of the heat pipe. The useful energy can be

    expressed as:

    Q U  ¼  T b  T hRb þ Rhp

    (44)

    Based on the Eq. (42) and Eq. (44), we can  nd that:

    Q U  ¼  F 0½S   U L AiðT h  T aÞ   (45)

    F 0 ¼   1=U LW 

    "  1

    WFU Lþ   Lb

    k find þ LtubeRhp

    #   (46)

    References

    [1]   R. Shukla, K. Sumathy, P. Erickson, J. Gong, Recent advances in the solar waterheating systems: a review, Renew. Sustain. Energy Rev. 19 (2013) 173e190.

    [2]  X. Li, Y.J. Dai, Y. Li, R.Z. Wang, Comparative study on two novel intermediatetemperature CPC solar collectors with the U-shape evacuated tubularabsorber, Sol. Energy 93 (2013) 220

    e234.

    [3]   G. Pei, G. Li, X. Zhou, J. Ji, Y. Su, Comparative experimental analysis of thethermal performance of evacuated tube solar water heater systems with andwithout a mini-compound parabolic concentrating (CPC) reector (C<   1),Energies 5 (2012) 911e924.

    [4]   E. Zambolin, D. Del Col, Experimental analysis of thermal performance of  atplate and evacuated tube solar collectors in stationary standard and dailyconditions, Sol. Energy 84 (2010) 1382e1396.

    [5]   C. Shih, G. Liu, Optimal design methodology of plate-n heat sinks for

    electronic cooling using entropy generation strategy, Compon. Packag. Tech-nol. IEEE Trans. 27 (2004) 551e559.

    [6]  D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang,D. Wang, A. Muto, High-performance  at-panel solar thermoelectric genera-tors with high thermal concentration, Nat. Mater. 10 (2011) 532e538.

    [7]   G. Chen, Theoretical ef ciency of solar thermoelectric energy generators, J. Appl. Phys. 109 (2011) 104908.

    [8]   K. Yazawa, A. Shakouri, Cost-ef ciency trade-off and the design of thermo-electric power generators, Environ. Sci. Technol. 45 (2011) 7548e7553.

    [9]   K. McEnaney, D. Kraemer, Z. Ren, G. Chen, Modeling of concentrating solar

    thermoelectric generators, J. Appl. Phys. 110 (2011) 074502.[10]   F.J. Lesage, R. Pelletier, L. Fournier,   E.V. Sempels, Optimal electrical load for

    peak power of a thermoelectric module with a solar electric application, En-ergy Convers. Manag. 74 (2013) 51e59.

    [11]   W. He, Y. Su, Y.Q. Wang, S.B. Riffat, J. Ji, A study on incorporation of ther-moelectric modules with evacuated-tube heat-pipe solar collectors, Renew.Energy 37 (2012) 142e149.

    [12]   M. Zhang, L. Miao, Y.P. Kang, S. Tanemura, C.A.J. Fisher, G. Xu, C.X. Li, G.Z. Fan,Ef cient, low-cost solar thermoelectric cogenerators comprising evacuatedtubular solar collectors and thermoelectric modules, Appl. Energy 109 (2013)51e59.

    [13]  R. Tang, Y. Yang, W. Gao, Comparative studies on thermal performance of water-in-glass evacuated tube solar water heaters with different collector tilt-angles, Sol. Energy 85 (2011) 1381e1389.

    [14]   D. Mills, A. Monger, G. Morrison, Comparison of   xed asymmetrical andsymmetrical reectors for evacuated tube solar receivers, Sol. Energy 53(1994) 91e104.

    [15]   L. Ma, Z. Lu, J. Zhang, R. Liang, Thermal performance analysis of the glassevacuated tube solar collector with U-tube, Build. Environ. 45 (2010)1959

    e1967.

    [16]   J.A. Duf e, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley& Sons, 2013.

    [17]   F. Company, Thermoelectric Technical ReferencedMathematical Modeling of TEC Modules in, 2014.

    [18]  D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005.[19]   H.-S. Huang, Y.-C. Weng, Y.-W. Chang, S.-L. Chen, M.-T. Ke, Thermoelectric

    water-cooling device applied to electronic equipment, Int. Commun. HeatMass Transf. 37 (2010) 140e146.

    [20]  L. Miao, M. Zhang, S. Tanemura, T. Tanaka, Y.P. Kang, G. Xu, Feasibility studyon the use of a solar thermoelectric cogenerator comprising a thermoelectricmodule and evacuated tubular collector with parabolic trough concentrator,

     J. Electron. Mater. 41 (2012) 1759e1765.[21]   A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured ther-

    moelectric materials: current research and future prospects, Energy  &   Envi-ron. Sci. 2 (2009) 466.

    [22]   Y. Hang, M. Qu, F. Zhao, Economic and environmental life cycle analysis of solar hot water systems in the United States, Energy Build. 45 (2012)

    181e

    188.[23]   F. Jafarkazemi, H. Abdi, Evacuated tube solar heat pipe collector model andassociated tests, J. Renew. Sustain. Energy 4 (2012) 023101 .

    [24]   N. Miljkovic, E.N. Wang, Modeling and optimization of hybrid solar thermo-electric systems with thermosyphons, Sol. Energy 85 (2011) 2843e2855.

    [25]   H. Hussein, M. Mohamad, A. El-Asfouri, Theoretical analysis of laminar-lmcondensation heat transfer inside inclined wickless heat pipes  at-plate so-lar collector, Renew. Energy 23 (2001) 525e535.

    Y.J. Dai et al. / Renewable Energy 92 (2016) 83e9494

    http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref9http://refhub.elsevier.com/S0960-1481(16)30060-X/sref9http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref18http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref23http://refhub.elsevier.com/S0960-1481(16)30060-X/sref23http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref25http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref24http://refhub.elsevier.com/S0960-1481(16)30060-X/sref23http://refhub.elsevier.com/S0960-1481(16)30060-X/sref23http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref22http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref21http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref20http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref19http://refhub.elsevier.com/S0960-1481(16)30060-X/sref18http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref17http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref16http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref15http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref14http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref13http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref12http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref11http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref10http://refhub.elsevier.com/S0960-1481(16)30060-X/sref9http://refhub.elsevier.com/S0960-1481(16)30060-X/sref9http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref8http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref7http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref6http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref5http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref4http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref3http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref2http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1http://refhub.elsevier.com/S0960-1481(16)30060-X/sref1