corrected esi dt-com-09-2016-003565.r1 · ... using)evans’)method,9)either)in)toluene)or)thf) ......

30
S1 ELECTRONIC SUPPORTING INFORMATION Heteroleptic, two-coordinate [M(NHC){N(SiMe 3 ) 2 }] (M = Co, Fe) complexes: synthesis, reactivity and magnetism rationalized by an unexpected metal oxidation state Andreas A. Danopoulos,* a,b Pierre Braunstein,* b Kirill Yu. Monakhov,* c Jan van Leusen, c Paul Kögerler,* c,d Martin Clémancey, e JeanMarc Latour, e Anass Benayad, f Moniek Tromp, g Elixabete Rezabal h and Gilles Frison h a. Institute for Advanced Study (USIAS), Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France, Email: [email protected] b. Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, Institut de Chimie 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France, Email: [email protected] c. Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, E mail: [email protected], [email protected] d. JülichAachen Research Alliance (JARAFIT) and Peter Grünberg Institute 6, Forschungszentrum Jülich, 52425 Jülich, Germany e. Laboratoire de Chimie et Biologie des Métaux, Equipe de Physicochimie des Métaux en Biologie, UMR 5249 CNRS/CEADRFBIG/, Université GrenobleAlpes,17 rue des Martyrs, Grenoble 38054, France f. CEA / DRT / LITEN / DTNM / SEN / L2N, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France g. Van't Hoff Institute for Molecular Sciences, Sustainable Materials Characterisation, University of Amsterdam, Amsterdam, The Netherlands h. LCM, CNRS, Ecole Polytechnique, Université ParisSaclay, 91128 Palaiseau, France. Contents: 1. Synthesis and Characterization 2 2. Xray Crystallography 7 3. DFT Computational Studies 14 4. Studies of the Magnetic Properties 21 5. XPS Studies 25 6. EXAFS and XANES studies 27 7. References 30 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Upload: ngoquynh

Post on 07-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

S1

ELECTRONIC  SUPPORTING  INFORMATION      

Heteroleptic, two-coordinate [M(NHC){N(SiMe3)2}] (M = Co, Fe)

complexes: synthesis, reactivity and magnetism rationalized by an

unexpected metal oxidation state    

Andreas  A.  Danopoulos,*a,b  Pierre  Braunstein,*b  Kirill  Yu.  Monakhov,*c   Jan  van  Leusen,c  Paul  

Kögerler,*c,d   Martin   Clémancey,e   Jean-­‐Marc   Latour,e   Anass   Benayad,f   Moniek   Tromp,g  

Elixabete  Rezabalh  and  Gilles  Frisonh    

a.   Institute  for  Advanced  Study  (USIAS),  Université  de  Strasbourg,  4  rue  Blaise  Pascal,  67081  Strasbourg  Cedex,     France,  E-­‐mail:  [email protected]  

b.   Université  de  Strasbourg,  CNRS,  CHIMIE  UMR  7177,  Laboratoire  de  Chimie  de  Coordination,  Institut  de  Chimie  4  rue  Blaise  Pascal,  67081  Strasbourg  Cedex,  France,  E-­‐mail:  [email protected]  

c.   Institut  für  Anorganische  Chemie,  RWTH  Aachen  University,  Landoltweg  1,  52074  Aachen,  Germany,  E-­‐     mail:  [email protected]­‐aachen.de,  [email protected]­‐aachen.de  

d.   Jülich-­‐Aachen  Research  Alliance  (JARA-­‐FIT)  and  Peter  Grünberg  Institute  6,  Forschungszentrum  Jülich,       52425  Jülich,  Germany  

e.   Laboratoire  de  Chimie  et  Biologie  des  Métaux,  Equipe  de  Physicochimie  des  Métaux  en  Biologie,  UMR       5249  CNRS/CEA-­‐DRF-­‐BIG/,  Université  Grenoble-­‐Alpes,17  rue  des  Martyrs,  Grenoble  38054,  France  

f.     CEA  /  DRT  /  LITEN  /  DTNM  /  SEN  /  L2N,  17  rue  des  Martyrs,  38054  Grenoble  Cedex  9,  France  g.   Van't  Hoff  Institute  for  Molecular  Sciences,  Sustainable  Materials  Characterisation,  University  of  Amsterdam,  

Amsterdam,  The  Netherlands  h.   LCM,  CNRS,  Ecole  Polytechnique,  Université  Paris-­‐Saclay,  91128  Palaiseau,  France.  

 

 

 

Contents:  1.  Synthesis  and  Characterization                   2  

2.  X-­‐ray  Crystallography                   7  

3.  DFT  Computational  Studies                   14  

4.  Studies  of  the  Magnetic  Properties                 21  

5.  XPS  Studies                       25  

6.  EXAFS  and  XANES  studies                   27  

7.  References                       30  

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2017

S2

 1.  Synthesis  and  Characterization  

 

1.1   General  methods  

All   manipulations   involving   metal   amides   were   performed   under   nitrogen   or   argon   in   a  

MBraun   glove-­‐box.   Solvents   (THF,   ether)   were   dried   using   standard   methods   and   distilled   under  

nitrogen   prior   use   or   passed   through   columns   of   activated   alumina   and   subsequently   purged   with  

nitrogen  or  argon  (toluene,  pentane).  After  drying,  the  solvents  were  stored  over  K  mirror  in  the  glove  

box   until   use.   The   starting  materials  were   prepared   according   to   literature   procedures:   cobalt-­‐   and  

iron-­‐bis(bis(trimethylsilyl)amide),1   KC8,2   (IPrH)+Cl–   (IPr   =   N,N'-­‐bis(di-­‐isopropylphenyl)imidazol-­‐2-­‐

ylidene),3   SIPr   =   N,N'-­‐bis(di-­‐isopropylphenyl)imidazolin-­‐2-­‐ylidene,4   and   IAd   =   N,N'-­‐

bis(adamantyl)imidazol-­‐2-­‐ylidene   from   deprotonation   of   the   corresponding   imidazolium   salt,5  

mes*PH2,6   [Co(IPr){N(SiMe3)2}2]   (1N),7   [Co(IPr){N(SiMe3)2}Cl]   (1Cl),8   and   [Fe(IPr){N(SiMe3)2}Cl]  

(2Cl);8a   optimized   larger   scale   preparations   of   the   latter   two   complexes   are   given   below;   2,4,6-­‐

trimethylaniline  was  distilled  from  KOH  under  N2,  degassed  via  freeze-­‐pump-­‐thaw  cycles  and  used  to  

prepare  a  solution  of  known  concentration  in  toluene.  1H-­‐NMR   spectra   were   recorded   on   a   Bruker   AVANCE   III   spectrometer   (400  MHz)   at   298   K  

unless  stated  otherwise.  The  spectral  window  selected  for  the  paramagnetic  compounds  was  from  δ  =  

+300   to   –200   (relative   to   TMS).   The   spectra   were   partially   assigned   on   the   basis   of   molecular  

symmetry  and  integration.  Ambiguity  in  the  NMR  spectrum  assignment,  mainly  originating  due  to  the  

same   integral   for   protons   belonging   to   magnetically   inequivalent   groups,   is   indicated   in   the  

experimental   section   by   ‘‡’.   Solution   magnetic   susceptibilities   were   determined   by   1H-­‐NMR  

spectroscopy   using   Evans’   method,9   either   in   toluene   or   THF   using   the   Si(CH3)3   signal   of   the  

hexamethyldisiloxane   as   paramagnetically-­‐shifted   standard.   Elemental   analyses  were   carried   out   by  

the  London  Metropolitan  University  microanalytical  laboratory.    

1.2   [Co(IPr){N(SiMe3)2}Cl]  (1Cl).    

In  the  glove  box,  a  mixture  of  [Co{N(SiMe3)2}2]2  (1.00  g,  1.32  mmol)  and  (IPrH)+Cl–  (1.12  g,  2.64  

mmol,  1:1  per  Co)  in  toluene  (20  ml)  was  placed  in  a  Young's  ampoule.  The  ampoule  was  sealed  and  

heated  at  110  °C  for  12  h.  After  cooling,  the  deep  green  homogeneous  reaction  mixture  was  evaporated  

to   dryness.   The   residue   was   triturated   with   cold   (–40   °C)   pentane   to   give   the   product   as   a   green  

powder,   which   was   dried   under   vacuum;   it   was   spectroscopically   pure   and   used   in   the   following  

syntheses  without  further  purification.  Yield:  1.39  g,  2.16  mmol,  ca.  82  %  based  on  Co.    

 

1.3   [Fe(IPr){N(SiMe3)2}Cl]  (2Cl).  

In  the  glove  box,  a  mixture  of  (IPrH)+Cl–  (0.60  g,  1.42  mmol)  and  [Fe{N(SiMe3)2}2]2  (0.54  g,  0.72  

mmol,  1:1  per  Fe)  in  toluene  (10  ml)  was  placed  in  a  Young's  ampoule.  The  ampoule  was  sealed  and  

heated   at   115   °C   for   8   h;   the   reaction  mixture   became   homogeneous  within   the   first   10  min.   After  

S3

cooling,  it  was  allowed  to  stand  at  room  temperature  for  12  h  and  then  the  volatiles  were  removed  to  

dryness,   giving   a   brown   oily   residue,   which   contained   small   amounts   of   toluene.   The   residue   was  

triturated  with  cold  pentane  giving  a  colourless  solid  and  a  brown  supernatant.  The  solid  was  collected  

and  dried,  constituting  the  first  crop  of  product.  The  supernatant  was  concentrated  and  cooled  to  –40  

°C  for  48  h  to  give  a  second  crop  of  large  colourless  crystals.  If  small  amounts  of  toluene  are  left  after  

the   first   evaporation   of   the   volatiles   from   the   reaction   mixture,   addition   of   pentane   may   give   a  

homogeneous  solution  which  after  cooling  to  –40  °C  gives  colourless  crystals  (in  two  crops).  Combined  

yield:  0.45  g,  ca.  74%.  1H-­‐NMR  (C6D6):  δ  59.35  (4H,  DiPP  aromatic‡),  20.63  (12H,  CH(CH3)2),  3.95  (12H,  

CH(CH3)2),  –5.73  (18H,  N(SiMe3)2),  –15.70  (4H,  CH(CH3)2‡),  –19.18  (2H  CH=CH,  imid)  ppm.      

1.4   [Co(IPr){N(SiMe3)2}]  (3),  Method  A.  

A  solution  of  [Co(IPr){N(SiMe3)2}2]  (1N)  (1.00  g  1.30  mmol)  and  Mes*PH2  (0.40  g,  1.43  mmol  

1.1  equiv.)   in   toluene  (20  ml)  was  stirred  at  45  °C   for  3  days,  when   it  changed  colour   from  green  to  

orange-­‐brown.   If   the   starting  material   was   not   completely   consumed   after   this   period   (i.e.   <   90  %  

conversion   by   1H  NMR),  more  mes*PH2   (0.10   g,   0.13  mmol,   10%)  was   added   and   the   reaction  was  

continued  for  an  additional  period  of  24  h.  After  completion,  the  toluene  was  removed  under  reduced  

pressure  and  the  residue  was  extracted  into  ca.  20  ml  pentane.  The  pentane  solution  was  concentrated  

to  ca.  6–7  ml  and  cooled  to  –40  °C  for  24  h  to  yield  yellow-­‐orange  plates  of  3   that  were  isolated  and  

dried  under  vacuum.  Yield:  0.55  g,  0.90  mmol,  ca.  69%.  Further  concentration  of  the  supernatant  and  

cooling  at  –40  °C  for  2  days  gave  as  a  second  crop  minor  quantity  of  3  contaminated  with  a  few  green  

crystals  of  1N,  which  was  discarded.  For  C33H55CoN3Si2,  calculated  (%):  C  65.09,  H  9.10,  N  6.90;  found  

(%):   C   64.98,   H   9.02,   N   6.90.   1H-­‐NMR   (C6D6):δ,   178.10   (2H,   DiPP   aromatic‡),   79.10   (4H,   DiPP  

aromatic‡),   12.56   (12H,   CH(CH3)2),   10.21   (18H,   N(SiMe3)2),   –39.18   (2H,   CH=CH,   imid‡),   –48.8   (4H,  

CH(CH3)2)‡),   –152.19   (12H,   CH(CH3)2)   ppm.   The   1H-­‐NMR   spectrum   in   d8-­‐THF   remains   unchanged.  

NMR  spectroscopic  analysis  of  the  mother  liquor  after  the  second  crop  revealed  the  presence  of  5  (31P  

δ  –75.0  (d))  and  a  minor  unidentified  species,  δ  –60.0  (d  of  d,  JP-­H  =  73.0  Hz)  ppm.    

 

1.5   [Co(IPr){N(SiMe3)2}]  (3),  Method  B.  

A  suspension  of  [Co(IPr){N(SiMe3)2Cl]  (1Cl)  (0.25  g,  0.39  mmol)  and  KC8  (0.063  g,  0.45  mmol,  

1.2  equiv.)  in  pentane  (ca.  30  ml)  was  stirred  vigorously  at  room  temperature  for  24  h  giving  a  yellow-­‐

orange  reaction  mixture  and  black  graphite.  The  progress  of   the  reaction  was  monitored  by  1H  NMR  

spectroscopy  and,  if  necessary,  more  KC8  was  added  until  conversion  was  >  95%.  Finally,  the  graphite  

and   other   solids  were   filtered   off   using   a   syringe   filter   and   glass   fibre   filter   paper.   The   solids  were  

washed  with   small   amounts   of   pentane   until   the  washings   came   out   colourless   (2   ×   5  ml)   and   the  

combined   extracts   were   concentrated   to   dryness   giving   a   yellow-­‐orange   microcrystalline   powder,  

which  exhibited  an   identical   1H-­‐NMR  spectrum  as   the  complex  prepared  by  method  A.  Yield:  0.10  g,  

0.16  mmol,  ca.  41%.    

S4

 

1.6   [Fe(IPr){N(SiMe3)2}]  (4)  

A  suspension  of  [Fe(IPr){N(SiMe3)2}Cl]  (2Cl)  (0.20  g,  0.31  mmol)  and  KC8  (0.065  g,  0.47  mmol,  

1.5   equiv.)   in   pentane   (ca.   30   ml)   was   stirred   vigorously   at   room   temperature   for   24   h   giving   an  

intense  orange-­‐brown  reaction  mixture  and  black  graphite.  If  the  starting  material  was  not  completely  

consumed  after  this  period  (<  90%  by  1H  NMR)  more  KC8  was  added  (ca.  25  mg)  and  the  reaction  was  

continued   for  additional  12  h.  Finally,   the  graphite  and  other  solids  were   filtered  off  using  a  syringe  

filter   and   glass   fibre   filter   paper.   The   solids   were   washed   with   small   amounts   of   pentane   until  

washings  came  out  colourless  (2  ×  5  ml)  and  the  combined  extracts  were  concentrated  and  cooled  to    

–40  °C  to  give  the  product  as  intense  orange  plates.  Yield:  0.12  g,  0.19  mmol,  ca.  66%.  The  reaction  can  

be   run   at   0.50   g   scale   of  2Cl  without   any   appreciable   drop   in   the   yield.   X-­‐ray   quality   crystals  were  

obtained  by  cooling  dilute  solutions  of  4  in  pentane  at  –40  °C  for  24  h.  Reproducible  elemental  analysis  

data   from   spectroscopically   pure   samples   could   not   be   obtained,   presumably   due   to   the   high  

sensitivity  of  the  complex.  1H-­‐NMR  (C6D6):  δ,  83.36  (2H,  DiPP  aromatic‡),  55.09  (4H,  DiPP  aromatic‡),  

7.05  (12H,  CH(CH3)2,  in  part  masked  by  solvent),  –11.59  (18H,  N(SiMe3)2),  –15.24  (2H,  CH=CH,  imid‡),  

–19.22   (4H,   CH(CH3)2‡),   –78.80   (12H,   CH(CH3)2)   ppm.   The   1H-­‐NMR   spectrum   in   d8-­‐THF   remains  

unchanged.    

1.7 Magnetic susceptibility of 3 and 4 in solution by the Evans method.

Table  S1.  Solution  magnetic  susceptibility  

[Co(IPr){N(SiMe3)2}]  (3)  

Temp  (K)   298*   237   247   255   265   273   283   293   303   313    

µeff    (µB)   4.1   4.4   4.3   4.3   4.2   4.2   4.1   4.1   4.0   4.0    

 

[Fe(IPr){N(SiMe3)2}]  (4)  

Temp  (K)   298*   237   247   255   265   274   283   293   303   313   323   331   342   351   360  

µeff    (µB)   5.2   5.3   5.3   5.3   5.2   5.2   5.2   5.2   5.2   5.1   5.2   5.0   5.0   5.0   5.0  

 *  denotes  repeated  measurement  to  confirm  the  reversibility  of  the  changes  

Sample  preparations:    

For  3:   [3]  0.093  M   in   toluene:hexamethyldisiloxane   (95:5),  hexamethyldisiloxane  as  external  

diamagnetic  reference;    

for  4:   [4]   0.109  M   in   toluene:hexamethyldisiloxane   (95:5),   hexamethyldisiloxane   as   external  

diamagnetic  reference.  

 

 

S5

1.8   Complex  6  

To  a  solution  of  3  (0.070  g,  0.12  mmol)  in  toluene  (2  ml)  at  room  temperature  was  added  2,4,6-­‐

trimethylaniline  (MesNH2,  0.40  ml  of  0.35  M  toluene  solution,  0.14  mmol).  The  reaction  mixture  was  

stirred  at  80  °C   for  8  h  and   then  after  cooling   to  room  temperature  was  evaporated   to  dryness.  The  

residue  was  washed  with  cold  pentane  and  re-­‐dissolved  in  toluene  (1  ml),  the  red  solution  was  layered  

with  pentane  and  allowed  to  diffuse  at  –40  °C  giving  red  crystals  after  one  week.  Yield:  0.045  g,  0.04  

mmol,  ca.  64%  (based  on  Co).  1H-­‐NMR  (C6D6):  δ,  113.4  (6H),  85.1  (br,  12H),  56.7  (4H),  45.7  (2H),  23.0  

(4H),  –3.9  (6H),  –4.1  (three  broad  overlapping  peaks  17  H),  –34.5  (two  single  peaks  1H  each),  –56.7  

(1H)  ppm;  in  the  diamagnetic  region  peaks  assignable  to  free  IPr  (δ,  1.24,  2.90,  6.58  ppm)  could  also  be  

identified.  Magnetic  susceptibility,  C6D6  rt:  3.8  μB  (1.9  μB  per  Co).  

 

1.9   Reactivity  of  3;  NMR  tube  scale  reactions  

(i)  With  SIPr:   In  a  Young's  NMR  tube  are  placed  3  (20  mg)  and  SIPr  (13  mg)  in  C6D6  (0.5  ml).  

The  1H-­‐NMR  spectra  were  recorded  5  min,  24  h  and  48  h  after  mixing.  A  new  species   formed  which  

was   formulated   as   [Co(SIPr){N(SiMe3)2}]   based   on   the   similar   symmetry   and   integration   of   the   1H-­‐

NMR   spectra;   the   ratio   of   [3]/[Co(SIPr){N(SiMe3)2}]   was   ca.   1.75.   No   change   was   obvious   after  

recording   the   first   spectrum.   1H-­‐NMR  data   for   [Co(SIPr){N(SiMe3)2]:   δ,   167.79,   87.41,   13.03   (broad,  

overlapping  with  12.56  of  3),  –10.38  (broad,  partially  overlapping  with  –10.21  of  3),  –40.16,  –50.83,  –

153.75   (broad,   partially   overlapping   with   –152.19   of   3)   ppm.   Addition   of   a   5-­‐fold   excess   of   SIPr  

resulted  in  changing  of  the  [3]/[Co(SIPr)(N(SiMe3)2]  to  ca.  1.0.    

 

(ii)  With  IAd:  The  experiment  was  carried  out  as  above  but  using  a  5-­‐fold  excess  of  IAd  instead  

of   SIPr.   The   new   species   detected   in   solution  was   formulated   as   [Co(IAd){N(SiMe3)2}]   based   on   the  

assignment  of   the   1H-­‐NMR  spectrum;  under   these  conditions   the  ratio   [3]/[Co(IAd){N(SiMe3)2}]  was  

ca.  1.1.   1H-­‐NMR  data   for   [Co(IAd){N(SiMe3)2}]   (assigned   in   the  equilibrium  mixture):  δ,  156.18  (2H),  

33.98   (2H),   –4.24   (18H),   –34.86   (6H),   –40.94   (2H),   –57.33   (6H),   –63.16   (6H),   –160.80   (6H);   the  

additional  2H  were  broad  and  not  observed.  

 

 

1.10   Reactivity  of  4;  NMR  tube  scale  reactions.  

With  SIPr:  The  experiment  was  carried  out  as  above  with  4  but  using  a  5-­‐fold  excess  of  SIPr.  

The   new   species   detected   in   solution   was   formulated   as   [Fe(SIPr){N(SiMe3)2}]   based   on   the  

assignment  of  the  1H-­‐NMR  spectrum;  under  these  conditions  the  ratio  [4]/[Fe(SIPr){N(SiMe3)2}]  was  

ca.   1.1.   1H-­‐NMR   (C6D6):   δ,   88.39   (4H,   DiPP   aromatic‡),   51.77   (4H,   DiPP   aromatic‡),   7.05   (12H,  

CH(CH3)2),  in  part  masked  by  solvent),  –1.15  (18H,  N(SiMe3)2),  –4.41  (4H),  –10.17  (2H,  CH=CH,  imid‡),  

–14.99  (4H,  CH(CH3)2‡),  –70.72  (12H,  CH(CH3)2).    

 

S6

With  IAd:  The  experiment  was  carried  out  as  above  but  using  a  5-­‐fold  excess  of  IAd.  The  new  

species  detected   in   solution  was   formulated  as   [Fe(IAd){N(SiMe3)2}]  based  on   the  assignment  of   the  1H-­‐NMR   spectrum;   under   these   conditions   the   ratio   [4]/[Fe(IAd){N(SiMe3)2}]   was   ca.   1.1.   1H-­‐NMR  

(C6D6):  δ,  77.47,  –7.57,  –15.63,  –20.25,  –20.92,  –31.90,  –70.30.  

 

1.11   Proposed  mechanisms  for  the  reduction  of  [Co(IPr){N(SiMe3)2}2]  (1N)  by  mes*PH2  

  The  reduction  mechanism  is  uncertain  and  may  involve  homolytic  cleavage  of  Co-­‐ligand  (Co-­‐C,  

Co-­‐P   or   Co-­‐N)   bonds   and   aminyl   radicals   [•N(SiMe3)2]   analogous   to   the   [•N(SiMe3)DiPP]   radicals  

postulated   for   the   reduction   of  Ni(II)   to  Ni(I)   in   the   interaction   of   IPr  with   [Ni{N(SiMe3)}(DiPP)]2.10  

However,   in   the  present  case   the  major  P-­‐containing  species   that  was   identified  after   the  end  of   the  

reaction  as  3,3-­‐dimethyl-­‐5,7-­‐di-­‐tert-­‐butyl-­‐phosphaindane  5  (Scheme  S1).11  It  is  not  certain  if  5  was  the  

primary  product  from  the  reduction,  since  it  may  have  arisen  from  the  decomposition  of  the  transient  

phosphinidene  mes*P:   by   intramolecular   C-­‐H   insertion   as   previously   described.12   The  mes*P:     may  

have  been  formed  after  aminyl  radical  attack  on  the  mes*PH2.  Aminolysis  of  Co-­‐N  by  mes*PH2  followed  

by  homolysis  of  the  Co-­‐P  bond  is  also  likely.  However,  formation  of  the  transient  PN  radical,  which  has  

been  reported  as  persistent,13  has  not  been  observed.  The  plausible  mechanistic  paths  are  given  below  

(Scheme   S1).   Interestingly,   mes*PH2   does   not   appear   to   react   further   with   3   under   the   reaction  

conditions  employed.  Reaction  of  1N  with  excess  of  PtBu3  gave  a  mixture  of  products  in  which  3  is  also  

present.  

S7

 Scheme  S1.  Plausible  mechanistic  paths  leading  to  3  and  5  starting  from  mes*PH2.  

 

 

1.12   Complex  7  

In  a  Young's  ampoule,  a  suspension  of  2Cl  (0.20  g,  0.31  mmol)  and  KC8  (0.21  g,  1.55  mmol,  5  

equiv.)  in  toluene  (ca.  10  ml)  was  heated  at  80  °C  for  8  h.  After  cooling,  the  suspension  was  evaporated  

to  dryness  and  the  residue  was  dissolved  in  pentane  (ca.  10  ml),  giving  a  yellow-­‐green  solution,  which  

was  concentrated  under  reduced  pressure  to  ca.  5  ml  and  then  evaporated  slowly  to  give  yellow  green  

crystals  of  7.  1H-­‐NMR  (C6D6):  the  following  paramagnetic  features  of  the  spectrum  are  broad:  δ,  23.90  

(2H),  21.20  (2H),  2.9  (broad,  toluene),  –1.14  (24H  two  broad  peaks),  –4.10  (4H),  –7.11  (6H,  two  broad  

overlapping  peaks),  –40.92  (2H)  ppm;  in  addition  there  are  signals  in  the  diamagnetic  region  that  are  

assignable  to   IPr  (δ,  1.24,  2.90,  6.58)  ppm.  Satisfactory  analytical  data  could  not  be  obtained  for  this  

complex.  

 

S8

2.     X-­ray  crystallography  

2.1   General  methods  

Summary  of  the  crystal  data,  data  collection  and  refinement  for  compounds  3,  4,  6  and  7  are  

given  in  Table  S2.  The  crystals  were  mounted  on  a  glass  fibre  with  grease,  from  Fomblin  vacuum  oil.  

Data  sets  were  collected  on  a  Bruker  APEX  II  DUO  Kappa-­‐CCD  diffractometer  equipped  with  an  Oxford  

Cryosystem   liquid   N2   device,   using   Mo-­‐Kα   radiation   (λ   =   0.71073   Å)   unless   otherwise   stated   (see  

specific   comments   for   each   data   set   given   below).   The   cell   parameters   were   determined   (APEX2  

software)14  from  reflections  taken  from  three  sets  of  12  frames,  each  at  10  s  exposure.  The  structures  

were   solved   by   direct   methods   using   the   program   SHELXS-­‐97.15   The   refinement   and   all   further  

calculations  were  carried  out  using  SHELXL-­‐97.16  The  H-­‐atoms  were   included   in  calculated  positions  

and   treated   as   riding   atoms   using   SHELXL   default   parameters   unless   stated   otherwise.   The   non-­‐H  

atoms  were  refined  anisotropically,  using  weighted  full-­‐matrix  least-­‐squares  on  F2.    

 

The  following  specific  comments  apply  for  the  corresponding  structures:  

Complex  4:  

The  crystal  was  twinned.  The  structure  was  solved  using  the  twin  law:  

–1   0   0  

0   –1   0  

1.11   0   1  

and  a  BASF  of  0.29424.  The  ratio  for  the  two  domains  is  almost  29:71%.  CheckCIF  lists  no  Alerts  A  or  

B.  

 

Complex  6:  

The  asymmetric  unit  contains  half  a  molecule  of  the  compound.  The  H  atom  of  the  NH  group  was  found  

(not  located  in  calculated  position).  SQUEEZE  instruction17  was  used  to  eliminate  the  residual  density  

that  corresponded  to  half  a  molecule  of  disordered  pentane.    

Complex  7:  

The  asymmetric  unit  contains  half  a  molecule  of  the  compound.  

 

 

S9

Table  S2.  Summary  of  crystal  data  

3 4 6 7

Chemical formula C33H54CoN3Si2 C33H54FeN3Si2 C72H96Co2N6 C80H124Fe2K2N6Si4

CCDC Number 1469263 1469264 1469265 1469268

Formula Mass (g/mol) 607.90 604.82 1163.40 1472.10

Crystal system monoclinic monoclinic triclinic monoclinic

a (Å) 12.8532(6) 12.844(3) 12.1174(5) 11.0494(5)

b (Å) 13.6697(6) 13.622(3) 12.5086(5) 14.3909(7)

c (Å) 21.9596(9) 22.059(5) 13.6791(5) 28.2527(13)

α 90° 90° 102.249(1)° 90°

β 108.401(2)° 108.821(11)° 113.915(1)° 108.870(2)°

γ 90° 90° 99.529(1)° 90°

V (Å3) 3661.0(3) 3653.4(15) 1777.26(12) 4251.0(3)

Temperature (K) 173(2) 173(2) 173(2) 4251.0(3)

Space group P 21/c P 21/c P–1 P 21/c

Formula units / cell, Z 4 4 1 2

Absorption coef. µ (mm–1) 0.557 0.502 0.508 0.538

No. of reflections measured 9782 8950 10340 10281

No. of independent reflections 7012 6788 8633 6330

Rint 0.0460 0.0622 0.0257 0.0760

Final R1 values (I > 2σ(I)) 0.0429 0.1115 0.0464 0.0665

Final wR(F2) values (I > 2σ(I)) 0.0888 0.3021 0.1300 0.1527

Final R1 values (all data) 0.0755 0.1404 0.0555 0.1185

Final wR(F2) values (all data) 0.1018 0.3021 0.1359 0.1773

Goodness of fit on F2 1.043 1.342 1.140 1.033

 

S10

2.2   The  structure  of  3  

 

 Figure   S1.  Thermal  ellipsoids  of  Co  and   its  donor  atoms  are  depicted  are  at  30%  probability.   Important  bond  

lengths   (Å)   and   angles   (deg.):   C1-­‐N2:   1.368(2),   C1-­‐N1:   1.368(2),   C1-­‐Co1:   1.9423(18),   C2-­‐C3:   1.343(3),   C2-­‐N1:  

1.381(2),  C4-­‐C5:  1.396(3),  N3-­‐Si2:  1.7072(15),  N3-­‐Si1:  1.7119(15),  N3-­‐Co1:  1.8734(15),  N2-­‐C1-­‐N1:  102.98(15),  

N2-­‐C1-­‐Co1:   129.14(12),   N1-­‐C1-­‐Co1:   127.88(12),   N3-­‐Co1-­‐C1:   178.83(7),   Si2-­‐N3-­‐Si1:   125.77(9),   Si2-­‐N3-­‐Co1:  

114.83(8),  Si1-­‐N3-­‐Co1:  119.27(8).  

S11

2.3   The  structure  of  4  

 

 Figure   S2.  Thermal  ellipsoids  of  Fe  and   its  donor  atoms  are  depicted  are  at  30%  probability.   Important  bond  

lengths   (Å)   and   angles   (deg.):   C1-­‐N2:   1.366(7),   C1-­‐N1:   1.368(7),   C1-­‐Fe1:     2.015(6),   C2-­‐C3:   1.336(10),   C2-­‐N1:  

1.388(8)  C3-­‐N2:  1.383(8),  N3-­‐Si2:  1.708(5),  N3-­‐Si1:  1.714(5),  N3-­‐Fe1:  1.882(5),  N2-­‐C1-­‐N1:  103.4(5),  N2-­‐C1-­‐Fe1:  

129.3(4),   N1-­‐C1-­‐Fe1:   127.3(4),   C3-­‐C2-­‐N1:   107.1(6),   N3-­‐Fe1-­‐C1:   178.2(2),   Si2-­‐N3-­‐Si1:   126.0(3),   Si2-­‐N3-­‐Fe1:  

114.8(3),  Si1-­‐N3-­‐Fe1:  119.1(3).  

S12

2.4   The  structure  of  6.  

 

 Figure  S3.  Thermal  ellipsoids  of  Co  and  its  donor  atoms  are  depicted  at  30%  probability.  Important  bond  lengths  

(Å)   and   angles   (deg.):   C1-­‐N1:   1.3921(17),   C1-­‐N2:   1.3965(18),   C1-­‐Co1:   1.8897(14),   C2-­‐C3:   1.338(2),   C2-­‐N1:  

1.392(2),   C3-­‐N2:   1.3971(18),   N3-­‐Co1:   2.0387(12),   N3-­‐Co1’:   2.0421(12),   Co1-­‐Co1:   2.5765(4),   N1-­‐C1-­‐N2:  

100.93(11),  N1-­‐C1-­‐Co1:  128.74(10),  N2-­‐C1-­‐Co1:  130.33(10),  C3-­‐C2-­‐N1:  107.21(13),  C2-­‐C3-­‐N2:  106.67(14),  C1-­‐

Co1-­‐N3:   128.64(5),   C1-­‐Co1-­‐N3:   129.65(6),   N3-­‐Co1-­‐N3’:   101.70(4),   C1-­‐Co1-­‐Co1’:   179.03(4),   N3-­‐Co1-­‐Co1’:  

50.91(3),  N3’-­‐Co1-­‐Co1’:  50.79(3).  

 

S13

2.5   The  structure  of  7    

 Figure   S4.   Thermal   ellipsoids   of   Fe,   K   and   its   donor   atoms   are   depicted   at   30%  probability.   Important   bond  

lengths   (Å)   and   angles   (deg.):     C1-­‐N1:   1.368(4),   C1-­‐N2:   1.370(4),   C1-­‐Fe1:   1.988(3),   C2-­‐C3:   1.339(5),   C2-­‐N1:  

1.387(4),   C3-­‐N2:   1.386(4),   N3-­‐Si2:   1.665(3),   N3-­‐Si1:   1.668(3),   N3-­‐K1:   2.742(3),   N3-­‐K1:   2.860(3),   Si1-­‐K1:  

3.6115(13),  Si1-­‐K1  3.6306(13),  Si2-­‐K1:  3.6802(13),  Si2  -­‐K1:  3.7274(13),  K1-­‐N3:  2.742(3),  K1-­‐C36:  3.346(4),  K1-­‐

Si1:  3.6306(13),  C33-­‐Fe1:  2.110(4),  C33-­‐K1:  3.222(4),  C32-­‐Fe1:  2.131(4),  C32-­‐K1:  3.191(4),  C31-­‐Fe1:  2.132(4),  

C31-­‐K1:  3.255(4),  C30-­‐Fe1:  2.087(4),  C30-­‐K1:  3.341(4),  C29-­‐Fe1:  2.070(4),  C29-­‐K1:  3.336(4),  C28-­‐Fe1:  2.061(4),  

C28-­‐K1:  3.298(4),  K1-­‐K1’:  3.827,  Fe1-­‐K1:  4.520,  N1-­‐C1-­‐N2:  102.9(2),  N1-­‐C1-­‐Fe1:  127.9(2),  N2-­‐C1-­‐Fe1:  128.9(2),  

C3-­‐C2-­‐N1:   107.2(3),   C2-­‐C3-­‐N2:   106.4(3),   C1-­‐Fe1-­‐C28:   146.26(15),   C1-­‐Fe1-­‐C29:   158.32(15),   C28-­‐Fe1-­‐C29:  

39.47(17),  C1-­‐Fe1-­‐C30:  142.15(17),  C28-­‐Fe1-­‐C30:  71.19(19),  C29-­‐Fe1-­‐C30:  38.84(19),  C1-­‐Fe1-­‐C33:  126.91(14),  

C28-­‐Fe1-­‐C33:   39.11(16),   C29-­‐Fe1-­‐C33:   70.96(16),   C30-­‐Fe1-­‐C33:   84.28(17),   C1-­‐Fe1-­‐C32:   118.27(14),   C28-­‐Fe1-­‐

C32:   70.17(17),   C29-­‐Fe1-­‐C32:   83.29(16),   C30-­‐Fe1-­‐C32:   70.84(18),   C33-­‐Fe1-­‐C32:   38.45(17),   C1-­‐Fe1-­‐C31:  

124.18(16),  C28-­‐Fe1-­‐C31:  83.93(17),  C29-­‐Fe1-­‐C31:  70.48(19),  C30-­‐Fe1-­‐C31:  39.29(19),  C33-­‐Fe1-­‐C31:  70.54(18),  

C32-­‐Fe1-­‐C31:  39.00(18).  

S14

3.  Computational  Studies  

3.1   Methodology  

Density  functional  theory  (DFT)  calculations  were  carried  out  with  both  the  Gaussian09  18  and  

the  Orca19  packages.  First,  we  have  used  the  B3LYP  density  functional  as  implemented  in  Gaussian09,  

combined  with   the  6-­‐31G(d,p)  basis   set   of   all   atoms  but  Co  and  Fe   for  which   the  LanL2DZ  ECP  and  

related  basis  set  has  been  used.  Second,  we  have  used  the  B3LYP  density  functional  as  implemented  in  

Orca,  combined  with  the  def2-­‐SVP  basis  set  of  all  atoms.  

Single   point   energy   calculations   based   on   the   X-­‐ray   structures   have   been   achieved   at   both  

levels  for  the  full  Co  (3)  and  Fe  (4)  complexes  at  various  electronic  states.  The  open  shell  singlet  state  

(S=1/2-­‐S=1/2)  of  the  Co  complex  3  has  been  initially  obtained  from  an  UDFT  broken  symmetry  (BS)  

calculation  with  Gaussian09,  as  well  as  with  the  Orca  program.  Other  open  shell  states  (S=3/2  -­‐S=1/2  

triplet  for  3  and  S=2-­‐  S=1/2  quadruplet  for  4)  could  be  characterized  using  the  BS  formalism  only  with  

the  Orca  program,  starting  respectively  from  the  quintet  state  of  3  and  the  sextet  state  of  4.  

Geometry  optimizations  of  3  in  the  triplet  and  closed-­‐shell  singlet  states  have  been  performed  

with  Gaussian09  without  any  constraint.    

The  calculations  indicate  triplet  and  quartet  electronic  ground  states,  for  3  and  4,  respectively  

(Table  S3).  The  spin  densities  of  the  ground  state  are  illustrated  in  Figure  S5  and  the  α-­‐spin  and  β-­‐spin  

molecular  orbitals  of  3  in  its  triplet  ground  state  are  represented  in  Figure  S6.  In  3  one  single  electron  

is  on  Co  and  a  second  slightly  delocalized  throughout  the  metal  and  the  π  system  of  the  molecule.  The  

delocalized   π-­‐interaction   of   a   single   electron   induces   stabilization   of   the   linear   geometry;   this   was  

established   by   full   geometry   optimizations   in   the   triplet   and   closed-­‐shell   singlet   states   at   the   same  

level  of  calculation:  the  former  led  to  a  complex  with  a  structure  very  similar  to  the  experimental  (C-­‐

Co-­‐N:  179.7°),  whereas  the  latter  to  a  bent  complex  (C-­‐Co-­‐N:  142.3°).  Analogous  results  were  obtained  

for  4  (two  single  electrons  on  Fe  and  one  π  electron  slightly  delocalized  over  the  molecule).  

 

Table  S3.  Relative  energies  (kJ/mol)  of  3  and  4  for  various  electronic  states.a  

3 4

Singlet +210.3 Doublet +105.5

BSb  singlet +67.6  (+62.8) Quartet 0.0  (0.0)

Triplet 0.0  (0.0) BS  quartet -­‐  (+18.1)

BSb  triplet   -­‐  (+17.3)   Sextet   +188.7  (+179.8)  

Quintet +233.2    (+208.1)

 [a]  Values  obtained  at  the  B3LYP/6-­‐31G(d,p)  –  LanL2DZ  (Fe/Co)  level  with  Gaussian  09.  Values  in  parentheses  obtained  at  the  B3LYP/def2-­‐SVP  level  with  Orca.  [b]  Broken  symmetry  

S15

In  order  to  evaluate  the  multi-­‐reference  nature  of  the  open-­‐shell  singlet  state  of  the  Co  complex  

3,   T1   diagnosis  was   performed   on   CCSD(T)   calculations.   To   that   end,   a   simplified  model,   including  

unsubstituted  carbene  and  NH2  ligands,  was  used.  These  calculations  pointed  out  to  a  multi-­‐reference  

nature  of  the  configuration,  as  indicated  by  the  0.035  and  0.041  T1  values  obtained  respectively  with  

the  6-­‐31G(d,p)   (LanL2DZ  on  Co)   and  def2-­‐TZVP  basis   sets.  The  open   shell   configurations   calculated  

here   should   thus   present   a   markedly   multiconfigurational   character,   and   therefore,   the   electronic  

structure   and   relative   energies  may   not   be   estimated   accurately   enough   by   the   BS   DFT   formalism.  

Consequently,  the  relative  energies  and  spin  densities  calculated  for  the  open  shell  systems  should  be  

carefully  considered.    

 

 

Figure  S5.  Spin  density  of  the  ground  states  of  3  and  4,  as  well  as  their  BS  triplet  and  quartet  states.  

S16

   Figure  S6.  α-­‐spin  (left)  and  β-­‐spin  (right)  molecular  orbitals  of  3  in  its  triplet  ground  state.            

 

S17

3.2   Cartesian  coordinates  of  the  optimized  geometries    Table  S4.  Geometry  optimization  of  3  in  the  triplet  state.      E  =  -­‐2178.493189  u.a  C    0.002907  -­‐1.207171  0.001673  C    0.687621  -­‐3.385954  -­‐0.017696  H    1.402001  -­‐4.192766  -­‐0.052260  C    -­‐0.666471  -­‐3.390038  0.061176  H    -­‐1.375065  -­‐4.201167  0.109640  C    2.465258  -­‐1.652786  -­‐0.130261  C    3.191437  -­‐1.499717  1.067996  C    4.543437  -­‐1.151016  0.961312  H    5.131379  -­‐1.021004  1.864781  C    5.143208  -­‐0.963226  -­‐0.280517  H    6.192200  -­‐0.687791  -­‐0.339533  C    4.401026  -­‐1.124859  -­‐1.446644  H    4.878476  -­‐0.972179  -­‐2.409635  C    3.047073  -­‐1.478385  -­‐1.401624  C    2.566882  -­‐1.699842  2.445761  H    1.517368  -­‐1.973354  2.306218  C    3.244071  -­‐2.855345  3.208365  H    3.200526  -­‐3.791155  2.641306  H    2.747901  -­‐3.018744  4.170985  H    4.298224  -­‐2.639293  3.411865  C    2.588052  -­‐0.398618  3.271041  H    3.611798  -­‐0.060613  3.464006  H    2.102138  -­‐0.557047  4.239963  H    2.058640  0.405122  2.751245  C    2.265995  -­‐1.653745  -­‐2.700662  H    1.257389  -­‐1.992157  -­‐2.447153  C    2.894688  -­‐2.734477  -­‐3.601624  H    3.900844  -­‐2.453184  -­‐3.929766  H    2.284617  -­‐2.880219  -­‐4.499330  H    2.970731  -­‐3.695941  -­‐3.083015  C    2.119575  -­‐0.315675  -­‐3.450984  H    3.095421  0.089770  -­‐3.739405  H    1.612652  0.428149  -­‐2.829119  H    1.532804  -­‐0.455659  -­‐4.365564  C    -­‐2.456942  -­‐1.668835  0.141294  C    -­‐3.181772  -­‐1.534798  -­‐1.059754  C    -­‐4.536419  -­‐1.194583  -­‐0.959712  H    -­‐5.123106  -­‐1.077919  -­‐1.865801  C    -­‐5.140526  -­‐0.998430  0.278739  H    -­‐6.191655  -­‐0.730176  0.332612  C    -­‐4.399705  -­‐1.142696  1.448010  H    -­‐4.880276  -­‐0.983466  2.408370  C    -­‐3.042864  -­‐1.485789  1.409346  C    -­‐2.552016  -­‐1.741879  -­‐2.434104  H    -­‐1.504391  -­‐2.019920  -­‐2.289038  C    -­‐3.230073  -­‐2.895969  -­‐3.197876  H    -­‐3.194847  -­‐3.830300  -­‐2.627827  H    -­‐2.728308  -­‐3.064506  -­‐4.156710  H    -­‐4.281723  -­‐2.675585  -­‐3.409416  C    -­‐2.563663  -­‐0.441983  -­‐3.261873  H    -­‐3.585272  -­‐0.099280  -­‐3.457976  

S18

H    -­‐2.075702  -­‐0.604321  -­‐4.229146  H    -­‐2.032032  0.360266  -­‐2.741845  C    -­‐2.261152  -­‐1.635443  2.711231  H    -­‐1.254613  -­‐1.984964  2.464538  C    -­‐2.892911  -­‐2.690539  3.639704  H    -­‐3.895127  -­‐2.394712  3.966966  H    -­‐2.279159  -­‐2.820112  4.537375  H    -­‐2.978546  -­‐3.662993  3.143603  C    -­‐2.106667  -­‐0.279876  3.428176  H    -­‐1.597128  0.446226  2.787598  H    -­‐1.519333  -­‐0.399877  4.345257  H    -­‐3.080398  0.137179  3.707244  C    1.736369  5.057989  -­‐0.820551  H    1.702620  4.798707  -­‐1.885123  H    2.713406  5.516316  -­‐0.623254  H    0.975731  5.825959  -­‐0.644232  C    1.707019  4.056620  2.076507  H    0.914633  4.749799  2.378987  H    2.669112  4.557500  2.241482  H    1.659757  3.193209  2.750830  C    2.981240  2.391369  -­‐0.138368  H    2.996144  1.477095  0.464019  H    3.921768  2.924455  0.051551  H    2.975656  2.093001  -­‐1.192382  C    -­‐1.756553  5.059515  0.801894  H    -­‐1.720417  4.799992  1.866266  H    -­‐2.734472  5.516712  0.606419  H    -­‐0.996909  5.828019  0.623965  C    -­‐1.726597  4.055779  -­‐2.096306  H    -­‐0.934567  4.749185  -­‐2.398988  H    -­‐2.689135  4.555187  -­‐2.262949  H    -­‐1.677887  3.191173  -­‐2.768957  C    -­‐2.999911  2.390163  0.120303  H    -­‐3.007242  1.471114  -­‐0.475243  H    -­‐3.942501  2.916848  -­‐0.077001  H    -­‐2.997115  2.098634  1.176303  N    1.078630  -­‐2.054292  -­‐0.052018  N    -­‐1.066650  -­‐2.060217  0.070543  N    -­‐0.010412  2.699714  -­‐0.010278  Si    1.497784  3.508091  0.264700  Si    -­‐1.518749  3.510794  -­‐0.283775  Co    -­‐0.007191  0.804126  -­‐0.009157          

S19

Table  S5.  Geometry  optimization  of  3  in  the  closed-­‐shell  singlet  state.      E  =  -­‐2178.564149  C    -­‐0.596493  -­‐0.790349  0.222773  C    -­‐2.087039  -­‐2.380717  0.951145  H    -­‐3.055540  -­‐2.826061  1.109062  C    -­‐0.845668  -­‐2.813401  1.269821  H    -­‐0.515694  -­‐3.708458  1.770977  C    -­‐3.018999  -­‐0.337087  -­‐0.161375  C    -­‐3.274598  -­‐0.297269  -­‐1.549443  C    -­‐4.322877  0.520763  -­‐1.993794  H    -­‐4.537688  0.577947  -­‐3.056559  C    -­‐5.101816  1.244775  -­‐1.098469  H    -­‐5.911694  1.869467  -­‐1.464422  C    -­‐4.853558  1.158975  0.269482  H    -­‐5.477841  1.717845  0.959204  C    -­‐3.810981  0.372699  0.771282  C    -­‐2.507462  -­‐1.142174  -­‐2.564287  H    -­‐1.721816  -­‐1.684588  -­‐2.032053  C    -­‐3.431727  -­‐2.193118  -­‐3.211953  H    -­‐3.898572  -­‐2.834390  -­‐2.457253  H    -­‐2.860522  -­‐2.831827  -­‐3.894305  H    -­‐4.233652  -­‐1.722332  -­‐3.790812  C    -­‐1.815325  -­‐0.277788  -­‐3.634402  H    -­‐2.538851  0.298029  -­‐4.221556  H    -­‐1.252973  -­‐0.912617  -­‐4.327349  H    -­‐1.110897  0.426819  -­‐3.177369  C    -­‐3.596678  0.268141  2.279919  H    -­‐2.606260  -­‐0.164276  2.449020  C    -­‐4.641139  -­‐0.677544  2.911267  H    -­‐5.654296  -­‐0.281776  2.779698  H    -­‐4.459809  -­‐0.786888  3.985918  H    -­‐4.617062  -­‐1.675229  2.462335  C    -­‐3.623794  1.632122  2.992803  H    -­‐4.611620  2.102188  2.941974  H    -­‐2.893852  2.323683  2.566517  H    -­‐3.384198  1.499441  4.053195  C    1.484980  -­‐2.047611  0.878883  C    2.224632  -­‐1.382229  1.879314  C    3.599070  -­‐1.639481  1.945748  H    4.199156  -­‐1.142260  2.699713  C    4.211674  -­‐2.526253  1.063434  H    5.279936  -­‐2.710118  1.135049  C    3.457852  -­‐3.178079  0.093756  H    3.945144  -­‐3.871836  -­‐0.584214  C    2.079370  -­‐2.955852  -­‐0.023887  C    1.551855  -­‐0.465534  2.897432  H    0.680638  -­‐0.019921  2.409540  C    1.054645  -­‐1.278795  4.111663  H    0.351196  -­‐2.062823  3.815121  H    0.545715  -­‐0.624759  4.828397  H    1.893279  -­‐1.757959  4.629596  C    2.448717  0.693988  3.359502  H    3.292836  0.348449  3.966570  H    1.869488  1.384251  3.981227  H    2.843042  1.254018  2.507566  

S20

C    1.278517  -­‐3.732642  -­‐1.068505  H    0.283029  -­‐3.284271  -­‐1.133269  C    1.104827  -­‐5.204685  -­‐0.637856  H    2.075182  -­‐5.708798  -­‐0.572207  H    0.492642  -­‐5.748612  -­‐1.365477  H    0.621983  -­‐5.290536  0.340256  C    1.896740  -­‐3.665292  -­‐2.477486  H    2.022314  -­‐2.633660  -­‐2.813978  H    1.246293  -­‐4.180817  -­‐3.192501  H    2.874939  -­‐4.155734  -­‐2.518393  C    2.514525  4.332003  1.016217  H    3.010923  3.669867  1.734271  H    2.237561  5.248256  1.552153  H    3.253934  4.610380  0.257474  C    0.155783  4.804128  -­‐0.880090  H    0.803702  5.065358  -­‐1.723074  H    -­‐0.077234  5.728882  -­‐0.338028  H    -­‐0.780194  4.410142  -­‐1.292601  C    -­‐0.243561  3.230228  1.694766  H    -­‐1.201768  2.869262  1.309439  H    -­‐0.421972  4.162791  2.245284  H    0.134142  2.485981  2.402454  C    3.011211  3.291999  -­‐2.774039  H    2.137006  3.493723  -­‐3.403014  H    3.861094  3.096932  -­‐3.439476  H    3.236854  4.207117  -­‐2.216099  C    4.291954  1.504290  -­‐0.631501  H    4.527632  2.358620  0.011536  H    5.151824  1.339898  -­‐1.292693  H    4.192093  0.620964  0.008438  C    2.498635  0.289103  -­‐2.770913  H    2.352825  -­‐0.613120  -­‐2.170649  H    3.389148  0.144407  -­‐3.396054  H    1.632416  0.399031  -­‐3.431666  N    -­‐1.929572  -­‐1.147533  0.324261  N    0.055622  -­‐1.850706  0.815405  N    1.313192  2.042944  -­‐0.611842  Si    0.964336  3.520036  0.263328  Si    2.707827  1.793799  -­‐1.640270  Co    -­‐0.024391  0.802570  -­‐0.622656    

S21

4.  Magnetochemical  Analysis    4.1   General  methods  

Magnetic   data   of   3   and   4   were   recorded   using   a   Quantum   Design   MPMS-­‐5XL   SQUID  

magnetometer.   The   polycrystalline   samples  were   compacted   and   immobilized   into   cylindrical   PTFE  

capsules.  DC  data  were  acquired  as  a  function  of  the  magnetic  field  (0.1−5.0  T  at  2  K)  and  temperature  

(2.0–290  K  at  0.1  T).  AC  data  were  measured  in  the  absence  of  a  static  bias  field  in  the  frequency  range  

1−1000  Hz  (T  =  2.0−50  K,  Bac  =  3  G).  Data  were  corrected  for  the  diamagnetic  contributions  of  sample  

holder  and  compound  (3:  χdia  =  –3.04×10–4  cm3  mol–1,  4:  χdia  =  –3.02×10–4  cm3  mol–1).  

 

4.2   Magnetic  dc  data  

 

Figure  S7.  χmT  at  280  and  290  K  of  3  (left)  and  4  (right)  under  various  magnetic  fields.  

S22

 

Figure   S8.   Illustration   of   the   best   possible   least–squares   fits   (solid   lines)   for   the   alternative   electron  

configuration   scenarios   (i),   top,   and   (ii),   bottom,   for  3   (left)   and  4   (right).   All   χmT   vs.   T   data   at   0.1  Tesla,   all  

magnetization  curves  (insets)  at  2.0  K.  a)  SQ  =  20%,  b)  SQ  =  11%,  c)  (fit  only  to  magnetization  data,  SQMm  =  2.7%)  

overall  SQ  =  8.4%,  and  d)  SQ  =  12%.  Besides  the  poor  SQs  and  curves  badly  reproducing  the  data,  the  estimated  

ligand  field  parameters  are  physically  unlikely  or  impossible  being  either  very  small  (for  a),  even  quasi–free  ion)  

values  or  very  large  values  (>  60000  cm–1)  with  partly  incorrect  signs.  

 

   

S23

Table  S6.  Least–squares  fit  parameters  calculated  by  CONDON  2.020  according  to  the  “MII+e–”  model  described  in  

the  text  for  [M(IPr){N(SiMe3)2}].  

Parameter M  =  Co  (3) M  =  Fe  (4)

B  a)  /  cm–1 1115 1058

C  a)  /  cm–1 4366 3901

ζ3d  a)  /  cm–1 533 410

!!!  b)  /  cm–1 27201±62 31912±20

!!!  b)  /  cm–1 40150±223 43505±68

J  c)  /  cm–1 –0.1±0.2 –0.5±0.1

SQ  d) 7.7% 2.8%

a)  Racah  parameters  and  one-­‐electron  spin-­‐orbit  coupling  constants;21  b)  ligand  field  parameters  in  Wybourne  notation;  c)  Heisenberg  parameter,  “–2J”  convention;  d)  goodness  of  fit.  

 

 

4.3   Magnetic  ac  data  

 

 

Figure  S9.  In-­‐phase  (χm’)  and  out-­‐of-­‐phase  (χm’’)  magnetic  molar  susceptibility  of  3  as  a  function  of  temperature  

T  at  zero  static  bias  field.  

 

 

S24

 

Figure   S10.   In-­‐phase   (χm’)   and   out-­‐of-­‐phase   (χm’’)   magnetic   molar   susceptibility   of   4   as   a   function   of  

temperature  T  at  zero  static  bias  field.  

 

 

 

 

 

Figure   S11.   Relaxation   time   τ   vs.   T–1   of   4,   black   (8.5–14  K)   and   green   lines   (3.0–5.5  K):   fit   to   Arrhenius  

expression;   blue   dashed   line:   fit   considering   quantum   tunnelling,   Raman   and   Orbach   relaxation;   red   line:   fit  

considering  quantum  tunnelling,  Orbach  and  another  Arrhenius-­‐type  relaxation.  

S25

5.  XPS  Studies  

  All  samples  were  prepared  in  a  glove  box  and  transferred  to  the  spectrometer  using  a  transfer  

vessel  under  argon.  The  X-­‐ray  Photoemission  Spectra  were  recorded  using  focused  monochromatized  

Al-­‐Kα  radiation  (1486.6  eV)  (Figures  S12  and  S13).  The  spectrometer  (VersaProbe-­‐II,  ULVAC-­‐Phi)  was  

calibrated  using  photoemission  lines  of  gold  (Au  4f7/2  =  83.9  eV,  with  reference  to  the  Fermi  level).  The  

core   level  peaks  and  survey  spectra  were  recorded  with  constant  pass  energy  of  23.3  and  117.9  eV,  

respectively.  All  spectra  were  recorded  using  electron  and  argon  charge  neutralizer  guns  to  minimize  

surface   charging   effects   that   may   occur   at   insulating   powder   surface   during   the   photoemission  

process.   All   spectra  were   calibrated   using   the   contamination   carbon   C   1s   peak   at   285   eV.   The   XPS  

spectra  were  fitted  using  Multipak  V9.1  software  in  which  a  Shirly  background  was  assumed  and  the  

peak   fittings   of   the   experimental   spectra   were   defined   by   a   combination   of   Gaussian   (80%)   and  

Lorentzian  (20%)  distributions.      

 

 Figure  S12.  XPS  spectrum  of  3.    

S26

 Figure  S13.  XPS  spectrum  of  4.              Table  S7.  Binding  energies  (eV)  and  FWHM  (eV)  of  2p3/2  and  2p1/2  peaks  and  their  satellites  

3 4

2p3/2 780.7 710.0

FWHM 4.0 4.1

satellite 785.7 714  .5

FWHM 5.5 3.1

2p1/2 796.4 723.1

FWHM 3.6 3.8

satellite 802.1 727.2

FWHM 6.0 3.6

       

S27

6.  EXAFS  and  XANES  Studies  of  3  

The  Co  K  edge  (7709  eV)  XAS  data  was  obtained  at  the  Diamond  Light  Source,  United  Kingdom  

on   beam   line   B18.   The   sample   of  3   was   prepared   in   the   glove   box   in   a   small   capillary,   sealed   and  

measured.  The  Co  K-­‐edge  XANES  data  processing  and  EXAFS  analysis  were  performed  using  IFEFFIT  

version  1.2.11d  with   the  Horae  package   (Athena  and  Artemis).22  Fitting  was  done   in  k-­‐   and  R-­‐space  

and  in  multiple  weightings  of  k1,  k2  and  k3,  simultaneously.  The  EXAFS  could  be  fitted  with  one  Co-­‐N/C  

contribution   at   1.89(2)   and   one   Co-­‐N/C   at   1.96(1)   Å  with   low  Debye  Waller   factors   (EXAFS   cannot  

distinguish   between   N   and   C   as   they   are   neighbouring   atoms   in   the   periodic   table   and   have   very  

similar  back  scatterings  amplitudes),  nicely  corresponding  to  the  single  crystal  data.  

The  1st  derivative  of  the  Co  K-­‐edge  XANES  of  sample  3,   in  comparison  to  some  representative  

Co(II)  and  Co(III),  is  given  in  Figure  S14  (the  normalised  Co  K  edge  XANES  spectra  are  in  Figure  3,  in  

the  main   paper).   The   first   derivative   can   be   used   to   accurately   determine   the   number   of   pre-­‐edge  

features   as  well   as   the   position   of   the   pre-­‐edges   and  main   edge   (the  main   sàp   transition).   For   the  

reference  samples,  one  pre-­‐edge  is  present,  with  the  main  edge  being  the  second  maximum  in  the  1st  

derivative.  For  sample  3,  the  third  maximum  in  the  1st  derivative  is  the  edge  position,  since  this  sample  

displays  two  clear  pre-­‐edge  features.  It  is  clear  that  sample  3  represents  an  overall  Co2+.  The  feature  is  

broad  towards  higher  energy,  which  suggests  some  electron  density   is  distributed  away  from  the  Co  

centre.  The  XANES  is  known  to  be  dependent  on  the  ligand  and  geometry  as  well  as  the  oxidation  state  

of   the   central  metal,23   but   the   EXAFS   in   combination  with   XANES   pre   edge   features   supporting   the  

linear  coordination  only  further  support  the  Co2+  assignment.  More  support  and  insights  in  the  XANES  

are   obtained   from   simulation   the   XANES   and   corresponding   empty   density   of   states   (DOS)   (XANES  

probes  the  empty  DOS).    

 

Figure  S14.  Normalised  Co  K-­‐edge  XANES  (left)  and  1st  derivative  (right)  of  normalized  XANES  for  Co  references  compounds  as  well  as  sample  3.  

 

The   FEFF9   code  was   used   to   perform   ab   initio   self-­‐consistent   field,   real-­‐space,   full   multiple  

scattering   calculations.24   The   calculations   were   performed   using   the   Hedin-­‐Lundquist   exchange  

correlation  potential.  A  (final  state  rule)  core  hole  is  included  on  the  absorber  atom  to  mimic  the  final  

S28

state  of  the  photon  absorption  process.  The  XANES  simulation  including  the  corresponding  l-­‐projected  

empty  (DOS)  as  calculated  simultaneously  is  presented  in  Figure  S15.  Whereas  the  1st  pre-­‐edge  is  due  

to   pd   hybridization,   making   the   dipole   forbidden   s  →   d   transition   slightly   visible,   the   2nd   pre-­‐edge  

originates  from  hybridization  of  the  Co-­‐p  and  Co-­‐d  with  C-­‐p  mostly,  and  little  mixing  from  Np.  The  high  

intensity  of  this  pre-­‐edge  is  due  to  the  empty  character  of  the  orbital,  which  is  indicative  of  the  linear  

nature  around  the  Co  centre  and  also  suggest  the  channel  of  charge  redistribution  being  the  aromatic  

part  of  the  molecule.  

 

 Figure   S15.   Calculated   DOS   (primary   y-­‐axis)   and   XANES   (secondary   y-­‐axis)   as   a   function   of   relative   energy  

(calculated).  The  vertical  line  at  ca.  –9  eV  indicates  the  highest  occupied  molecular  orbital.  Since  XANES  probes  

the  empty  density  of  state,  the  orbitals  above  –9  eV  might  be  visible  depending  on  symmetry  and  orbital  overlap.  

The  main  transition  is  Co-­‐s  to  Co-­‐p  and  thus  the  Co-­‐p  DOS  will  reflect  best  the  features  observed.  

S29

6.  References    1   (a)  A.  M.  Bryan,  G.  J.  Long,  F.  Grandjean  and  P.  P.  Power,  Inorg.  Chem.  2013,  52,  12152-­‐

12160;  (b)  R.  A.  Andersen,  K.  Faegri,  J.  C.  Green,  A.  Haaland,  M.  F.  Lappert,  W.  P.  Leung  

and  K.  Rypdal,  Inorg.  Chem.  1988,  27,  1782-­‐1786.  

2   (a)  J.  M.  Lalancette,  G.  Rollin  and  P.  Dumas,  Can.  J.  Chem.  1972,  50,  3058-­‐3062;  (b)  D.  E.  

Bergbreiter  and  J.  M.  Killough,  J.  Am.  Chem.  Soc.  1978,  100,  2126-­‐2134.  

3   P.  Tang,  W.  Wang  and  T.  Ritter,  J.  Am.  Chem.  Soc.  2011,  133,  11482-­‐11484.  

4   A.   J.  Arduengo  III,  R.  Krafczyk,  R.  Schmutzler,  H.  A.  Craig,   J.  R.  Goerlich,  W.   J.  Marshall  

and  M.  Unverzagt,  Tetrahedron  1999,  55,  14523-­‐14534.  

5   A.  A.  Danopoulos,  Unpublished  results.  

6   A.  H.  Cowley,  N.  C.  Norman,  M.  Pakulski,  G.  Becker,  M.  Layh,  E.  Kirchner  and  M.  Schmidt,  

in  Inorg.  Synth.,  John  Wiley  &  Sons,  Inc.,  1990,  27,  235-­‐240.  

7   B.   M.   Day,   K.   Pal,   T.   Pugh,   J.   Tuck   and   R.   A.   Layfield,   Inorg.   Chem.  2014,  53,   10578-­‐

10584.  

8   (a)   A.   A.   Danopoulos,   P.   Braunstein,   N.   Stylianides   and  M.  Wesolek,  Organometallics  

2011,  30,  6514-­‐6517;  (b)  A.  A.  Danopoulos  and  P.  Braunstein,  Dalton  Trans.  2013,  42,  

7276-­‐7280;   (c)   C.   B.  Hansen,  R.   F.   Jordan   and  G.   L.  Hillhouse,   Inorg.  Chem.  2015,  54,  

4603-­‐4610.  

9   D.  F.  Evans,  J.  Chem.  Soc.  1959,  2003-­‐2005.  

10   M.   I.   Lipschutz,   X.   Yang,   R.   Chatterjee   and   T.   D.   Tilley,   J.   Am.   Chem.   Soc.  2013,   135,  

15298-­‐15301.  

11   (a)   A.   H.   Cowley,   F.   Gabbai,   R.   Schluter   and   D.   Atwood,   J.   Am.  Chem.   Soc.  1992,  114,  

3142-­‐3144;  (b)  V.  P.  W.  Böhm  and  M.  Brookhart,  Angew.  Chem.  Int.  Ed.  2001,  40,  4694-­‐

4696.  

12   R.  A.  Aitken,  W.  Masamba  and  N.  J.  Wilson,  Tetrahedron  Lett.  1997,  38,  8417-­‐8420.  

13   B.  Cetinkaya,  A.  Hudson,  M.  F.  Lappert  and  H.  Goldwhite,  J.  Chem.  Soc.,  Chem.  Commun.  

1982,  609-­‐610.  

14   APEX2,  Bruker  AXS  Inc.,  Madison  USA,  2006.  

15   G.  M.  Sheldrick,  Acta  Cryst.  Section  A  1990,  46,  467-­‐473.  

16   G.  M.  Sheldrick,  University  of  Göttingen,  Göttingen,  1999.  

17   A.  Spek,  J.  Appl.  Crystallogr.  2003,  36,  7-­‐13.  

18   M.  J.  Frisch,  G.  W.  Trucks,  H.  B.  Schlegel,  G.  E.  Scuseria,  M.  A.  Robb,  J.  R.  Cheeseman,  G.  

Scalmani,  V.  Barone,  B.  Mennucci,  G.  A.  Petersson,  H.  Nakatsuji,  M.  Caricato,  X.  Li,  H.  P.  

Hratchian,  A.   F.   Izmaylov,   J.   Bloino,  G.   Zheng,   J.   L.   Sonnenberg,  M.  Hada,  M.   Ehara,  K.  

S30

Toyota,  R.  Fukuda,  J.  Hasegawa,  M.  Ishida,  T.  Nakajima,  Y.  Honda,  O.  Kitao,  H.  Nakai,  T.  

Vreven,  J.  A.  Montgomery,  Jr.,  J.  E.  Peralta,  F.  Ogliaro,  M.  Bearpark,  J.  J.  Heyd,  E.  Brothers,  

K.  N.  Kudin,  V.  N.   Staroverov,  T.  Keith,  R.  Kobayashi,   J.  Normand,  K.  Raghavachari,  A.  

Rendell,  J.  C.  Burant,  S.  S.  Iyengar,  J.  Tomasi,  M.  Cossi,  N.  Rega,  J.  M.  Millam,  M.  Klene,  J.  E.  

Knox,   J.   B.   Cross,   V.   Bakken,   C.   Adamo,   J.   Jaramillo,   R.   Gomperts,   R.   E.   Stratmann,   O.  

Yazyev,  A.  J.  Austin,  R.  Cammi,  C.  Pomelli,  J.  W.  Ochterski,  R.  L.  Martin,  K.  Morokuma,  V.  

G.   Zakrzewski,   G.   A.   Voth,   P.   Salvador,   J.   J.   Dannenberg,   S.  Dapprich,   A.  D.  Daniels,   Ö.  

Farkas,  J.  B.  Foresman,  J.  V.  Ortiz,  J.  Cioslowski  and  D.  J.  Fox,  Gaussian,  Inc.,  Wallingford  

CT,  2013,  Gaussian  09  (Revision  D.01).  

19   (a)  Orca  version  3.0.3;  (b)  F.  Neese,  Wiley  Interdiscip.  Rev.:  Comput.  Mol.  Sci.  2012,  2,  

73-­‐78.  

20   (a)  M.  Speldrich,  H.  Schilder,  H.  Lueken  and  P.  Kögerler,  Isr.  J.  Chem.,  2011,  51,  215-­‐227;  

(b)   J.   van   Leusen,  M.   Speldrich,  H.   Schilder   and   P.   Kögerler,  Coord.  Chem.  Rev.,   2015,  

289–290,  137-­‐148  

21   J.   S.   Griffith,   The   Theory   of   Transition-­Metal   Ions,   Cambridge   University   Press,  

Cambridge,  1971.  

22   (a)  M.  Newville,  J.  Synchrotron  Radiat.  2001,  8,  322-­‐324;(b)  B.  Ravel  and  M.  Newville,  J.  

Synchrotron  Radiat.  2005,  12,  537-­‐541.  

23   (a)  M.  Tromp,  J.  Moulin,  G.  Reid,  J.  Evans,  AIP  2007,  CP882,  699-­‐701;  (b)  M.  Tromp,  J.  A.  

van  Bokhoven,  G.  P.  F.  van  Strijdonck,  P.  W.  N.  M.  van  Leeuwen,  D.  C.  Koningsberger  and  

D.  E.  Ramaker,  J.  Am.  Chem.  Soc.  2005,  127,  777-­‐789;  (c)  L.-­‐S.  Kau,  D.  J.  Spira-­‐Solomon,  J.  

E.  Penner-­‐Hahn,  K.  O.  Hodgson  and  E.  I.  Solomon,  J.  Am.  Chem.  Soc.  1987,  109,  6433  

24   (a)  J.  J.  Rehr,  J.  J.  Kas,  M.  P.  Prange,  A.  P.  Sorini,  Y.  Takimoto,  F.  Vila,  C.  R.  Physique  2009,  

10,  548-­‐559;  (b)  J.  J.  Rehr,  J.  J.  Kas,  F.  D.  Vila,  M.  P.  Prange,  K.  Jorissen,  PCCP  2010,  12,  

5503-­‐5513.