conference06-21nippon ketjen resid hdm

Upload: suprateem

Post on 06-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    1/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    4 Years Contribution to

    Sustainable Petroleum Refining

    4 Years Contribution to

    Sustainable Petroleum Refining

    4 Years Contribution to

    Sustainable Petroleum Refining

    The pursuit of efficiency inResid HT operation based on

    investigation of feed properties

    and use of newly developed

    KFR catalysts

    At 2011 J-C-K Petroleum

    Technology Congress

    Feb 22-23, 2011

    Nippon Ketjen Co., Ltd.

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    2/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    2

    Contents

    1. Introduction

    2. Reactivity of VR and heavy AR feedstock

    3. Introduction of newly developed KFR catalysts4. Conclusion

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    3/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    3

    1. Introduction

    Issues related to Resid hydrotreating are as follows.- Decrease of demand for fuel oil

    - Crude oil is becoming heavier and more diverse

    - Treatment of non-conventional crude oil will beneeded

    To cope with the above issues, we present the following.

    - Investigation of a number of feed properties and theirimpact on HDS reactivity

    - Newly developed catalysts for a more efficient

    operation

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    4/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    4

    4 Years Contribution to

    Sustainable Petroleum Refining

    2. Reactivity of VR and heavy AR feedstock

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    5/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    5

    Evaluate HDS reactivity for 10 types of different oils(VR, AR, DAO)

    Investigate the relation between HDS activity and feedproperties

    Comparison of reactivity under high pressure 

    18MPa)

    andmedium pressure 14MPa)

    Investigate the relation between HDS reactivity and themolecular structure of the n-C7 insoluble fraction

    Specify convenient feed properties that can be used forselecting crude source and adjusting operation conditions

    Objectives

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    6/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    6

    Catalyst systemHDM zone KFR 23/KFR 22/KFR 20

    HDS zone KFR 53/KFR 50/KFR 70

    Pilot test conditions

    ppH2 : 14MPa  18MPa

    H2 /Oil : 1000NL/L

    LHSV : 0.2h-1

    Operation targetProduct Sulfur : 0.3wt% and 0.5wt% in

    DSAR(360oC+)

    Catalyst system and conditions

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    7/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    7

    Feedstock

    VR 10 typesOrigin: Iranian Light, Upper Zakum, Qatar Marine,

    Canadian Heavy, Maya/Isthmus, North Sea main

    AR 8 types

    Origin: Arabian Heavy, Arabian Extra Light,

    Kuwait main

    DAO 1 type

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    8/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    8

    HDS reactivity under high pressure

    (18MPa)

    In general, the higher the sulfur content in the feedstock, the higher the

    required reaction temperature for HDS. The magnitude of the increase

    for VR is different from that for AR.

    @18MPa-40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C  AR

    VR

    @18MPa

    Base

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    9/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    9

    The HDS reactivity of the feed correlates relatively strongly with specific

    gravity, CCR content, metal content and Log(log Vis.)of the feed.

    HDS reactivity under high pressure

    (18MPa)

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06Density of feed , g/ml at 15

    oC

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C

     AR

    VR

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    0 5 10 15 20 25 30CCR in feed , wt%

       T  e  m  p

      e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,  o

       C  AR

    VR

    Base Base

    @18MPa@18MPa

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    10/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    10

    The influence of pressure on HDS reactivity were evaluated under high

    pressure (18MPa) and low pressure (14MPa).

    Effect of pressure

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,  o

       C18MPa

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,  o

       C14MPa

    Base Base

     DAO)

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    11/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    11

    Effect of pressure

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7Sulfur in feed , wt%

       T  e  m  p  e

      r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C 14MPa

    18MPa

    Ref.

     

    DAO)

    Base

    The difference in HDS reactivity between a certain oil and reference

    feed was almost independent of pressure.

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    12/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    12

    Factors to affect HDS reactivity

    Comparison of feed reactivity from the followingperspective:

    - Feeds of markedly different reactivity, but with similar

    sulfur content

     After separation by n-C7 solubility, the insoluble fraction

    ( Asphaltene) and soluble fraction (Maltene) wereinvestigated individually for their 

    - HDS conversion

    - Averaged molecular structure

    Soluble Insoluble Maltene)

     Asphaltene)

    Separation by heptane

    Feed or Product oil

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    13/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    13

    Feeds with similar S content

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e

      r  e  q  u   i  r  e   d ,

      o   C 14MPa

    18MPa

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    14/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    14

    Comparison of high S vs low S feed

    Comparing several types of feeds with

    similar sulfur content, the less reactive

    feeds contain higher amounts of sulfur

    in the Asphaltene fraction.

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7Sulfur in feed , wt%

       T  e  m  p  e

      r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C 14MPa18MPa

    Base

    0.0

    0.5

    1.0

    1.5

    2.0

    Feed Sulfur in DSAR

    =0.5wt%

    Sulfur in DSAR

    =0.3wt%

       S  u   l   f  u  r  c  o  n   t  e  n   t ,  w   t   % Sulfur from MAL

    Sulfur from ASP2.5

    3.0

    0.0

    0.5

    1.0

    1.5

    2.0

    Feed Sulfur in DSAR

    =0.5wt%

    Sulfur in DSAR

    =0.3wt%

       S  u   l   f  u  r  c  o  n   t  e  n   t ,  w   t   %

    Sulfur from MAL

    Sulfur from ASP2.5

    3.0

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    15/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    15

    Typical molecular structure of

    Asphaltenes

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r

      e  r  e  q  u   i  r  e   d ,

      o   C 14MPa

    18MPa

    Base

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    16/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    16

    -40

    -30

    -20

    -10

    +0

    +10

    +20

    +30

    1 2 3 4 5 6 7

    Sulfur in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C 14MPa

    18MPa

    Comparing several types of feeds of similar sulfur content, HDS reactivity

    differed with the aromaticity factor of the Asphaltene molecule (fa). A higher

    aromaticity factor resulted in a lower reactivity feed.

    S

    OH

    S

    N

    C10H21

    OH

    High f a

    Low f a

    Typical molecular structure of

    Asphaltenes

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    17/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    17

    Estimation of reactivity

    from analyses

    The aromaticity factors f a has a clear correlation with the amount of saturates.

    The HDS reactivity has a strong correlation with the amount of saturates.

    The amount of saturates can be measured easily and it can be used to

    determine the HDS reactivity of the feed.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 5 10 15 20 25 30Saturate in feed , wt%

       f  a ,  -

    14MPa

    18MPa

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    0 5 10 15 20 25 30Saturate in feed , wt%

       T  e  m  p  e  r  a   t  u  r  e  r  e  q  u   i  r  e   d ,

      o   C  AR

    VR

    Base

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    18/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    18

    The HDS reactivity of the feed correlates relatively strongly

    with sulfur content, metals content, specific gravity, CCRcontent and Log(log Vis)of the feed

    The HDS reactivity difference between a certain oil and thereference feed is almost independent of pressure (18MPa or14MPa)

    Higher sulfur removal requires removing the S from Asphaltenes. The HDS reactivity is affected either by thefeed aromaticity factor or by how bulky the feed Asphaltenemolecules are

    The amount of saturates can be used to determine the HDSreactivity of the feed.

    Reactivity of VR and heavy AR

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    19/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    19

    3. Introduction of newly developed KFR grades3.1 New HDM catalyst, KFR 15

    3.2 New HDS catalyst, KFR 93

    3.3 KFR grades

    3.4 Simulated performance of a system using KFR 15

    and KFR 93

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    20/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    20

    3.1 Introduction of new HDM

    catalyst KFR 15

    New support technology enabled optimization of pore

    structure with higher pore volume

    -Improved diffusivity of metal-containing large molecules

    -Improved metal capture capability

    Optimized surface activity

    -Effective to suppress dehydrogenation reaction at

    relatively higher reaction temperature after middle of run

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    21/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    21

    KFR 15 shows higher HDM performance than KFR 23 from start of run.

    With its higher metals pickup capacity the catalyst however showed an

    even more prominent advantage after middle of run.

    80

    90

    100

    110

    120

    130

    140

    0 10 20 30

    Metal on Catalyst, g/100ml Catalyst

       H   D   M    R

       V   A

    KFR 23KFR 15

    Test Conditions:

    Temp. , oC 360 - 405ppH2 , MPa 18

    H2 /Oil , NL/L 800

    LHSV , h-1 1.0 - 3.0

    Feedstock Properties:Sulfur , wt% 4.1Ni+V , ppm 100

    Density , g/cm3 0.977

    HDM performance of KFR15

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    22/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    22

    3.2 Introduction of new HDS

    catalyst KFR 93

    With using commercially proven support technology, both

    type of active metals and their metal loadings were

    optimized. We commercialized a high HDS activity

    catalyst, KFR 93, which outperforms all currently available

    commercial HDS catalysts.

    KFR 93 exhibits unparalleled HDS activity in case the

    HDM section can satisfactorily reduce metals to the HDS

    section.

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    23/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    23

    HDS performance of KFR 93

    KFR 93 exhibited over 10 oC HDS advantage over KFR 70 with equivalent

    stability.

    340

    350

    360

    370

    380

    390

    400

    410420

    0 50 100 150 200 250 300

    Days on stream

        N  o  r  m

      a   l   i  z  e   d   W   A   T   f  o  r   H   D   S ,  o

       C

    KFR 70

    KFR 93

    Base

    +20

    +40

    -20

    -40

    Days on stream

    0 50 100 150 200 250 300

    Test Conditions :ppH2, MPa 17

    LHSV, h-1 0.32

    Target Sulfur, wt% 0.3

    Feedstock Properties :

     Demet. Feed of AR/VR=70/30vol%

    Sulfur, wt% 1.4Ni+V, ppm 18

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    24/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    24

    3.3 KFR grades

    KG 55 Ring shaped catalyst, Capture large-size scale

    KF 542 Macaroni-shaped ring catalyst, Capture middle-size scale

    KG 1 Ball shaped porus catalyst, Capture fine scale and iron

    KG 5 Quadralobe catalyst with HDM, For size-grading

    KFR 12HDM catalyst, mainly for low-mid pressure

     (

    15MPa)

    , with higher 

    coke resistance based on KFR 20

    KFR 20High HDM activity catalyst with HDS function, mainly for low-mid

    pressure(

    15MPa)

    KFR 15

    Newly developed HDM catalyst, mainly for high pressure

    15MPa)

    , with improved metal tolerance and coke resistance from

    KFR 22/23

    KFR 23

    HDM catalyst, mainly for high pressure (

    15MPa)

    , with higher  

    metal resistance based on KFR 22

    KFR 22High HDM activity catalyst with HDS function, mainly for high

    pressure(

    15MPa)

    Guard

    Catalysts

    HDM

    Catalysts

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    25/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    25

    3.3 KFR grades

    HDM/HDS

    Catalysts KFR 33Transtion catalyst of HDM and HDS functions, with relatively high

    metal tolerance

    KFR 53 HDS catalyst with relatively high metal tolerance

    KFR 50 High HDS and HDN activity catalyst

    KFR 50S Improved KFR 50 with higher HDS, HDN and HDCCR activity

    KFR 70 Finishing catalyst with very high HDS, HDN and HDCCR activity

    KFR 70B/71BImproved KFR 70 with higher HDS, HDN and HDCCR for paraffinic

    AR

    KFR 93Finishing catalyst with extremely high HDS, HDN and HDCCR

    activity

    HDS

    Catalysts

    Since the first commercial introduction in 1987, KFR catalysts have been

    employed in 26 units with over 100 runs World Wide.

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    26/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    26

    KFR 22

    KFR 23

    KFR 12

    KFR 20KFR 33

    KFR 53

    KFR 50

    KFR 50S KFR 70

    KFR 70B/71

    HDS Activity

       M

      e   t  a   l   C  a  p  a  c   i   t  y

    Schematic display of KFR activity

    Only the sophisticated combination of high performance catalysts can fully meet a

    unit requirement.

    We are now expanding our versatile and balanced HDM/HDS system by further

    improvement of the HDM activity/metal tolerance with KFR 15 and by adding

    extremely high HDS activity with KFR 93.

    KFR 15

    KFR 93

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    27/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    27

    3.4 Simulated performance of

    a new system with KFR 15 and KFR 93

    Performance of a new system with KFR 15 and KFR 93 was simulated,

    and was compared with current KFR 23/22 and KFR 70.

    Catalyst system

    Replace KFR 23/22 by

    KFR 15

    Replace latter half ofKFR 70 by KFR 93

    System A System B

    Reference System New SystemHDM

    KFR 33

    HDS KFR 70

    KFR 93KFR 70

    Transition KFR 33

    KFR 15KFR 23

    KFR 22

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    28/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    28

    Performance of new system

    Simulation indicated that the new system B with KFR 15 and KFR 93 can

    lower around 2oC of WAT after MOR compared to system A.

    -10

    -5

    0

    5

    10

    15

    20

    0 50 100 150 200 250 300 350

    Days on Stream, day

       O  p  e  r  a   t   i  o  n

       W   A   T ,

      o   C

    System-A

    System-B(New)

    Base

    +10

    +20

    -10

    Operation Conditions : Feedstock Properties :

    LHSV, h-1 0.15 Sulfur, wt% 4.4

    ppH2, MPa 18 Ni+V, ppm 95

    Target Sulfur, wt% 0.3 Density, g/cm3 0.995

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    29/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    29

    Performance of new system

    The new system B with KFR 15 and KFR 93 can reduce metals in product

    from 6 to 4ppm at SOR and 9 to 7ppm at EOR, and the difference of metalcontent between system A and B is 2ppm through the run at constant product

    sulfur. It is expected that system B can reduce FCC catalyst consumption by

    70-80% of system A.

    0

    2

    4

    6

    8

    10

    0 50 100 150 200 250 300 350

    Days on Stream, day

       N   i   +   V   C  o  n   t  e  n   t ,  p  p  m

    System-A

    System-B(New)

  • 8/16/2019 Conference06-21Nippon Ketjen Resid HDM

    30/30

    4 Years Contribution to

    Sustainable Petroleum Refining

    30

    4. Conclusion

    HDS reactivity of feedstock are related to the molecular

    structure of Asphaltenes. More bulky structure and higheraromaticity leads to less reactivity of the feed. The amount ofsaturates can indicate HDS reactivity of the feed.

    We commercialized a new HDM catalyst KFR 15 and a new

    HDS catalyst KFR 93. Employing these catalysts, therequired temperature for operation can be lowered, oralternatively, the product metals can be reduced at constantproduct sulfur.

    Nippon Ketjen is committed to providing optimal catalystsystems to its customers.