computational geomechanics: simulations of static...

44
Computational Geomechanics: Simulations of Static and Dynamic Behavior of Foundation System Boris Jeremi´ c Department of Civil and Environmental Engineering University of California, Davis OpenSees User Workshop August 21-22, 2003 , Richmond Field Station Supported in part by the NSF, PEER, Caltrans, and Cal–EPA. Collaborators: Professors Zhaohui Yang (UAA), Sashi Kunnath (UCD), Gregory Fenves (UCB), Jacobo Bielak (CMU), Zhaojun Bai (UCD), George Karypis (UMN), Drs. Francis McKenna (UCB), and graduate students Xiaoyan Wu (UCD) Ritu Jain (UCD), Qing Liu (UCD), Jinxiu Liao (UCD). Guanzhou Jie (UCD). Jeremi´ c, OpenSees Workshop, Aug. 2003 1

Upload: doanhanh

Post on 29-Mar-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

Computational Geomechanics:Simulations of Static and Dynamic

Behavior of Foundation System

Boris JeremicDepartment of Civil and Environmental Engineering

University of California, Davis

OpenSees User Workshop

August 21-22, 2003 , Richmond Field Station

Supported in part by the NSF, PEER, Caltrans, and Cal–EPA.

Collaborators: Professors Zhaohui Yang (UAA), Sashi Kunnath (UCD), Gregory Fenves (UCB),

Jacobo Bielak (CMU), Zhaojun Bai (UCD), George Karypis (UMN), Drs. Francis McKenna

(UCB), and graduate students Xiaoyan Wu (UCD) Ritu Jain (UCD), Qing Liu (UCD), Jinxiu

Liao (UCD). Guanzhou Jie (UCD).

Jeremic, OpenSees Workshop, Aug. 2003 1

Motivation

• Create high fidelity models of constructed facilities (bridges, build-

ings, port structures, dams...).

• Models will live concurrently with the physical system they repre-

sent.

• Models to provide owners and operators with the capabilities to

assess operations and future performance.

• Use observed performance to update and validate models through

simulations.

Jeremic, OpenSees Workshop, Aug. 2003 2

Goal

• Develop and use Computational tools based on

• Geomechanics to

• Investigate behavior of solids and structures made of geomaterials

Jeremic, OpenSees Workshop, Aug. 2003 3

Overview

• Enabling Technologies (ET)

– Template Elasto–Plasticity– Full Coupling of Solid and Fluid– Domain Reduction Method– Distributed Memory Parallel Computing

• Geomechanics Applications (GA)

– Constitutive behavior of test specimens– Behavior of piles in layered soils– Interactions of piles in pile groups– Wave propagation in saturated soils– Seismic behavior of soils and soil-structure interactions

• Currently in Works (CW)

– General Large Deformations– Distributed Parallel Computing

Jeremic, OpenSees Workshop, Aug. 2003 4

ET: Template Elasto–Plasticity

Yield function (or lack of YF), potential function (and/or flow

directions), hardening/softening laws (scalar, rotational/translational

kinematic, distortional...)

• Independent definitions of:

1. Yield function (and it’s derivatives)

2. Plastic flow direction (first and second derivatives of potential

function)

3. Evolutions laws for the above two

• This is used to create Template Elastic–Plastic Models

Jeremic, OpenSees Workshop, Aug. 2003 5

ET: Template Elastic–PlasticModels

• von Mises

• Drucker–Prager

• Rounded Mohr–Coulomb

• Cam–Clay

• Mazari–Dafalias (bounding surface plasticity)

• Parabolic Leon

• User added

• Any combination of the above using isotropic or kinematic hard-

ening

• Hierarchical database of models (by materials)

Jeremic, OpenSees Workshop, Aug. 2003 6

ET: Template Examples

0 2 4 6 8 100

5

10

15

20

25

30

35

40

εa (%)

q (k

Pa)

0 2 4 6 8 10−7

−6

−5

−4

−3

−2

−1

0

1

εa (%)

ε v (%

)

0 2 4 6 8 100

5

10

15

20

25

30

εa (%)

q (k

Pa)

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

εa (%)

ε v (%

)

0 2 4 6 8 100

5

10

15

20

25

30

εa (%)

q (k

Pa)

0 2 4 6 8 100

0.5

1

1.5

2

2.5

3

3.5

εa (%)

ε v (%

)

0 2 4 6 8 100

5

10

15

20

25

30

35

40

εa (%)

q (k

Pa)

0 2 4 6 8 10−1

−0.5

0

0.5

εa (%)

ε v (%

)

0 2 4 6 8 100

50

100

150

200

εa (%)

q (k

Pa)

0 2 4 6 8 100

0.5

1

1.5

2

2.5

3

εa (%)

ε v (%

)

0 5 10 150

10

20

30

40

50

60

εa (%)

q (k

Pa)

0 5 10 15−12

−10

−8

−6

−4

−2

0

2

εa (%)

ε v (%

)

Jeremic, OpenSees Workshop, Aug. 2003 7

ET: Template Cyclic Examples

−0.4 −0.2 0 0.2 0.4−10

−5

0

5

10

15

εa (%)

q (k

Pa)

−0.4 −0.2 0 0.2 0.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

εa (%)

ε v (%

)

−0.4 −0.2 0 0.2 0.4−10

−5

0

5

10

εa (%)

q (k

Pa)

−0.4 −0.2 0 0.2 0.4−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

εa (%)

ε v (%

)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15−20

−10

0

10

20

30

εa (%)

q (k

Pa)

−0.1 −0.05 0 0.05 0.1 0.15−0.5

0

0.5

1

1.5

2

2.5

3

εa (%)

ε v (%

)

Jeremic, OpenSees Workshop, Aug. 2003 8

ET: Full Coupling of Solid and Fluid

General form (Zienkiewicz et al.), full coupling, (currently only small

deformations)

DOFs: uLj → solid displacement pL → fluid pressure ULj → fluid

displacement

(Ms)KijL 0 0

0 0 0

0 0 (Mf)KijL

¨uLj

¨pL¨ULj

+

(C1)KijL 0 −(C2)KijL0 0 0

−(C2)LjiK 0 (C3)KijL

˙uLj

˙pL˙ULj

+

(KEP )KijL −(G1)KiL 0

−(G1)LjK −(P )KL −(G2)LjK0 −(G2)KiL 0

uLjpLULj

=

(fs)Ki0

(ff)Ki

(C1)KijL = (C2)KijL = (C3)KijL =

∫Ω

Nu,UK n

2k−1ij N

u,UL dΩ

Jeremic, OpenSees Workshop, Aug. 2003 9

ET: Domain Reduction Method

• Based on work by Bielak et al. at CMU.

• Superposition of the large scale domain + local geologic feature

• Seismic motions and accelerations input at the layer of elements

that encompass an elastic–plastic zone (using SHAKE, Green’s

functions, Quake, SCEC...)

• Non–reflecting boundaries

Fault

Plastic (Soil) "Bowls"

Jeremic, OpenSees Workshop, Aug. 2003 10

Geomechanics Applications

Constitutive behavior of test specimens

Behavior of piles in layered soils

Interactions of piles in pile groups

Wave propagation in saturated soils

Seismic behavior of soils and soil-structure interactions

Jeremic, OpenSees Workshop, Aug. 2003 11

GA: Long Specimen

Progression of plastic zone for a long specimen with high friction

end platens

Jeremic, OpenSees Workshop, Aug. 2003 12

GA: Non–Level End Platens

Jeremic, OpenSees Workshop, Aug. 2003 13

GA: Constitutive Response?

0 0.5 1 1.5 2 2.5 30

50

100

150

200

250

300

350

Shear Strain ε (%)

q (k

Pa)

Without Friction − Cubic Sample With Friction − Cubic SampleWithout Friction − 2 to 1 Sample With Friction − 2 to 1 Sample

Jeremic, OpenSees Workshop, Aug. 2003 14

GA: Constitutive Response?

0 0.5 1 1.5 2 2.5 3 3.534

34.5

35

35.5

36

36.5

37

37.5

38

Max. inclination angle (deg)

Mob

ilize

d fr

ition

ang

le a

t 2.0

% a

xial

str

ain

Actual friction angle: 37.0o

Jeremic, OpenSees Workshop, Aug. 2003 15

GA: Single Pile in Layered Soils

−1000 0 1000 2000−10

−8

−6

−4

−2

0

2

SAND

φ = 37.1o

−1.718

SOFT CLAY

Cu = 21.7 kPa

−3.436

SAND

φ = 37.1o

Bending Moment (kN.m)

Dep

th (

m)

SAND

φ = 37.1o

−1.718

SOFT CLAY

Cu = 21.7 kPa

−3.436

SAND

φ = 37.1o

SAND

φ = 37.1o

−1.718

SOFT CLAY

Cu = 21.7 kPa

−3.436

SAND

φ = 37.1o

−400 −200 0 200 400 600−10

−8

−6

−4

−2

0

2

Shear Force (kN)−100 0 100 200 300

−10

−8

−6

−4

−2

0

2

Lateral Resistance (kN/m)−1000 0 1000 2000

−10

−8

−6

−4

−2

0

2

SAND

φ = 37.1o

−1.718

SOFT CLAY

Cu = 21.7 kPa

−3.436

SAND

φ = 37.1o

Bending Moment (kN.m)

Dep

th (

m)

−400 −200 0 200 400 600−10

−8

−6

−4

−2

0

2

Shear Force (kN)−100 0 100 200 300

−10

−8

−6

−4

−2

0

2

Lateral Resistance (kN/m)

Jeremic, OpenSees Workshop, Aug. 2003 16

GA: p− y Response for Single Pilein Layered Soils

0 2 4 6 8 10 120

50

100

150

200

250

300

Lateral Displacement y (cm)

Late

ral P

ress

ure

p (k

N/m

)

Depth −0.322Depth −0.537Depth −0.752Depth −0.966Depth −1.181Depth −1.396Depth −1.611Depth −1.825Depth −2.040Depth −2.255Depth −2.470Depth −2.684

0 2 4 6 8 10 120

50

100

150

200

250

300

Lateral Displacement y (cm)La

tera

l Pre

ssur

e p

(kN

/m)

Depth −0.322Depth −0.537Depth −0.752Depth −0.966Depth −1.181Depth −1.396Depth −1.611Depth −1.825Depth −2.040Depth −2.255Depth −2.470Depth −2.684

• Influence of soft layers propagates to stiff layers and vice versa

• Can have significant effects in soils with many layers

Jeremic, OpenSees Workshop, Aug. 2003 17

GA: Pile Group Simulations

• 4x3 pile group model and plastic zones

Jeremic, OpenSees Workshop, Aug. 2003 18

GA: Out of Plane Effects

• Out-of-loading-plane bending moment diagram,

• Out-of-loading-plane deformation.

Jeremic, OpenSees Workshop, Aug. 2003 19

GA: Load Distribution per Pile

0 1 2 3 4 5 6 7 8 9 10 115

6

7

8

9

10

11

12

13

14

15La

tera

l Loa

d D

istr

ibut

ion

in E

ach

Pile

(%

)

Displacement at Pile Group Cap (cm)

Trail Row, Side PileThird Row, Side PileSecond Row, Side PileLead Row, Side PileTrail Row, Middle PileThird Row, Middle PileSecond Row, Middle PileLead Row, Middle Pile

Jeremic, OpenSees Workshop, Aug. 2003 20

GA: Piles Interaction at -2.0m

• Note the difference in response curves (cannot scale single pile

response for multiple piles)

Jeremic, OpenSees Workshop, Aug. 2003 21

GA: Comparison with CentrifugeTests

0 1 2 3 4 5 6 7 8 9 1015

20

25

30

35

40

45

Late

ral L

oad

dist

ribut

ion

in e

ach

row

(%

)

Lateral Displacement at Pile Group Cap (cm)

FEM − Trail RowFEM − Third RowFEM − Second RowFEM − Lead RowCentrifuge − Trail RowCentrifuge − Third RowCentrifuge − Second RowCentrifuge − Lead Row

Jeremic, OpenSees Workshop, Aug. 2003 22

GA: Layering Effects (S–C–S)

0.5 0.6 0.7 0.8 0.9 1 1.10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Dis

tanc

e fr

om L

ayer

Inte

rfac

e (x

D)

Lateral Pressure Ratio Psand clay

/ Psand

Sand:φ = 37o, Clay:Su = 15kPaSand:φ = 37o, Clay:Su = 25kPaSand:φ = 37o, Clay:Su = 35kPa

Strength reduction (layering effects) extending to 4xD (in thiscase)

Jeremic, OpenSees Workshop, Aug. 2003 23

GA: Seismic Wave PropagationModel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−27.3

−23.3

−21.8

−18.3

−14.8

−11.8

−8.8

−6.3

−3.3

−1.8

0.0

Time (s)

Acc

eler

atio

n (m

/s2 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−27.3

−23.3

−21.8

−18.3

−14.8

−11.8

−8.8

−6.3

−3.3

−1.8

0.0

Time (s)

Dis

plac

emen

t (m

)

Jeremic, OpenSees Workshop, Aug. 2003 24

GA: Seismic Wave PropagationSoft Soil

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.0625−27.3

0.0633−23.3

0.0678−21.8

0.0749−18.3

0.0846−14.8

0.0960−11.8

0.1076 −8.8

0.1160 −6.3

0.1208 −3.3

0.1207 −1.8

0.1181 0.0

Max

Time (s)

Dis

plac

emen

t (m

)

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.0622−25.0

0.0779−21.0

0.0837−19.5

0.0982−15.0

0.1069−11.0

0.1123 −7.0

0.1169 −4.3

0.1174 −3.6

0.1179 −1.8

0.1181 0.0

0.1183 1.8

0.1178 3.6

0.1173 4.3

0.1129 7.0

0.1075 11.0

0.0984 15.0

0.0837 19.5

0.0779 21.0

0.0622 25.0

Max

Time (s)

Dis

pala

cem

ent (

m)

Y

Jeremic, OpenSees Workshop, Aug. 2003 25

GA: Seismic Wave PropagationStiff Soil

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.0625−27.3

0.0658−23.3

0.0724−21.8

0.0735−18.3

0.0745−14.8

0.0753−11.8

0.0758 −8.8

0.0761 −6.3

0.0762 −3.3

0.0762 −1.8

0.0760 0.0

Max

Time (s)

Dis

plac

emen

t (m

)

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.0622−25.0

0.0715−21.0

0.0727−19.5

0.0737−15.0

0.0746−11.0

0.0754 −7.0

0.0759 −4.3

0.0759 −3.6

0.0760 −1.8

0.0760 0.0

0.0760 1.8

0.0759 3.6

0.0758 4.3

0.0754 7.0

0.0746 11.0

0.0737 15.0

0.0726 19.5

0.0715 21.0

0.0622 25.0

Max

Time (s)

Dis

plac

emen

t (m

)

Y

Jeremic, OpenSees Workshop, Aug. 2003 26

GA: SSI Model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−38.0

−30.0−28.0

−20.0

−16.0

−12.0

−8.0

−4.0

0.0

Time (s)

Acc

eler

atio

n (m

/s2 )

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−38.0−30.0

−28.0

−20.0

−16.0

−12.0

−8.0

−4.0

0.0

Time (s)

Dis

plac

emen

t (m

)

Jeremic, OpenSees Workshop, Aug. 2003 27

GA: SSI Model Free FieldStiff Elastic–Plastic Soil

0 1 2 3 4 5 6 7 8 9 10

0.0000−38.0

0.0052−30.00.1055−28.0

0.1142−20.0

0.1183−16.0

0.1219−12.0

0.1576 −8.0

0.1947 −4.0

0.2002 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

0 1 2 3 4 5 6 7 8 9 10

0.2002 0.0

0.1937 4.0

0.1749 8.0

0.1261 12.0

0.1231 16.0

0.1139 24.0

0.0124 26.0

0.0000 34.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

Jeremic, OpenSees Workshop, Aug. 2003 28

GA: SSI Model Pile–ColumnStiff Elastic–Plastic Soil

0 1 2 3 4 5 6 7 8 9 10

0.0000−38.0

0.0052−30.00.1055−28.0

0.1142−20.0

0.1183−16.0

0.1222−12.0

0.1496 −8.0

0.1899 −4.0

0.2091 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

0 1 2 3 4 5 6 7 8 9 10

0.2091 0.0

0.1935 4.0

0.1751 8.0

0.1262 12.0

0.1232 16.0

0.1139 24.0

0.0124 26.0

0.0000 34.0

Time (s)

Dis

plac

emen

t (m

)

Y(m) Max

Jeremic, OpenSees Workshop, Aug. 2003 29

GA: SSI Model Free FieldSoft Elastic–Plastic Soil

0 1 2 3 4 5 6 7 8 9 10

0.0000−38.0

0.0140−30.00.0971−28.0

0.1096−20.0

0.1190−16.0

0.1261−12.0

0.1622 −8.0

0.2823 −4.0

0.3158 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m)

0 1 2 3 4 5 6 7 8 9 10

0.3158 0.0

0.2890 4.0

0.2545 8.0

0.1567 12.0

0.1512 16.0

0.1338 24.0

0.0362 26.0

0.0000 34.0

Time (s)

Dis

plac

emen

t (m

)

Y(m) Max

Jeremic, OpenSees Workshop, Aug. 2003 30

GA: SSI Model Pile–ColumnSoft Elastic–Plastic Soil

0 1 2 3 4 5 6 7 8 9 10

0.0000−38.0

0.0140−30.00.0976−28.0

0.1094−20.0

0.1207−16.0

0.1227−12.0

0.1328 −8.0

0.2448 −4.0

0.3680 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

0 1 2 3 4 5 6 7 8 9 10

0.3680 0.0

0.2896 4.0

0.2536

8.0

0.1549

12.0

0.1497

16.0

0.1331

24.0 0.0356

26.0

0.0000 34.0

Time (s)

Jeremic, OpenSees Workshop, Aug. 2003 31

SSI Model: Pile–Column Behavior

0 1 2 3 4 5 6 7 8 9 10−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Dis

plac

emnt

(m

)

Time (s)0 1 2 3 4 5 6 7 8 9 10

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Dis

plac

emen

t (m

)

Time (s)

Stiff soil Soft soil

Jeremic, OpenSees Workshop, Aug. 2003 32

SSI Model: Preliminary SeismicResults

0 5 10 15 20 25 30 35 40

0.0000−38.0

0.0077−30.0

0.0783−28.0

0.0791−20.0

0.0844−16.0

0.0878−12.0

0.1248 −8.0

0.1800 −4.0

0.1946 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

0 5 10 15 20 25 30 35 40

0.0000−38.0

0.0224−30.0

0.0879−28.0

0.1102−20.0

0.1161−16.0

0.1227−12.0

0.3961 −8.0

0.6258 −4.0

0.6928 0.0

Time (s)

Dis

plac

emen

t (m

)

Z(m) Max

Stiff soil Soft soil

Jeremic, OpenSees Workshop, Aug. 2003 33

GA: Wave Propagation inSaturated Soils

0 0.05 0.1 0.15 0.2 0.25 0.3−4

−3

−2

−1

0

1

2x 10

−3

Sol

id D

ispl

acem

ent (

m)

Top node2m from top4m from top6m from top

0 0.05 0.1 0.15 0.2 0.25 0.3−0.5

0

0.5

1

Por

e pr

essu

re (

kPa)

0 0.05 0.1 0.15 0.2 0.25 0.3−4

−3

−2

−1

0

1

2x 10

−3

Time (sec)

Flu

id D

ispl

acem

ent (

m)

0 0.05 0.1 0.15 0.2 0.25 0.3−4

−3

−2

−1

0

1

2x 10

−3

Sol

id D

ispl

acem

ent (

m)

Top node2m from top4m from top6m from top

0 0.05 0.1 0.15 0.2 0.25 0.3−0.5

0

0.5

1

Por

e pr

essu

re (

kPa)

0 0.05 0.1 0.15 0.2 0.25 0.3−4

−3

−2

−1

0

1

2x 10

−3

Time (sec)

Flu

id D

ispl

acem

ent (

m)

Half space, ramp load k = 10−3,5m/s

Jeremic, OpenSees Workshop, Aug. 2003 34

GA: Soil–Structure Interaction

Jeremic, OpenSees Workshop, Aug. 2003 35

GA: SSI AdvantageousH

oriz

anta

l Dis

plac

emen

t (m

)

0.1

0.05

0

−0.05

−0.1

−0.150 5 10 15 20 25 30 35 40 45 50

Time (Sec)

Fixed Model SFSI Model

She

ar F

orce

(N

)

4

6

2

0

−2

−4

−6

−8

x 10

Fixed ModelSFSI model

−0.15 −0.1 −0.05 0Displacement (m)

0.05 0.1

6

Kobe–JMA

Jeremic, OpenSees Workshop, Aug. 2003 36

GA: SSI DisadvantageousH

oriz

anta

l Dis

plac

emen

t (m

)

Time (Sec)0 5 10 15 20 25 30 35 40

Fixed Model SFSI Model

0.5

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

6

She

ar F

orce

(N

)

−2

0

2

4

6

−4

−6

−8−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

Displacement (m)

Fixed ModelSFSI model

x 10

LP–Corralitos

Jeremic, OpenSees Workshop, Aug. 2003 37

Currently in Works

General Large Deformations

Distributed Parallel Computing

Jeremic, OpenSees Workshop, Aug. 2003 38

CW: General Large Deformations

• LD (Eij = 12 (ui,j + uj,i + ui,juj,i)) vs. SD (εij = 1

2(ui,j + uj,i)• Multiplicative decomposition of (Fij = xi,j = F eki F

pkj)

• MacLaurin series expansion of the exponent of flow direction, for

general anisotropic material and cyclic loading• Stress measures (first and second Piola–Kirchhoff, Mandel, Kirch-

hoff, Cauchy)

ijε

Eij

500%

1000%

1500%

2000%

2500%

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Errorshea

r st

rain

deformation (arctan )Φ

Φ

Fp

Fe Fe

-1

Reference

Configuration

X

d X

Ω0Intermediate

Configurationdx

Ω

dx

Current

Configuration

x

Ω

σ x

F

X ux

Jeremic, OpenSees Workshop, Aug. 2003 39

CW: Distributed MemoryParallel Computing

• Distributed memory parallel (DMP) computational model.

• Portable from Beowulf clusters (local networks, bootable CDs) to

commercial parallel machines.

Jeremic, OpenSees Workshop, Aug. 2003 40

Pre– and Post–Processing

• Many small packages around, available for UNIX–like and/or MS

Windows systems (Mac?).

• Work on pre and post processing packages that are problem specific

Jeremic, OpenSees Workshop, Aug. 2003 41

Joey3D

Jeremic, OpenSees Workshop, Aug. 2003 42

Phantom

Jeremic, OpenSees Workshop, Aug. 2003 43

Conclusions

• Examples, lecture notes, executables available at:

http://sokocalo.engr.ucdavis.edu/ jeremicand at

http://opensees.berkeley.edu/

• Manual is constantly being improved

• Executables available for both UNIX-like (up–to–date, preferable)

and MS Windows.

• MS Windows, soon to have up to date executables

Jeremic, OpenSees Workshop, Aug. 2003 44