computational biophysics: introduction · 2016. 10. 24. · computational biophysics: introduction...

43
Computational Biophysics: Introduction Bert de Groot, Jochen Hub, Helmut Grubmüller Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen Tel.: 201-2308 / 2314 / 2301 / 2300 (Secr.) Email: [email protected] [email protected] [email protected] www.mpibpc.mpg.de/grubmueller/

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Computational Biophysics: Introduction

    Bert de Groot, Jochen Hub, Helmut Grubmüller

    Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen

    Tel.: 201-2308 / 2314 / 2301 / 2300 (Secr.)

    Email: [email protected] [email protected] [email protected] www.mpibpc.mpg.de/grubmueller/

    mailto:[email protected]

  • Chloroplasten, Tylakoid-Membran

  • Primary steps in photosynthesis

    From: X. Hu et al., PNAS 95 (1998) 5935

  • F-ATP Synthase

    20 nm

  • F1-ATP(synth)ase

  • ATP hydrolysis drives rotation of γ subunit and attached actin filament

  • F1-ATP(synth)ase

    NO INERTIA!

  • The Ribosome

    30 nm

  • Proteins are Molecular 
Nano-Machines !Elementary steps: 


    Conformational motions

  • Overview: Computational Biophysics: Introduction

    L1/P1: Introduction, protein structure and function, molecular 
 dynamics, approximations, numerical integration, argon

    L2/P2: Tertiary structure, force field contributions, efficient 
 algorithms, electrostatics methods,

    protonation, periodic boundaries, 
 solvent, ions, NVT/NPT ensembles, analysis

    L3/P3: Protein data bank, structure determination 
 by NMR / x-ray; refinement

    L4/P4: Bioinformatics: sequence alignment, Structure prediction, homology modelling

    L5/P5: Monte Carlo, normal mode analysis, principal components

    L6/P6: Charge transfer & photosynthesis, electrostatics methods

    L7/P7: Aquaporin / ATPase / Ribosome: examples from current research

  • Overview: Computational Biophysics: Concepts & Methods

    L08/P08: MD Simulation & Markov Theory: Molecular Machines

    L09/P09: Free energy calculations: Molecular recognition

    L10/P10: Non-equilibrium thermodynamics: Molecular driving forces

    L11/P11: Quantum mechanics methods: Enzymatic catalysis

    L12/P12: Hartree-Fock, density functional theory

    L13/P13: Rate theory: Biomolecular efficiency

  • a water molecule

  • an ethanol molecule

  • a water droplet

  • a water droplet

  • water vapor

  • a salt crystal (NaCl)

  • bovine pancreatic trypsin inhibitor (BPTI)

  • 20 different amino acids

    Alanine

    Tyrosine Cysteine

    Arginine

    Asparagine

    Aspartate

    Glutamate

    Glycine

    Threonine

    Lysine

    Glutamine TryptophaneMethionine

    Histidine

    Phenylalanine

    Valine

    Proline

    Isoleucine

    Serine

    Leucine

  • hexa-peptide

  • alpha-helix

  • beta sheet

  • bovine pancreatic trypsin inhibitor (BPTI)

  • myoglobin

  • antibody IGG domain

  • porin

  • bacteriorhodopsin

  • ?

    Four different nucleotides encode amino acids

    (à Uracil)

  • hemagglutinin (influenza virus)

  • hemagglutinin (influenza virus)

  • Molecular Dynamics Simulations

    Interatomic interactions

  • Molecular Dynamics SimulationMolecule: (classical) N-particle system


    Newtonian equations of motion:

    with

    Integrate numerically via the „leapfrog“ scheme:

    (equivalent to the Verlet algorithm)

    with

    Δt ≈ 1fs!

  • MD-Experiments with Argon Gas

  • Radial distribution function

    300 K 70 K 10 K

    distance

  • i~@t (r, R) = H (r, R)

    He e(r;R) = Ee(R) e(r;R)

    Molecular Dynamics Simulations

    Schrödinger equation

    Born-Oppenheimer approximation

    Nucleic motion described classically

    Empirical Force field

    1

  • Molecular dynamics-(MD) simulations of Biopolymers• Motions of nuclei are described classically,

    • Potential function Eel describes the electronic influence on motions of the nuclei and is approximated empirically à „classical MD“:

    approximated

    exact

    Eibond

    |R|ν0

    KBT {

    Covalent bonds Non-bonded interactions

    ==R

  • Molecular Dynamics SimulationMolecule: (classical) N-particle system


    Newtonian equations of motion:

    with

    Integrate numerically via the „leapfrog“ scheme:

    (equivalent to the Verlet algorithm)

    with

    Δt ≈ 1fs!

  • „Force-Field“

  • Computational task:

    Solve the Newtonian equations of motion:

  • BPTI: Molecular Dynamics (300K)

    8

  • 4 nm

    Molecular dynamics simulation, 1s = 2 ·10 -11s ^