component reliability analysis

Upload: riccardo

Post on 16-Feb-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Component Reliability Analysis

    1/50

    Chapter 3Chapter 3

    Component Reliability Analysis

    of Structures

  • 7/23/2019 Component Reliability Analysis

    2/50

    Chapter 3: Element Reliability Analysis of StructuresChapter 3: Element Reliability Analysis of Structures

    3.2 AFOSM Advanced First Order Second Moment Method

    3.3 CMethod Recommended by the CSSCommittee

    3.! M"FOSM Mean "alue First Order Second Moment

    Method

    Contents

    3.# MCS Monte Carlo Simulation Method

  • 7/23/2019 Component Reliability Analysis

    3/50

    3.! M"FOSM

    Mean ValueFirst Order Second Moment Method

    Chapter 3Chapter 3

    Component Reliability AnalysisComponent Reliability Analysisof Structuresof Structures

  • 7/23/2019 Component Reliability Analysis

    4/50

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "13.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "1

    M"FOSM Mean "alue

    First Order Second Moment

    First Order: The first-order terms in the Taylor series expansion

    is used.

    This method is also namedMean Value Methodor

    Center Point Method.

    Second Moment: Only means and variances of the asic variales

    are needed.

    Mean Value orCenter Point: The Taylor series expansion is

    on the means values.

  • 7/23/2019 Component Reliability Analysis

    5/50

  • 7/23/2019 Component Reliability Analysis

    6/50

  • 7/23/2019 Component Reliability Analysis

    7/50

    %&ample 3.!

    Please refer to the textoo*

    +(eliaility of Structures,

    y Professor $. S. o!a*.

    Turn to Pa%e &/" loo* at the example 0.&carefully1

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "$3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "$

  • 7/23/2019 Component Reliability Analysis

    8/50

    3.!.2 'onlinear $imit State Functions

    !. Assumptions

    !here"

    1 2( ) ( , , , )nZ g X g X X X= = L

    the terms are uncorrelated random variales"iX

    2. Formula

    2e can otain an approximate solution y lineari3in% the nonlinear

    function usin% a Taylor series expansion. The result is

    Consider a nonlinear limit state function of the form

    and its mean and standard deviation are " respectively .iX

    iX

    * * *1 2

    * * * *

    1 2

    1 ( , , , )

    ( , , , ) ( )

    n

    n

    n i i

    i i x x x

    gZ g x x x X x

    X=

    +

    L

    L

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "%3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "%

  • 7/23/2019 Component Reliability Analysis

    9/50

    One choice for this lineari3ation point is the point

    correspondin% to the mean values of the random variales.

    1 2

    1 21 ( , , , )

    *

    1

    ( , , , ) ( )

    ( ) ( )

    n i

    X X Xn

    n

    X X X i X

    i i

    n

    i i

    i i M

    gZ g XX

    gg M X x

    X

    =

    =

    +

    = +

    L

    L

    !here" is the point aout !hich the expansion is performed.* * *1 2( , , , )nx x xL

    From no! on "this point is represented y . Therefore" the aove formula

    can e re!ritten riefly as follo!s:

    *P

    *

    * *

    1

    ( ) ( )n

    i i

    i i P

    gZ g P X x

    X=

    +

    M

    1 2( , , , )

    nX X XM = L

    The point is also called mean value pointor central point.M

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "&3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "&

  • 7/23/2019 Component Reliability Analysis

    10/50

    Moments of the performance function '

    1 2( , , , )nZ X X Xg L

    ( )2

    2

    1 1i i

    n n

    Z X i X

    i ii M

    ga

    X

    = =

    =

    !here"i

    i M

    ga

    X=

    ( )

    1 2

    2 2

    11

    ( , , , ) ( )n

    ii

    X X XZ

    nnZ

    i XX i

    i i M

    g g M

    g a

    X

    =

    =

    = = =

    L

    Formula of (eliaility )ndex

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "'3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "'

  • 7/23/2019 Component Reliability Analysis

    11/50

  • 7/23/2019 Component Reliability Analysis

    12/50

    3.!.3 Comments on M"FOSM

    !. Advanta(es

    2. )isadvanta(es

    )t is very easy to use.

    )t does not re5uire *no!led%e of the distriutions of the randomvariales.

    (esults are inaccurate if the tails of the distriution functionscannot e approximated y a normal distriution.

    There is an invariance prolem: the value of the reliaility indexdepends on the specific form of the limit state function.

    That is to say" for different forms of the limit state e5uation!hich have the same mechanical meanin%s" the values ofreliaility index calculated y MVFOSM may e different 1

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! ")3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! ")

  • 7/23/2019 Component Reliability Analysis

    13/50

    %&ample 3.3

    Please refer to the textoo*

    +(eliaility of Structures,y Professor $. S. o!a*.

    Turn to Pa%e &6" loo* at the example 0.7

    carefully1

    The invariance prolem is est clarified y

    3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "1*3.1 MVFOSM Mean Value First Or!er Secon! Moment Metho! "1*

  • 7/23/2019 Component Reliability Analysis

    14/50

    3.2 AFOSM

    $dvanced First Order Second Moment

    Method

    Chapter 3Chapter 3

    Component Reliability AnalysisComponent Reliability Analysisof Structuresof Structures

  • 7/23/2019 Component Reliability Analysis

    15/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "13.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1

    AFOSM Advanced First Order Second Moment

    To overcome the invariant prolem" 8asofer and 9ind propose an

    advanced FOSM method in &64 " !hich is called $FOSM .

    The +correction, is to evaluate the limit state function at a point

    *no!n as the +desi%n point, instead of the mean values.Therefore" this method is also called +desi%n point method, or

    +chec*in% point method,.

    The +desi%n point, is a point on the failure surface .0Z=

    Since the desi%n point is %enerally not *no!n a priori" an

    iteration techni5ue is %enerally used to solve for the reliaility

    index.

  • 7/23/2019 Component Reliability Analysis

    16/50

    3.2.! *rinciples of AFOSM

    !. Assumptions

    2. +ransformation from , space into - space

    The %eneral random variale is transformed into its

    standard form as follo!s:

    i

    i

    i X

    i

    X

    XU

    =

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "#3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "#

    !here"

    1 2( ) ( , , , )nZ g X g X X X= = L

    the terms are uncorrelated random variales"iXand its mean value and standard deviation are *no!n.

    iX

    iX

    Consider a nonlinear limit state function of the form

    iX

  • 7/23/2019 Component Reliability Analysis

    17/50

    The ; space is then transformed into < space:

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "33.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "3

    1 2( , , , )nX X X X= L 1 2( , , , )nU U U U = L

    The desi%n point in ; space is then

    transformed to in < space.

    * * * *

    1 2( , , , )nP x x xL

    * * * *

    1 2 ( , , , )

    nP u u uL

    The limit e5uation in ; space

    1 2( ) ( , , , )nZ g X g X X X= = L

    is transformed to < space as follo!s.

    1 2( ) ( , , , )nZ G U G U U U= = L

  • 7/23/2019 Component Reliability Analysis

    18/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "$3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "$

    )n < space" the tan%ent plane e5uation throu%h the desi%n pointon failure surface is( ) 0Z G U= =

    *

    * * * *

    1 2

    1

    ( , , , ) ( ) 0n

    n i i

    i i P

    GG u u u U u

    U=

    + =

    L

    Since the desi%n point is a point on the failure

    surface " then !e have

    0Z=*P

    * * *

    1 2( , , , ) 0nG u u u =L The hyper-plane e5uation can therefore e simplified as follo!s:

    *

    *

    1

    ( ) 0n

    i i

    i i P

    GU u

    U=

    =

    3. Reliability nde& in - Space

  • 7/23/2019 Component Reliability Analysis

    19/50

    The distance from the ori%in of < space to the tan%ent plane is

    actually the reliaility index

    *

    1u

    *2u

    1u

    2u=esi%n pointTan%ent

    Failure surface

    1U

    2U

    *P

    O

    arg min{ | ( ) 0}HL G = =u u

    3.# AFOSM3.# AFOSM A!+ance! First Or!er Secon! Moment Metho!A!+ance! First Or!er Secon! Moment Metho! %%

    *HL O P

    =

    ( ) 0G =u

  • 7/23/2019 Component Reliability Analysis

    20/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "&3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "&

    From the %eometric meanin% of the reliaility index" !e *no!

    *

    *

    *

    1

    2

    1

    n

    i

    i i P

    n

    i i P

    G uU

    G

    U

    =

    =

    =

    9et

    *

    *

    2

    1

    i Pi

    n

    i i P

    G

    U

    G

    U

    =

    =

    is actually the direction cosine

    of the distancei

    *O P

    cosii U =

    * cosii U i

    u = =

  • 7/23/2019 Component Reliability Analysis

    21/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "'3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "'

    Since

    *

    * i

    i

    i X

    i

    X

    xu

    =

    The desi%n point in ; space

    !e have* *

    i i i ii X i X X i X x u = + = +

    The direction cosine in ; space

    i

    iX

    i i i i

    XG g g

    U X U X

    = =

    *

    *

    2

    1

    i

    i

    X

    i Pi

    n

    X

    i i P

    gX

    g

    X

    =

    =

    * * *

    1 2( , , , ) 0ng x x x =L

    #. Reliability nde& in; Space

  • 7/23/2019 Component Reliability Analysis

    22/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "(3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "(

    The reliaility index in ; space

    *

    *

    *

    1

    2

    1

    i

    i

    n

    X i

    i i P

    n

    X

    i i P

    g uX

    g

    X

    =

    =

    =

    ( )( )

    *

    1

    2

    1

    i

    i

    n

    i X ii

    n

    i X

    i

    a x

    a

    =

    =

    =

    *

    * i

    i

    i X

    iX

    x

    u

    =

    *

    i

    i P

    ga

    X

    =

  • 7/23/2019 Component Reliability Analysis

    23/50

  • 7/23/2019 Component Reliability Analysis

    24/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1*3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1*

    3.2.2 Computation Formulas of AFOSM

    * * *

    1 2( , , , ) 0

    ng x x x =L

    *

    *

    2

    1

    i

    i

    X

    i Pi

    n

    X

    i i P

    g

    X

    g

    X

    =

    =

    ( 1, 2, , )i n= L

    *

    i ii X i X x = + ( 1, 2, , )i n= L / / / / / /021

    / / / / /0!1

    / / / / / / / / / /031

    1

    1 ( )f fp p = / / / / / / / / / /0#1

  • 7/23/2019 Component Reliability Analysis

    25/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "113.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "11

    3.2.3 teration Al(orithm of AFOSM

    &. Formulate the limit state e5uation

    1 2( , , , ) 0ng X X X =L

    >ive the distriution types and appropriate parameters of all randomvariales.

    /. $ssume the initial values of desi%n point and reliaility index*iX

    )n %eneral" the initial value of desi%n point is ta*en as mean value .iX

    Then the initial value of is .

    7.

  • 7/23/2019 Component Reliability Analysis

    26/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1#3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1#

    6. >o ac* to Step 7 and repeat. )terate until the values conver%e.

    Begin

    Assume *

    ii Xx =

    Calculate i

    Calculate *

    i ii X i X x = +

    Calculate from ( ) 0g =

    ( 1) ( )k k +

    Outut an! *ix

    o es

    Flo!chart

  • 7/23/2019 Component Reliability Analysis

    27/50

    %&ample 3.#

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "133.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "13

    210M kN m= $ssume that a steel eam carry a deterministic endin% moment "

    The limit state e5uation is

    The plastic section modulus and the yield stren%th of the eam are

    statistically independent" normal random variales. )t is *no!n that

    W yF

    "#$2

    W

    cm = 0%02W

    ="$0

    yF Mpa = 0%0&

    yF =

    ( , ) 0y yZ g F W F W M= = =

    yF

    Calculate the reliaility index of the eam as !ell as the chec*in%

    points of and y $FOSM method.

    W

  • 7/23/2019 Component Reliability Analysis

    28/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1$3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1$

    Solution:

    "210 10 0 ( )y yZ F W M F W N m= = =

    2&%"y y yF F F

    MPa = = "1"%'W W W cm = =

    *

    *2&%"yF

    y P

    g WF

    =*

    *1"%'W y

    P

    g FW

    =

    ( ) ( )

    *

    2 2* *

    2&%"

    2&%" 1"%'

    yF

    y

    W

    W F

    =

    +

    ( ) ( )

    *

    2 2* *

    1"%'

    2&%" 1"%'

    y

    W

    y

    F

    W F

    =+

    0a1

  • 7/23/2019 Component Reliability Analysis

    29/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1%3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1%

    )teration cycle &

    0!1

    * "$0 2&%"y y y yy F F F F

    F = + = +

    0b1* #$2 1"%'W W W W W = + = +

    * * 210000 0yF W = 0c1

    2 (0 1%2$ ) 1'% 0y yF W F W

    + + + = 0d1

    9et* "$0

    yy FF = =

    * #$2WW = =

    021 Solve and from formula @aAy

    F W

    0%$#1yF

    = 0%2&&W =

    031 Solve from formula @dA

    20%2#2 1%$& 1'% 0 + = (1) "%0$ =

    2 2 1yF W

    + =

    Chec*in%

  • 7/23/2019 Component Reliability Analysis

    30/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1&3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1&

    )teration cycle /

    0!1 Solve and from formula @A

    021 Solve and from formula @aAyF W0%$&

    yF = 0%22W =

    031 Solve from formula @dA

    2

    21'' 1%$ 1'% 0 + + = (2) "%0$2 =

    *yF *W

    * "$0 ( 0%$#1) "%0$ 2&%" "0$yF = + =

    *#$2 ( 0%2&&) "%0$ 1"%' #'0W = + =

    2 2 1yF W

    + =

    Chec*in%

    (2) (1) 0%00" 0%001 = >

  • 7/23/2019 Component Reliability Analysis

    31/50

    3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1'3.# AFOSM A!+ance! First Or!er Secon! Moment Metho! "1'

    )teration cycle 7

    0!1 Solve and from formula @A

    021 Solve and from formula @aAyF W

    0%$&'yF

    = 0%22"2W

    =

    031 Solve from formula @dA

    (") "%0$2 =

    *yF *W

    * "0'yF = * #'2W =

    (") (2) 0%000 =

    The final results: "%0$2 = * "0'yF =

    * #'2W =

    1 ( ) 1 ("%0$2) 1 0%$$$" 0%000&fP = = = =

  • 7/23/2019 Component Reliability Analysis

    32/50

    3.3 C Method

    (ecommended y the DCSS Committee

    Chapter 3Chapter 3

    Component Reliability AnalysisComponent Reliability Analysisof Structuresof Structures

  • 7/23/2019 Component Reliability Analysis

    33/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "13.3 ,C Metho! Recommen!e! by the ,CSS Committee "1

    C Method Recommended by the CSS Committee

    The $FOSM method can only treat !ith the limit state e5uation

    !ith normal random variales. To overcome thisprolem"

    (ac*!it3 and Fiesslerpropose a procedure !hich can deal !ith

    the %eneral random variales in &6E. This method is then

    recommended y theDoint Committee ofStructuralSafety"Therefore it is also namedDCMethod.

    The reliaility index calculated y DC method is also called

    (ac*!it3Fiessler reliaility index.

    The asic idea of DC method is to convert each non-normal

    random variale into an e5uivalent normal random variale y

    usin% the Principle of ?5uivalent ormali3ation.

  • 7/23/2019 Component Reliability Analysis

    34/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "#3.3 ,C Metho! Recommen!e! by the ,CSS Committee "#

    3.3.! asic dea of C Method

    Convert each non-normal random variale into an e5uivalent

    normal random variale y usin% the Principle of ?5uivalent

    ormali3ation. $fter this transformation" the prolem can then e solved y $FOSM

    method.

    3.3.2 *rinciple of %uivalent 'ormali4ation

    !. +ransformation Conditions of %uivalent 'ormali4ation

    0!1 $t the desi%n chec*in% point " the C=F value of the e5uivalent

    normal random variale is e5ual to that of the ori%inal non-normalrandom variale.

    021 $t the desi%n chec*in% point " the P=F value of the e5uivalentnormal random variale is e5ual to that of the ori%inal non-normalrandom variale.

    *P

    *P

  • 7/23/2019 Component Reliability Analysis

    35/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "33.3 ,C Metho! Recommen!e! by the ,CSS Committee "3

    iX

    ix

    ( )iX i

    f x

    iXe

    iX*

    ix

    * *( ) ( )ei i

    X i iXf x f x=

    * *( ) ( )ei i

    X i iXF x F x=

    P=F of non-normal (V

    iX

    iX

    ( )iX i

    f xi

    X

    e

    iXP=F of e5uivalent normal (V

    eiX

    eiX

    ( )ei

    iXf x

    e

    iX

  • 7/23/2019 Component Reliability Analysis

    36/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "$3.3 ,C Metho! Recommen!e! by the ,CSS Committee "$

    2. Formulas of %uivalent 'ormali4ation

    *

    *( )ei

    i

    ei

    i X

    X i

    X

    xF x

    =

    *

    * 1

    ( )

    ei

    ie ei i

    i X

    X iX X

    x

    f x

    =

    * 1 *( )e eii i

    i X iX Xx F x =

    *

    1 *

    * *

    1 1 ( ( ))+

    ( ) ( )

    ei

    eii

    ei ii

    i X

    X iXX i X iX

    xF x

    f x f x

    = =

    / / / / /0!1

    / / / / /021

    C CSS C

  • 7/23/2019 Component Reliability Analysis

    37/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "%3.3 ,C Metho! Recommen!e! by the ,CSS Committee "%

    3. Formulas of %uivalent 'ormali4ation for lo(normal R"

    ( )

    * *

    2

    * *

    ln

    1 ln lnln(1 )

    1 ln

    i

    ei

    i

    i

    X

    i iX

    X

    i i X

    x xV

    x x

    = + +

    = +

    * 2

    *

    ln

    ln(1 )eii

    i

    i XX

    i X

    x V

    x

    = +

    =

    / / / / /031

    / / / / /0#1

    Please refer to the textoo* +(eliaility

    of Structures, y Professor $. S.

    o!a*.

    Turn to Pa%e &//" loo* at the example 0.Ecarefully1

  • 7/23/2019 Component Reliability Analysis

    38/50

    3 3 ,C M th ! R ! ! b th ,CSS C itt3 3 ,C M th ! R ! ! b th ,CSS C itt '

  • 7/23/2019 Component Reliability Analysis

    39/50

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "'3.3 ,C Metho! Recommen!e! by the ,CSS Committee "'

    4. Calculate the direction cosine usin%i

    0.

    Calculate the desi%n point usin%

    *

    ix

    B. Calculate the reliaility index usin%

    6. Calculate the ne! desi%n point usin%

    *

    *

    2

    1

    i

    i

    X

    i P

    i

    n

    X

    i i P

    g

    X

    g

    X

    =

    =

    ( 1, 2, , )i n= L

    *

    i ii X i X x = +

    * * *

    1 2( , , , ) 0ng x x x =L

    *

    i ii X i X x = +

    E. (epeat Steps 7-6 until and the desi%n points conver%e. *

    { }ix

    3 3 ,C M th ! R ! ! b th ,CSS C itt (3 3 ,C M th ! R ! ! b th ,CSS C itt (

  • 7/23/2019 Component Reliability Analysis

    40/50

    %&ample 3.5

    $ssume that a reinforced concrete short column that carry a dead load and a

    live load. The limit state e5uation is

    The random variales are dead load effect >" live loaf effect G" and section

    resistance . The parameters of these (V are listed in the follo!in% tale:

    ( , , ) 0Z g R G Q R G Q= = =

    3.3 ,C Metho! Recommen!e! by the ,CSS Committee "(3.3 ,C Metho! Recommen!e! by the ,CSS Committee "(

    G

    Random"ariables

    +ypes of)istribution

    Mean 06'1 Standarddeviation 06'1

    C.o."

    'ormal 57 2.5 7.75

    %&treme 85 !9 7.2

    $o(normal 257 25 7.!

    Q

    R

    Calculate the reliaility index of the column y DC method .

  • 7/23/2019 Component Reliability Analysis

    41/50

    3.# MCS

    Monte Carlo Simulation

    Chapter 3Chapter 3

    Component Reliability AnalysisComponent Reliability Analysisof Structuresof Structures

    3 $ MCS M t C l Si l ti 13 $ MCS M t C l Si l ti 1

  • 7/23/2019 Component Reliability Analysis

    42/50

    3.$ MCS Monte Carlo Simulation "13.$ MCS Monte Carlo Simulation "1

    3.#.! *rocedure of MCS

    /. =etermine the necessary distriution information.

    7. =etermine the numer of simulated values of the limit statee5uation to e %enerated accordin% to the follo!in% formula:

    100

    f

    N

    P

    4. >enerate the random numer values

    of the asic variales in the limit state e5uation.

    ( 1, , 1, , )ijx i M j N= =L L

    &. Formulate the limit state e5uation: 1 2( , , , ) 0MZ g X X X= =L

    0. Calculate a simulated value 3 of ' of the limit state function for eachset of random numer values of the asic variales.

    B. Calculate the times of the simulated are less than 3ero. $ssumethat it is denoted as .

    ifN

    6. Calculate the estimated proaility of failure accordin% to thefollo!in% formula:

    ff

    NP

    N

    ijx

    3 $ MCS M t C l Si l ti #3 $ MCS Monte Carlo Sim lation #

  • 7/23/2019 Component Reliability Analysis

    43/50

    3.$ MCS Monte Carlo Simulation "#3.$ MCS Monte Carlo Simulation "#

    3.#.2 Application Area of MCS

    &. )t is used to solve complex prolems for !hich closed-form solutionsare either not possile or extremely difficult.

    /. )t is used to solve complex prolems that can e solved in closed formif many simplifyin% assumptions are made.

    7. )t is used to chec* the results of other solution techni5ues.

    3.#.3 Accuracy of *robability %stimate of MCS

    9et e the theoretical correct proaility that !e are tryin% toestimate y calculatin% . The proaility estimate accuracy is:

    fP!"ue

    N

    ( )f !"ue# P P=

    (1 )

    f

    !"ue !"ue

    P

    P P

    N

    =

    (1 )

    f

    !"ue

    P!"ue

    PV

    P N

    =

    3 $ MCS M t C l Si l ti 33 $ MCS Monte Carlo Simulation 3

  • 7/23/2019 Component Reliability Analysis

    44/50

    %&ample 3.:

    Please refer to the textoo*

    +(eliaility of Structures,

    y Professor $. S. o!a*.

    Turn to Pa%e &7E" loo* at the example 0.&Bcarefully1 2e !ill demonstrate this example

    in M$T9$H immediatelyII

    3.$ MCS Monte Carlo Simulation "33.$ MCS Monte Carlo Simulation "3

    3 $ MCS Monte Carlo Simulation $3 $ MCS Monte Carlo Simulation $

  • 7/23/2019 Component Reliability Analysis

    45/50

    R 9o%normal

    3.$ MCS Monte Carlo Simulation "$3.$ MCS Monte Carlo Simulation "$

    Solution:

    2"00R = 2$$R R RV = =

    ln2

    ln &%&"21

    RR

    RV

    = =

    +

    2

    ln ln(1 ) 0%12$R RV = + =

    $ ormal $00$ = $0$ $ $V = =

    L ?xtreme #&L = 1#'%&L L LV = =

    1%2'2 - 0%00L = =

    0% $$%0#L Lu = =

    3 $ MCS Monte Carlo Simulation %3 $ MCS Monte Carlo Simulation %

  • 7/23/2019 Component Reliability Analysis

    46/50

    R 9o%normal

    3.$ MCS Monte Carlo Simulation "%3.$ MCS Monte Carlo Simulation "%

    Simulated values of (Vs in M$T9$H

    lognrn!(&%&"2,0%12$,1000,1)R=

    $ ormal

    L ?xtreme

    normrn!($00,$0,1000,1)$=

    log( log( ))pL u

    =

    ran!(1000,1)p=

    Chapter3: -omeor/ 3Chapter3: -omeor/ 3

  • 7/23/2019 Component Reliability Analysis

    47/50

    ;ome

  • 7/23/2019 Component Reliability Analysis

    48/50

    ;ome

  • 7/23/2019 Component Reliability Analysis

    49/50

  • 7/23/2019 Component Reliability Analysis

    50/50