compact modeling of ultra deep submicron cmos … modeling of ultra deep submicron cmos devices...

18
Compact Modeling of Ultra Deep Submicron CMOS Devices Wladyslaw Grabinski*, Matthias Bucher, Jean-Michel Sallese, François Krummenacher Swiss Federal Institute of Technology (EPFL), Electronics Laboratory, CH-1015 Lausanne, Switzerland * Motorola, Modeling and Characterization Lab, CH-1218 Le Grand Saconnex, Switzerland Trends of the MOSFET Devices Scaling Challenges of the Compact Modeling The EPFL EKV v2.6 Model Model Formulation Recent Developments Analog and RF Application of the EKV v2.6 Model © WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K Trends of the MOSFET Devices Scaling Predictable Moor’s Law Technology Limitations Physical Limitations 1A 1nm 10nm 100nm 1um 10um 1970 1980 1990 2000 2010 2020 Years 4k 8k 64k 256k 1M 4M 16M 64M 256M 1G 4G 16G 64G 256G Quantum Level Neuron Level Clasic CMOS DRAM Production Research Labs Channel Dimensions

Upload: lyhanh

Post on 24-May-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

Compact Modeling of Ultra Deep SubmicronCMOS Devices

Wladyslaw Grabinski*, Matthias Bucher, Jean-Michel Sallese, François Krummenacher

Swiss Federal Institute of Technology (EPFL), Electronics Laboratory, CH-1015 Lausanne, Switzerland*Motorola, Modeling and Characterization Lab, CH-1218 Le Grand Saconnex, Switzerland

� Trends of the MOSFET Devices Scaling

� Challenges of the Compact Modeling

� The EPFL EKV v2.6 Model❒ Model Formulation

❒ Recent Developments

❒ Analog and RF Application of the EKV v2.6 Model

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Trends of the MOSFET Devices Scaling

� Predictable Moor’s Law❒ Technology Limitations

❒ Physical Limitations

1A

1nm

10nm

100nm

1um

10um

1970 1980 1990 2000 2010 2020

Years

4k8k

64k256k

1M4M

16M64M

256M

1G 4G16G 64G

256G

Quantum Level

Neuron Level

Clasic CMOS DRAM Production

Research Labs

Ch

ann

el D

imen

sio

ns

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

State-of-art CMOS Technology

� TSMC Delivers Foundry's First 0.15 um Technology

CL015LV CL015H CL015LP

Core Voltage 1.2 V 1.5 V 1.5 V

Gate Dielectric- Core- IO,

Analog Option

Dual20 Å

70/50 Å

Dual27 Å70 Å

Dual27 Å70 Å

Physical Gate 0.12 m 0.14 m 0.13 m

Contacted Metal PitchM1: 0.39- m

M2-6: 0.48- mM7: 0.90- m

IOFF Spec. (worst case) < 1 nA/ m < 1 nA/ m < 0.005 nA/ m

Well Formation Super-steep retrograde

Isolation Shallow trench isolation

Salicide CoSi2

Metal AlCu or Cu, up to 7 layers

Intermetal Dielectric Low-K

Via Fill Tungsten or copper, withCMP

Lithography Deep UV, with phaseshifting mask

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Development of the Compact Models

� Number of DC model parameters vs. the year of the introductionof the model

❒ Significant growth of the parameter number that includes geometry (W/L) scaling

❒ Most recent versions of the BSIM, EKV, MM and PCIM models are included

1

10

100

1000

1960 1970 1980 1990 2000 2010

Years

No

. of

Mo

del

Par

amet

ers

LEVEL1

LEVEL2

LEVEL3

BSIM

HSP28

BSIM2

BSIM3v2

BSIM3v1PCIM

MM9

EKV v2.6

EKV v3.0

SP2000

HSP28

BSIM

BSIM3v3

BSIM3v3

BSIM4

BSIM3v2

BSIM2

Without scaling

Including L,W,P scaling

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Compact Modeling Approaches

� Regional Approach:❒ Easy to implement short-channel effects (but empirically),

❒ Simple implementation into simulation tools = fast execution

❒ Models are in public domain

❒ Discontinuous and ignores quantum effects

❒ Introduce Binning to improve scaliability

❒ Large number of parameters

� Surface Potential Based Approach:❒ Most accurate,

❒ Needs iterative solution (no analytical solution),

❒ Complex implementation and slow execution time

� Hybrid Approach:❒ Combines advantages of both presented approaches

❒ Good fitting demonstrated for 0.1um CMOS devices

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Public-domain model evolution: EKV

� Introduction of EKV model versions:

1994: v2.0, first fully continuous model (12 parameters):

❒ continuous: weak/strong inversion, conduction/saturation

❒ symmetric forward/reverse operation: bulk reference

❒ drain current, capacitances, thermal noise, 1/f noise, NQS model

❒ mobility, velocity saturation, CLM, short-, narrow-channel effects

1995: v2.3 (16 parameters):

❒ improved short-channel effects and RSCE, added substrate current

1996: new QS charge-conservative model

1997: v2.6, applicable to deep sub- ( ) (18 parameters):

❒ coherent charge-based modeling of: static, QS, NQS and noise

❒ includes matching (statistical circuit simulation)

1999: v2.6, new analytical NQS and polydepletion models

2000: v3.0, has been announced

µm 0.18µm

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 MOSFET Model

� EKV v2.6 available in major commercial circuit simulators:

❒ Antrim-AMS, Aplac, Eldo-Accusim, PSpice, Saber, SmartSpice, Smash,Spectre-RF, Star-HSpice.

❒ on-going implementations:

ADS,

MacSpice, Spice3, T-Spice,

MINIMOS (TU Vienna),

TRANZ-TRAN (TU Budapest)

� Visit: EKV model web site: <http://legwww.epfl.ch/ekv>

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Charge-based Static Model

� Bulk-reference, symmetric model structure.

� Drain current expression including drift and diffusion:

(1)

where:

ID

VDVS

VG

G

S D

B

LeffDL/2 DL/2

G

B D

S

VD

VGVS

y

x

ID βQ′I–

C′ox----------- V chd⋅

VS

V D

∫ βQ′I–

C′ox----------- V chd⋅

VS

∫⋅ βQ′I–

C′ox----------- V chd⋅

V D

∫⋅– IF IR–= = =

β µ C'ox

WeffLeff-------------⋅ ⋅=

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Drain Current Normalization and Pinch-off Voltage

� Current normalization using the Specific current :

(2)

� Pinch-off voltage accounts for...

❒ threshold voltage and substrate effect

(3)

� Slope factor :

(4)

IS

ID IF IR– IS i f ir–( )⋅ 2nβUT2

i f ir–( )⋅= = =

V P

V TO γ 2qεsNsub( ) C′ox⁄=

P V G V TO γ V G V TO Ψ0γ2---+

2+– Ψ0

γ2---+

–⋅––=

n

nV G∂

∂V P1–

1 γ2 Ψ0 V P+----------------------------+= =

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Pinch-off Voltage Characteristic

� Pinch-off voltage measurement at constant current (IS/2)

❒ Gate voltage VG is swept and VP=VS is measured at the source for a transistor biased inmoderate inversion and saturation

IBVG

VS=VP

IB

IS2-----≅ n β UT

2⋅ ⋅=

VTO

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 Model Structure

� Coherent model for static, dynamic and noise aspects.❒ physical model basis leads to accurate description of transconductance-to-current

ratio at all current levels

❒ allows to derive all other model quantities in a coherent way

❒ common variables to the entire model:

normalized currents if and ir (forward and reverse)

Static Model

if (V), ir (V)

Dynamic Model

QI,G,D,S,B (if, ir)

Noise Model

SNth (QI(if, ir))

Mobility Model

µs (QB,QI(if, ir))

gms Ut⋅ID

-------------------Transconductanceto current ratio

gms V S∂∂ID–≡

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Transconductance to Current Ratio

� Normalized transconductance-to-current ratio

vs. normalized current from weak thru moderate to strong inversion.

� Measurement and simulation comparisons show that gms/ID ratio istechnology independent.

0.5um CMOS example 0.25um CMOS example

gms UT⋅ ID⁄

D IS⁄

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Mobility Model

� Field- and position-dependent mobility:

(5)

� One parameter: vertical critical field in the oxide❒ No back-bias dependence needed due to inclusion of bulk charge

Influence of KP and E0, respectively, on the transfer characteristic (low VDS)

µ x( )µ0'

1Eeff x( )

E0-----------------+

---------------------------= where: Eeff x( )Q'B x( ) η Q'inv x( )⋅+

ε0εsi

---------------------------------------------------=

E0

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Reverse Short Channel Effect (RSCE)

� Defect enhanced diffusion during fabrication leads to RSCE

� RSCE is modeled as a change in the threshold voltage dependingon Leff

� Two model parameters Q0 and LK

0.5um CMOS example 0.25um CMOS example

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Velocity Saturation

� A high lateral electric field in the channel causes the carrier velocityto saturate and limits the drain current.

� Parameter UCRIT accounts for this effect.

Influence of UCRIT on the output characteristics

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Channel-Length Modulation (CLM)

� The relative channel length reduction depends onthe pinch-off point in the MOSFET channel near drain end.

� Depletion length coefficient (LAMBDA) models CLM effect.

Influence of LAMBDA on the output characteristics

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Impact Ionization Current

� The substrate current is treated as a component of the total extrin-sic current:

ID = IDS + IDB

� Substrate current affects the total extrinsic conductances,in particular drain conductance (gDS).

Influence of IBA and IBB, respectively, on the substrate current

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

(Trans-)Capacitances Model

� Transcapacitances: derivation with respect to the terminal voltage:

(6)

❒ Accurate capacitances through all inversion levels.

❒ Symmetric CGS and CGD at VD=VS=0.

1.0

0.8

0.6

0.4

0.2

0.0

Intr

insi

c C

apac

itan

ces

C/(

Co

xWL

)

3210

VG[V]

TOX=6.6nmVD=VS=0VW=200µm, L=5µm

Simulated:

Measured:CGB

CGG

CGD=CGS

CMN V N∂∂± QM( )= M N, G D S B, , ,=

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Polydepletion modeling

� Strengths of new polydepletion model:

❒ consistent effect from weak to strong inversion, conduction/saturation

❒ one single extra parameter: NPOLY

❒ polydepletion only affects threshold voltage VTO, pinch-off voltage VP,and slope factor n

1.2

1.0

0.8

0.6

0.4

0.2

0.0No

rmal

ized

Tra

nsc

apac

itan

ces

[-]

3210-1-2

VG [V]

n-channel Tox=4.5nm L=10µm

Ns=4.1016

cm-3

Np=1.1019

cm-3

VFB =- 0.9V

2D sim. model

CGG

CDG=CSG

CBG

VD=0 VS=0

1.2

1.0

0.8

0.6

0.4

0.2

0.0No

rmal

ized

Tra

nsc

apac

itan

ces

[-]

3210-1-2

VG [V]

n-channel Tox=4.5nm L=10µm

Ns=4.1016

cm-3

Np=1.1019

cm-3

VFB =- 0.9V

2D sim. model

CGG

CSG

CDG CBG

VD=1V VS=0

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Polydepletion modeling

❒ comparison with 2D simulation with and without polydepletion

❒ no fitting parameters: same parameters used as for CV

❒ coherent with all other aspects of charge based model (IV, CV, thermal noise)

60x10-6

50

40

30

20

10

0

I D [

A]

3210

VG - VFB [V]

2D sim. model (NP=1.1019

cm-3

)

2D sim. model (NP=9.1.1020

cm-3

)

n-channel L=10µm W=1µm

Tox=4.5nm Ns=4.1016

cm-3

µ0=620cm2/Vs Θ=8.82nm/V

VS=0

VD=0.5V

VD=1V

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Vertical field dependent mobility modeling

� Deep sub- CMOS uses higher

� Mobility depends on , (bias), ,

� The scattering-limited mobility depends on,

❒ Coulomb-scattering (low field) [significant in CMOS even at room T]

❒ phonon-scattering (intermediate field)

❒ surface-roughness scattering (high field)

� Problem:

❒ difficult to address all dependencies together with few parameters

❒ mobility effects are position-dependent!

� Idea: use the charges model for modeling mobility

❒ model should have built-in temperature behaviour

µm Nsub lower µ⊥→

µ⊥ QB′ Qi′ Nsub T

0.15∼ µm

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Vertical field dependent mobility modeling

� Strengths of new mobility model:

❒ directly linked to charges model

❒ position- (and bias-) dependence accounted for by integration along channel

❒ few parameters (5, none required for bias-dependence)

100

2

3

4

5

6

7

8

9

1000

Eff

ecti

ve M

ob

ility

µef

f

106 2x10

6 3 4 5

Effective Vertical Field Eeff

µeff

µC ~ [1+ζ*Q'i]2

µSR ~ Eeff-2

µPH ~ Eeff-0.2

T=300KTox=12nm

Nsub=4e17cm-3

1µ⊥------ 1

µC------ 1

µPH---------- 1

µSR---------+ +=

µC Nsub 1 ζ Q′i⋅+[ ]2⋅∝

µPH Eeff0.2–∝

µSR Eeff2–∝

Eeff Q′B η Q′i⋅+ εsi⁄=

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Velocity saturation modeling

� Velocity saturation is the main cause of reduction in short-chan-

nel MOS transistors

� NMOS and PMOS transistors have different relationships

❒ NMOS is much more strongly affected by velocity saturation than PMOS

(NMOS); (PMOS)

� Velocity saturation modeling has many implications:

❒ bias-dependence

❒ scaling

❒ asymptotic behaviour:

series connection of multiple devices

asymptotic behaviour at

ID

µ E ||( )

µµ⊥

1 E || Ec⁄( )2+

-----------------------------------------= µµ⊥

1 E || Ec⁄+------------------------------=

V DS 0→

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Velocity saturation modeling

� Strengths of new velocity saturation model:

❒ charge-based, from strong to weak inversion

❒ correct multiple series devices behaviour

❒ improved scaling

❒ correct asymptotic behaviour at

1000

800

600

400

200

0

I D/I 0

[-]

6050403020100

(VD-VS)/UT [-]

δ=1 Ec=5V/µmL=N*(0.2µm/N)

VG/UT=100

N=1 (approximate) N=100 (integral)

VG/UT=80

VG/UT=60

VG/UT=40

VS/UT=0

1000

800

600

400

200

0

I D/I 0

[-]

6050403020100

(VD-VS)/UT [-]

δ=2 Ec=3.1V/µmL=N*(0.2µm/N)

VG/UT=40

VG/UT=60

VG/UT=80

VG/UT=100

N=1 (approximate) N=100 (integral)

VS/UT=0

PMOSNMOS

V DS 0→

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Non-quasistatic (NQS) AC modeling

� New physics-based NQS model

� Exact analytical solutions for complex transadmittances

❒ 1st and 2nd-order approximations

❒ «0-order» approximation: coincides with QS model!

� No additional parameters

� Normalization of different quantities:

❒ normalized Currents, Potentials, Charges

❒ normalized Coordinates, Time, Frequency

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Non-quasistatic (NQS) AC modeling

� Strengths of new NQS model:

❒ valid from strong through moderate to weak inversion

❒ simple analytical expressions for (complex) transadmittances

❒ entirely consistent with polydepletion, mobility model, etc.

❒ easy to implement in circuit simulators (access to complex admittances matrix)

yDG (magnitude&phase), measurements, exact model, 1st- & 2nd-order approximations

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 Parameter Set

� 18 Intrinsic Model ParametersPurpose NAME DESCRIPTION UNITS EXAMPLE

Processparameters

COX gate oxide capacitance per unit area 3.45E-3

XJ junction depth m 0.15E-6

DW channel width correction m -0.05E-6

DL channel length correction m -0.1E-6

Doping & Mobilityrelated parameters

VTO long-channel threshold voltage V 0.55

GAMMA body effect parameter 0.7

PHI bulk Fermi potential (*2) V 0.8

KP transconductance parameter 160E-6

E0 vertical characteristic field for mobility reduction 80E6

UCRIT longitudinal critical field 4.0E6

Short- & narrow-channeleffect parameters

LAMBDA depletion length coefficient (channel length modulation) - 0.3

WETA narrow-channel effect coefficient - 0.1

LETA short-channel effect coefficient - 0.3

Q0 reverse short-channel effect peak charge density 500E-6

LK reverse short-channel effect characteristic length m 0.34E-6

Substrate currentrelated parameters

IBA first impact ionization coefficient 1 / m 260E6

IBB second impact ionization coefficient V / m 350E6

IBN saturation voltage factor for impact ionization - 1.0

F m2⁄

V

A V2⁄

V m⁄

V m⁄

A s⋅ m2⁄

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 Parameter Set (cont.)

� Completed with 3 matching parameters

� 4 temperature parameters

� 2 noise parameters

NAME DESCRIPTION UNITS Example

AVTO area related threshold voltage mismatch parameter Vm - DEV=15E-9

AKP area related gain mismatch parameter m - DEV=25E-9

AGAMMA area related body effect mismatch parameter - DEV=10E-9

NAME DESCRIPTION UNITS Example

TCV threshold voltage temperature coefficient V/K 1.0E-3

BEX mobility temperature exponent - -1.5

UCEX longitudinal critical field temperature exponent - 0.8

IBBT temperature coefficient for IBB 1/K 9.0E-4

NAME DESCRIPTION UNITS Example

KF flicker noise coefficient - 0

AF flicker noise exponent - 1

V m

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 Parameter Extraction Methodology

� Sequential task: parameter extraction methodologyestablished for EKV v2.6

❒ performed using an array of transistors in the W/L plane.

VP vs. VG

VTO, GAMMA, PHI

ID vs. VGKP, E0

WIDELONG

specific currentmeasurement

VP vs. VGLETA

ID vs. VDUCRIT, LAMBDA

WIDESHORT

VP vs. VGWETA

NARROWLONG

PRELIMINARYEXTRACTION

Extraction of

DL, DW, RSH

from severalgeometries

final checkand fine tuning

NARROWSHORT

VP vs. VGLETAVP vs. VG

LETA, Q0, LK

L

IB vs. VG

IBA, IBB, IBN

specific currentmeasurement

specific currentmeasurement

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 - 0.18um CMOS

� Transfer characteristics IdVg and gmgVg (low drain voltage Vd)

6

5

4

3

2

1

0

2.01.51.00.50.0

L=10um

250

200

150

100

50

0

x10-6

2.01.51.00.50.0

L=10um

20

15

10

5

0

2.01.51.00.50.0

L=0.5um

2.5

2.0

1.5

1.0

0.5

0.0

x10-3

2.01.51.00.50.0

L=0.5um5

4

3

2

1

0

x10-3

2.01.51.00.50.0

L=0.18um

30

25

20

15

10

5

0

2.01.51.00.50.0

L=0.18um

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

EKV v2.6 - 0.18um CMOS

� Output characteristics IdVd and gdsVd.

30

25

20

15

10

5

0

2.01.51.00.50.0

L=10um400

300

200

100

02.01.51.00.50.0

L=0.5um1000

800

600

400

200

0

2.01.51.00.50.0

L=0.18um

10-8

10-7

10-6

10-5

10-4

10-3

2.01.51.00.50.0

L=10um

10-5

10-4

10-3

2.01.51.00.50.0

L=0.5um

6

810

-4

2

4

6

810

-3

2

4

6

810

-2

2.01.51.00.50.0

L=0.18um

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

D/A Converter Circuit

1e-07 1e-041e-06 1e-05 1.00

1.10

1.01

1.09

1.02

1.08

1.03

1.07

1.04

1.06

1.05

W(I1) W(I2) W(I3) W(I4) W(I5) W(I6)

1e-07 1e-041e-06 1e-05 0.9

1.5

1.0

1.4

1.1

1.3

1.2

W(I1) W(I2) W(I3) W(I4) W(I5) W(I6)

incorrect responsecorrect response(EKV v2.6 model) (competitor’s model)

I I I/2 I/4 I/8 I/16 I/16

I I/2 I/4 I/8 I/16

Nor

mal

ized

Cur

rent

(MS

B-L

SB

)

Reference Current

Nor

mal

ized

Cur

rent

(MS

B-L

SB

)

Reference Current

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

RF Characterization: De-embedding

� Open, Open-Short deembedding and simulation data up to110GHz

❒ nMOSFET Device: 30 x 20um/0.35um

❒ Bias condition: Vg=1.0V, Vd=1.0V

Open-Short

Open Open-Short

EKV v2.6

ft

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

RF Power Amplifier

� Output power vs. input power characteristics (in dBm)❒ a) supply voltage Vsupply= 1.5V

❒ b) supply voltage Vsupply= 2.7V

a) Vsupply=1.5V b) Vsupply=2.7V

s

m

m

s

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Harmonic Oscillator

� Simulation results: MM9 vs. EKV v2.6

MM9 EKV v2.6

© WG Compact Modeling of Ultra Deep Submicron CMOS Devices OCT.Y2K

Summary

� EPFL EKV v2.6 MOST model is a charge-based compact model❒ Continuous, physics-based model valid for all bias conditions.

❒ Includes charge-based static and dynamic models, and noise.

❒ Uses a low number of parameters

� EPFL-EKV model enables the simulation of ultra deep submicronCMOS integrated systems, from DC to RF

❒ Experimental validation down to 0.18um CMOS

❒ Circuit applications have been presented

� The model and related parameter extraction methodology havebeen developed at Electronics Labs of EPFL

❒ Web resource: <http://legwww.epfl.ch/ekv>

� Parameter extraction services and design support are availablethrough Smart Silicon Systems, Lausanne

❒ Contact: [email protected]