commentary

1
[2] Axelsson P, Johnsson R, Stromqvist B, et al. Posterolateral lumbar fusion. Outcome of 71 consecutive operations after 4 (2-7) years. Acta Orthop Scand 1994;65(3):309 - 14. [3] Becker S, Maissen O, Igor P, et al. Osteopromotion by a beta– tricalcium phosphate/bone marrow hybrid implant for use in spinal surgery. Spine 2006;31(1):1- 7. [4] Bernhardt M, Swartz DE, Clothiaux PL, et al. Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation. Clin Orthop 1992;284:109 - 15. [5] Cammisa Jr FP, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 2004;29(6):660 - 6. [6] Epstein NE. SF-36 outcomes and fusion rates following multilevel laminectomies and 1-2 level instrumented posterolateral fusions utilizing lamina autograft and demineralized bone matrix. J Spinal Disord Tech 2006 [in press]. [7] Epstein NE. Non-instrumented posterolateral lumbar fusions utilizing combined lamina autograft and beta tricalcium phosphate in a predominantly geriatric population: an outcome assessment. Spinal Surg 2006;20(4):7 - 18. [8] Epstein NE. A preliminary study of the efficacy of beta tricalcium phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 2006;19(6):424- 9. [9] France JC, Yaszemski MJ, Lauerman WC, et al. A randomized prospective study of posterolateral lumbar fusion. Outcome with and without pedicle screw instrumentation. Spine 1999;24(6):553 - 60. [10] Fritzell P, Hagg O, Nordwall A, Swedish Lumbar Spine Study Group. Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. Eur Spine J 2003;12(2):178 - 89. [11] Gibson S, McLeod I, Wardlaw D, et al. Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine 2002;27(15):1599 - 603. [12] Gunzburg R, Szpalski M. Use of a novel beta–tricalcium phosphate– based bone void filler as a graft extender in spinal fusion surgeries. Orthopedics 2002;25(5 Suppl):s591 - 5. [13] Jager M, Seller K, Raab P, et al. Clinical outcome in monosegmental fusion of degenerative lumbar instabilities: instrumented versus non- instrumented. Med Sci Monit 2003;9(7):324 - 7. [14] Katz JN, Lipson SJ, Lew RA, et al. Lumbar laminectomy alone or with instrumented or noninstrumented arthrodesis in degenerative lumbar spinal stenosis. Patient selection, costs, and surgical outcomes. Spine 1997;22(10):1123 - 31. [15] Keene JS, McKinley NE. Iliac crest versus spinous process grafts in posttraumatic spinal fusions. Spine 1992;17(7):790 - 4. [16] Kho VK, Chen WC. The results of posterolateral lumbar fusion with bone chips from laminectomy in patients with lumbar spondylolis- thesis. J Chin Med Assoc 2004;67(11):575- 8. [17] Lee YP, Jo M, Luna M, et al. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech 2005;18(5):439- 44. [18] Louis-Ugbo J, Murakami H, Kim HS, et al. Evidence of osteoinduc- tion by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine 2004;29(4):360 - 6. [19] Martin Jr GJ, Boden SF, Titus L, et al. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 1999; 24(7):637 - 45. [20] Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998;15:159 - 67. [21] Muschik M, Ludwig R, Halbhubner S, et al. Beta–tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 2001;10(Suppl 2):S1178- 84. [22] Ohyama T, Kubo Y, Iwata H, et al. Beta–tricalcium phosphate as a substitute for autograft in interbody fusion cages in the canine lumbar spine. J Neurosurg Spine 2002;97(3):350 - 4. [23] Price CT, Connolly JF, Carantzas AC, et al. Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 2003;28(8):793 - 8. [24] Thalgott JS, Giuffre JM, Fritts K, et al. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix as an adjunct to autologous bone. Spine J 2001;1(2):131 - 7. [25] Thomsen K, Christensen FB, Eiskjaer SP, et al. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. 1997 Volvo Award Winner in Clinical Studies noteSpine 1997;22(24):2813 - 22. Commentary This is a thorough review of bone graft expander agents used in augmenting autografts in performing lumbar fusions. Will genetically engineered bone morphogenic protein agents make such information obsolete? Perhaps not—given the economic factors associated with the use of the newer products. Howard Morgan, MD Department of Neurosurgery University of Texas Southwestern Medical Center Dallas, TX 75390, USA N.E. Epstein / Surgical Neurology 69 (2008) 16– 19 19

Upload: howard-morgan

Post on 29-Oct-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

[2] Axelsson P, Johnsson R, Stromqvist B, et al. Posterolateral lumbar

fusion. Outcome of 71 consecutive operations after 4 (2-7) years. Acta

Orthop Scand 1994;65(3):309 -14.

[3] Becker S, Maissen O, Igor P, et al. Osteopromotion by a beta–

tricalcium phosphate/bone marrow hybrid implant for use in spinal

surgery. Spine 2006;31(1):1 -7.

[4] Bernhardt M, Swartz DE, Clothiaux PL, et al. Posterolateral lumbar

and lumbosacral fusion with and without pedicle screw internal

fixation. Clin Orthop 1992;284:109 -15.

[5] Cammisa Jr FP, Lowery G, Garfin SR, et al. Two-year fusion rate

equivalency between Grafton DBM gel and autograft in posterolateral

spine fusion: a prospective controlled trial employing a side-by-side

comparison in the same patient. Spine 2004;29(6):660 -6.

[6] Epstein NE. SF-36 outcomes and fusion rates following multilevel

laminectomies and 1-2 level instrumented posterolateral fusions

utilizing lamina autograft and demineralized bone matrix. J Spinal

Disord Tech 2006 [in press].

[7] Epstein NE. Non-instrumented posterolateral lumbar fusions utilizing

combined lamina autograft and beta tricalcium phosphate in a

predominantly geriatric population: an outcome assessment. Spinal

Surg 2006;20(4):7 -18.

[8] Epstein NE. A preliminary study of the efficacy of beta tricalcium

phosphate as a bone expander for instrumented posterolateral lumbar

fusions. J Spinal Disord Tech 2006;19(6):424-9.

[9] France JC, Yaszemski MJ, Lauerman WC, et al. A randomized

prospective study of posterolateral lumbar fusion. Outcome with and

without pedicle screw instrumentation. Spine 1999;24(6):553 -60.

[10] Fritzell P, Hagg O, Nordwall A, Swedish Lumbar Spine Study Group.

Complications in lumbar fusion surgery for chronic low back pain:

comparison of three surgical techniques used in a prospective

randomized study. A report from the Swedish Lumbar Spine Study

Group. Eur Spine J 2003;12(2):178-89.

[11] Gibson S, McLeod I, Wardlaw D, et al. Allograft versus autograft in

instrumented posterolateral lumbar spinal fusion: a randomized

control trial. Spine 2002;27(15):1599-603.

[12] Gunzburg R, Szpalski M. Use of a novel beta–tricalcium phosphate–

based bone void filler as a graft extender in spinal fusion surgeries.

Orthopedics 2002;25(5 Suppl):s591-5.

[13] Jager M, Seller K, Raab P, et al. Clinical outcome in monosegmental

fusion of degenerative lumbar instabilities: instrumented versus non-

instrumented. Med Sci Monit 2003;9(7):324 -7.

[14] Katz JN, Lipson SJ, Lew RA, et al. Lumbar laminectomy alone or

with instrumented or noninstrumented arthrodesis in degenerative

lumbar spinal stenosis. Patient selection, costs, and surgical outcomes.

Spine 1997;22(10):1123-31.

[15] Keene JS, McKinley NE. Iliac crest versus spinous process grafts in

posttraumatic spinal fusions. Spine 1992;17(7):790-4.

[16] Kho VK, Chen WC. The results of posterolateral lumbar fusion with

bone chips from laminectomy in patients with lumbar spondylolis-

thesis. J Chin Med Assoc 2004;67(11):575-8.

[17] Lee YP, Jo M, Luna M, et al. The efficacy of different commercially

available demineralized bone matrix substances in an athymic rat

model. J Spinal Disord Tech 2005;18(5):439-44.

[18] Louis-Ugbo J, Murakami H, Kim HS, et al. Evidence of osteoinduc-

tion by Grafton demineralized bone matrix in nonhuman primate

spinal fusion. Spine 2004;29(4):360-6.

[19] Martin Jr GJ, Boden SF, Titus L, et al. New formulations of

demineralized bone matrix as a more effective graft alternative in

experimental posterolateral lumbar spine arthrodesis. Spine 1999;

24(7):637 -45.

[20] Morone MA, Boden SD. Experimental posterolateral lumbar spinal

fusion with a demineralized bone matrix gel. Spine 1998;15:159-67.

[21] Muschik M, Ludwig R, Halbhubner S, et al. Beta–tricalcium

phosphate as a bone substitute for dorsal spinal fusion in adolescent

idiopathic scoliosis: preliminary results of a prospective clinical study.

Eur Spine J 2001;10(Suppl 2):S1178-84.

[22] Ohyama T, Kubo Y, Iwata H, et al. Beta–tricalcium phosphate as a

substitute for autograft in interbody fusion cages in the canine lumbar

spine. J Neurosurg Spine 2002;97(3):350 -4.

[23] Price CT, Connolly JF, Carantzas AC, et al. Comparison of bone grafts

for posterior spinal fusion in adolescent idiopathic scoliosis. Spine

2003;28(8):793 -8.

[24] Thalgott JS, Giuffre JM, Fritts K, et al. Instrumented posterolateral

lumbar fusion using coralline hydroxyapatite with or without

demineralized bone matrix as an adjunct to autologous bone. Spine

J 2001;1(2):131 -7.

[25] Thomsen K, Christensen FB, Eiskjaer SP, et al. The effect of pedicle

screw instrumentation on functional outcome and fusion rates in

posterolateral lumbar spinal fusion: a prospective, randomized clinical

study. 1997 Volvo Award Winner in Clinical Studies noteSpine

1997;22(24):2813-22.

Commentary

This is a thorough review of bone graft expander agents

used in augmenting autografts in performing lumbar

fusions. Will genetically engineered bone morphogenic

protein agents make such information obsolete? Perhaps

not—given the economic factors associated with the use of

the newer products.

Howard Morgan, MD

Department of Neurosurgery

University of Texas Southwestern Medical Center

Dallas, TX 75390, USA

N.E. Epstein / Surgical Neurology 69 (2008) 16–19 19