combining effective field theories with dispersion...

67
Combining effective field theories with dispersion relations Bastian Kubis Helmholtz-Institut f ¨ ur Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universit ¨ at Bonn, Germany Hirschegg 14/1/2014 B. Kubis, Combining effective field theories with dispersion relations – p. 1

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Combining effective field theorieswith dispersion relations

Bastian Kubis

Helmholtz-Institut fur Strahlen- und Kernphysik (Theorie)

Bethe Center for Theoretical Physics

Universitat Bonn, Germany

Hirschegg14/1/2014

B. Kubis, Combining effective field theories with dispersion relations – p. 1

Page 2: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Outline

Introduction

• Chiral perturbation theory and its limitations

• Testing the chiral anomaly

Dispersion relations . . .

• . . . for two pions: pion vector form factor

• . . . for three pions: γπ → ππ, ω/φ → 3π

• From hadronic decays to transition form factors: ω/φ → π0γ∗

Towards the π0 transition form factor

Summary / Outlook

B. Kubis, Combining effective field theories with dispersion relations – p. 2

Page 3: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Light mesons without modeling

Chiral perturbation theory (ChPT) . . .

• Effective field theory: simultaneous expansion inquark masses + small momenta

⊲ systematically improvable⊲ well-established link to QCD: all symmetry constraints⊲ interrelates many different observables

B. Kubis, Combining effective field theories with dispersion relations – p. 3

Page 4: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Light mesons without modeling

Chiral perturbation theory (ChPT) . . .

• Effective field theory: simultaneous expansion inquark masses + small momenta

⊲ systematically improvable⊲ well-established link to QCD: all symmetry constraints⊲ interrelates many different observables

. . . and its limitations

• strong final-state interactions render corrections large

• physics of light pseudoscalars (π, K, η) only⊲ (energy) range limited by resonances: σ(500), ρ(770) . . .⊲ unitarity is only perturbatively fulfilled⊲ not applicable to decays of (e.g.) vector mesons at all

−→ find effective ways to resum rescattering / restore unitarity

−→ dispersion relations

B. Kubis, Combining effective field theories with dispersion relations – p. 3

Page 5: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Testing the Wess–Zumino–Witten chiral anomaly

• controls low-energy processes of odd intrinsic parity

• π0 decay π0 → γγ: Fπ0γγ =e2

4π2Fπ

Fπ: pion decay constant −→ measured at 1.5% level PrimEx 2011

B. Kubis, Combining effective field theories with dispersion relations – p. 4

Page 6: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Testing the Wess–Zumino–Witten chiral anomaly

• controls low-energy processes of odd intrinsic parity

• π0 decay π0 → γγ: Fπ0γγ =e2

4π2Fπ

Fπ: pion decay constant −→ measured at 1.5% level PrimEx 2011

• γπ → ππ at zero energy: F3π =e

4π2F 3π

= (9.78± 0.05)GeV−3

how well can we test this low-energy theorem?

B. Kubis, Combining effective field theories with dispersion relations – p. 4

Page 7: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Testing the Wess–Zumino–Witten chiral anomaly

• controls low-energy processes of odd intrinsic parity

• π0 decay π0 → γγ: Fπ0γγ =e2

4π2Fπ

Fπ: pion decay constant −→ measured at 1.5% level PrimEx 2011

• γπ → ππ at zero energy: F3π =e

4π2F 3π

= (9.78± 0.05)GeV−3

how well can we test this low-energy theorem?

Primakoff reaction

π−π−

π0γ∗

Z

F3π = (10.7± 1.2)GeV−3

Serpukhov 1987, Ametller et al. 2001

π−e− → π−e−π0

π−π−

π0γ∗

e− e−

F3π = (9.6± 1.1)GeV−3

Giller et al. 2005

−→ F3π tested only at 10% level

B. Kubis, Combining effective field theories with dispersion relations – p. 4

Page 8: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Chiral anomaly: Primakoff measurement

• previous analyses based on⊲ data in threshold region only Serpukhov 1987

⊲ chiral perturbation theory for extraction

B. Kubis, Combining effective field theories with dispersion relations – p. 5

Page 9: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Chiral anomaly: Primakoff measurement

• previous analyses based on⊲ data in threshold region only Serpukhov 1987

⊲ chiral perturbation theory for extraction

• Primakoff measurementof whole spectrum

COMPASS, work in progress

• idea: use dispersionrelations to exploit alldata below 1 GeV foranomaly extraction

• effect of ρ resonanceincluded model-independently via ππP-wave phase shift

[GeV]0π-πm0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

coun

ts

0

100

200

300

400

500

600

700

preliminary

-ρ-beam K

hadron dataCOMPASS 2004

figure courtesy of T. Nagel 2009

B. Kubis, Combining effective field theories with dispersion relations – p. 5

Page 10: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 11: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 12: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 13: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 14: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

−→ 1

2πi

∫ ∞

4M2π

discT (z)dz

z − s

=1

π

∫ ∞

4M2π

ImT (z)dz

z − s

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 15: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

−→ 1

2πi

∫ ∞

4M2π

discT (z)dz

z − s

=1

π

∫ ∞

4M2π

ImT (z)dz

z − s

• discT (s) = 2i ImT (s) calculable by "cutting rules":

T (s) T (s)

e.g. if T (s) is a ππ partial wave −→

discT (s)

2i= ImT (s) =

2qπ√sθ(s− 4M2

π)|T (s)|2

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 16: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations on one page

Re(z)

Im(z)

s

4M2π

analyticity & Cauchy’s theorem:

T (s) =1

2πi

∂Ω

T (z)dz

z − s

−→ 1

2πi

∫ ∞

4M2π

discT (z)dz

z − s

=1

π

∫ ∞

4M2π

ImT (z)dz

z − s

• discT (s) = 2i ImT (s) calculable by "cutting rules":

T (s) T (s)inelastic intermediate states (KK, 4π)suppressed at low energies

−→ will be neglected in the following

B. Kubis, Combining effective field theories with dispersion relations – p. 6

Page 17: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

=disc

1

2idiscFI(s) = ImFI(s) = FI(s)×θ(s−4M2

π)× sin δI(s) e−iδI(s)

−→ final-state theorem: phase of FI(s) is just δI(s) Watson 1954

B. Kubis, Combining effective field theories with dispersion relations – p. 7

Page 18: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

=disc

1

2idiscFI(s) = ImFI(s) = FI(s)×θ(s−4M2

π)× sin δI(s) e−iδI(s)

−→ final-state theorem: phase of FI(s) is just δI(s) Watson 1954

• solution to this homogeneous integral equation known:

FI(s) = PI(s)ΩI(s) , ΩI(s) = exp

s

π

∫ ∞

4M2π

ds′δI(s

′)

s′(s′ − s)

PI(s) polynomial, ΩI(s) Omnès function Omnès 1958

• today: high-accuracy ππ phase shifts availableAnanthanarayan et al. 2001, García-Martín et al. 2011

• constrain PI(s) using symmetries (normalisation at s = 0 etc.)

B. Kubis, Combining effective field theories with dispersion relations – p. 7

Page 19: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Pion vector form factor from dispersion relations

• pion vector form factor clearly non-perturbative: ρ resonance

-0,2 0 0,2 0,4 0,6 0,8 1

sππ [GeV2]

1

10

|FV

(sπ

π)|2

ChPT at one loop

data on e+e− → π+π−

Omnès representation

Stollenwerk et al. 2012

−→ Omnès representation vastly extends range of applicability

B. Kubis, Combining effective field theories with dispersion relations – p. 8

Page 20: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations for 3 pions

• γπ → ππ particularly simple system: odd partial waves

−→ P-wave interactions only (neglecting F- and higher)

• decay amplitude decomposed into single-variable functions

M(s, t, u) = iǫµναβnµpνπ+pαπ−p

βπ0 F(s, t, u)

F(s, t, u) = F(s) + F(t) + F(u)

Unitarity relation for F(s):

discF(s) = 2iF(s)︸︷︷︸

right-hand cut

+ F(s)︸︷︷︸

left-hand cut

× θ(s− 4M2

π)× sin δ11(s) e−iδ11(s)

B. Kubis, Combining effective field theories with dispersion relations – p. 9

Page 21: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations for 3 pions

Unitarity relation for F(s):

discF(s) = 2iF(s)︸︷︷︸

right-hand cut

+ F(s)︸︷︷︸

left-hand cut

× θ(s− 4M2

π)× sin δ11(s) e−iδ11(s)

B. Kubis, Combining effective field theories with dispersion relations – p. 9

Page 22: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations for 3 pions

Unitarity relation for F(s):

discF(s) = 2iF(s)︸︷︷︸

right-hand cut

× θ(s− 4M2

π)× sin δ11(s) e−iδ11(s)

=disc

• right-hand cut only −→ Omnès problem

F(s) = P (s) Ω(s) , Ω(s) = exp

s

π

∫ ∞

4M2π

ds′

s′δ11(s

′)

s′ − s

−→ amplitude given in terms of pion vector form factor

π+π−

π0

π+

π−π0

π−

π+π0

+ +F(s, t, u) =

B. Kubis, Combining effective field theories with dispersion relations – p. 9

Page 23: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations for 3 pions

Unitarity relation for F(s):

discF(s) = 2iF(s)︸︷︷︸

right-hand cut

+ F(s)︸︷︷︸

left-hand cut

× θ(s− 4M2

π)× sin δ11(s) e−iδ11(s)

• inhomogeneities F(s): angular averages over the F(t), F(u)

F(s) = Ω(s)

C

(1)2

3

(1− Ω(0)s

)+

C(2)2

3s+

s2

π

∫ ∞

4M2π

ds′

s′2sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s)

F(s) =3

2

∫ 1

−1

dz (1− z2)F(t(s, z)

)

+ + + . . .F(s) =

B. Kubis, Combining effective field theories with dispersion relations – p. 9

Page 24: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Dispersion relations for 3 pions

Unitarity relation for F(s):

discF(s) = 2iF(s)︸︷︷︸

right-hand cut

+ F(s)︸︷︷︸

left-hand cut

× θ(s− 4M2

π)× sin δ11(s) e−iδ11(s)

• inhomogeneities F(s): angular averages over the F(t), F(u)

F(s) = Ω(s)

C

(1)2

3

(1− Ω(0)s

)+

C(2)2

3s+

s2

π

∫ ∞

4M2π

ds′

s′2sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s)

F(s) =3

2

∫ 1

−1

dz (1− z2)F(t(s, z)

)

• admits crossed-channel scattering between s-, t-, and u-channel(left-hand cuts)

B. Kubis, Combining effective field theories with dispersion relations – p. 9

Page 25: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Omnes solution for γπ → ππ

F(s) = Ω(s)

C

(1)2

3

(1− Ω(0)s

)+

C(2)2

3s+

s2

π

∫ ∞

4M2π

ds′

s′2sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s)

• important observation: F(s) linear in C(i)2

F(s) = C(1)2 F (1)(s) + C

(2)2 F (2)(s)

−→ basis functions F (i)(s) calculated independently of C(i)2

B. Kubis, Combining effective field theories with dispersion relations – p. 10

Page 26: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Omnes solution for γπ → ππ

F(s) = Ω(s)

C

(1)2

3

(1− Ω(0)s

)+

C(2)2

3s+

s2

π

∫ ∞

4M2π

ds′

s′2sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s)

• important observation: F(s) linear in C(i)2

F(s) = C(1)2 F (1)(s) + C

(2)2 F (2)(s)

−→ basis functions F (i)(s) calculated independently of C(i)2

• representation of crosssection in terms of twoparameters

−→ fit to data, extract

F3π ≃ C2 = C(1)2 + C

(2)2 M2

π

−→ σ ∝ (C2)2 also in ρ region

Hoferichter, BK, Sakkas 2012

B. Kubis, Combining effective field theories with dispersion relations – p. 10

Page 27: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Extension to decays: ω/φ → 3π

• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesonsBijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes

B. Kubis, Combining effective field theories with dispersion relations – p. 11

Page 28: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Extension to decays: ω/φ → 3π

• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesonsBijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes

• ω/φ → 3π analyzed in terms of KLOE 2003, CMD-2 2006

sum of 3 Breit–Wigners (ρ+, ρ−, ρ0)

+ constant background term

+ crossed +ω

ρ

π

π

π

ω

π

π

π

B. Kubis, Combining effective field theories with dispersion relations – p. 11

Page 29: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Extension to decays: ω/φ → 3π

• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesonsBijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes

• ω/φ → 3π analyzed in terms of KLOE 2003, CMD-2 2006

sum of 3 Breit–Wigners (ρ+, ρ−, ρ0)

+ constant background term

+ crossed +ω

ρ

π

π

π

ω

π

π

π

Problem:

−→ unitarity fixes Im/Re parts

−→ adding a contact term destroys this relation

−→ reconcile data with dispersion relations?B. Kubis, Combining effective field theories with dispersion relations – p. 11

Page 30: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ω/φ → 3π: dispersive solution, Dalitz plots

F(s) = aΩ(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s− iǫ)

• fix a to ω/φ → 3π partial width(s) −→ Dalitz plots predicted

• analytic structure of F(s) complicated by 3-particle cuts

B. Kubis, Combining effective field theories with dispersion relations – p. 12

Page 31: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ω/φ → 3π: dispersive solution, Dalitz plots

F(s) = aΩ(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s− iǫ)

• fix a to ω/φ → 3π partial width(s) −→ Dalitz plots predicted

• analytic structure of F(s) complicated by 3-particle cuts

ω → 3π : φ → 3π :

Niecknig, BK, Schneider 2012

B. Kubis, Combining effective field theories with dispersion relations – p. 12

Page 32: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ω/φ → 3π: dispersive solution, Dalitz plots

F(s) = aΩ(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s− iǫ)

• fix a to ω/φ → 3π partial width(s) −→ Dalitz plots predicted

• analytic structure of F(s) complicated by 3-particle cuts

ω → 3π : φ → 3π :

ω → 3π

Niecknig, BK, Schneider 2012

B. Kubis, Combining effective field theories with dispersion relations – p. 12

Page 33: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Experimental comparison to φ → 3π

KLOE Dalitz plot: 2 · 106 events, 1834 bins Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250bin number

0

2000

4000

6000

8000

F = 0

χ2/ndof 1.71 . . . 2.06

F(s) = aΩ(s) = a exp

[

s

π

∫ ∞

4M2π

ds′

s′δ11(s

′)

s′ − s

]

B. Kubis, Combining effective field theories with dispersion relations – p. 13

Page 34: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Experimental comparison to φ → 3π

KLOE Dalitz plot: 2 · 106 events, 1834 bins Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250bin number

0

2000

4000

6000

8000

F = 0 once-subtracted

χ2/ndof 1.71 . . . 2.06 1.17 . . . 1.50

F(s) = aΩ(s)

[

1 +s

π

∫ ∞

4M2π

ds′

s′F(s′) sin δ11(s

′)

|Ω(s′)|(s′ − s)

]

B. Kubis, Combining effective field theories with dispersion relations – p. 13

Page 35: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Experimental comparison to φ → 3π

KLOE Dalitz plot: 2 · 106 events, 1834 bins Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250bin number

0

2000

4000

6000

8000

F = 0 once-subtracted twice-subtracted

χ2/ndof 1.71 . . . 2.06 1.17 . . . 1.50 1.02 . . . 1.03

F(s) = aΩ(s)

[

1 + b s+s2

π

∫ ∞

4M2π

ds′

s′2F(s′) sin δ11(s

′)

|Ω(s′)|(s′ − s)

]

B. Kubis, Combining effective field theories with dispersion relations – p. 13

Page 36: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Experimental comparison to φ → 3π

KLOE Dalitz plot: 2 · 106 events, 1834 bins Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250bin number

0

2000

4000

6000

8000

F = 0 once-subtracted twice-subtracted

χ2/ndof 1.71 . . . 2.06 1.17 . . . 1.50 1.02 . . . 1.03

• perfect fit respecting analyticity and unitarity possible

• contact term emulates neglected rescattering effects

• no need for "background" — inseparable from "resonance"

B. Kubis, Combining effective field theories with dispersion relations – p. 13

Page 37: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Meson transition form factors and (g − 2)µ

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in (g − 2)µ:

had

had

−→ hadronic light-by-light soon dominant uncertainty

B. Kubis, Combining effective field theories with dispersion relations – p. 14

Page 38: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Meson transition form factors and (g − 2)µ

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in (g − 2)µ:

had

had

−→ hadronic light-by-light soon dominant uncertainty

• important contribution: pseudoscalar pole terms

singly / doubly virtual form factors

FPγγ∗(q2, 0) and FPγ∗γ∗(q21 , q22)

π0, η, η′

B. Kubis, Combining effective field theories with dispersion relations – p. 14

Page 39: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Meson transition form factors and (g − 2)µ

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in (g − 2)µ:

had

had

−→ hadronic light-by-light soon dominant uncertainty

• important contribution: pseudoscalar pole terms

singly / doubly virtual form factors

FPγγ∗(q2, 0) and FPγ∗γ∗(q21 , q22)

• for specific virtualities: linked tovector-meson conversion decays

π0, η, η′

−→ e.g. Fπ0γ∗γ∗(q21 ,M2ω) measurable in ω → π0ℓ+ℓ− etc.

B. Kubis, Combining effective field theories with dispersion relations – p. 14

Page 40: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Transition form factor ω → π0ℓ+ℓ−

• π0 → γ∗γ∗ form factor linked to ω(φ) → π0γ∗ transition:

e+

e−

π0e−

e+

B. Kubis, Combining effective field theories with dispersion relations – p. 15

Page 41: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Transition form factor ω → π0ℓ+ℓ−

• π0 → γ∗γ∗ form factor linked to ω(φ) → π0γ∗ transition:

e+

e−

π0e−

e+

ω(φ)

B. Kubis, Combining effective field theories with dispersion relations – p. 15

Page 42: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Transition form factor ω → π0ℓ+ℓ−

• π0 → γ∗γ∗ form factor linked to ω(φ) → π0γ∗ transition:

disc

ω

π0

π0

ωπ

+

π−

=

• ω transition form factor related to

pion vector form factor × ω → 3π decay amplitude︸ ︷︷ ︸

calculate like φ→3π

• form factor normalization yields rate Γ(ω → π0γ)

(2nd most important ω decay channel)−→ works at 95% accuracy Schneider, BK, Niecknig 2012

B. Kubis, Combining effective field theories with dispersion relations – p. 15

Page 43: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Numerical results: ω → π0µ+µ−

0 0.1 0.2 0.3 0.4 0.5 0.6

1

10

100

√s [GeV]

|Fωπ0(s)|2

NA60 ’09NA60 ’11Lepton-GVMDTerschlüsen et al.f1(s) = aΩ(s)full dispersive

0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8

9

√s [GeV]

dΓω→

π0µ+µ−/d

s[10−

6G

eV−1]

• unable to account for steeprise in data (from heavy-ioncollisions) NA60 2009, 2011

• more "exclusive" data?! CLAS?

• ω → 3π Dalitz plot?

KLOE, WASA-at-COSY, CLAS?

B. Kubis, Combining effective field theories with dispersion relations – p. 16

Page 44: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Numerical results: φ → π0ℓ+ℓ−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

10

100

√s [GeV]

|Fφπ0(s)|2

VMDf1(s) = aΩ(s)once subtracted f1(s)

twice subtracted f1(s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

1

2

3

4

5

6

7

√s [GeV]

dΓφ→

π0µ+µ−/d

s[10−

8G

eV−1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.910-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

0.2 0.3 0.4 0.5 0.6 0.7 0.801

2

34

5

6

7

10em

8

√s [GeV]

dΓφ→

π0e+e−/d

s[G

eV−1]

• measurement would be extremely helpful: ρ in physical region!

• partial-wave amplitude backed up by experimentB. Kubis, Combining effective field theories with dispersion relations – p. 17

Page 45: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

One step further: e+e− → 3π, e+e− → π0γ

π0

π−

π+

e−

e+

ω(φ)

• decay amplitude for ω/φ → 3π: Mω/φ ∝ F(s) + F(t) + F(u)

F(s) = aω/φΩ(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′)

|Ω(s′)|(s′ − s)

aω/φ adjusted to reproduce total width ω/φ → 3π

B. Kubis, Combining effective field theories with dispersion relations – p. 18

Page 46: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

One step further: e+e− → 3π, e+e− → π0γ

π0

π−

π+

e−

e+

• decay amplitude for e+e− → 3π: Me+e− ∝ F(s) + F(t) + F(u)

F(s, q2) = ae+e−(q2) Ω(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′, q2)

|Ω(s′)|(s′ − s)

ae+e−(q2) adjusted to reproduce spectrum e+e− → 3π

contains 3π resonances −→ no dispersive prediction

B. Kubis, Combining effective field theories with dispersion relations – p. 18

Page 47: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

One step further: e+e− → 3π, e+e− → π0γ

π0

π−

π+

e−

e+

• decay amplitude for e+e− → 3π: Me+e− ∝ F(s) + F(t) + F(u)

F(s, q2) = ae+e−(q2) Ω(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′, q2)

|Ω(s′)|(s′ − s)

ae+e−(q2) adjusted to reproduce spectrum e+e− → 3π

contains 3π resonances −→ no dispersive prediction

• parameterise e.g. in terms of (dispersively improved)

ω + φ Breit–Wigner propagators with good analytic propertiesLomon, Pacetti 2012; Moussallam 2013

B. Kubis, Combining effective field theories with dispersion relations – p. 18

Page 48: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

One step further: e+e− → 3π, e+e− → π0γ

π0e−

e+ γ

π+

π−

• decay amplitude for e+e− → 3π: Me+e− ∝ F(s) + F(t) + F(u)

F(s, q2) = ae+e−(q2) Ω(s)

1 +s

π

∫ ∞

4M2π

ds′

s′sin δ11(s

′)F(s′, q2)

|Ω(s′)|(s′ − s)

ae+e−(q2) adjusted to reproduce spectrum e+e− → 3π

contains 3π resonances −→ no dispersive prediction

• parameterise e.g. in terms of (dispersively improved)

ω + φ Breit–Wigner propagators with good analytic propertiesLomon, Pacetti 2012; Moussallam 2013

• fit to e+e− → 3π data −→ prediction for isoscalar e+e− → π0γ:

Fπγ∗γ(q2, 0) = Fvs(q

2, 0) + Fvs(0, q2)

B. Kubis, Combining effective field theories with dispersion relations – p. 18

Page 49: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

π0→ γ∗(q2

v)γ∗(q2

s) transition form factor

qv2

qs2

e−

e+π0

e−

e+

e+

e−

π0

π0 → γγ

π0 → e+e−e+e−

B. Kubis, Combining effective field theories with dispersion relations – p. 19

Page 50: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

π0→ γ∗(q2

v)γ∗(q2

s) transition form factor

qv2

qs2

e−

e+π0

e−

e+

e+

e−

π0

π0 → γγ

π0 → e+e−e+e−

π0e−

e+

π+

π− γ

∝ F πV × T (γπ → ππ)

B. Kubis, Combining effective field theories with dispersion relations – p. 19

Page 51: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

π0→ γ∗(q2

v)γ∗(q2

s) transition form factor

qv2

qs2

Mω2

Mφ2

e−

e+π0

e−

e+

e+

e−

π0

ω → π0e+e−

φ → π0e+e−

π0 → γγ

π0 → e+e−e+e−

π0e−

e+

π+

π− γ

∝ F πV × T (γπ → ππ)

π0

γ

e−

e+

ω(φ)

B. Kubis, Combining effective field theories with dispersion relations – p. 19

Page 52: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Towards a dispersive analysis of e+e− → π0γ

e+

e−

γ

π0e+

e−

γ

π0

e+

e−

γ

π0 γ∗

• combine isoscalar and isovector contribution to e+e− → π0γ

Fπγ∗γ(q2, 0) = Fvs(0, q

2) + Fvs(q2, 0)

=1

12π2

∫ ∞

4M2π

ds′q3π(s

′)√s′

fγ∗→3π1 (q2, s′)

s′+

fγπ→ππ1 (s′)

s′ − q2

FV ∗π (s′)

B. Kubis, Combining effective field theories with dispersion relations – p. 20

Page 53: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Fit to e+e− → 3π data

0.5 0.6 0.7 0.8 0.9 1 1.1 1.210-3

10-2

10-1

100

101

102

103

σ(q) e

+e−

→3π[nb]

q [GeV]

dispersive FitSND

Hoferichter, BK, Leupold, Niecknig, Schneider preliminary

• one subtraction/normalisation at q2 = 0 fixed by γ → 3π

• fitted: ω, φ residues, one additional (linear) subtraction

B. Kubis, Combining effective field theories with dispersion relations – p. 21

Page 54: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Comparison to e+e− → π0γ data

0.5 0.6 0.7 0.8 0.9 1 1.110-3

10-2

10-1

100

101

102

VEPP-2MCMD-2

σ(q) e

+e−

→π0γ[nb]

q[GeV]

Hoferichter, BK, Leupold, Niecknig, Schneider preliminary

• "prediction"—no further parameters adjusted

• data well reproduced

B. Kubis, Combining effective field theories with dispersion relations – p. 22

Page 55: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Summary / Outlook

Dispersion relations for light-meson processes

• based on unitarity, analyticity, crossing symmetry

• extends range of applicability (at least) to full elastic regime

• matching to ChPT where it works best

Primakoff reaction γπ → ππ

• enable improved extraction of F3π from data up to 1 GeV

Vector meson decays ω/φ → 3π, π0γ∗

• perfect analytic-unitary description of φ → 3π Dalitz plot

π0 transition form factor

• successful description of e+e− → π0γ

• goal: doubly-virtual π0 transition form factor

−→ interrelate as much experimental information as possibleto constrain hadron physics in (g − 2)µ

B. Kubis, Combining effective field theories with dispersion relations – p. 23

Page 56: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Spares

B. Kubis, Combining effective field theories with dispersion relations – p. 24

Page 57: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Transition form factor beyond the πω threshold

0 0.2 0.4 0.6 0.8 1 1.2 1.40.1

1

10

100

√s [GeV]

|Fφπ0(s)|2

NA60 ’09NA60 ’11Lepton-G

VMDCMD-2

Terschlüsen et al.f1(s) = aΩ(s)

once subtracted f1(s)

• full solution above naive VMD, but still too low

• higher intermediate states (4π / πω) more important?

B. Kubis, Combining effective field theories with dispersion relations – p. 25

Page 58: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Improved Breit–Wigner resonances

Lomon, Pacetti 2012; Moussallam 2013

• “standard” Breit–Wigner function with energy-dependent width

Bℓ(q2) =1

M2res − q2 − iMresΓℓ

res(q2)

Γℓres(q

2) = θ(q2 − 4M2π)

Mres√

q2

( q2 − 4M2π

M2res − 4M2

π

)ℓ

Γres(M2res)

⊲ no correct analytic continuation below threshold q2 < 4M2π

⊲ wrong phase behaviour for ℓ ≥ 1:

limq2→∞

argB1(q2) ≈ π− arctanΓres

Mreslim

q2→∞argBℓ≥2(q2) =

π

2(!)

• remedy: reconstruct via dispersion integral

Bℓ(q2) =1

π

∫ ∞

4M2π

ImBℓ(s′)ds′

s′ − q2−→ lim

s→∞argBℓ(q2) = π

B. Kubis, Combining effective field theories with dispersion relations – p. 26

Page 59: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

On the approximation for the 3-pion cut

Compare:e+

e−

γ

π0

e+

e−

γ

π0

−→ isoscalar contribution looks simplistic; why not instead

e+

e−

γ

π0

−→ contains amplitude 3π → γπ

B. Kubis, Combining effective field theories with dispersion relations – p. 27

Page 60: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

On the approximation for the 3-pion cut

Compare:e+

e−

γ

π0

e+

e−

γ

π0

−→ isoscalar contribution looks simplistic; why not instead

e+

e−

γ

π0

−→ contains amplitude 3π → γπ

Our approximation:e+

e−

γ

π0

includes

e+

e−

γ

π0

B. Kubis, Combining effective field theories with dispersion relations – p. 27

Page 61: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

On the approximation for the 3-pion cut

Compare:e+

e−

γ

π0

e+

e−

γ

π0

−→ isoscalar contribution looks simplistic; why not instead

e+

e−

γ

π0

−→ contains amplitude 3π → γπ

Our approximation:e+

e−

γ

π0

includes

e+

e−

γ

π0

−→ simplifies left-hand-cut structure in 3π → γπ to pion pole terms

B. Kubis, Combining effective field theories with dispersion relations – p. 27

Page 62: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Application: η, η′→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Aη(′)

ππγ = A× P (sππ)× FVπ (sππ), P (sππ) = 1 + α(′)sππ

B. Kubis, Combining effective field theories with dispersion relations – p. 28

Page 63: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Application: η, η′→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Aη(′)

ππγ = A× P (sππ)× FVπ (sππ), P (sππ) = 1 + α(′)sππ

• spectra with fitted normalisation and slope(s) α(′)

0 0.05 0.1 0.15 0.2

Eγ[GeV]

0

1

2

3

4

5

6

7

8

dΓ/dEγ[arb. units]

0 0.1 0.2 0.3 0.4

Eγ[GeV]

0

5

10

15

20

dΓ/dEγ[arb. units]

Stollenwerk et al. 2012

B. Kubis, Combining effective field theories with dispersion relations – p. 28

Page 64: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

Application: η, η′→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Aη(′)

ππγ = A× P (sππ)× FVπ (sππ), P (sππ) = 1 + α(′)sππ

• divide data by pion form factor −→ P (sππ)

0 0.05 0.1 0.15 0.2 0.25 0.3

sππ [GeV2]

1

1.2

1.4

1.6

P(s π

π)

0 0.2 0.4 0.6 0.8

sππ [GeV2]

1

1.5

2

2.5

3

P(s π

π)

Stollenwerk et al. 2012

−→ exp.: αWASA = (1.89± 0.64)GeV−2, αKLOE = (1.31± 0.08)GeV−2

−→ interpret α(′) by matching to chiral perturbation theory

B. Kubis, Combining effective field theories with dispersion relations – p. 28

Page 65: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ππ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations+ crossing symmetry + unitarity

• twice-subtracted fixed-t dispersion relation:

T (s, t) = c(t) +1

π

∫ ∞

4M2π

ds′

s2

s′2(s′ − s)+

u2

s′2(s′ − u)

ImT (s′, t)

• subtraction function c(t) determined from crossing symmetry

B. Kubis, Combining effective field theories with dispersion relations – p. 29

Page 66: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ππ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations+ crossing symmetry + unitarity

• twice-subtracted fixed-t dispersion relation:

T (s, t) = c(t) +1

π

∫ ∞

4M2π

ds′

s2

s′2(s′ − s)+

u2

s′2(s′ − u)

ImT (s′, t)

• subtraction function c(t) determined from crossing symmetry

• project onto partial waves tIJ(s) (angular momentum J , isospin I)−→ coupled system of partial-wave integral equations

tIJ(s) = kIJ(s) +

2∑

I′=0

∞∑

J′=0

∫ ∞

4M2π

ds′KII′

JJ′(s, s′)ImtI′

J′(s′)

Roy 1971

• subtraction polynomial kIJ(s): ππ scattering lengthscan be matched to chiral perturbation theory Colangelo et al. 2001

• kernel functions KII′

JJ′(s, s′) known analytically

B. Kubis, Combining effective field theories with dispersion relations – p. 29

Page 67: Combining effective field theories with dispersion relationscrunch.ikp.physik.tu-darmstadt.de/hirschegg/2014/talks/Tue/Kubis.pdf · −→ dispersion relations B. Kubis, Combining

ππ scattering constrained by analyticity and unitarity

• elastic unitarity −→ coupled integral equations for phase shifts

• modern precision analyses:⊲ ππ scattering Ananthanarayan et al. 2001, García-Martín et al. 2011

⊲ πK scattering Büttiker et al. 2004

• example: ππ I = 0 S-wave phase shift & inelasticity

400 600 800 1000 1200 1400

s1/2

(MeV)

0

50

100

150

200

250

300

CFDOld K decay dataNa48/2K->2 π decayKaminski et al.Grayer et al. Sol.BGrayer et al. Sol. CGrayer et al. Sol. DHyams et al. 73

δ0

(0)

1000 1100 1200 1300 1400

s1/2

(MeV)

0

0.5

1

η00(s)

Cohen et al.Etkin et al.Wetzel et al.Hyams et al. 75Kaminski et al.Hyams et al. 73Protopopescu et al.CFD .

ππ KK

ππ ππ

García-Martín et al. 2011

• strong constraints on data from analyticity and unitarity!

B. Kubis, Combining effective field theories with dispersion relations – p. 30