combination of spme as non-invasive sample preparation · pdf filefeatures ↓ disturbance...

1
Combination of SPME as non-invasive sample preparation technique and GCxGC-TOFMS for high resolution profiling of metabolites in apples: method development considerations and potential of new invivo SPME formats Sanja Risticevic 1 , Jennifer R. DeEll 2 , Janusz Pawliszyn 1 1 Department of Chemistry, University of Waterloo, Waterloo, Canada; 2 Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe, Canada Introduction Solid phase microextraction; SPME developed by Pawliszyn et al. in 1989 disadvantages of traditional sample preparation; combination of sampling, extraction, concentration & sample introduction into 1 solvent free step; HS- & DI-SPME extraction modes of gaseous, liquid and solid samples; sample amount, sample preparation times & easy automation SPME features disturbance to investigated biological system; + invivo sampling: metabolism quenching step eliminated more representative sample extracts; more representative metabolism snapshot; sample preparation, extraction & storage artifacts; detection of rapid and short metabolism changes MINIATURIZED FORMAT & NON-EXHAUSTIVE EXTRACTION SPME coating selection for GC-metabolomics metabolite profiling of apples using SPME-GCxGC- TOFMS comparison between invivo & exvivo sampling formats metabolite alignment, statistical analysis & identification of biomarkers 3 2 1 harvest & postharvest apple quality Project Objectives Experimental Pegasus 4D GCxGC-TOFMS system (LECO, St. Joseph, MI, USA): Agilent 6890N GC high-speed TOF dual-stage quad-jet cryogenic modulator from Zoex & MPS 2 autosampler from Gerstel GCxGC-TOFMS conditions: metabolomics samples RXI-5 SIL MS x Supelcowax/BP20/Stabilwax columns, 1.5 mL/min flow rate, 40 o C (5 min), 3 o C/min to 240 o C (10 min), 10 o C secondary oven offset, 30 o C modulator temperature offset, 5 sec modulation, 1 sec hot pulse time, m/z 33-550 acquisition range at 200 spectra/sec, 1700 V detector voltage SPME coating selection comprehensive evaluation : extraction selectivity , extraction sensitivity & desorption efficiency of SPME coatings across a volatility & polarity range MW range 88.15-312.54 g/mol; boiling point range 115.64-360.59 o C; log K ow range 1.26-8.72 3 mL water sample spiked with 52 compounds belonging to homologous series monoterpenes; sesquiterpenes alkanes; esters; aldehydes ketones; alcohols SPME sampling protocols exvivo invivo vs i) metabolism quenching liquid nitrogen; saturated NaCl solution ii) homogenization iii) 1 hr HS- SPME & DI- SPME sampling iv) desorption & GCXGC- TOFMS analysis i) 1 hr DI- SPME sampling ii) wash step in water after sampling & before desorption iii) desorption & GCXGC- TOFMS analysis Results & Discussion SPME coating selection: extraction sensitivity calculation of fibre coating/sample matrix distribution constants (K fs ) & fibre constants (K fs . V f ) 1.5 mL/min flow rate; 35 o C (5 min) initial & 245 o C (3 min) final temp for 1 st dimension; 3 o C/min rate 15 o C 2 nd oven temp offset; 35 o C modulator temp offset; 3 sec modulation period; 0.6 sec hot pulse time GCxGC column combinations 0 0.5 1 1.5 2 2.5 3 0 1000 2000 3000 4000 second dimension retention time; sec first dimension retention time; sec peak apex plot - non-polar/semi-polar column ensemble 0 0.5 1 1.5 2 2.5 3 0 1000 2000 3000 4000 second dimension retention time; sec first dimension retention time; sec peak apex plot - non-polar/polar column ensemble RXI-5Sil MS/ SUPELCOWAX; 1199 features RXI-5Sil MS/DB-17; 781 features 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z alkanes 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z ethyl esters 2-ketones 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z aldehydes -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 2-pentanol 2-hexanol 2-octanol 2-dodecanol 2-hexadecanol log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z 2-alcohols 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z 1-alcohols 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z PDMS -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 log K fs V f PDMS PDMS/DVB PA CAR/PDMS CW DVB/CAR/PDMS CARBOPACK Z spiked water samples 1 hour HS-SPME extraction; 30 o C sample temperature; 10 min desorption @ 5 o C < max temp oxygenated terpenes SPME coating selection: extraction selectivity 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec terpenes 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec PA 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec CW 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec PDMS/DVB 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec DVB/CAR/PDMS 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec CAR/PDMS 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 second dimension RT; sec first dimension RT; sec CARBOPACK Z/PDMS 0 200 400 600 800 1000 1200 1400 # of features toward standardization of SPME coating selection 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 0 500 1000 1500 2000 2500 3000 3500 4000 4500 second dimension RT; sec first dimension RT; sec alkanes monoterpene hydrocarbons sesquiterpene hydrocarbons 2-ketones aldehydes ethyl esters 1-alcohols 2-alcohols monoterpene ketones monoterpene aldehydes monoterpene oxides monoterpene alcohols sesquiterpene alcohols CAR/PDMS DVB/CAR/PDMS DVB/CAR/PDMS; PDMS/DVB PDMS/DVB; CW DVB/CAR/PDMS; PDMS/DVB; CW DVB/CAR/PDMS; PDMS/DVB; PDMS; PA PDMS/DVB; PDMS; PA liquid sorbents i) non-polar compounds (alkanes and monoterpene hydrocarbons), slightly polar volatile compounds (ethyl esters, MW < 187 g/mol): PDMS ii) more polar components (aliphatic aldehydes and ketones), sesquiterpene hydrocarbons: performance characteristics of PDMS and PA are not statistically different iii) polar components having log K ow < 3.30 (1-alcohols and 2-alcohols): CW and PA solid sorbents i) MW < 80-90 g/mol: CAR/PDMS ii) MW 90-250 g/mol: DVB/CAR/PDMS iii) MW 185-315 g/mol: PDMS/DVB MW & log K ow thresholds: best sensitivity, selectivity & desorption efficiency exvivo & invivo sampling in SPME sampling protocols: metabolite coverage exvivo DI-SPME # of features (S/N 100): 4297 exvivo HS-SPME # of features (S/N 100): 2413 invivo DI-SPME # of features (S/N 100): 8344 metabolite coverage for high MW and polar metabolites biased metabolite coverage: discrimination toward high MW & polar metabolites: limitation of HS-SPME sampling post-processing of peak tables for DI-SPME: S/N 200 invivo 1048 features 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 2D RT; sec 1D RT; sec exvivo 906 features 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1000 2000 3000 4000 2D RT; sec 1D RT; sec in SPME sampling protocols: differential metabolites invivo analyte name CAS # RI exp RI lit similarity structure 2,4,6-Trimethylphenol 527-60-6 1205 1204 824 2-Phenoxyethanol 122-99-6 1223 1226 898 gamma-Butyrolactone 96-48-0 944 941 965 2-Methylbenzofuran 4265-25-2 1105 1109 879 2,2'-Bifuran 5905-00-0 1037 1047 872 Butyl stearate 123-95-5 2385 2374 862 2-(2-Ethoxyethoxy)ethanol 111-90-0 1019 1006 953 Z-11-Hexadecenoic acid 2416-20-8 1938 1953 863 (2-Phenoxyethoxy)benzene 104-66-5 1793 1811 892 OH OH O O O O O O O O O OH O HO O O O 2,4,6-trimethylphenol 2-phenoxyethanol 2-methylbenzofuran invivo exvivo enzyme activation during exvivo sample preparation step: non-specific degradation of metabolites ? differential metabolites table in SPME sampling protocols: differential metabolites exvivo 3 differential metabolites autoxidation/lipid peroxidation of unsaturated fatty acids and unsaturated acyl lipids precursor: linoleic acid (2E)-2-Heptenal (2Z)-2-Octenal exvivo invivo precursor: linolenic acid 5 differential metabolites (2E)-2-Pentenal (2E,6Z)-2,6-Nonadienal exvivo invivo oxidative degradation of carotenoids 6-Methyl-3,5-heptadiene-2-one PRECURSOR: Dehydrolycopene β-cyclocitral PRECURSOR: β-Carotene exvivo invivo invivo sampling: CHALLENGES invivo 2-hydroxymethyl-5-furfural, RI exp : 1259, Ri lit : 1256, SIM 856 solution ? Maillard rxn artifacts generation during desorption step exvivo 5-methylfurfural, RI exp : 967, Ri lit : 960, SIM 886 invivo in SPME sampling protocols: precision exvivo HS- SPME no fibre fouling precision of HS- SPME same aliquot; aging effects: median RSD: 6.4 % minimum: 0.5 % maximum: 23.1 % precision of HS- SPME & sample prep different aliquots; aging effects: median RSD: 13.6 % minimum: 2.5 % maximum: 88.6 % 0 50000 100000 150000 200000 250000 300000 350000 1 2 3 4 5 6 7 8 9 10 peak area; counts injection # (E)- beta- damascenone 0 200000 400000 600000 800000 1000000 1200000 1400000 1 2 3 4 5 6 7 8 9 10 peak area; counts injection # 2- octenal reactivity of apple components; formation and decomposition rxns: rxns producing carbonyl compounds; acetalization of aldehydes; synthesis & hydrolysis of volatile esters; degradation of polyphenols invivo DI-SPME intra-fruit repeatability ; n = 3 fibers, 53 compounds analyte name; (synonym) 1 t R ; sec 2 t R ; sec m/z SIM RI exp RI lit RSD; % acetic acid, propyl ester 525 1.020 61 926 718 na 13.2 2-methyl-1-butanol 588 2.245 70 945 741 731 25.0 1-pentanol 666 2.420 70 948 770 759 28.4 hexanal 759 1.135 56 927 803 801 13.2 2-vinyl-5-methylfuran 852 1.250 93 811 831 na 24.7 2-hexenal 930 1.475 69 961 855 850 20.8 trans -2-hexenol 972 2.915 57 932 867 na 19.1 2,6,6-trimethylbicyclo[3.1.1]hept-2-ene, (alpha- pinene) 1194 0.760 93 891 934 933 7.2 6,6-dimethyl-2-methylene-bicyclo(3.1.1)heptane, (beta- pinene) 1344 0.825 93 828 979 978 0.3 1-octen-3-ol 1347 1.885 57 937 980 978 11.7 6-methyl-5-hepten-2-one 1362 1.320 108 891 985 986 9.3 2-methyl-6-methylene-2,7-octadiene, (beta-myrcene) 1380 0.865 93 877 990 991 11.7 1-methyl-4-(1-methylethenyl)cyclohexene, (limonene) 1509 0.870 68 941 1030 1030 11.0 butyl 2-methylbutanoate 1545 0.905 103 911 1042 na 23.6 2-octenal 1596 1.365 55 910 1058 1059 3.7 1-isopropyl-4-methyl-1,4-cyclohexadiene, (gamma - terpinene) 1602 0.890 93 870 1059 1058 12.2 nonanal 1743 1.090 57 935 1104 1107 4.1 cis,cis-4,6-octadienol 1767 0.035 67 802 1112 na 14.4 butyl-3-hydroxybutanoate 1818 2.345 87 854 1129 na 16.8 4-ethylbenzaldehyde 1920 2.100 134 894 1164 1181 9.0 (2E)-3-phenyl-2-propenal, (trans- cinnamaldehyde) 2034 2.930 131 885 1202 na 14.9 4-isopropylbenzaldehyde, (cumaldehyde) 2091 1.855 148 844 1223 na 6.6 1-benzofuran-2(3H)-one, (2- coumaranone) 2124 2.030 78 815 1234 na 15.6 2-undecanone 2283 1.070 58 844 1291 1294 19.8 5-pentyldihydro-2(3H)-furanone, (gamma- nonalactone) 2469 2.505 85 844 1361 1362 13.4 2-dodecanone 2556 1.065 58 787 1394 1393 23.4 1,2-dimethoxy-4-(2-propenyl)benzene, (methyl eugenol) 2562 2.030 178 932 1397 1403 21.3 dodecanal 2589 1.060 41 957 1407 1410 28.9 1,3-diacetylbenzene 2646 1.495 147 901 1430 na 4.3 5-hexyldihydro-2(3H)-furanone, (gamma- decalactone) 2730 2.355 85 751 1465 1469 12.5 6-pentyltetrahydro-2H-pyran-2-one, (delta-decalactone) 2793 2.460 99 854 1490 1494 10.7 1-(4-methoxyphenyl)-3-butanone, (rasberry ketone methyl ether) 2799 2.295 178 883 1493 na 10.6 1,3,6,10-dodecatetraene, 3,7,11-trimethyl-, (3E,6E)-, (farnesene < (E,E)-, alpha-> ) 2826 0.925 93 787 1504 1504 13.8 1-tridecanol 2991 1.370 55 873 1574 1580 14.4 tetradecanal 3078 1.040 57 947 1612 1614 46.4 phenyl benzoate 3180 2.890 105 917 1659 na 25.4 dihydro-5-octyl-2(3H)-furanone, (gamma- dodecalactone) 3219 2.125 85 826 1677 1681 10.7 6-heptyltetrahydro-2H-pyran-2-one, (delta- dodecalactone) 3279 2.220 99 778 1704 1708 16.3 1-pentadecanol 3435 1.305 83 888 1779 1784 14.7 valeric acid, 2-pentadecyl ester 3462 2.915 85 699 1791 na 34.8 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, acetate, (farnesyl acetate) 3546 1.245 69 744 1833 1832 55.0 4-(1-methyl-1-phenylethyl)phenol, (4- cumylphenol) 3597 2.575 197 824 1858 na 6.6 5-decyldihydro-2(3H)-furanone, (gamma-tetradecalactone) 3657 2.000 85 na 1888 na 22.6 2-heptadecanone 3681 1.040 58 811 1900 1915 43.0 6-nonyltetrahydro-2H-pyran-2-one, (delta-tetradecalactone) 3717 2.070 99 746 1919 1920 31.9 octadecanal 3909 1.040 96 887 2014 2024 66.4 1-methylethyl hexadecanoate, (isopropyl palmitate) 3912 0.915 60 846 2016 na 32.8 1-octadecanol 4023 1.275 83 875 2060 na 60.7 5-undecyldihydro-2(3H)-furanone, (gamma- pentadecalactone) 4056 1.935 85 na 2073 na 72.1 6-undecyltetrahydro-2H-pyran-2-one, (delta-hexadecalactone) 4110 2.010 99 na 2095 na 63.7 2-ethylhexyl-4-methoxycinnamate 4422 2.220 178 936 na na 48.2 eicosanal 4440 1.080 82 880 na na 77.5 6-dodecyltetrahydro-2H-pyran-2-one, (delta-heptadecalactone) 4470 2.015 99 na na na 102.3 precision of invivo DI- SPME median RSD: 16.3 % minimum: 0.3 % maximum: 102.3 % 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1000 2000 3000 4000 second dimension retention time; sec first dimension retention time; sec peak apex plot - precision of invivo measurements close examination of selected functional groups 0 20 40 60 80 100 120 RSD; % precision of invivo measurements - delta-lactones 0 10 20 30 40 50 60 70 80 90 RSD; % precision of invivo measurements - aldehydes 0 10 20 30 40 50 60 RSD; % precision of invivo measurements - terpenes RSD BPt in homologous series inter- fibre performance EXVIVO: excellent inter- fibre repeatability across MW & volatility range 0 40000 80000 120000 160000 200000 peak area; counts fiber 1 fiber 2 fiber 3 0 20000 40000 60000 80000 peak area; counts fiber 1 fiber 2 fiber 3 in metabolite distribution ??? Conclusions potential of novel invivo SPME sampling formats and GCxGC-TOFMS for unbiased and representative characterization of metabolome metabolite coverage (1000s of metabolites at required sensitivities); median intra-fruit RSD - 16.3%; detection of differential metabolites Acknowledgements LECO Corporation; OMAFRA & Ontario Apple Growers, OAG; Erica Silva; GERSTEL; Restek (Jack Cochran); Chemistry Stores (Kenneth Gosselink & Matthew Sternbauer); SUPELCO; NSERC

Upload: truongkien

Post on 09-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Combination of SPME as non-invasive sample preparation · PDF filefeatures ↓ disturbance to ... monoterpene hydrocarbons sesquiterpene hydrocarbons 2-ketones aldehydes ethyl esters

Combination of SPME as non-invasive sample preparation technique and GCxGC-TOFMS for high resolution profiling of metabolites in apples: method development considerations and potential of new invivo SPME formats Sanja Risticevic1, Jennifer R. DeEll2, Janusz Pawliszyn1 1 Department of Chemistry, University of Waterloo, Waterloo, Canada; 2 Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe, Canada

Introduction

Solid phase microextraction; SPME

developed by Pawliszyn et al. in 1989

↓ disadvantages of traditional sample preparation; combination of sampling, extraction, concentration & sample introduction into 1 solvent free step; HS- & DI-SPME extraction modes of gaseous, liquid and solid samples; ↓ sample amount, ↓ sample preparation times & easy automation

SPME features

↓ disturbance to investigated biological system; + invivo sampling: metabolism quenching step eliminated more representative sample extracts; more representative metabolism snapshot; ↓ sample preparation, extraction & storage artifacts; detection of rapid and short metabolism changes

MINIATURIZED FORMAT

& NON-EXHAUSTIVE EXTRACTION

SPME coating selection for GC-metabolomics

metabolite profiling of apples using SPME-GCxGC-TOFMS

comparison between invivo & exvivo sampling formats

metabolite alignment, statistical analysis & identification of biomarkers

3

2

1

harvest & postharvest apple quality

Project Objectives

Experimental Pegasus 4D GCxGC-TOFMS system (LECO, St. Joseph, MI, USA): Agilent 6890N GC high-speed TOF dual-stage quad-jet cryogenic modulator from Zoex & MPS 2 autosampler from Gerstel

GCxGC-TOFMS conditions: metabolomics samples RXI-5 SIL MS x Supelcowax/BP20/Stabilwax columns, 1.5 mL/min flow rate, 40 oC (5 min), 3 oC/min to 240 oC (10 min), 10 oC secondary oven offset, 30 oC modulator temperature offset, 5 sec modulation, 1 sec hot pulse time, m/z 33-550 acquisition range at 200 spectra/sec, 1700 V detector voltage

SPME coating selection comprehensive evaluation: extraction selectivity, extraction sensitivity & desorption efficiency of SPME coatings across a volatility & polarity range MW range 88.15-312.54 g/mol; boiling point range 115.64-360.59 oC; log Kow range 1.26-8.72

3 mL water sample spiked with 52 compounds belonging to homologous series

monoterpenes; sesquiterpenes

alkanes; esters;

aldehydes

ketones; alcohols

SPME sampling protocols

exvivo invivo vs

i) metabolism quenching liquid nitrogen; saturated NaCl solution ii) homogenization iii) 1 hr HS- SPME & DI- SPME sampling iv) desorption & GCXGC- TOFMS analysis

i) 1 hr DI- SPME sampling ii) wash step in water after sampling & before desorption iii) desorption & GCXGC- TOFMS analysis

Results & Discussion

SPME coating selection: extraction sensitivity

calculation of fibre coating/sample matrix distribution constants (Kfs)

& fibre constants (Kfs.Vf)

1.5 mL/min flow rate; 35 oC (5 min) initial & 245 oC (3 min) final temp for 1st dimension; 3 oC/min rate 15 oC 2nd oven temp offset; 35 oC modulator temp offset; 3 sec modulation period; 0.6 sec hot pulse time

GCxGC column combinations

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000

seco

nd d

imen

sion

ret

ention

tim

e; s

ec

first dimension retention time; sec

peak apex plot -non-polar/semi-polar column ensemble

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000

seco

nd d

imen

sion

ret

ention

tim

e; s

ec

first dimension retention time; sec

peak apex plot -non-polar/polar column ensemble

RXI-5Sil MS/ SUPELCOWAX;

1199 features

RXI-5Sil MS/DB-17;

781 features

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

alkanes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

ethyl esters 2-ketones

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

aldehydes

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2-pe

ntan

ol

2-he

xano

l

2-oc

tano

l

2-do

deca

nol

2-he

xade

cano

l

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

2-alcohols

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

1-alcohols

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

log

K fsV

f PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

PDMS

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

log

K fsV

f

PDMS

PDMS/DVB

PA

CAR/PDMS

CW

DVB/CAR/PDMS

CARBOPACK Z

spiked water samples 1 hour HS-SPME extraction; 30 oC sample temperature; 10 min desorption @ 5 oC < max temp

oxygenated terpenes

SPME coating selection: extraction selectivity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

terpenes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

PA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

CW

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

PDMS/DVB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

DVB/CAR/PDMS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

CAR/PDMS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

CARBOPACK Z/PDMS

0

200

400

600

800

1000

1200

1400

# of

feat

ures

toward standardization of SPME coating selection

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

seco

nd d

imen

sion

RT;

sec

first dimension RT; sec

alkanes

monoterpene hydrocarbons

sesquiterpene hydrocarbons

2-ketones

aldehydes

ethyl esters

1-alcohols

2-alcohols

monoterpene ketones

monoterpene aldehydes

monoterpene oxides

monoterpene alcohols

sesquiterpene alcohols

CAR/PDMS DVB/CAR/PDMS DVB/CAR/PDMS;PDMS/DVB

PDMS/DVB;CW

DVB/CAR/PDMS;PDMS/DVB;CW

DVB/CAR/PDMS;PDMS/DVB;PDMS;PA

PDMS/DVB;PDMS;PA

liquid sorbents i) non-polar compounds (alkanes and monoterpene

hydrocarbons), slightly polar volatile compounds (ethyl esters, MW < 187 g/mol): PDMS

ii) more polar components (aliphatic aldehydes and ketones), sesquiterpene hydrocarbons: performance characteristics of PDMS and PA are not statistically different

iii) polar components having log Kow < 3.30 (1-alcohols and 2-alcohols): CW and PA

solid sorbents i) MW < 80-90 g/mol: CAR/PDMS ii) MW 90-250 g/mol:

DVB/CAR/PDMS iii) MW 185-315 g/mol: PDMS/DVB

MW & log Kow thresholds: best sensitivity, selectivity & desorption efficiency

exvivo & invivo sampling ∆ in SPME sampling protocols: metabolite coverage

exvivo DI-SPME # of features

(S/N 100): 4297

exvivo HS-SPME # of features

(S/N 100): 2413

invivo DI-SPME # of features

(S/N 100): 8344

↑ metabolite coverage for high

MW and polar metabolites

biased metabolite coverage:

discrimination toward high MW & polar metabolites:

limitation of HS-SPME sampling

post-processing of peak tables for DI-SPME: S/N 200

invivo 1048 features

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

2D R

T; s

ec

1D RT; sec

exvivo 906 features

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

2D R

T; s

ec

1D RT; sec

∆ in SPME sampling protocols: differential metabolites invivo

analyte name CAS # RIexp RIlit similarity structure

2,4,6-Trimethylphenol 527-60-6 1205 1204 824

2-Phenoxyethanol 122-99-6 1223 1226 898

gamma-Butyrolactone 96-48-0 944 941 965

2-Methylbenzofuran 4265-25-2 1105 1109 879

2,2'-Bifuran 5905-00-0 1037 1047 872

Butyl stearate 123-95-5 2385 2374 862

2-(2-Ethoxyethoxy)ethanol 111-90-0 1019 1006 953

Z-11-Hexadecenoic acid 2416-20-8 1938 1953 863

(2-Phenoxyethoxy)benzene 104-66-5 1793 1811 892

OH

OH

O

O

O

O

OO

OO

O OHO

HOO

OO

2,4,6-trimethylphenol

2-phenoxyethanol

2-methylbenzofuran

invivo exvivo

enzyme activation during exvivo sample preparation step: non-specific degradation of metabolites ?

differential metabolites table

∆ in SPME sampling protocols: differential metabolites exvivo

3 differential metabolites

autoxidation/lipid peroxidation of unsaturated fatty acids and unsaturated acyl lipids

precursor: linoleic acid

(2E)-2-Heptenal

(2Z)-2-Octenal

exvivo invivo

precursor: linolenic acid 5 differential metabolites

(2E)-2-Pentenal

(2E,6Z)-2,6-Nonadienal

exvivo invivo

oxidative degradation of carotenoids

6-Methyl-3,5-heptadiene-2-one PRECURSOR: Dehydrolycopene

β-cyclocitral PRECURSOR: β-Carotene

exvivo invivo

invivo sampling: CHALLENGES

invivo

2-hydroxymethyl-5-furfural, RIexp: 1259, Rilit: 1256, SIM 856

solution ?

Maillard rxn artifacts generation

during desorption

step

exvivo

5-methylfurfural, RIexp: 967, Rilit: 960, SIM 886

invivo

∆ in SPME sampling protocols: precision

exvivo HS-SPME no fibre fouling

precision of HS- SPME same aliquot; ↓ aging effects: median RSD: 6.4 % minimum: 0.5 % maximum: 23.1 %

precision of HS- SPME & sample prep different aliquots; aging effects: median RSD: 13.6 % minimum: 2.5 % maximum: 88.6 %

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10

peak

are

a; c

ount

s

injection #

(E)- beta- damascenone

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10

peak

are

a; c

ount

s

injection #

2- octenal

reactivity of apple components; formation and decomposition rxns: rxns producing carbonyl compounds; acetalization of aldehydes; synthesis & hydrolysis of volatile esters; degradation of polyphenols

invivo DI-SPME

intra-fruit repeatability; n = 3 fibers, 53 compounds

analyte name; (synonym) 1t R; sec 2t R; sec m/z SIM RIexp RIlit RSD; %acetic acid, propyl ester 525 1.020 61 926 718 na 13.2

2-methyl-1-butanol 588 2.245 70 945 741 731 25.01-pentanol 666 2.420 70 948 770 759 28.4hexanal 759 1.135 56 927 803 801 13.2

2-vinyl-5-methylfuran 852 1.250 93 811 831 na 24.72-hexenal 930 1.475 69 961 855 850 20.8

trans-2-hexenol 972 2.915 57 932 867 na 19.12,6,6-trimethylbicyclo[3.1.1]hept-2-ene, (alpha- pinene) 1194 0.760 93 891 934 933 7.2

6,6-dimethyl-2-methylene-bicyclo(3.1.1)heptane, (beta- pinene) 1344 0.825 93 828 979 978 0.31-octen-3-ol 1347 1.885 57 937 980 978 11.7

6-methyl-5-hepten-2-one 1362 1.320 108 891 985 986 9.32-methyl-6-methylene-2,7-octadiene, (beta- myrcene) 1380 0.865 93 877 990 991 11.71-methyl-4-(1-methylethenyl)cyclohexene, (limonene) 1509 0.870 68 941 1030 1030 11.0

butyl 2-methylbutanoate 1545 0.905 103 911 1042 na 23.62-octenal 1596 1.365 55 910 1058 1059 3.7

1-isopropyl-4-methyl-1,4-cyclohexadiene, (gamma - terpinene) 1602 0.890 93 870 1059 1058 12.2nonanal 1743 1.090 57 935 1104 1107 4.1

cis,cis-4,6-octadienol 1767 0.035 67 802 1112 na 14.4butyl-3-hydroxybutanoate 1818 2.345 87 854 1129 na 16.8

4-ethylbenzaldehyde 1920 2.100 134 894 1164 1181 9.0(2E)-3-phenyl-2-propenal, (trans- cinnamaldehyde) 2034 2.930 131 885 1202 na 14.9

4-isopropylbenzaldehyde, (cumaldehyde) 2091 1.855 148 844 1223 na 6.61-benzofuran-2(3H)-one, (2- coumaranone) 2124 2.030 78 815 1234 na 15.6

2-undecanone 2283 1.070 58 844 1291 1294 19.85-pentyldihydro-2(3H)-furanone, (gamma- nonalactone) 2469 2.505 85 844 1361 1362 13.4

2-dodecanone 2556 1.065 58 787 1394 1393 23.41,2-dimethoxy-4-(2-propenyl)benzene, (methyl eugenol) 2562 2.030 178 932 1397 1403 21.3

dodecanal 2589 1.060 41 957 1407 1410 28.91,3-diacetylbenzene 2646 1.495 147 901 1430 na 4.3

5-hexyldihydro-2(3H)-furanone, (gamma- decalactone) 2730 2.355 85 751 1465 1469 12.56-pentyltetrahydro-2H-pyran-2-one, (delta- decalactone) 2793 2.460 99 854 1490 1494 10.7

1-(4-methoxyphenyl)-3-butanone, (rasberry ketone methyl ether) 2799 2.295 178 883 1493 na 10.61,3,6,10-dodecatetraene, 3,7,11-trimethyl-, (3E,6E)-, (farnesene < (E,E)- , alpha- > ) 2826 0.925 93 787 1504 1504 13.8

1-tridecanol 2991 1.370 55 873 1574 1580 14.4tetradecanal 3078 1.040 57 947 1612 1614 46.4

phenyl benzoate 3180 2.890 105 917 1659 na 25.4dihydro-5-octyl-2(3H)-furanone, (gamma- dodecalactone) 3219 2.125 85 826 1677 1681 10.7

6-heptyltetrahydro-2H-pyran-2-one, (delta- dodecalactone) 3279 2.220 99 778 1704 1708 16.31-pentadecanol 3435 1.305 83 888 1779 1784 14.7

valeric acid, 2-pentadecyl ester 3462 2.915 85 699 1791 na 34.82,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, acetate, (farnesyl acetate) 3546 1.245 69 744 1833 1832 55.0

4-(1-methyl-1-phenylethyl)phenol, (4- cumylphenol) 3597 2.575 197 824 1858 na 6.65-decyldihydro-2(3H)-furanone, (gamma- tetradecalactone) 3657 2.000 85 na 1888 na 22.6

2-heptadecanone 3681 1.040 58 811 1900 1915 43.06-nonyltetrahydro-2H-pyran-2-one, (delta- tetradecalactone) 3717 2.070 99 746 1919 1920 31.9

octadecanal 3909 1.040 96 887 2014 2024 66.41-methylethyl hexadecanoate, (isopropyl palmitate) 3912 0.915 60 846 2016 na 32.8

1-octadecanol 4023 1.275 83 875 2060 na 60.75-undecyldihydro-2(3H)-furanone, (gamma- pentadecalactone) 4056 1.935 85 na 2073 na 72.1

6-undecyltetrahydro-2H-pyran-2-one, (delta- hexadecalactone) 4110 2.010 99 na 2095 na 63.72-ethylhexyl-4-methoxycinnamate 4422 2.220 178 936 na na 48.2

eicosanal 4440 1.080 82 880 na na 77.56-dodecyltetrahydro-2H-pyran-2-one, (delta- heptadecalactone) 4470 2.015 99 na na na 102.3

precision of invivo DI- SPME median RSD: 16.3 % minimum: 0.3 % maximum: 102.3 %

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1000 2000 3000 4000

seco

nd d

imen

sion

ret

ention

tim

e; s

ec

first dimension retention time; sec

peak apex plot -precision of invivo measurements

close examination of selected functional groups

0

20

40

60

80

100

120

RSD; %

precision of invivo measurements -delta-lactones

0

10

20

30

40

50

60

70

80

90

RSD; %

precision of invivo measurements -aldehydes

0

10

20

30

40

50

60

RSD; %

precision of invivo measurements -terpenes

↑ RSD ↑ BPt in homologous series

inter- fibre performance

EXVIVO: excellent inter-fibre repeatability across MW & volatility range

0

40000

80000

120000

160000

200000

peak

are

a; cou

nts

fiber 1

fiber 2

fiber 3

0

20000

40000

60000

80000

peak

are

a; cou

nts

fiber 1

fiber 2

fiber 3

∆ in metabolite distribution

???

Conclusions

potential of novel invivo SPME sampling formats and GCxGC-TOFMS for unbiased and representative characterization of metabolome ↑ metabolite coverage (1000s of metabolites at required sensitivities); median intra-fruit RSD - 16.3%; detection of differential metabolites

Acknowledgements

LECO Corporation; OMAFRA & Ontario Apple Growers, OAG; Erica Silva; GERSTEL; Restek (Jack Cochran); Chemistry Stores (Kenneth Gosselink & Matthew Sternbauer); SUPELCO; NSERC