collective diffusion of the interacting surface gas magdalena załuska-kotur institute of physics,...

51
Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Upload: garry-flowers

Post on 29-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Collective diffusion of the interacting surface gas

Magdalena Załuska-Kotur

Institute of Physics,

Polish Academy of Sciences

Page 2: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Random walk

DtR 42 Diffusion coefficient D

),(),( txPDtxPdt

d

Page 3: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

rrDt

)(

DJ

+ mass conservation

Collective diffusion

local density

Page 4: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

The model – noninteracting lattice gas

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

Equilibrium distribution

c – microstate

Local density

k

knVcH )(

1)( cPeq

c

xi tcPnn ),(

1,0kn

Page 5: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

ijij

jjii nnWnnWn

ti

)1()1(

ijjii nWnzWn

tsingle particle result

Noninteracting system

Page 6: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

)()()(2)( keeWkWkt

ikaika

)()( xPekx

ixka

Do=Wa2for small k

20 Dk

Single particle diffusion – noninteracting gas.

Page 7: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Interacting particles

Page 8: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Interacting particles –2D system with repulsive interactions

J’=3/4J

Square lattice

Page 9: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Questions

How diffusion depends on interactions?

How minima of the density-diffusion plot are related to the phase diagram?

Where are phase transition points?

Are there some other characteristic points?

Page 10: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Example - hexagonal lattice - repulsion

kT=0.25J

kT=0.5J

kT=J

Page 11: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Attraction

J<0 T=0.89Tc

Tc=1.8|J|/k

J’=2J

J’=JJ’=0

J=0

J’=J

J’=2JJ>0

Repulsion

Page 12: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences
Page 13: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Experimental results - Pb/Cu(100)

Page 14: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Simulation methods

Harmonic density perturbation

Step profile decay

Page 15: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences
Page 16: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

kT=0.25JkT=0.5J

kT=J

Page 17: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Profile evolution

Boltzmann –Matano method

Page 18: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Definition of transition rates

ks

jg

nJVV

nJVV

''

i

iijiij

iji nVnnJnH })({

Page 19: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

The model

),(),'( '' tcPWtcPW eqcceqcc

k

kkl

lk nVnnJcH )(

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

Detailed balance condition

)()( cHeq ecP Equilibrium

distribution

c – microstate

Page 20: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Possible approaches

0 11

2)()0(

)(2

1 N

ii

N

iieq tvvdt

ND

ijijij

jjijii nnWnnWn

ti

)1()1(

Hierarchy of equations

),(

kjijiji nnnnnfnnt

- QCA

Page 21: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

X

Analysis of microscopic equations.

c

xx tcPn ),(Local density

],...,,[],[ 11 NmmXXc m

]5,3,1,[X

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

L - lattice sites + periodic boundary conditions

X),( tXPm

Page 22: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Fourier transformation of master equation.

'

'' ),()()(m

mmmm tkPkMkP

),(),(1

tXPetkPL

x

ikxmm

ikacc ek )('F when reference particle jumps

=1 otherwise

)1()()( ''''

''' mmmmmm ccccc

cc WkWkM F

2)1(000

)1(400

0

004)1(

00)1(2

)(ˆ

ika

ika

ika

ika

eW

eWW

W

We

eW

kM

For N=2

Page 23: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Eigenvalue of matrix M

Approximation:

Eigenvalue

2)( Dkk dLN

L

/

0k

Limit

1)exp( ikaL

Page 24: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Approximate eigenvector for interacting gas

)(cHeq eP one interaction constant J

x - number of bonds xJxeq peP

Page 25: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Definition of transition rates in 1D system

Possible transitions

( )

Page 26: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Diffusion coefficient of 1D system

Grand canonical regime

Low temperature approximation

Page 27: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Diffusion coefficient - repulsive interactions

p=2,10,100

Page 28: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Diffusion coefficient - repulsive - QCA

p=2,10,100

Page 29: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Activation energy –repulsive interactions

AEeD )()(

VeWaD 20

||

)(||

2

)()0()( J

VE

Tk

J A

BeWaD

D

Page 30: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Diffusion coefficient - attractive interactions

p=0.5,0.3,0.1

Page 31: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Diffusion coefficient - attractive QCA

p=0.5,0.3,0.1

Page 32: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Activation energy – attractive interactions

AEeD )()(

VeWaD 2)0(

||

)(||

2

)()0()( J

VE

Tk

J A

BeWaD

D

Page 33: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Eigenvector for random state

1)( iN Initial configuration

Page 34: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Repulsive far from equilibrium case

θ

θ

ν

VWW

JEA

)34)((

)34(

p=100

Page 35: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

2x2 ordering –definition of transition rates

J

J’

M. A. Załuska-Kotur Z.W.Gortel – to be published

Page 36: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Equilibrium probability

strong repulsion

Diagonal matrix

Page 37: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Components of eigenvector

* *

Primary configurations:

Secondary configurations (average of neighbouring primary ones):

Page 38: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Result

Upper line: Lower line:

Page 39: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

J’=3/4J

Ordered phase

Page 40: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Other parameters – kT/J=0.3

Page 41: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Other parameters – kT/J’=0.4

Page 42: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Other parameters – J’=0

Page 43: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

New approach to the collective diffusion problem, based on many-body function description – analytic theory.

Exact solution for noninteracting system.

Collective diffusion in 1D system with nearest neighbor attractive and repulsive interactions.

Diffusion coefficient in 2D lattice gas of 2X2 ordered phase with repulsive forces.

Agrement with numerical results

Numerical approaches: step density profile evolution and harmonic density perturbation decay methods

Summary

Page 44: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Possible applications

Analysis of

Far from equlibrium systems.

More complex interactions – long range

Surfaces with steps

Phase transitions

Page 45: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

J=0

J’=2J

J=J’

J’=2J

Page 46: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences
Page 47: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Jak dyfuzja zależy od oddziaływań?

x

i

j

)]},()([exp{),( 0 jiEiEjiW barinit

i

iijiij

iji nVnnJnH })({

Gaz cząstek na dwuwymiarowej sieci

Einit,(i) - lokalna energia jednocząstkowa

Ebar (ij) - energia cząstki w punkcie siodłowym

Szybkość przeskoków jednocząstkowych

)/(1 TkB

Page 48: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Analysis of microscopic equations.

c

xx tcPn ),(Local density

''' )],(),'([),(

ccccc tcPWtcPWtcP

t

Page 49: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

1D -- z=2

ii

ika nekn )(

Do=Wa2for small k

DtR 42 20 Dk

)()()(2)( kneeWkWnknt

ikaika

Page 50: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Calculation

ssNxeq CpppP

= n1 –n2

for s clusters

Y:

Łukasz Badowski, M. A. Załuska-Kotur – to be published

Page 51: Collective diffusion of the interacting surface gas Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences

Do=Wa2

Site blocking – noninteracting lattice gas

Eigenvalue -

WeW

eWWW

W

WeW

eWW

kM

ika

ika

ika

ika

2)1(000

)1(400

0

004)1(

00)1(2

)(ˆ

For N=2