cohomotopy theory and branessmooth manifold cocycle space of di erential x-cohomology/ higher gauge...

69
Urs Schreiber (New York University, Abu Dhabi & Czech Academy of Science, Prague) Cohomotopy Theory and Branes talk at Geometry, Topology & Physics at Abu Dhabi NYU AD 2020 based on joint work with H. Sati and D. Fiorenza ncatlab.org/schreiber/show/Cohomotopy+Theory+and+Branes

Upload: others

Post on 21-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Urs Schreiber

(New York University, Abu Dhabi & Czech Academy of Science, Prague)

Cohomotopy Theory and Branes

talk atGeometry, Topology & Physics at Abu Dhabi

NYU AD 2020

based on joint work with

H. Sati and D. Fiorenza

ncatlab.org/schreiber/show/Cohomotopy+Theory+and+Branes

Page 2: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

0) Nonabelian Differential Cohomology

Brane charge in...

1) Twisted Cohomotopy theory

2) Equivariant Cohomotopy theory

3) Differential Cohomotopy theory

implies...

4) Hanany-Witten Theory

5) Chan-Paton Data

6) BMN Matrix Model States

7) M2/M5 Brane Bound States

Page 3: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

(0)

Nonabelian Differential Cohomology

in

Cohesive Homotopy Theory

Sec. 4 of Fiorenza-Sati-Schreiber 15 [arXiv:1506.07557]

based on Sec. 6.4.14.3 of Schreiber dcct

back to top

3

Page 4: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

4

Page 5: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

5

Page 6: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

6

Page 7: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

7

Page 8: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

loopL∞-algebra

lXL∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

8

Page 9: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

9

Page 10: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

XRrationalized(real-ified)top. space

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

10

Page 11: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

11

Page 12: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

ratio

naliz

atio

n=

X-C

hern

char

acte

r

12

Page 13: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

13

Page 14: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Topology

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

14

Page 15: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

15

Page 16: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

Xconn(

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

)

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

homotopyfiber product

16

Page 17: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

Xconn(

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

)

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

curv

atur

efo

rms/

flux

dens

ity

homotopyfiber product

17

Page 18: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

Xconn(

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

)

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

curv

atur

efo

rms/

flux

dens

ity

topological /instanton

sectorhomotopyfiber product

18

Page 19: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(Σ,

loopL∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(Σ,

topologicalspace

Xmapping space =

cocycle space of X-cohomology on Σ

)

Maps(Σ,XRrationalized(real-ified)top. space

)

Xconn(

smoothmanifold

Σcocycle space of

differential X-cohomology/higher gauge fields

)

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

curv

atur

efo

rms/

flux

dens

ity

topological /instanton

sector

L∞-connection/higher gauge field

homotopyfiber product

19

Page 20: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Ωcl(−,loop

L∞-algebra

lX)L∞-algebra valueddifferential forms

(flat/closed)

Maps(−,topological

space

Xmapping space =

cocycle space of X-cohomology

)

Maps(−,XRrationalized(real-ified)top. space

)

Xconn(

smoothmanifold

−cocycle space of

differential X-cohomology/higher gauge fields

)

L∞

deRham

theorem ratio

naliz

atio

n=

X-C

hern

char

acte

r

curv

atur

efo

rms/

flux

dens

ity

topological /instanton

sector

L∞-connection/higher gauge field

homotopyfiber product

all functorialin Σ

20

Page 21: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

21

Page 22: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

∞-groupoids

22

Page 23: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

∞-groupoids

smooth

∞-groupoids

“∞-stacks on smooth manifolds”

//

oo

? _

23

Page 24: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

smooth

manifolds

∞-groupoids

smooth

∞-groupoids

“∞-stacks on smooth manifolds”

//

//

oo

? _

24

Page 25: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

smooth

manifolds

∞-groupoids

smooth

∞-groupoids

“∞-stacks on smooth manifolds”

//S

shape(“geom

. realiz.”)//

oo

? _

25

Page 26: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Geometry Homotopy

Physics

Xconnmoduli stack of

differential X-cohomology/higher gauge fields

topologicalspace

Xclassifying space ofX-cohomology

smooth

manifolds

∞-groupoids

smooth

∞-groupoids

“∞-stacks on smooth manifolds”

//S

shape(“geom

. realiz.”)//

oo

? _

path ∞-groupoid//

26

Page 28: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

28

Page 29: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

29

Page 30: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

30

Page 31: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

31

Page 32: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

32

Page 33: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

33

Page 34: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

34

Page 35: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

35

Page 36: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

(2)

Brane charge in Equivariant Cohomotopy

implied by

Hypothesis H with Equivariant Hopf Degree Theorem

Sati-Schreiber 19a [arXiv:1909.12277]

back to top

36

Page 37: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

37

Page 38: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

38

Page 39: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

39

Page 40: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

40

Page 41: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

41

Page 42: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

42

Page 44: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Cohomotopycocycle space

ππππ

boldface!

4(X) :=

pointedmapping space

Maps∗/(X,S4

)

π0

(ππππ4(X)

)=

Cohomotopycohomology

classes

= πnot

boldface

4(X) Cohomotopyset

π1

(ππππ4(X)

)=

Cohomotopygauge

transformations

π2

(ππππ4(X)

)=

Cohomotopygauge of gaugetransformations

...

44

Page 45: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Cohomotopy cocycle spacevanishing at ∞ on Euclidean 3-space

ππππ4((R3)cpt

) hmtpy'←−−−−assign unit charge

in Cohomotopyto each point

Conf(R3,D1

)May-Segal theorem

configuration space of pointsin R3 × R1

which are:1) unordered

2) distinct after projection to R3

3) allowed to vanish to ∞ along R1

=

R3×0 R3×∞R3×∞

projection to R3point

in R3×R1point

disappearedto infinity

along R1

45

Page 46: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

ππππ4((Rd)cpt ∧ (R4−d)+

)oo hmtpy'

hence: a form of differential Cohomotopy

ππππ4diff

((Rd)cpt ∧ (R4−d)+

):=

assigns configuration spaces:

Conf(Rd,D4−d)

46

Page 47: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Lemma:

47

Page 48: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

=

Lemma:

48

Page 49: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Consequence: assumingHypothesis H:

differential Cohomotopy cocycle spacereflecting D6⊥D8 -charges

49

Page 50: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

0) Nonabelian Differential Cohomology

Brane charge in...

1) Twisted Cohomotopy theory

2) Equivariant Cohomotopy theory

3) Differential Cohomotopy theory

implies...

4) Hanany-Witten Theory

5) Chan-Paton Data

6) BMN Matrix Model States

7) M2/M5 Brane Bound States

Page 52: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

higher co-observables on D6⊥D8 -intersections

H•

topologicalphase space

t[c]

Ωc ππππ4diff

' H•

(t

Nf∈NΩConf1,· · ·, Nf

(R3))

(by the above)

' ⊕Nf∈NApb

NfFadell-Husseini

theorem

are algebra of horizontal chord diagrams:

52

Page 53: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Horizontal chord diagrams form algebra under concatenation of strands.

tik tij = tiktij

This is universal enveloping algebra of the infinitesimal braid Lie algebra (Kohno):

[tij, tkl] = 0

[tij, tik + tjk] = 0

53

Page 54: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Consider the subspace of skew-symmetric co-observables,

denote elements as follows:

54

Page 55: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

In the subspace of skew-symmetric co-observables we find:

the 2T relationsbecome theordering constraint

=form of anynon-vanishing element

skew-symmetrybecomes thes-rule

the 4T relationsbecome thebreaking rule

55

Page 56: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

these are the rules of Hanany-Witten theoryfor NS5 ⊥ Dp ⊥ D(p + 2)-brane intersections

if we identify horizontal chord diagrams as follows:

56

Page 58: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

higher co-states on D6⊥D8 -intersections

H•

topologicalphase space

t[c]

Ωc ππππ4diff

' H•(t

Nf∈NConf1,· · ·, Nf

(R3))

(by the above)

' ⊕Nf∈NWpb

NfKohno & Cohen-Gitler

theorem

are horizontal weight systems:

58

Page 59: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

All horizontal weight systems w : Apb → C come from Chan-Paton data:1) metric Lie representations ρ 2) stacks of coincident strands 3) winding monodromies:

w

Bar-Natantheorem

59

Page 61: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

(6)

BMN Matrix Model States

implied by

Hypothesis H

back to top

61

Page 63: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

,0) Radius fluctuation observables on N -bit fuzzy 2-spheres S2

Nare N ∈ su(2)CMetricReps weight systems on chord diagrams:

63

Page 64: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

1,2) weight system wρ is the observable aspect of matrix model state ρ:

linear combinations offinite-dim suC-representations

Span(su(2)CMetricReps

)naive funnel- / susy-states of

DBI model / BMN matrix model

ρ 7→wρ//

weight systems onhorizontal chord diagrams

Wpb

states of DBI model / BMN matrix modeas observed by invariant multi-trace observables

64

Page 65: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

(7)

M2/M5 Brane Bound States

implied by

Hypothesis H

back to top

65

Page 66: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Given a sequence of susy states in the BMN matrix model

M2/M5-brane state(finite-dim su(2)C-rep)︷ ︸︸ ︷

(V, ρ) := ⊕i︸︷︷︸

stacks of coincident branes(direct sum over irreps)

(M2/M5-brane charge in ith stack

(ith irrep with multiplicity)︷ ︸︸ ︷N

(M2)

i ·N(M5)

i

)∈ su(2)CMetricReps/∼

this is argued to converge to macroscopic M2- or M5-branesdepending on how the sequence behaves in the large N limit:

Stacks of macroscopic...

M2-branes M5-branes

If for all i N(M5)

i →∞ N(M2)

i →∞(

the relevantlarge N limit)

)

with fixed N(M2)

i N(M5)

i

(the number of coincident branes

in the ith stack

)

and fixed N(M2)i /N N

(M5)i /N

(the charge/light-cone momentum

carried by the ith stack

)

66

Page 67: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

Given a sequence of susy states in the BMN matrix model

M2/M5-brane state(finite-dim su(2)C-rep)︷ ︸︸ ︷

(V, ρ) := ⊕i︸︷︷︸

stacks of coincident branes(direct sum over irreps)

(M2/M5-brane charge in ith stack

(ith irrep with multiplicity)︷ ︸︸ ︷N

(M2)

i ·N(M5)

i

)∈ su(2)CMetricReps/∼

the large Nlimit does not exist

here:

Span(su(2)CMetricReps

) ρ 7→wρ//

butdoes exist in weight systems

Wpb

if we normalize by the scale of the fuzzy 2-sphere geometry:

4π 22n((N

(M5))2−1)1/2+n wN

(M5)

︸ ︷︷ ︸Single M2-brane state in BMN model

(multiple of suC-weight system)

∈ Wpb

states as seen by multi-trace observables(weight systems on chord diagrams)

67

Page 68: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

M2/M5-brane bound statesas emergent under Hypothesis H

68

Page 69: Cohomotopy Theory and Branessmooth manifold cocycle space of di erential X-cohomology/ higher gauge elds 11. Geometry Topology Physics cl( ; loop L 1-algebra lX) L 1-algebra valued

End.

back to top

69