algebra math notes abstract algebra

34
Algebra Math Notes โ€ข Study Guide Abstract Algebra Table of Contents Rings ................................................................................................................................................... 3 Rings ............................................................................................................................................... 3 Subrings and Ideals ......................................................................................................................... 4 Homomorphisms .............................................................................................................................. 4 Fraction Fields ................................................................................................................................. 5 Integers............................................................................................................................................ 5 Factoring ............................................................................................................................................. 7 Factoring .......................................................................................................................................... 7 UFDs, PIDs, and Euclidean Domains .............................................................................................. 7 Algebraic Integers ............................................................................................................................ 8 Quadratic Rings ............................................................................................................................... 8 Gaussian Integers ............................................................................................................................ 9 Factoring Ideals ............................................................................................................................... 9 Ideal Classes ................................................................................................................................. 10 Real Quadratic Rings ..................................................................................................................... 11 Polynomials ....................................................................................................................................... 12 Polynomials ................................................................................................................................... 12 โ„ž[] ............................................................................................................................................... 12 Irreducible Polynomials .................................................................................................................. 13 Cyclotomic Polynomials ................................................................................................................. 14 Varieties ......................................................................................................................................... 14 Nullstellensatz................................................................................................................................ 15 Fields................................................................................................................................................. 17 Fundamental Theorem of Algebra.................................................................................................. 17 Algebraic Elements ........................................................................................................................ 17 Degree of a Field Extension ........................................................................................................... 17 Finite Fields ................................................................................................................................... 19 Modules............................................................................................................................................. 21 Modules ......................................................................................................................................... 21 Structure Theorem ......................................................................................................................... 22 Noetherian and Artinian Rings ....................................................................................................... 23 Application 1: Abelian Groups ........................................................................................................ 23 Application 2: Linear Operators ...................................................................................................... 24 Polynomial Rings in Several Variables ........................................................................................... 25 Tensor Products ............................................................................................................................ 25 Galois Theory .................................................................................................................................... 27 Symmetric Polynomials .................................................................................................................. 27 Discriminant ................................................................................................................................... 27 Galois Group.................................................................................................................................. 27 Fixed Fields ................................................................................................................................... 28 Galois Extensions and Splitting Fields ........................................................................................... 28 Fundamental Theorem ................................................................................................................... 29 Roots of Unity ................................................................................................................................ 29 Cubic Equations ............................................................................................................................. 30 Quartic Equations .......................................................................................................................... 30 Quintic Equations and the Impossibility Theorem........................................................................... 31

Upload: others

Post on 12-Sep-2021

80 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Algebra Math Notes Abstract Algebra

Algebra Math Notes โ€ข Study Guide

Abstract Algebra

Table of Contents Rings ................................................................................................................................................... 3

Rings ............................................................................................................................................... 3

Subrings and Ideals ......................................................................................................................... 4

Homomorphisms .............................................................................................................................. 4

Fraction Fields ................................................................................................................................. 5

Integers ............................................................................................................................................ 5

Factoring ............................................................................................................................................. 7

Factoring .......................................................................................................................................... 7

UFDs, PIDs, and Euclidean Domains .............................................................................................. 7

Algebraic Integers ............................................................................................................................ 8

Quadratic Rings ............................................................................................................................... 8

Gaussian Integers ............................................................................................................................ 9

Factoring Ideals ............................................................................................................................... 9

Ideal Classes ................................................................................................................................. 10

Real Quadratic Rings ..................................................................................................................... 11

Polynomials ....................................................................................................................................... 12

Polynomials ................................................................................................................................... 12

โ„ž[๐‘‹] ............................................................................................................................................... 12

Irreducible Polynomials .................................................................................................................. 13

Cyclotomic Polynomials ................................................................................................................. 14

Varieties ......................................................................................................................................... 14

Nullstellensatz ................................................................................................................................ 15

Fields................................................................................................................................................. 17

Fundamental Theorem of Algebra .................................................................................................. 17

Algebraic Elements ........................................................................................................................ 17

Degree of a Field Extension ........................................................................................................... 17

Finite Fields ................................................................................................................................... 19

Modules ............................................................................................................................................. 21

Modules ......................................................................................................................................... 21

Structure Theorem ......................................................................................................................... 22

Noetherian and Artinian Rings ....................................................................................................... 23

Application 1: Abelian Groups ........................................................................................................ 23

Application 2: Linear Operators ...................................................................................................... 24

Polynomial Rings in Several Variables ........................................................................................... 25

Tensor Products ............................................................................................................................ 25

Galois Theory .................................................................................................................................... 27

Symmetric Polynomials .................................................................................................................. 27

Discriminant ................................................................................................................................... 27

Galois Group .................................................................................................................................. 27

Fixed Fields ................................................................................................................................... 28

Galois Extensions and Splitting Fields ........................................................................................... 28

Fundamental Theorem ................................................................................................................... 29

Roots of Unity ................................................................................................................................ 29

Cubic Equations ............................................................................................................................. 30

Quartic Equations .......................................................................................................................... 30

Quintic Equations and the Impossibility Theorem ........................................................................... 31

Page 2: Algebra Math Notes Abstract Algebra

Transcendence Theory .................................................................................................................. 32

Algebras ............................................................................................................................................ 33

Division Algebras ........................................................................................................................... 33

References ........................................................................................................................................ 34

Page 3: Algebra Math Notes Abstract Algebra

1 Rings 1-1 Rings

A ring ๐‘… is a set with the operations of addition (+) and multiplication (ร—) satisfying:

1. R is an abelian group ๐‘…+ under addition. 2. Multiplication is associative. In a commutative ring, multiplication is commutative. A

ring with identity has a multiplicative identity 1. 3. Distributive law:

๐‘Ž ๐‘ + ๐‘ = ๐‘Ž๐‘ + ๐‘Ž๐‘, ๐‘Ž + ๐‘ ๐‘ = ๐‘Ž๐‘ + ๐‘๐‘ A left/ right zero divisor is an element ๐‘Ž โˆˆ ๐‘… so that there exists ๐‘ โ‰  0 with ๐‘Ž๐‘ = 0, ๐‘๐‘Ž = 0, respectively. A commutative ring without zero divisors is an integral domain. A ring is a

division ring if ๐‘… โˆ’ {0} is a multiplicative group under multiplication (inverses exist). A division ring is a field if the multiplicative group is abelian.

Ex. of Rings: โ„ž, ๐‘…[๐‘ฅ] (the ring of polynomials in x, where R is a ring), ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ]

Note: A field is a UFD, though not a very interesting one. Basic properties:

1. ๐‘Ž0 = 0๐‘Ž = 0 2. ๐‘Ž โˆ’๐‘ = โˆ’๐‘Ž ๐‘ = โˆ’(๐‘Ž๐‘) 3. The multiplicative identity 1 is unique (if it exists). 4. A multiplicative inverse is unique if it exists.

5. If R is not the zero ring {0}, then 1 โ‰  0.

Group G

Abelian group

Ring R

Commutative ring

Ring with identity

Integral domain Division ring

Field F

Principal ideal domain (PID)

Euclidean domain

Unique factorization domain (UFD)

Page 4: Algebra Math Notes Abstract Algebra

6. If R is an integral domain, the cancellation law holds. Conversely, if the left (right) cancellation law holds, then R has no left (right) zero divisors.

7. A field is a division ring, and any finite integral domain is a field. From here on rings are assumed to be commutative with identity unless otherwise specified. A unit is an element with a multiplicative inverse.

The characteristic of a ring is the smallest ๐‘› > 0 so that 1 + โ‹ฏ + 1 ๐‘›

= 0. If this is never true,

the characteristic is 0.

1-2 Subrings and Ideals A subring is a subset of a ring that is closed under addition and multiplication. An ideal I is a subset of a ring satisfying:

1. I is a subgroup of ๐‘…+. 2. If ๐‘  โˆˆ ๐ผ, ๐‘Ÿ โˆˆ ๐‘… then ๐‘Ÿ๐‘  โˆˆ ๐ผ.

Every linear combination of elements ๐‘ ๐‘– โˆˆ ๐ผ with coefficients ๐‘Ÿ๐‘– โˆˆ ๐‘… is in I. The principal ideal ๐‘Ž = ๐‘Ž๐‘… generated by ๐‘Ž is the ideal of multiples of ๐‘Ž.

The smallest ideal generated by ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› is ๐‘Ž1, ๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘› = ๐‘Ÿ1๐‘Ž1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘Ž๐‘› ๐‘Ÿ๐‘– โˆˆ ๐‘…

Ideals and fields:

1. The only ideals of a field are the zero ideal and the unit ideal. 2. A ring with exactly two ideals is a field. 3. Every homomorphism from a field to a nonzero ring is injective.

A principal ideal domain (PID) is an integral domain where every ideal is principal.

Ex. โ„ž is a PID. If F is a field, ๐น[๐‘ฅ] (polynomials in x with coefficients in F) is a PID: all polynomials in the ideal are a multiple of the unique monic polynomial of lowest degree in the ideal. A maximal ideal of R is an ideal strictly contained in R that is not contained in any other ideal.

1-3 Homomorphisms A ring homomorphism ๐œ‘: ๐‘… โ†’ ๐‘…โ€ฒ is compatible with addition and multiplication:

1. ๐œ‘ ๐‘Ž + ๐‘ = ๐œ‘ ๐‘Ž + ๐œ‘(๐‘) 2. ๐œ‘ ๐‘Ž๐‘ = ๐œ‘ ๐‘Ž ๐œ‘(๐‘)

3. ๐œ‘ 1 = 1 An isomorphism is a bijective homomorphism and an automorphism is an isomorphism

from R to itself. The kernel is {๐‘  โˆˆ ๐‘…|๐œ‘ ๐‘  = 0}, and it is an ideal.

1-4 Quotient and Product Rings (11.4,6) If I is an ideal ๐‘…/๐ผ is the quotient ring. The canonical map ๐œ‹: ๐‘… โ†’ ๐‘…/๐ผ sending ๐‘Ž โ†’ ๐‘Ž + ๐ผ is

a ring homomorphism that sends each element to its residue. If ๐ผ = (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› ), the quotient

ring is obtained by โ€œkillingโ€ the ๐‘Ž๐‘– , i.e. imposing the relations ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› = 0.

Page 5: Algebra Math Notes Abstract Algebra

Mapping Property: Let ๐‘“: ๐‘… โ†’ ๐‘…โ€ฒ be a ring homomorphism with kernel K and let ๐ผ โŠ† ๐พ be an

ideal. Let ๐œ‹: ๐‘… โ†’ ๐‘…/๐ผ = ๐‘… be the canonical map. There is a unique homomorphism ๐‘“ : ๐‘… โ†’ ๐‘…โ€ฒ so that ๐‘“ ๐œ‹ = ๐‘“.

First Isomorphism Theorem: If f is surjective and ๐ผ = ๐พ then ๐‘“ is an automorphism. Correspondence Theorem: If f is surjective with kernel K,

There is a bijective correspondence between ideals of ๐‘… and ideals of ๐‘…โ€ฒ that contain

๐พ. A subgroup of G containing K is associated with its image.

If ๐ผ corresponds to ๐ผโ€ฒ, ๐‘…/๐ผ โ‰… ๐‘…โ€ฒ/๐ผโ€ฒ. Corollary: Introducing relations one at a time (killing ๐‘Ž, then ๐‘ ) or together (killing ๐‘Ž, ๐‘)

gives the same ring. Useful in polynomial rings.

The product ring ๐‘… ร— ๐‘…โ€ฒ is the product set with componentwise addition and multiplication. 1. The additive identity is (0,0) and the multiplicative identity is (1,1).

2. The projections ๐œ‹ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐‘ฅ, ๐œ‹ โ€ฒ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ are ring homomorphisms to ๐‘…, ๐‘…โ€ฒ. 3. 1,0 , (0,1) are idempotent elements- elements such that ๐‘’2 = 1.

Let e be an idempotent element of a ring S.

1. ๐‘’โ€ฒ = 1 โˆ’ ๐‘’ is idempotent, and ๐‘’๐‘’โ€ฒ = 0. 2. ๐‘’๐‘† is a ring (but not a subring of S unless e=1) with identity e, and multiplication by e

is a ring homomorphism ๐‘† โ†’ ๐‘’๐‘†. 3. ๐‘† โ‰… ๐‘’๐‘† ร— ๐‘’โ€ฒ๐‘†.

1-5 Fraction Fields Every integral domain can be embedded as a subring of its fraction field F. Its elements

are ๐‘Ž

๐‘ ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘ โ‰  0 , where

๐‘Ž1

๐‘1=

๐‘Ž2

๐‘2โ‡” ๐‘Ž1๐‘2 = ๐‘Ž2๐‘1. Addition and multiplication are defined

as in arithmetic: ๐‘Ž

๐‘+

๐‘

๐‘‘=

๐‘Ž๐‘‘ +๐‘๐‘

๐‘๐‘‘,๐‘Ž

๐‘

๐‘

๐‘‘=

๐‘Ž๐‘

๐‘๐‘‘, and

๐‘Ž

1= ๐‘Ž. The field of fractions of the polynomial

ring ๐พ[๐‘ฅ], K a field, is the field of rational functions ๐พ(๐‘ฅ). Mapping Property:

Let R be an integral domain with field of fractions F, and let ๐œ‘: ๐‘… โ†’ ๐นโ€ฒ be an injective homomorphism from ๐‘… to a field ๐นโ€™. ๐œ‘ can be extended uniquely to an injective

homomorphism ฮฆ: ๐น โ†’ ๐นโ€ฒ by letting ฮฆ ๐‘Ž

๐‘ = ๐œ‘ ๐‘Ž ๐œ‘ ๐‘ โˆ’1.

1-6 Integers

Peanoโ€™s Axioms for โ„•: 1. 1 โˆˆ โ„• 2. Successor function: The map ๐œŽ: โ„• โ†’ โ„• sends an integer to the next integer ๐‘ฅโ€ฒ =

๐œŽ(๐‘ฅ); ๐œŽ 1 = 2, ๐œŽ 2 = 3 โ€ฆ ๐œŽ is injective, and ๐œŽ ๐‘› โ‰  1 for any ๐‘› (i.e. 1 is the first element).

3. Induction axiom: Let S be a subset of โ„• having the following properties: a. 1 โˆˆ ๐‘†

b. If ๐‘› โˆˆ ๐‘† then ๐‘›โ€ฒ โˆˆ ๐‘†. Then ๐‘† = โ„•. (Counting runs through all the natural numbers.)

๐‘… ๐‘…โ€ฒ

๐‘… = ๐‘…/๐ผ

๐‘“

๐œ‹ ๐‘“

Page 6: Algebra Math Notes Abstract Algebra

Inductive/ Recursive Definition: By induction, if an object ๐ถ1 is defined, and a rule for determining ๐ถ๐‘› โ€ฒ = ๐ถ๐‘›+1 from ๐ถ๐‘› is given, then the sequence ๐ถ๐‘˜ is determined uniquely.

Recursive definition ofโ€ฆ

1. Addition: ๐‘š + 1 = ๐‘šโ€ฒ, ๐‘š + ๐‘›โ€ฒ = (๐‘š + ๐‘›)โ€ฒ (i.e. ๐‘š + ๐‘› + 1 = ๐‘š + ๐‘› + 1)

2. Multiplication: ๐‘š ร— 1 = ๐‘š, ๐‘š ร— ๐‘›โ€ฒ = ๐‘š ร— ๐‘› + ๐‘š (i.e. ๐‘š ร— ๐‘› + 1 = ๐‘š ร— ๐‘› + ๐‘š) From these, the associative, distributive, and distributive laws can be verified. (โ€œPeano

playingโ€) The integers can be developed from โ„• by introducing an additive inverse for every element.

Page 7: Algebra Math Notes Abstract Algebra

2 Factoring 2-1 Factoring

Vocabulary

u is a unit if ๐‘ข has a multiplicative inverse in R

๐‘ข = (1)

a divides b if ๐‘ = ๐‘Ž๐‘ž for some ๐‘ž โˆˆ ๐‘… ๐‘ โŠ† (๐‘Ž)

a properly divides b if ๐‘ = ๐‘Ž๐‘ž for some ๐‘ž โˆˆ ๐‘… and neither ๐‘Ž nor ๐‘ž are units

๐‘ โŠ‚ ๐‘Ž โŠ‚ 1

a and b are relatively prime

๐‘Ž and ๐‘ have no common divisor except units.

๐‘Ž โˆฉ ๐‘ = 1

a and b are associates if each divides the other, or if

๐‘ = ๐‘ข๐‘Ž, u a unit

๐‘Ž = ๐‘

a is irreducible if a is not a unit and has no proper divisor (its only divisors are units and associates)

๐‘Ž โŠ‚ 1 , and there is no principal ideal (๐‘) such that ๐‘Ž โŠ‚ ๐‘ โŠ‚ (1).

p is a prime element if ๐‘ is not a unit, and whenever ๐‘ divides ๐‘Ž๐‘, ๐‘ divides ๐‘Ž or ๐‘

divides ๐‘.

๐‘Ž๐‘ โˆˆ ๐‘ โ‡’ ๐‘Ž โˆˆ ๐‘ or ๐‘ โˆˆ (๐‘)

Ex. Nonunique factorization: 2 โ‹… 3 = 6 = 1 + โˆ’5 1 โˆ’ โˆ’5 in โ„ž โˆ’5 .

2-2 UFDs, PIDs, and Euclidean Domains A size function is a function ๐œŽ: ๐‘… โ†’ โ„•. An integral domain is an Euclidean domain if there is a norm ๐œŽ such that division with remainder is possible:

For any ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘Ž โ‰  0, there exist ๐‘ž, ๐‘Ÿ โˆˆ ๐‘… so that ๐‘ = ๐‘Ž๐‘ž + ๐‘Ÿ, and ๐‘Ÿ = 0 (in which case ๐‘Ž divides ๐‘) or ๐œŽ ๐‘Ÿ < ๐œŽ(๐‘Ž).

Examples:

1. For โ„ž, ๐œŽ ๐‘Ž = ๐‘Ž . 2. For ๐น[๐‘ฅ], ๐œŽ ๐‘“ = deg ๐‘“.

3. For โ„ž[๐‘–], ๐œŽ ๐‘Ž = ๐‘Ž 2. A characterization of the GCD: Let R be a UFD. A greatest common divisor ๐‘‘ of ๐‘Ž, ๐‘ โˆˆ ๐‘…

is ๐‘‘ such that If ๐‘’|๐‘Ž, ๐‘ then ๐‘’|๐‘‘. If R is a PID, this is equivalent to ๐‘…๐‘‘ = ๐‘…๐‘Ž + ๐‘…๐‘, and there exist ๐‘, ๐‘ž โˆˆ ๐‘… so ๐‘‘ = ๐‘๐‘Ž + ๐‘ž๐‘ (Bezout). ๐‘Ž, ๐‘ are relatively prime iff ๐‘‘ is a unit. An integral domain is a unique factorization domain (UFD) if factoring terminates (stopping when all elements are irreducible), and the factorization is unique up to order and multiplication by units. The following are equivalent:

1. Factoring terminates. 2. R is Noetherian: it does not contain an infinite strictly increasing chain of principal

ideals ๐‘Ž1 โŠ‚ ๐‘Ž2 โŠ‚ โ‹ฏ.

Class (Each includes the next)

Definition Reasons Properties

Ring

Integral domain

Ring with no zero divisors

Prime element irreducible

Page 8: Algebra Math Notes Abstract Algebra

Unique factorization domain (UFD)

Integral domain where

Factoring terminates

Factorization unique or equivalently, every irreducible element is prime.

For equivalence: If every irreducible element prime, and there are two factorizations, an element on the left divides an element on the right; they are associates and can be canceled.

Irreducible element prime GCD exists (factor and look at common prime divisors)

Principal Ideal Domain (PID)

All ideals generated by one element

A PID is a UFD: 1- Irreducible element prime:

๐‘…๐‘‘ = ๐‘…๐‘Ž + ๐‘…๐‘ โ‡’ Bezoutโ€™s identity. Irreducible element

prime since ๐‘ ๐‘Ž๐‘, ๐‘ โˆค ๐‘Ž โ‡’ 1 =๐‘ ๐‘ + ๐‘ก๐‘Ž โ‡’ ๐‘ ๐‘ = ๐‘ ๐‘๐‘ + ๐‘ก๐‘Ž๐‘ 2- Factoring terminates: If ๐‘Ž1 โŠ† ๐‘Ž2 โŠ† โ‹ฏ then โ‹ƒ ๐‘Ž๐‘– = (๐‘) is a principal

ideal; ๐‘ โˆˆ (๐‘Ž๐‘— ) for some j.

Maximal ideals generated by irreducible elements

Euclidean domain

Integral domain with norm compatible with division with remainder

A Euclidean Domain is a UFD: The element of smallest size in an ideal generates it.

Euclidean algorithm works. (Given a, b,

write ๐‘Ž = ๐‘ž๐‘ + ๐‘Ÿ, replace ๐‘Ž with ๐‘, ๐‘ with ๐‘Ÿ.)

Ex. โ„ž, โ„ž ๐‘– , ๐น[๐‘ฅ] are UFDs.

2-3 Algebraic Integers An algebraic number is the root of an integer polynomial equation. It is an algebraic integer if it is the root of a monic integer polynomial equation. Equivalently, its irreducible

polynomial over โ„ž is monic. A rational number is an algebraic integer iff it is an integer.

2-4 Quadratic Rings

โ„š ๐‘‘ is a quadratic number field when ๐‘‘ โˆˆ โ„ž is not a square.

The algebraic integers in โ„š ๐›ฟ , ๐›ฟ = ๐‘‘, d squarefree, have the form ๐›ผ = ๐‘Ž + ๐‘๐›ฟ, where

If ๐‘‘ โ‰ก 2,3(mod 4) then a and b are integers.

If ๐‘‘ โ‰ก 1(mod 4) then ๐‘Ž and b are both integers or half-integers (๐‘› +1

2). In other words,

they have the form ๐‘Ž + ๐‘๐œ‚, ๐œ‚ =1

2 1 + ๐‘‘ ; ๐‘Ž, ๐‘ โˆˆ โ„ž.

The algebraic integers in โ„š ๐‘‘ form the ring of integers R in the field, โ„ž[๐›ฟ] or โ„ž[๐œ‚]. Complex quadratic rings can be represented by a lattice in the complex plane.

The norm is defined by ๐‘ ๐‘ง = ๐‘ง ๐‘ง.

The norm is a multiplicative function, and ๐‘ ๐‘ง = ๐‘(๐‘ง ).

Hence ๐‘ฅ ๐‘ฆ โ‡’ ๐‘ ๐‘ฅ ๐‘ ๐‘ฆ , ๐‘ฅ|๐‘ฆ โ‡” ๐‘ ๐‘ฅ |๐‘ฆ๐‘ฅ . An element is an unit iff its norm is 1.

If ๐‘‘ = โˆ’3, โˆ’2, โˆ’1,2,3,5 then R is an Euclidean domain, and hence a UFD. The only other values of d where R is a complex UFD are -7, -11, -19, -43, -67, and -163.

d Units Is 2 prime?

-3 ยฑ1, ยฑ

1

2ยฑ

3

2

Yes

-2 1, โˆ’1 No

Page 9: Algebra Math Notes Abstract Algebra

-1 ยฑ1, ยฑ๐‘– No

2 Infinitely many No

3 Infinitely many No

5 Infinitely many Yes

All primes in R have norm p or ๐‘2. If the integer prime ๐‘ is odd andโ€ฆ

๐‘‘ is a perfect square modulo p, then p is the product of 2 conjugate primes of norm p.

๐‘‘ is not a perfect square modulo p, then p is prime in R. Some Theorems

1. Chinese Remainder: Given pairwise coprime ๐‘๐‘– and any ๐‘Ž๐‘– , there exists a unique number ๐‘ฅ โˆˆ ๐‘… modulo โˆ๐‘๐‘– such that ๐‘ฅ๐‘– โ‰ก ๐‘Ž๐‘–(mod ๐‘๐‘–).

2. ๐‘…/๐œ‹๐‘… has ๐‘(๐œ‹) elements. It is a field iff ฯ€ is prime. (Pf. If N(ฯ€)=p then 1,โ€ฆp are the

distinct residues. If ๐‘(๐œ‹) = ๐‘2 then ๐œ‹ = ๐‘; take ๐‘Ž + ๐‘๐‘–, 1 โ‰ค ๐‘Ž, ๐‘ โ‰ค ๐‘. Use induction on

the number of prime factors of ฯ€.) 3. Fermatโ€™s Little Theorem: ๐‘Ž๐‘ ๐œ‹ โ‰ก ๐‘Ž(mod ๐œ‹).

4. Eulerโ€™s Theorem: ๐‘Ž๐œ‘ ๐œ‹ โ‰ก 1(mod ๐œ‹).

5. Totient: ๐œ‘ โˆ ๐œ‹๐‘–๐‘Ž๐‘– ๐‘š

๐‘–=1 = ๐‘ ๐œ‹ โˆ๐‘ ๐œ‹๐‘– โˆ’1

๐‘ ๐œ‹๐‘– ๐‘š๐‘–=1 .

6. Wilsonโ€™s Theorem: If ฯ€ is prime, the product of all nonzero residues modulo ฯ€ is

congruent to -1 modulo ฯ€. 7. There are finitely many pairwise non-associated numbers with given norm.

2-5 Gaussian Integers โ„ž[๐‘–] is the ring of Gaussian integers.

1. If ๐œ‹ is a Gauss prime, then ๐œ‹๐œ‹ is an integer prime or the square of an integer prime.

2. Each integer prime ๐‘ is a Gauss prime or the product ๐œ‹๐œ‹ where ๐œ‹ is a Gauss prime. 3. Primes congruent to 3 modulo 4 are Gauss primes. (They are not the sum of two

squares.) 4. Primes congruent to 1 modulo 4, and 2, are the product of complex conjugate Gauss

primes. Pf. (3-4)

p is a Gauss prime iff (๐‘) is a maximal ideal in โ„ž[๐‘–], iff ๐‘… = โ„ž ๐‘– (๐‘) = ๐”ฝ๐‘ ๐‘ฅ (๐‘ฅ2 + 1) is a

field, iff ๐‘ฅ2 + 1 is irreducible (doesnโ€™t have a zero) in ๐”ฝ๐‘[๐‘ฅ]. -1 is a square modulo ๐‘ iff ๐‘ = 2

or ๐‘ โ‰ก 1 (mod 4).

2-6 Factoring Ideals

If A and B are ideals, then ๐ด๐ต = ๐‘Ž๐‘–๐‘๐‘–๐‘– ๐‘Ž๐‘– โˆˆ ๐ด, ๐‘๐‘– โˆˆ ๐ต . ๐‘… is the unit ideal since ๐ด๐‘… = ๐ด for any R.

Let R be a complex quadratic ring. Then ๐ด๐ด = ๐‘› = ๐‘›๐‘… for some n; i.e. the product

is a principal ideal. (Pf. Let ๐‘Ž, ๐‘ , (๐‘Ž , ๐‘ ) be lattice bases for A, B. Let

๐‘› = gcd(๐‘Ž ๐‘Ž, ๐‘ ๐‘, ๐‘ ๐‘Ž + ๐‘Ž ๐‘); then (๐‘›) โŠ† ๐ด ๐ด. Show n divides the four generators

๐‘Ž ๐‘Ž, ๐‘ ๐‘, ๐‘ ๐‘Ž, ๐‘Ž ๐‘, by showing ๐‘ ๐‘Ž

๐‘›,๐‘Ž ๐‘

๐‘› are algebraic integers, so ๐ด ๐ด โŠ† ๐‘› .)

Cancellation Law: Let A, B, C be nonzero ideals. ๐ด๐ต = ๐ด๐ถ iff ๐ต = ๐ถ. ๐ด๐ต โŠ‚ ๐ด๐ถ โ‡” ๐ต โŠ‚๐ถ.

๐ด|๐ต โ‡” ๐ด โŠƒ ๐ต. Note that if A divides B, then A is โ€œlargerโ€ than B- it contains more elements; upon multiplication, many of the elements disappear.

A prime ideal P satisfies any of the following equivalent conditions:

Page 10: Algebra Math Notes Abstract Algebra

1. ๐‘…/๐‘ƒ is an integral domain. 2. ๐‘ƒ โ‰  ๐‘…, and ๐‘Ž๐‘ โˆˆ ๐‘ƒ โ‡’ ๐‘Ž โˆˆ ๐‘ƒ or ๐‘ โˆˆ ๐‘ƒ. 3. ๐‘ƒ โ‰  ๐‘…, and if A, B are ideals of R, ๐ด๐ต โŠ† ๐‘ƒ โ‡’ ๐ด โŠ† ๐‘ƒ or ๐ต โŠ† ๐‘ƒ.

Any maximal ideal is prime. If P is prime and not zero, and ๐‘ƒ|๐ด๐ต, then ๐‘ƒ|๐ด or ๐‘ƒ|๐ต. Letting R be a complex quadratic ring, and B be a nonzero ideal,

1. B has finite index in R. 2. Finitely many ideals in R contain B. (Pf. Look at lattice) 3. B is in a maximal ideal.

4. B is prime iff it is maximal. (Pf. ๐‘…/๐‘ƒ is a field.) Every proper ideal of a complex quadratic ring R factors uniquely into a product of prime ideals (up to ordering).1 (Pf. Use 2 and cancellation law.)

Warning: Most rings do not have unique ideal factorization since ๐‘ƒ โŠ‡ ๐ต โ‡ ๐‘ƒ|๐ต. The complex quadratic ring R is a UFD iff it is a PID. (Pf. If P is prime, P contains a prime divisor ฯ€ of some element in P. Then ๐‘ƒ = (๐œ‹).) Below, P is nonzero and prime, p is an integer prime, and ฯ€ is a Gauss prime.

1. If ๐‘ƒ ๐‘ƒ = (๐‘›) then ๐‘› = ๐‘ or ๐‘2 for some p.

2. (๐‘) is a prime ideal (p โ€œremains primeโ€), or ๐‘ = ๐‘ƒ ๐‘ƒ (p splits; if ๐‘ƒ = ๐‘ƒ then p ramifies).

3. If ๐‘‘ โ‰ก 2,3(mod 4), then p generates a prime ideal iff d is not a square modulo p, iff ๐‘ฅ2 โˆ’ ๐‘‘ is irreducible in ๐”ฝ๐‘[๐‘ฅ]. [Pf. by diagram]

4. If ๐‘‘ โ‰ก 1 mod 4 , then p generates a prime ideal iff ๐‘ฅ2 โˆ’ ๐‘ฅ +1โˆ’๐‘‘

4 is irreducible in ๐”ฝ๐‘[๐‘ฅ].

Random: For nonzero ideals A, B, C, ๐ต โŠƒ ๐ถ โ‡’ ๐ต: ๐ถ = ๐ด๐ต: ๐ด๐ถ . (Show for prime ideal A, split into 2 cases based on (2).)

2-7 Ideal Classes Ideals A and B are similar if ๐ต = ๐œ†๐ด for some ๐œ† โˆˆ โ„‚. (The lattices are similar and oriented the same.) Similarity classes of ideals are ideal classes; the ideal class of A is denoted by

โŒŒ๐ดโŒ. The class of the unit ideal โŒŒ๐‘…โŒ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with โŒŒ๐ดโŒโŒŒ๐ตโŒ = โŒŒ๐ด๐ตโŒ. (Note โŒŒ๐ดโŒโˆ’1 =โŒŒ๐ด โŒ.) The class number |๐ถ| tells how โ€œbadlyโ€ unique factorization of elements fails. Measuring the size of an ideal:

Norm: ๐‘ ๐ด = ๐‘›, where (๐‘›) = ๐ด ๐ด. Multiplicative function.

Index [๐‘…: ๐ด] of A in R.

ฮ”(๐ด), the area of the parallelogram spanned by a lattice basis.

Minimal norm of nonzero elements of A. Relationships:

๐‘ ๐ด = ๐‘…: ๐ด =ฮ” ๐ด

ฮ” ๐‘…

If ๐‘Ž โˆˆ ๐ด has minimal nonzero norm, ๐‘ ๐‘Ž โ‰ค ๐‘ ๐ด ๐œ‡, ๐œ‡ =

2 ๐‘‘

3, if ๐‘‘ โ‰ก 2,3 (mod 4)

๐‘‘

3, if ๐‘‘ โ‰ก 1 (mod 4)

. (Pf.

๐‘ ๐‘Ž โ‰ค2

3ฮ”(๐ด))

1. Every ideal class contains an ideal A with norm ๐‘ ๐ด โ‰ค ๐œ‡. (Pf. Choose nonzero

1 A Dedekind domain is a Noetherian, integrally closed integral domain with every nonzero prime ideal maximal (such as

the complex quadratic rings). โ€œIntegrally closedโ€ means that the ring contains all algebraic integers that are in its ring of fractions. Prime factorization of ideals holds in any Dedekind domain. See Algebraic Number Theory.

Page 11: Algebra Math Notes Abstract Algebra

element with minimal norm, ๐‘Ž = ๐ด๐ถ for some C, ๐‘ ๐ถ โ‰ค ๐œ‡, โŒŒ๐ถโŒ = โŒŒ๐ด โŒ,โŒŒ๐ดโŒ = โŒŒ๐ถ โŒ.) 2. The class group C is generated by โŒŒ๐‘ƒโŒ, for prime ideals P with prime norm ๐‘ โ‰ค ๐œ‡. (Pf.

Factor. Either ๐‘(๐‘ƒ) = ๐‘ or ๐‘ƒ = (๐‘).) 3. The class group is finite. (Pf. There are at most 2 prime ideals with norms a given

integer since ๐ด๐ด = (๐‘) has unique factorization; use multiplicativity of norm.)

Computing the Class Group of ๐‘… = โ„ž[ ๐‘‘] . 1. List the primes ๐‘ โ‰ค โŒŠ๐œ‡โŒ‹. 2. For each p, determine whether p splits in R by checking whether ๐‘ฅ2 โˆ’ ๐‘‘ ๐‘‘ โ‰ก

2,3mod4, ๐‘ฅ2โˆ’๐‘ฅ+1โˆ’๐‘‘4 ๐‘‘โ‰ก1mod4 are reducible.

3. If ๐‘ = ๐ด ๐ด splits in R, include โŒŒ๐ดโŒ in the list of generators. 4. Compute the norm of some small elements (with prime divisors in the list found

above), like ๐‘˜ + ๐›ฟ. ๐‘˜ โˆˆ โ„ž. Factor ๐‘(๐‘Ž) to factor ๐‘Ž ๐‘Ž = ๐‘ ๐‘Ž ; match factors using

unique factorization. Note โŒŒ ๐‘Ž โŒ = โŒŒ ๐‘Ž โŒ = โŒŒ๐‘…โŒ = 1. As long as ๐‘Ž is not divisible by one of the prime factors of ๐‘(๐‘Ž), this amounts to replacing each prime in the factorization

of ๐‘ ๐‘Ž by one of its corresponding ideals in (3) and setting equal to 1. Repeat until

there are enough relations to determine the group. [This works since if โˆ โŒŒ๐‘ƒ๐‘–โŒ๐‘Ž๐‘–

๐‘– =1, ๐‘ ๐‘ƒ๐‘– = ๐‘๐‘– then there is an element ๐‘Ž, ๐‘ ๐‘Ž = โˆ ๐‘๐‘–

๐‘Ž๐‘–๐‘– .]

5. For the prime 2,

a. If ๐‘‘ โ‰ก 2,3(mod 4), 2 ramifies: 2 = ๐‘ƒ๐‘ƒ . ๐‘ƒ has order 2 for ๐‘‘ โ‰  โˆ’1, โˆ’2.

b. If ๐‘‘ โ‰ก 2(mod 4), ๐‘ƒ = 2, ๐›ฟ . c. If ๐‘‘ โ‰ก 3 mod 4 , ๐‘ƒ = 2,1 + ๐›ฟ .

2-8 Real Quadratic Rings

Represent โ„ž[ ๐‘‘] as a lattice in the plane by associating ๐›ผ = ๐‘Ž + ๐‘ ๐‘‘ with

๐‘ข, ๐‘ฃ = (๐‘Ž + ๐‘ ๐‘‘, ๐‘Ž โˆ’ ๐‘ ๐‘‘). (The coordinates represent the two ways that ๐น[๐›ฟ] can be

embedded in the real numbers, where ฮด is the abstract square root of d: ๐›ฟ2 = ๐‘‘.)

The norm is ๐‘ ๐‘Ž = ๐‘Ž2 โˆ’ ๐‘2๐‘‘ (sometimes the absolute value is used).

The units satisfy ๐‘ ๐‘Ž = 1; they lie on the hyperbola ๐‘ข๐‘ฃ = ยฑ1. The units form an infinite group in R. 2 proofs: 1. The Pellโ€™s equation has infinitely many solutions.

2. Let ฮ” be the determinant for the lattice of โ„ž[ ๐‘‘] and ๐ท๐‘  = {(๐‘ข, ๐‘ฃ)|๐‘ข2

๐‘ 2 + ๐‘ 2๐‘ฃ2 โ‰ค2

3ฮ”}. For

any lattice with determinant ฮ”, ๐ท1 contains a nonzero lattice point (take the point nearest

the origin and use geometry). ๐œ‘ ๐‘ฅ, ๐‘ฆ = (๐‘ ๐‘ฅ,๐‘ฆ

๐‘ ) is an area-preserving map; by applying ๐œ‘

to the lattice, we get that every ๐ท๐‘  has a nonzero lattice point. These points have bounded norm; one norm is hit an infinite number of times. The ratios of these quadratic integers are units.

Page 12: Algebra Math Notes Abstract Algebra

3 Polynomials 3-1 Polynomials

A polynomial with coefficients in R is a finite combination of nonnegative powers of the variable x. The polynomial ring over R is

๐‘… ๐‘‹ = ๐‘Ž๐‘–๐‘ฅ๐‘›

๐‘›

๐‘–=0

|๐‘Ž๐‘– โˆˆ ๐‘…

with X a formal variable and addition and multiplication defined by: (๐‘“ ๐‘ฅ = ๐‘Ž๐‘–๐‘ฅ๐‘–

๐‘– , ๐‘” ๐‘ฅ = ๐‘๐‘–๐‘ฅ

๐‘–๐‘– )

1. ๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ = ๐‘Ž๐‘– + ๐‘๐‘– ๐‘ฅ๐‘–

๐‘–

2. ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘Ž๐‘–๐‘๐‘— ๐‘ฅ๐‘–+๐‘—

๐‘–

R is a subring of R[X] when identified with the constant polynomials in R. The ring of formal

series ๐‘…[ ๐‘‹ ] is defined similarly but combinations need not be finite. Iterating, the ring of polynomials with variables ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› is ๐‘…[๐‘ฅ1, ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘› ]. (Formally, use the substitution

principle below to show we can identify ๐‘… ๐‘ฅ ๐‘ฆ with ๐‘…[๐‘ฅ, ๐‘ฆ].) Basic vocab: monomial, degree, constant, leading coefficient, monic Division with Remainder: Let ๐‘“, ๐‘” โˆˆ ๐‘…[๐‘‹] with the leading coefficient of ๐‘“ a unit. There are unique polynomials ๐‘ž, ๐‘Ÿ โˆˆ ๐‘…[๐‘‹] (the quotient and remainder) so that

๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ ๐‘ž ๐‘ฅ + ๐‘Ÿ ๐‘ฅ , deg ๐‘Ÿ < deg ๐‘“

Substitution Principle: Let ๐œ‘: ๐‘… โ†’ ๐‘…โ€ฒ be a ring homomorphism. Given ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆˆ ๐‘…โ€ฒ, there is

a unique homomorphism ฮฆ: ๐‘… ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› โ†’ ๐‘…โ€ฒ which agrees with the map ๐œ‘ on constant polynomials, and sends ๐‘ฅ๐‘– โ†’ ๐‘Ž๐‘– . For ๐‘… = ๐‘…โ€ฒ, this map is just substituting ๐‘Ž๐‘– for the variable ๐‘ฅ๐‘– and evaluating the polynomial. A characterization of the GCD: The greatest common divisor ๐‘‘ of ๐‘“, ๐‘” โˆˆ ๐‘… = ๐น[๐‘ฅ] is the monic polynomial defined by any of the following equivalent conditions:

1. ๐‘…๐‘‘ = ๐‘…๐‘“ + ๐‘…๐‘”

2. Of all polynomials dividing f and g, ๐‘‘ has the greatest degree. 3. If ๐‘’|๐‘“, ๐‘” then ๐‘’|๐‘‘.

From (1), there exist ๐‘, ๐‘ž โˆˆ ๐‘… so ๐‘‘ = ๐‘๐‘“ + ๐‘ž๐‘”. Adjoining Elements Suppose ๐›ผ is an element satisfying no relation other than that implied by ๐‘“ ๐›ผ = 0 where ๐‘“ โˆˆ ๐‘…[๐‘ฅ] and has degree n. Then ๐‘… ๐›ผ โ‰… ๐‘… ๐‘ฅ /(๐‘“) is the ring extension. If f is monic, its

distinct elements are the polynomials in ๐›ผ (with coefficients in R) of degree less than n, with (1, ๐›ผ, โ€ฆ , ๐›ผ๐‘›โˆ’1) a basis. A polynomial in ๐›ผ is equivalent to its remainder upon division by f. ๐‘…

can be identified with a subring of ๐‘…[๐›ผ] as long as no constant polynomial is identified with 0.

3-2 โ„ž[๐‘‹] Tools for factoring in โ„ž[๐‘‹]:

1. Inclusion in โ„š[๐‘‹]. 2. Reduction modulo prime p:๐œ“๐‘ : โ„ž ๐‘‹ โ†’ ๐”ฝ๐‘[๐‘‹].

Page 13: Algebra Math Notes Abstract Algebra

A polynomial in โ„ž[๐‘‹] is primitive if the greatest common divisor of its coefficients is 1, it is not constant, and the leading coefficient is positive. Gaussโ€™s lemma: The product of primitive polynomials is primitive. Pf. Any prime ๐‘ in โ„ž is prime in โ„ž[๐‘ฅ], and a prime divides a polynomial iff it divides every coefficient.

Every nonconstant polynomial ๐‘“ ๐‘ฅ โˆˆ โ„š[๐‘ฅ] can be written uniquely as ๐‘“ ๐‘ฅ = ๐‘๐‘“0 ๐‘ฅ , ๐‘ โˆˆ โ„š and ๐‘“0(๐‘ฅ) primitive.

If ๐‘“0 is primitive and ๐‘“0|๐‘” โˆˆ โ„ž[๐‘ฅ] in โ„š[๐‘ฅ], then ๐‘“0|๐‘” in โ„ž[๐‘ฅ]. If two polynomials have a

common nonconstant factor in โ„š[๐‘ฅ] , they have a common nonconstant factor in โ„ž[๐‘ฅ]. An element of โ„ž[๐‘ฅ] is irreducible iff it is a prime integer or a primitive irreducible

polynomial in โ„š[๐‘ฅ], so every irreducible element of โ„ž[๐‘ฅ] is prime.

Hence โ„ž[๐‘ฅ] is a UFD, and each nonzero polynomial can be written uniquely (up to

ordering) as (๐‘๐‘– primes, ๐‘ž๐‘– primitive irreducible polynomials) ๐‘“ ๐‘ฅ = ยฑ๐‘1 โ‹ฏ ๐‘๐‘š๐‘ž1 ๐‘ฅ โ‹ฏ๐‘ž๐‘›(๐‘ฅ)

This technique can be generalized: replace โ„ž with a UFD R, and โ„š with the field of fractions of R.

By induction, if R is a UFD, then ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ] is a UFD.

Rational Roots Theorem: Let ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 , ๐‘Ž๐‘› โ‰  0. โ€“๐‘0

๐‘1 (in reduced form) is a root

iff ๐‘1๐‘ฅ + ๐‘0 divides f; if ๐‘1๐‘ฅ + ๐‘0 divides f then ๐‘1|๐‘Ž๐‘› and ๐‘0|๐‘Ž0.

3-3 Irreducible Polynomials The derivative of a polynomial is formally defined (without calculus) as

๐‘Ž๐‘–๐‘ฅ๐‘–

๐‘›

๐‘–=0

โ€ฒ

= ๐‘–๐‘Ž๐‘–๐‘ฅ๐‘–โˆ’1

๐‘›

๐‘–=1

.

๐›ผ is a multiple root of ๐‘“ ๐‘ฅ โˆˆ ๐น ๐‘ฅ iff ๐›ผ is a root of both ๐‘“(๐‘ฅ) and ๐‘“ โ€ฒ ๐‘ฅ . ๐›ผ appears as

a root exactly ๐‘› times if ๐‘“ ๐‘– ๐›ผ = 0 for 0 โ‰ค ๐‘– < ๐‘› but ๐‘“ ๐‘› ๐›ผ โ‰  0.

๐‘“, ๐‘“โ€ฒ have a common factor other than 1 iff there is a field extension where f has a multiple root.

If f is irreducible, and ๐‘“ โ€ฒ โ‰  0, then f has no multiple root (in any field extension). If F has characteristic 0, then f has no multiple root (in any field extension).

If ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 โˆˆ โ„ž[๐‘ฅ], ๐‘ โˆค ๐‘Ž๐‘› , and the residue of f modulo p is irreducible in ๐”ฝ๐‘[๐‘ฅ],

then f is irreducible in โ„š[๐‘ฅ]. Irreducible polynomials in ๐”ฝ๐‘[๐‘ฅ] can be found using the sieve

method.

Eisenstein Criterion: If ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 โˆˆ โ„ž ๐‘ฅ , ๐‘ โˆค ๐‘Ž๐‘› , ๐‘|๐‘Ž๐‘›โˆ’1, โ€ฆ , ๐‘Ž0, ๐‘2 โˆค ๐‘Ž0, then f is

irreducible in โ„š[๐‘ฅ].

Pf. Factor and take it modulo p; get ๐‘“ = ๐‘๐‘Ÿ๐‘ฅ๐‘Ÿ (๐‘๐‘ ๐‘ฅ

๐‘ ). But if ๐‘Ÿ, ๐‘  โ‰  0, ๐‘2|๐‘Ž0.

Extended Eisensteinโ€™s Criterion

Schรถnemannโ€™s Criterion: Suppose

๐‘˜ = ๐‘“๐‘› + ๐‘๐‘”, ๐‘› โ‰ฅ 1, ๐‘ prime, ๐‘“, ๐‘” โˆˆ โ„ž[๐‘ฅ]

deg ๐‘“๐‘› > deg(๐‘”)

Page 14: Algebra Math Notes Abstract Algebra

๐‘˜ primitive

๐‘“ is irreducible in ๐”ฝ๐‘[๐‘ฅ]

๐‘“ โˆค ๐‘” .

Then k is irreducible in โ„š[๐‘ฅ].

Cohnโ€™s Criterion: Let ๐‘ โ‰ฅ 2 and let p be a prime number. Write ๐‘ = ๐‘Ž๐‘›๐‘๐‘› + โ‹ฏ + ๐‘Ž1๐‘ + ๐‘Ž0 in

base b. Then ๐‘“ ๐‘‹ = ๐‘Ž๐‘›๐‘‹๐‘› + โ‹ฏ + ๐‘Ž1๐‘‹ + ๐‘Ž0 is irreducible in โ„š[๐‘‹].

Capelliโ€™s Theorem: Let K be a subfield of โ„‚ and ๐‘“, ๐‘” โˆˆ ๐พ[๐‘‹]. Let ๐‘Ž be a complex root of f and

assume that f is irreducible in ๐พ[๐‘‹] and ๐‘” ๐‘‹ โˆ’ ๐‘Ž is irreducible in ๐พ ๐‘Ž [๐‘‹]. Then ๐‘“ ๐‘” ๐‘‹ is

irreducible in ๐พ[๐‘‹].

[Add proof sketches.]

3-4 Cyclotomic Polynomials A primitive nth root of unity satisfies ๐œ”๐‘› = 1, but ๐œ”๐‘š โ‰  1 for ๐‘› โˆˆ โ„•, 0 < ๐‘š < ๐‘›. The nth cyclotomic polynomial is

ฮฆ๐‘› ๐‘‹ = (๐‘‹ โˆ’ ๐œ”)๐œ” primitive nth root

.

The cyclotomic polynomial is an irreducible polynomial in โ„ž[๐‘‹] of degree ๐œ‘(๐‘›). Each

polynomial ๐‘‹๐‘› โˆ’ 1 is a product of cyclotomic polynomials:

๐‘‹๐‘› = ฮฆ๐‘‘(๐‘‹)๐‘‘|๐‘›

โ‡’ ฮฆ๐‘› ๐‘‹ =๐‘‹๐‘› โˆ’ 1

โˆ ฮฆ๐‘‘ ๐‘‹ ๐‘‘|๐‘› ,๐‘‘<๐‘›

so ฮฆ๐‘›(๐‘‹) has integer coefficients. Pf. of irreducibility: Lemma- if ๐œ” is a primitive nth root of unity and a zero of ๐‘“ โˆˆ โ„ž[๐‘‹] then

๐œ”๐‘ is a root for ๐‘ โˆค ๐‘›. Proof- Suppose ฮฆ๐‘› = ๐‘”๐‘•, ๐‘• ๐œ” = 0, h irreducible (the minimal polynomial of ๐œ”). ๐œ”๐‘ is also a zero of ฮฆ๐‘› . Suppose it is a zero of ๐‘”. Then ๐œ” is a zero of ๐‘”(๐‘ฅ๐‘), so ๐‘” ๐‘ฅ๐‘ = ๐‘•๐‘˜. Mod p, ๐‘” ๐‘ฅ ๐‘ = ๐‘•๐‘˜, so g and h have a root in cogmmon, contradicting

that ๐‘‹๐‘› โˆ’ 1 โˆˆ โ„ž๐‘[๐‘‹] has no multiple root (derivative has no common factors with ๐‘‹๐‘› โˆ’ 1).

Hence ๐œ”๐‘ is a zero of h. โˆŽ Take powers to different primes to show that all primitive nth roots of unity divide h. Then ๐‘• = ฮฆ๐‘› is irreducible.

3-5 Varieties

1. The set ๐ด๐‘› of n-tuples in a field K is the affine n-space.

2. If S is a set of polynomials in ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› then ๐‘‰ ๐‘† = ๐‘ฅ โˆˆ ๐ด๐‘› ๐‘“ ๐‘ฅ = 0 for all ๐‘“ โˆˆ ๐‘†

is a (affine) variety.

3. For ๐‘‹ โŠ† ๐ด๐‘› , define the ideal of X to be ๐ผ ๐‘‹ = ๐‘“ โˆˆ ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐‘“ vanishes on ๐‘‹

Note ๐‘† โŠ† ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘‹ โŠ† ๐ด๐‘› , ๐‘‰ ๐‘† โŠ† ๐ด๐‘› , ๐ผ ๐‘‹ โŠ† ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› . 4. The radical of the ideal I in a ring T is the ideal

๐ผ = {๐‘“ โˆˆ ๐‘…|๐‘“๐‘Ÿ โˆˆ ๐ผ for some ๐‘Ÿ โˆˆ โ„•} ๐ด๐‘› can be made into a topology (the Zariski topology) by taking varieties as closed sets (1-4 below).

Page 15: Algebra Math Notes Abstract Algebra

Properties: 1. ๐‘‰ ๐‘† = ๐‘‰ ๐ผ where I is the ideal generated by S.

2. โˆฉ ๐‘‰ ๐ผ๐‘— = ๐‘‰(โˆช ๐ผ๐‘— )

3. If ๐‘‰๐‘— = ๐‘‰(๐ผ๐‘— ) then โ‹ƒ ๐‘‰๐‘—๐‘Ÿ๐‘—=1 = ๐‘‰( ๐‘“1 โ‹ฏ ๐‘“๐‘Ÿ ๐‘“๐‘— โˆˆ ๐ผ๐‘— , 1 โ‰ค ๐‘— โ‰ค ๐‘Ÿ ).

4. ๐ด๐‘› = ๐‘‰ 0 , ๐œ™ = ๐‘‰(1)

5. ๐‘‹ โŠ† ๐‘Œ โ‡’ ๐ผ ๐‘Œ โŠ† ๐ผ(๐‘‹), ๐‘† โŠ† ๐‘‡ โ‡’ ๐‘‰ ๐‘‡ โŠ† ๐‘‰(๐‘†) 6. ๐‘† โŠ† ๐ผ๐‘‰ ๐‘† , ๐‘‹ โŠ† ๐‘‰๐ผ(๐‘‹) 7. ๐‘‰๐ผ๐‘‰ ๐‘† = ๐‘‰ ๐‘† , ๐ผ๐‘‰๐ผ ๐‘‹ = ๐ผ(๐‘‹)

8. ๐ผ 0 = ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] 9. If K is an infinite field, ๐ผ ๐ด๐‘› = {0}.

a. For n=1, a nonzero polynomial only has finitely many zeros. Extend by induction.

10. ๐ผ ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› = (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘› ) (the ideal generated by ๐‘‹๐‘– โˆ’ ๐‘Ž๐‘– ) a. Use division with remainder.

11. If ๐‘Ž1, โ€ฆ ๐‘Ž๐‘› โˆˆ ๐ด๐‘› then ๐ผ = (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›) is a maximal ideal. a. Apply the division algorithm to ๐‘“ โˆˆ ๐ฝ\๐ผ.

12. ๐ผ โŠ† ๐ผ๐‘‰(๐ผ)

3-6 Nullstellensatz Hilbert Basis Theorem: If R is Noetherian, then ๐‘…[๐‘ฅ] is Noetherian. Thus so is ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ]. In particular, this holds for ๐‘… = โ„ž or a field F. Pf. For ๐ผ โŠ† ๐‘…[๐‘ฅ] an ideal, the set whose elements are the leading coefficients of the polynomials in I (including 0) forms the ideal of leading coefficients in R. Take generators for this ideal and polynomials with those leading coefficients, multiplying by x as necessary so they have the same degree n. The polynomials with degree less than n form a free, Noetherian R-module P with basis (1, ๐‘ฅ, โ€ฆ ๐‘ฅ๐‘›โˆ’1). ๐‘ƒ โˆฉ ๐ผ has a finite generating set. Put the two generating sets together. The ring of formal power series ๐‘…[ ๐‘‹ ] is also Noetherian. Noether Normalization Lemma: Let A be a finitely generated K-algebra. There exists a

subset ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ of A such that the ๐‘ฆ๐‘– are algebraically independent over K and A is integral over ๐พ[๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ] (all elements of A are algebraic integers over ๐พ[๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ]). Pf. Induct on n; n=1 trivial. Take a maximally algebraically independent subset ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘Ÿ โŠ†{๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›}; assume ๐‘› > ๐‘Ÿ. By algebraic dependency, there exists ๐‘“ โˆˆ ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› so that ๐‘“ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = 0. Lexicographically order the monomials, and choose weights ๐‘ค๐‘– to match

the lexicographic order. Set ๐‘ฅ๐‘– = ๐‘ง๐‘– + ๐‘ฅ๐‘›๐‘ค๐‘– . Then we get a polynomial in ๐‘ฅ๐‘› , where term with

the highest power of ๐‘ฅ๐‘› is uncancelled. ๐‘ฅ๐‘› is integral over ๐พ[๐‘ง1, โ€ฆ , ๐‘ง๐‘›โˆ’1]; finish by induction.

Cor. If B is a finitely generated K-algebra, and I is a maximal ideal, then ๐ต ๐ผ is a finite

extension of K (K is embedded via ๐‘ โ‡ ๐‘ + ๐ผ.): In the above, we must have ๐‘Ÿ = 0; B/I is algebraic over K.

Hilbertโ€™s Nullstellensatz: For any field K and ๐‘› โˆˆ โ„•, the following are equivalent: 1. K is algebraically closed. 2. (Maximal Ideal Theorem) The maximal ideals of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] are the ideals of the

form (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›). 3. (Weak Nullstellensatz) If I is a proper ideal of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘›], then ๐‘‰(๐ผ) is not empty.

4. (Strong Nullstellensatz) If I is an ideal of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] then ๐ผ๐‘‰ ๐ผ = ๐ผ. (2)โ‡’(3): For I a proper ideal, let J be a maximal ideal containing it. Then ๐‘‰ ๐ฝ โŠ† ๐‘‰(๐ผ) so ๐ฝ = (๐‘‹1 โˆ’ ๐‘Ž1 , โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›), ๐‘Ž โˆˆ ๐‘‰(๐ฝ).

Page 16: Algebra Math Notes Abstract Algebra

(3)โ‡’(4): Rabinowitsch Trick: 1. Let ๐‘“ โˆˆ ๐ผ๐‘‰ ๐ผ . Let ๐‘“1, โ€ฆ , ๐‘“๐‘š be a generating set for ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘Œ]. Let ๐ผโˆ— be the ideal

generated by ๐‘“1, โ€ฆ , ๐‘“๐‘š , 1 โˆ’ ๐‘Œ๐‘“.

2. ๐‘‰ ๐ผโˆ— = ๐œ™ a. If ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆˆ ๐ด๐‘›+1 and ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆˆ ๐‘‰ ๐ผ , then ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆ‰ ๐‘‰(๐ผโˆ—)

since it is not a zero of 1 โˆ’ ๐‘Œ๐‘“. b. If ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆ‰ ๐‘‰ ๐ผ then ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆ‰ ๐‘‰(๐ผโˆ—) (an even weaker statement).

3. Using the weak Nullstellensatz (see below), we can write

1 = ๐‘”๐‘–๐‘“๐‘– + ๐‘• 1 โˆ’ ๐‘Œ๐‘“

๐‘š

๐‘–=1

since ๐‘‰ ๐ผโˆ— = ๐œ™ โ‡’ 1 โˆˆ ๐ผโˆ— = ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘Œ]. 4. Set ๐‘Œ = 1/๐‘“, and multiply to clear denominators

๐‘“๐‘Ÿ = ๐‘•๐‘– ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐‘“๐‘– ๐‘‹1, โ€ฆ ๐‘‹๐‘›

๐‘š

๐‘–=1

โˆˆ ๐ผ

(4)โ‡’(3): The radical of an ideal is the intersection of all prime ideals containing I. I is in a

maximal, prime ideal P; so is ๐ผ, so ๐ผ is proper. ๐ผ๐‘‰(๐ผ) is proper by (4), so ๐‘‰ ๐ผ โ‰  ๐œ™.

(3)โ‡’(2): For I maximal, there is ๐‘Ž โˆˆ ๐‘‰(๐ผ). Since I is maximal, it must be in (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘ฅ๐‘› โˆ’๐‘Ž๐‘›).

(1)โ‡’(2): Let I be a maximal ideal. K can be imbedded via ๐‘ โ‡ ๐‘ + ๐ผ in ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐ผ ; by the corollary to Noether Normalization Lemma, this is a finite extension of K so must be K (since

it is algebraically closed). Then ๐‘‹๐‘– + ๐ผ = ๐‘Ž๐‘– + ๐ผ โ‡’ ๐‘‹๐‘– โˆ’ ๐‘Ž๐‘– โˆˆ ๐ผ, ๐‘‹1 โˆ’ ๐‘Ž1 , โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘› โŠ† ๐ผ, with equality since the LHS is maximal. (2)โ‡’(1): If f is a nonconstant polynomial in ๐พ[๐‘‹1] with no root in K, regard it as a polynomial

in ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] with no root in ๐ด๐‘› . Then I is in a maximal ideal (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›), so has

root ๐‘‹1 = ๐‘Ž1. Combinatorial Nullstellensatz: Let F be a field, ๐‘“ โˆˆ ๐น[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] and let ๐‘†1, โ€ฆ , ๐‘†๐‘› be nonempty subsets of F.

1. If ๐‘“ ๐‘ 1, โ€ฆ , ๐‘ ๐‘› = 0 for all ๐‘ 1, โ€ฆ , ๐‘ ๐‘› โˆˆ ๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘› (i.e. ๐‘“ โˆˆ ๐‘‰(๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘›)) then ๐‘“ lies in the ideal generated by the polynomials ๐‘”๐‘– ๐‘‹๐‘– = โˆ (๐‘‹๐‘– โˆ’ ๐‘ )๐‘ โˆˆ๐‘†๐‘–

. The polynomials

๐‘•1, โ€ฆ , ๐‘•๐‘› satisfying ๐‘“ = ๐‘”1๐‘•1 + โ‹ฏ + ๐‘”๐‘›๐‘•๐‘›

can be chosen so that deg ๐‘•๐‘– โ‰ค deg ๐‘“ โˆ’ deg(๐‘”๐‘–) for all i. If ๐‘”1, โ€ฆ , ๐‘”๐‘› โˆˆ ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] for some subring ๐‘… โŠ† ๐น, we can choose ๐‘•๐‘– โˆˆ ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›].

a. The ๐‘  โˆˆ ๐‘†๐‘– are all zeros of ๐‘”๐‘– of degree |๐‘†๐‘–| so by subtracting multiples of ๐‘”๐‘–

every ๐‘‹๐‘–๐‘˜ in f can be replaced with a linear combination of 1, โ€ฆ , ๐‘ฅ๐‘–

๐‘†๐‘– โˆ’1. Then by

counting zeros the result is actually 0; i.e. f is in the form above. 2. If deg ๐‘“ = ๐‘ก1 + โ‹ฏ + ๐‘ก๐‘› where ๐‘ก๐‘– are nonnegative integers with ๐‘ก๐‘– < |๐‘†๐‘–|, and if the

coefficient of ๐‘‹1๐‘ก1 โ‹ฏ ๐‘‹๐‘›

๐‘ก๐‘› is not 0, then there exist ๐‘ ๐‘– โˆˆ ๐‘†๐‘– so that ๐‘“ ๐‘ 1, โ€ฆ , ๐‘ ๐‘› โ‰  0, i.e.

๐‘“ โˆ‰ ๐‘“ โˆˆ ๐‘‰(๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘›).

Page 17: Algebra Math Notes Abstract Algebra

4 Fields Examples of Fields An extension K of a field F (also denoted ๐พ/๐น) is a field containing F.

Number field: subfield of โ„‚

Finite field: finitely many elements

Function field: Extensions of โ„‚(๐‘ก) of rational functions

4-1 Fundamental Theorem of Algebra Fundamental Theorem of Algebra: Every nonconstant polynomial with complex coefficients has a complex zero. Thus, the field of complex numbers is algebraically closed, and every polynomial in โ„‚[๐‘ฅ] splits completely.

Pf. Let ๐‘“ ๐‘ฅ = ๐‘ฅ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0. Let ๐‘ฅ = ๐‘Ÿ๐‘’๐œƒ๐‘– - the parameterization of a circle about the origin. ๐‘“ ๐‘ฅ โˆ’ ๐‘ฅ๐‘› is small for large r, so for large r, ๐‘“(๐‘ฅ) winds around the origin n

times as ๐œƒ goes from 0 to 2๐œ‹๐‘›.2 (f is a person walking a dog on a circular path n times around the origin. The dog will also walk around the origin n times provided the leash is shorter than the radius.) For small r, ๐‘“ ๐‘ฅ makes a small loop around ๐‘Ž0, and winds around

the origin 0 times. For some intermediate value, ๐‘“ ๐‘ฅ will pass through the origin.

4-2 Algebraic Elements

Let K be an extension, and ๐›ผ be an element of K. ๐›ผ is algebraic over F if it is the zero of a polynomial in ๐น[๐‘ฅ], and transcendental otherwise. ๐›ผ is transcendental iff the substitution

homomorphism ๐œ‘: ๐น ๐‘ฅ โ†’ ๐พ is injective. ๐น ๐›ผ is the smallest subfield of K that contains F and ๐›ผ. The irreducible polynomial ๐‘“ of ๐›ผ

over F is the monic polynomial of lowest degree in ๐น[๐‘ฅ] having ๐›ผ as a zero.

Any polynomial in ๐น[๐‘ฅ] having ๐›ผ as a zero divides ๐‘“.

๐น ๐‘ฅ /(๐‘“) is an extension field of F with ๐‘ฅ a root of ๐‘“ ๐‘ฅ = 0. The substitution map ๐น ๐‘ฅ /(๐‘“) โ†’ ๐น[๐›ผ] is an isomorphism, so ๐น ๐‘ฅ /(๐‘“) โ‰… ๐น(๐›ผ). [*]

For every polynomial in F[x], there is an extension field in which it splits (factors) completely, i.e. every polynomial has a splitting field.

If f has degree ๐‘› then ๐น(๐›ผ) is a vector space with dimension ๐‘› and basis

(1, ๐›ผ, โ€ฆ , ๐›ผ๐‘›โˆ’1).

Let ๐›ผ, ๐›ฝ be elements of ๐พ/๐น, ๐ฟ/๐น algebraic over F. There is an isomorphism of fields ๐น ๐›ผ โ†’ ๐น(๐›ฝ) sending ๐›ผ โ‡ ๐›ฝ iff ๐›ผ, ๐›ฝ have the same irreducible polynomial.

Let ๐พ, ๐ฟ be extensions of F. A F-isomorphism is an isomorphism ๐œ‘: ๐พ โ†’ ๐ฟ that restricts to the identity on F. Then K and L are isomorphic as field extensions. If ๐›ผ is a zero of ๐‘“ in ๐พ, then ๐œ‘(๐›ผ) is a zero of ๐‘“.

4-3 Degree of a Field Extension The degree [๐พ: ๐น] is the dimension of K as an F-vector space.

If ๐›ผ is algebraic over F, then [๐น ๐›ผ : ๐น] is the degree of the irreducible polynomial of ๐›ผ

over F, and if ๐›ผ is transcendental, ๐น ๐›ผ : ๐น = โˆž.

๐พ: ๐น = 1 iff ๐น = ๐พ.

2 i.e. it is homotopic to the loop going around the origin n times in โ„‚ โˆ’ 0 .

Page 18: Algebra Math Notes Abstract Algebra

If ๐พ: ๐น = 2 then K can be obtained by adjoining a square root ๐›ฟ of an element in F: ๐›ฟ2 โˆˆ ๐น

Multiplicative property: If ๐น โŠ† ๐พ โŠ† ๐ฟ, then ๐ฟ: ๐น = ๐ฟ: ๐พ [๐พ: ๐น]. o If K is a finite extension of F, and ๐›ผ โˆˆ ๐พ, then the degree of ๐›ผ divides [๐พ: ๐น]. o If ๐›ผ โˆˆ ๐ฟ is algebraic over F, it is algebraic over ๐พ with degree less than or

equal to its degree over ๐น. o A field extension generated by finitely many algebraic elements is a finite

extension. o The set of elements of K that are algebraic over F is a subfield of K.

Let L be an extension field of F, and let ๐พ, ๐นโ€ฒ be subfields of L that are finite

extensions of F. Let ๐พโ€ฒ : ๐น = ๐‘, ๐พ: ๐น = ๐‘š, ๐นโ€ฒ : ๐น = ๐‘›. Then m and n divide N, and ๐‘ โ‰ค ๐‘š๐‘›.

Finding the Irreducible Polynomial of ๐›พ (The dum way) Compute powers of ๐›พ, and find a relation between them. (The smart way)

1. If ๐›พ = ๐‘Ž1 + โ‹ฏ + ๐‘Ž๐‘› , ๐‘Ž1 โ‹ฏ ๐‘Ž๐‘› where each ๐‘Ž1 is algebraic (for example a nth root), then

its conjugates (other zeros of the irreducible polynomial) are in the form ๐‘1 + โ‹ฏ +๐‘๐‘› , ๐‘1 โ‹ฏ ๐‘๐‘› , respectively where ๐‘๐‘– is a conjugate of ๐‘Ž๐‘– . (Not all these may be conjugates.)

2. The irreducible polynomial is โˆ (๐‘ฅ โˆ’ ๐›พโ€ฒ)๐›พ โ€ฒ conjugate of ๐›พ . [Note: This gives an elementary

proof of the fact that the algebraic numbers/ integers form a field/ ring. For ๐‘Ž, ๐‘ algebraic, expand the product (๐‘ฅ โˆ’ ๐‘Žโ€ฒ โˆ’ ๐‘โ€ฒ ), ๐‘Žโ€ฒ , ๐‘โ€ฒ running over the conjugates of ๐‘Ž, ๐‘, and use the Fundamental Theorem on Symmetric Polynomials.]

4-4 Application: Constructions! Rules:

1. Two points (0,0) and (1,0) are given (constructed). 2. If P, Q have been constructed, we can draw (construct)

a. the line through them b. a circle with center at P and passing through Q.

3. Points of intersection of constructed lines and circles are constructed. 4. A number is constructible if (a,0) is constructible.

Finding all constructible numbers: 1. If ๐‘ƒ = ๐‘Ž0, ๐‘Ž1 , ๐‘„ = (๐‘0 , ๐‘1) have coordinates in F, then the line in (2a) is defined by a

linear equation with coefficients in F, while the circle in (2b) is defined by a quadratic equation with coefficients in F.

2. The point of intersection of two lines/ circles whose equations have coefficients in F has coordinates in a real quadratic extension of F.

3. Let P be a constructible point. There is a chain of fields โ„š = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘› = ๐พ such that

a. K is a subfield of โ„. b. The coordinates of P are in ๐น๐‘› . c. ๐น๐‘–+1: ๐น๐‘– = 2, and ๐พ: โ„š = 2๐‘› .

๐พโ€ฒ

๐น

๐นโ€ฒ ๐พ ๐‘ โ‰ค ๐‘š๐‘›

๐‘› ๐‘š

โ‰ค ๐‘› โ‰ค ๐‘š

Page 19: Algebra Math Notes Abstract Algebra

Thus a constructible number has degree over โ„š a power of 2. 4. Conversely, if a chain of fields satisfies the conditions above, then every element of K

is constructible. Examples:

1. Trisecting the angle with compass and straightedge is impossible. cos 20ยฐ is not constructible.

2. For p prime, a regular p-gon can be constructed iff ๐‘ = 2๐‘Ÿ + 1.

4-5 Finite Fields A finite field is a vector space over ๐”ฝ๐‘ for some prime p, so has order ๐‘ž = ๐‘๐‘Ÿ . The (unique)

field of order q is denoted by ๐”ฝ๐‘ž .

1. The elements in a field of order q are roots of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ = 0 (everything is modulo p). a. The multiplicative group ๐”ฝ๐‘ž

ร— of nonzero elements has order ๐‘ž โˆ’ 1. The order of

any element divides ๐‘ž โˆ’ 1 so ๐›ผ๐‘žโˆ’1 = 0 for any ๐›ผ โˆˆ ๐”ฝ๐‘ž.

2. ๐”ฝ๐‘žร— is a cyclic group of order ๐‘ž โˆ’ 1.

a. By the Structure Theorem for Abelian Groups, ๐”ฝ๐‘žร— is a direct product of cyclic

subgroups of orders ๐‘‘1| โ‹ฏ |๐‘‘๐‘˜ , and the group has exponent ๐‘‘๐‘˜ . ๐‘ฅ๐‘‘๐‘˜ โˆ’ 1 = 0

has at most ๐‘‘๐‘˜ roots, so ๐‘˜ = 1, ๐‘‘๐‘˜ = ๐‘ž โˆ’ 1. 3. There exists a unique field of order q (up to isomorphism).

a. Existence: Take a field extension where ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ splits completely. If ๐›ผ, ๐›ฝ are roots of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ = 0 then ๐›ผ + ๐›ฝ ๐‘ž = ๐›ผ + ๐›ฝ. Since โˆ’1 is a root, โˆ’๐›ผ is a root. The roots form a field.

b. Uniqueness: Suppose ๐พ, ๐พโ€ฒ have order ๐‘ž. Let ๐›ผ be a generator of ๐พร—; ๐พ = ๐น(๐›ผ). The irreducible polynomial ๐‘“ โˆˆ ๐พ[๐‘ฅ] with root ๐›ผ divides ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ.

๐‘ฅ๐‘ž โˆ’ ๐‘ฅ splits completely in both ๐พ, ๐พโ€ฒ, so f has a root ๐›ผโ€ฒ โˆˆ ๐พโ€ฒ. Then ๐น ๐›ผ โ‰…๐น ๐‘ฅ /(๐‘“) โ‰… ๐น(๐›ผโ€ฒ) = ๐พโ€ฒ.

4. A field of order ๐‘๐‘Ÿ contains a subfield of order ๐‘๐‘˜ iff ๐‘˜|๐‘Ÿ. (Note this is a relation between the exponents, not the orders.)

a. ๐”ฝ๐‘๐‘˜ โŠ† ๐”ฝ๐‘๐‘Ÿ โ‡’ ๐‘˜|๐‘Ÿ: Multiplicative property of the degree.

b. ๐”ฝ๐‘๐‘˜ โŠ† ๐”ฝ๐‘๐‘Ÿ โ‡ ๐‘˜|๐‘Ÿ: ๐‘๐‘Ÿ โˆ’ 1|๐‘๐‘˜ โˆ’ 1. Cyclic ๐”ฝ๐‘๐‘Ÿร— contains a cyclic group of order ๐‘๐‘˜ .

Including 0, they are the roots of ๐‘ฅ๐‘๐‘˜โˆ’ ๐‘ฅ = 0 and thus form a field by 3a.

5. The irreducible factors of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ over ๐”ฝ๐‘ are the irreducible polynomials ๐‘” in ๐น[๐‘ฅ]

whose degrees divide r.

a. โ‡’: Multiplicative property b. โ‡: Let ๐›ฝ be a root of g. If ๐‘˜|๐‘Ÿ, by (4), ๐”ฝ๐‘ž contains a subfield isomorphic to

๐น(๐›ฝ). ๐‘” has a root in ๐”ฝ๐‘ž so divides ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ.

6. For every r there is an irreducible polynomial of degree r over ๐”ฝ๐‘ .

a. ๐”ฝ๐‘ž(๐‘ž = ๐‘๐‘Ÿ) has degree r over ๐”ฝ๐‘ , and has a cyclic multiplicative group

generated by an element ๐›ผ. ๐”ฝ๐‘(๐›ผ) has degree r over ๐”ฝ๐‘ .

To compute in ๐”ฝ๐‘ž , take a root ๐›ฝ of the irreducible factor of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ of degree r; (1, ๐›ฝ, โ€ฆ , ๐›ฝ๐‘Ÿโˆ’1)

is a basis. Let ๐‘Š๐‘(๐‘‘) be the number of irreducible monic polynomials of degree d in ๐”ฝ๐‘ . Then by (2),

๐‘๐‘› = ๐‘‘๐‘Š๐‘(๐‘‘)๐‘‘|๐‘›

.

By Mรถbius inversion,

Page 20: Algebra Math Notes Abstract Algebra

๐‘Š๐‘ ๐‘› =1

๐‘› ๐œ‡

๐‘›

๐‘‘ ๐‘๐‘‘

๐‘‘|๐‘›

.

Primitive elements Let K be a field extension of F. An element ๐›ผ โˆˆ ๐พ such that ๐พ = ๐น(๐›ผ) is a primitive element for the extension. Primitive Element Theorem: Every finite extension of a field F contains a primitive element. Proof when F has characteristic 0: Show that if ๐พ = ๐น(๐›ผ, ๐›ฝ) with ๐›ผ, ๐›ฝ โˆˆ ๐พ then ๐›พ = ๐›ฝ + ๐‘๐›ผ is a primitive element for K over F. Let ๐‘“, ๐‘” be the irreducible polynomials of ๐›ผ, ๐›ฝ, and ๐›ผ๐‘– , ๐‘๐‘— be

the conjugates of ๐›ผ, ๐›ฝ. For all but finitely many ๐‘, the numbers ๐›ฝ๐‘— + ๐‘๐›ผ๐‘– are all distinct. For

such a value of ๐‘, to show that ๐›พ = ๐›ฝ + ๐‘๐›ผ is a primitive element, consider ๐‘• ๐‘ฅ =๐‘” ๐›พ โˆ’ ๐‘๐‘ฅ โˆˆ ๐น(๐›พ). gcd ๐‘“, ๐‘• = ๐‘ฅ โˆ’ ๐›ผ by choice of c, so ๐›ผ โˆˆ ๐น(๐›พ) as desired.

Page 21: Algebra Math Notes Abstract Algebra

5 Modules

More structureโ†’

No division Division

More complex โ†“

Ring Field

Module Vector Space

Algebra Division Algebra

5-1 Modules

A left/right R-module ๐‘€๐‘… /๐‘€๐‘… over the ring R is an abelian group (M,+) with addition and

scalar multiplication (๐‘… ร— ๐‘€ โ†’ ๐‘€ or ๐‘€ ร— ๐‘… โ†’ ๐‘€) defined so that for all ๐‘Ÿ, ๐‘  โˆˆ ๐‘… and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€,

Left Right

1. Distributive ๐‘Ÿ ๐‘ฅ + ๐‘ฆ = ๐‘Ÿ๐‘ฅ + ๐‘Ÿ๐‘ฆ ๐‘ฅ + ๐‘ฆ ๐‘Ÿ = ๐‘ฅ๐‘Ÿ + ๐‘ฆ๐‘Ÿ

2. Distributive ๐‘Ÿ + ๐‘  ๐‘ฅ = ๐‘Ÿ๐‘ฅ + ๐‘ ๐‘ฅ ๐‘ฅ ๐‘Ÿ + ๐‘  = ๐‘ฅ๐‘Ÿ + ๐‘ฅ๐‘ 

3. Associative ๐‘Ÿ ๐‘ ๐‘ฅ = ๐‘Ÿ๐‘  ๐‘ฅ ๐‘ฅ๐‘Ÿ ๐‘  = ๐‘ฅ(๐‘Ÿ๐‘ )

4. Identity 1๐‘ฅ = ๐‘ฅ ๐‘ฅ1 = ๐‘ฅ

A (S,R)-bimodule ๐‘€๐‘…๐‘† has both the structure of a left S-module and right R-modules.

Modules are generalizations of vector spaces. All results for vector spaces hold except ones

depending on division (existence of inverse in R). ๐‘† โŠ† ๐‘€ is linearly dependent if there exist

๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โˆˆ ๐‘† such that ๐‘Ÿ๐‘–๐‘ฃ๐‘– โ‰  0 and ๐‘Ÿ1๐‘ฃ1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘ฃ๐‘› = 0.

Again, a basis is a linearly independent set that generates the module. Note that if elements are linearly independent, it is not necessary that one element is a linear combination of the others, and bases do not always exist. Every basis for V (if it exists) contains the same number of elements. V is finitely generated if it contains a finite subset spanning V. The rank is the size of the smallest generating set. A submodule of a R-module is a nonempty subset closed under addition and scalar

multiplication. Viewing R as an R-module, the submodules of R are the ideals in R. In โ„ž๐‘› , submodules correspond to lattices, with the area/volume of a fundamental parallelogram/parallelepiped equal to the determinant. A free module with n generators has a basis with n elements. It is isomorphic to ๐‘…๐‘› . An isomorphism preserves addition and scalar multiplication. Unlike vector spaces, not all

finitely generated modules are isomorphic to some ๐‘…๐‘› . Basic Theorems:

1. If W is a submodule of V, the quotient module ๐‘‰/๐‘Š is a R-module, and the canonical

map ๐œ‹: ๐‘‰ โ†’ ๐‘‰/๐‘Š is a homomorphism. 2. Mapping Property: Let ๐‘“: ๐‘‰ โ†’ ๐‘‰โ€ฒ be a homomorphism of R-modules with kernel

containing W. There is a unique homomorphism ๐‘“ with ๐‘“ = ๐‘“ โˆ˜ ๐œ‹.

3. First Isomorphism Theorem: If ๐‘“ is surjective with kernel W, ๐‘“ is an isomorphism.

4. Correspondence Theorem: Let ๐‘“: ๐‘‰ โ†’ ๐‘‰โ€ฒ be a surjective homomorphism. There is a bijective correspondence between submodules of V' and submodules of V that containing ker ๐‘“ = ๐‘Š: ๐‘† with ๐‘Š โŠ† ๐‘† โŠ† ๐‘‰ is associated with ๐‘“(๐‘†); ๐‘‰/๐‘† โ‰… ๐‘‰ โ€ฒ/๐‘“(๐‘†).

V'

V G

๐‘“

๐‘“ ๐œ‹

Page 22: Algebra Math Notes Abstract Algebra

5. Second Isomorphism Theorem: Let ๐‘† and ๐‘‡ be submodules of ๐‘€, and let ๐‘† + ๐‘‡ = ๐‘ฅ + ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘†, ๐‘ฆ โˆˆ ๐‘‡ . Then ๐‘† + ๐‘‡ and ๐‘† โˆฉ ๐‘‡ are submodules of ๐‘€ and

๐‘† + ๐‘‡

๐‘‡โ‰…

๐‘†

๐‘† โˆฉ ๐‘‡

6. Third Isomorphism Theorem: Let ๐‘ โŠ† ๐ฟ โŠ† ๐‘€ be modules. Then ๐‘€/๐ฟ โ‰… (๐‘€/๐‘)/(๐ฟ/๐‘).

5-2 Structure Theorem

Matrices, invertible matrices, the general linear group, the determinant, and change of bases matrices all generalize to a ring R. However, a R-matrix A is invertible iff its determinant is a unit.

Properties of matrices in a field such as det(๐ด๐ต) = det ๐ด det ๐ต continue to hold in a ring, because they are polynomial identities. Smith Normal Form For a matrix over an Euclidean domain R [*] (such as โ„ž or ๐น[๐‘ก]), elementary row/ column operations correspond to left and right multiplication by elementary matrices and include:

(1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a unit (3) Adding any multiple of a row/ column to another row/ column

However, note arbitrary division in R is illegal. A ๐‘š ร— ๐‘› matrix is in Smith (or Hermite) normal form if

1. It is diagonal. 2. The entries ๐‘‘1, โ€ฆ , ๐‘‘๐‘› on the main diagonal satisfy ๐‘‘๐‘˜|๐‘‘๐‘˜+1, 1 โ‰ค ๐‘˜ < min(๐‘š, ๐‘›). (Ones

at the end may be 0.)

Every matrix is equivalent to a unique matrix N in normal form. For a ๐‘š ร— ๐‘› matrix A, follow this algorithm to find it:

1. Make the first column

๐‘0โ‹ฎ0

.

a. Choose the nonzero entry ๐‘“ in the first column that has the least norm.

b. For each other nonzero entry ๐‘, use division to write ๐‘ = ๐‘“๐‘ž + ๐‘Ÿ, where ๐‘Ÿ is the remainder upon division. Subtract ๐‘ž times the row with ๐‘“ from the row with ๐‘.

c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row with that row if necessary.

2. Put the first row in the form ๐‘ 0 โ‹ฏ 0 by following the steps above but exchanging the words โ€œrowsโ€ and โ€œcolumnsโ€.

3. Repeat 1 and 2 until the first entry ๐‘” is the only nonzero entry in its row and column. (This process terminates because the least degree decreases at each step.)

4. If ๐‘” does not divide every entry of A, find the first column with an entry not divisible by g and add it to column 1, and repeat 1-4; the degree of โ€œgโ€ will decrease. Else, go to the next step.

5. Repeat with the ๐‘š โˆ’ 1 ร— (๐‘› โˆ’ 1) matrix obtained by removing the first row and column.

Solving ๐ด๐‘‹ = ๐ต in R: 1. Write ๐ด = ๐‘„๐ดโ€ฒ๐‘ƒโˆ’1, where ๐ดโ€ฒ is in normal form. Suppose the nonzero diagonal entries

are ๐‘‘1, ๐‘‘2, โ€ฆ , ๐‘‘๐‘˜ . 2. The solutions ๐‘‹โ€ฒ of the homogeneous system ๐ดโ€ฒ๐‘‹โ€ฒ = 0 are the vectors whose first k

coordinates are 0.

Page 23: Algebra Math Notes Abstract Algebra

3. The solutions of ๐ด๐‘‹ = 0 are in the form ๐‘‹๐‘• = ๐‘ƒ๐‘‹โ€ฒ.

4. The equation has a solution iff ๐ต is in the form ๐‘„๐‘Œโ€ฒ , ๐‘Œโ€ฒ =

๐‘Ÿ1๐‘‘1

โ‹ฎ๐‘Ÿ๐‘˜๐‘‘๐‘˜

0โ‹ฎ

. Use linear algebra to

find a particular solution ๐‘‹๐‘ . (The condition guarantees that the entries are in R.)

Then the solutions are ๐‘‹๐‘• + ๐‘‹๐‘ , for ๐‘‹๐‘• a homogeneous solution.

Structure Theorem: (a.k.a. Fundamental Decomposition Theorem)

Let M be a finitely generated module over the PID R (such as โ„ž or ๐น[๐‘ก]). Then M is a direct sum of cyclic modules and a free module ๐ถ1 โŠ• โ‹ฏ โŠ• ๐ถ๐‘˜ โŠ• ๐ฟ, where ๐ถ๐‘– โ‰… ๐‘…/(๐‘‘๐‘–). The cyclic modules can be chosen to satisfy either of the following conditions:

1. ๐‘‘1|๐‘‘2 โ‹ฏ |๐‘‘๐‘˜ 2. Each ๐‘‘๐‘– is the power of an irreducible element.

5-3 Noetherian and Artinian Rings The following conditions on a R-module V are equivalent:

1. Every submodule is finitely generated.

2. Ascending chain condition: There is no infinite strictly increasing chain ๐‘Š1 โŠ‚ ๐‘Š2 โŠ‚ โ‹ฏ of submodules. (Pf. of โ‡’: Union of chain finitely generated.)

A ring is Noetherian if every ideal of R is finitely generated. In a Noetherian ring, every proper ideal is contained in a maximal ideal.

Let ๐œ‘ be a homomorphism of R-modules. 1. If V is finitely generated and ๐œ‘ is surjective, then ๐‘‰โ€ฒ is finitely generated. 2. If ker ๐œ‘ , im ๐œ‘ are finitely generated, so is V. (Pf. Take a generating set for the kernel

and some preimage of a generating set for the image.)

3. In particular, if ๐‘‰ is finitely generated, so is ๐‘‰/๐‘Š. If ๐‘‰/๐‘Š and ๐‘Š are finitely generated, so is ๐‘‰.

If R is Noetherian, then every submodule of a finitely generated R-module is finitely generated.

Pf. Using a surjective map ๐œ‘: ๐‘…๐‘š โ†’ ๐‘‰, it suffices to prove it for ๐‘…๐‘š . Induct on m. For the

projection ๐œ‹: ๐‘…๐‘š โ†’ ๐‘…๐‘šโˆ’1, the image and kernel are finitely generated. A ring is Artinian if it satisfies the descending chain condition on ideals: There is no infinite

strictly decreasing chain ๐ผ1 โŠƒ ๐ผ2 โŠƒ โ‹ฏ of ideals.

5-4 Application 1: Abelian Groups

An abelian group corresponds to a โ„ž-module with integer multiplication defined by ๐‘›๐‘ฃ = ๐‘ฃ + ๐‘ฃ + โ‹ฏ + ๐‘ฃ

๐‘› times

. Abelian groups and โ„ž-modules are equivalent concepts, so

generalizing linear algebra for modules helps us study abelian groups. If W is a free abelian group of rank m, and U is a subgroup, then U is a free abelian group of

rank at most ๐‘š. Pf. Choose a (finite) set of generators ๐›ฝ = (๐‘ข1, โ€ฆ , ๐‘ข๐‘›) for U and a basis ๐›พ = (๐‘ค1, โ€ฆ , ๐‘ค๐‘š ) for

W. Write ๐‘ข๐‘— = ๐‘ค๐‘–๐‘Ž๐‘–๐‘—๐‘– . Then left multiplication by A is an surjective homomorphism โ„ž๐‘› โ†’

โ„ž๐‘š . Diagonalizing A, we can find an explicit basis for U with at most ๐‘› โ‰ค ๐‘š elements.

Page 24: Algebra Math Notes Abstract Algebra

Generators and Relations

Let A be a matrix, and let ๐ด๐‘…๐‘› denote the image of ๐‘…๐‘› under left multiplication by ๐ด. The module ๐‘‰ = ๐‘…๐‘š /๐ด๐‘…๐‘› is presented by the matrix A.

An abelian group G with n generators ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› can be identified with a quotient module of

โ„ž๐‘› . The set of ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› ๐‘‡ โˆˆ โ„ž๐‘› such that

๐‘Ž๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

= 0

forms a submodule of โ„ž๐‘› . They are the relations in G, and form the kernel of the map

โ„ž๐‘› โ†’ ๐บ. If ๐‘Ž๐‘–1 , โ€ฆ , ๐‘Ž๐‘–๐‘› ๐‘‡ โˆˆ โ„ž๐‘› generate this submodule, letting A be the matrix with these rows,

๐‘๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

= 0 โ‡” ๐‘1

โ‹ฎ๐‘๐‘›

= ๐ด๐‘ฃ for some ๐‘ฃ โˆˆ โ„ž๐‘›

Then G corresponds to the module โ„ž๐‘›/๐ดโ„ž๐‘› ; G is presented by A. An abelian group that is presented by a matrix needs only satisfy the relations implied (through linearity) by the relations given by the columns of A. To determine a group from its presentation:

1. Use elementary row and column operations to write A in normal form. 2. Delete any columns of 0โ€™s (trivial relations). 3. If 1 is the only nonzero entry in its column, delete that row and column. (This is a

relation of the form ๐‘ฃ = 0.)

4. If the diagonal entries are ๐‘‘1, โ€ฆ , ๐‘‘๐‘˜ , and there are ๐‘™ zero rows, then the group is

isomorphic to โ„ž๐‘‘1โŠ• โ‹ฏ โŠ• โ„ž๐‘‘๐‘˜

โŠ• โ„ž๐‘™ โ‰… ๐ถ๐‘‘1โŠ• โ‹ฏ โŠ• ๐ถ๐‘‘๐‘˜

โŠ• ๐‘™๐ถโˆž .

Structure Theorem for Finitely Generated Abelian Groups: a.k.a Unicity Theorem for Abelian Group Decomposition, Basis Theorem

A finitely generated abelian group V is the direct sum of cyclic subgroups and a free abelian group: ๐‘‰ = ๐ถ๐‘‘1

โŠ• โ‹ฏ โŠ• ๐ถ๐‘‘๐‘˜โŠ• ๐ฟ. The orders can be chosen uniquely to satisfy either of the

following two conditions:

1. 1 < ๐‘‘1|๐‘‘2 โ‹ฏ |๐‘‘๐‘˜ 2. All the ๐‘‘๐‘– are prime power orders. (Uniqueness follows from counting orders in p-

groups.)

5-5 Application 2: Linear Operators A linear operator T on a F-vector space corresponds to a ๐น[๐‘ก]-module with multiplication by a polynomial defined by ๐‘ก๐‘ฃ = ๐‘‡ ๐‘ฃ , ๐‘“ ๐‘ก ๐‘ฃ = ๐‘“ ๐‘‡ (๐‘ฃ). A submodule corresponds to a T-invariant subspace. The structure theorem gives: Rational Canonical Form: Every linear operator T on finite-dimensional V has a rational canonical form.

๐‘‡ ๐›ฝ =

๐ถ1 ๐‘‚๐‘‚ ๐ถ2

โ‹ฏ ๐‘‚โ‹ฏ ๐‘‚

โ‹ฎ โ‹ฎ๐‘‚ ๐‘‚

โ‹ฎโ‹ฏ ๐ถ๐‘Ÿ

where each ๐ถ๐‘– is the companion matrix of an invariant factor ๐‘๐‘– . The rational canonical form

โ„ž๐‘›

UL

W

๐ถ

๐‘–

๐ต

โ„ž๐‘š ๐ด

Page 25: Algebra Math Notes Abstract Algebra

is unique under the condition ๐‘๐‘–+1|๐‘๐‘– for each 1 โ‰ค ๐‘– < ๐‘Ÿ.

The companion matrix of the monic polynomial ๐‘ ๐‘ก = ๐‘Ž0 + ๐‘Ž1๐‘ก + โ‹ฏ + ๐‘Ž๐‘˜โˆ’1๐‘ก๐‘˜โˆ’1 + ๐‘ก๐‘˜ is

๐ถ(๐‘) =

0 01 00 1

โ‹ฏ 0 โˆ’๐‘Ž0

โ‹ฏ 0 โˆ’๐‘Ž1

โ‹ฏ 0 โˆ’๐‘Ž2

โ‹ฎ โ‹ฎ0 0

โ‹ฑ โ‹ฎ โ‹ฎโ‹ฏ 1 โˆ’๐‘Ž๐‘˜โˆ’1

because the characteristic polynomial of C(p) is โˆ’1 ๐‘˜๐‘(๐‘ก).

The product of the invariant factors is the characteristic polynomial of T.

5-6 Polynomial Rings in Several Variables

Let ๐‘… = โ„‚ ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘˜ = โ„‚ ๐‘‹ ๐‘‹ โˆˆ โ„‚๐‘˜ , and V be a finitely generated R-module with presentation matrix ๐ด(๐‘‹). V is a free module of rank ๐‘Ÿ iff ๐ด(๐‘) has rank ๐‘š โˆ’ ๐‘Ÿ at every point

๐‘ โˆˆ โ„‚๐‘˜ . The subspace ๐‘Š(๐‘) spanned by the columns varies continuously as c if the dimension does not โ€œjump around.โ€ Continuous families of vector spaces are vector bundles. V is free iff

๐‘Š(๐‘) forms a vector bundle over โ„‚๐‘› .

5-7 Tensor Products Commutative Rings: The tensor product ๐‘€ โŠ—๐‘… ๐‘ of R-modules M and N is the (unique) R-module T (along with a bilinear map ๐‘•: ๐‘€ ร— ๐‘ โ†’ ๐‘‡) satisfying the Universal Mapping Property: for any bilinear map

๐‘“: ๐‘€ ร— ๐‘ โ†’ ๐‘ƒ, there is a unique R-homomorphism ๐‘”: ๐‘‡ โ†’ ๐‘ƒ such that ๐‘“ = ๐‘”๐‘•.

One way to construct it is as follows: Let F be the free module with basis ๐‘€ ร— ๐‘, and let ๐บ be the submodule generated by ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅโ€ฒ , ๐‘ฆ), ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘ฆ โ€ฒ), ๐‘Ÿ๐‘ฅ, ๐‘ฆ โˆ’ ๐‘Ÿ(๐‘ฅ, ๐‘ฆ), ๐‘ฅ, ๐‘Ÿ๐‘ฆ โˆ’ ๐‘Ÿ(๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฅโ€ฒ โˆˆ ๐‘€; ๐‘ฆ, ๐‘ฆ โ€ฒ โˆˆ ๐‘, ๐‘Ÿ โˆˆ ๐‘…. Then ๐‘€ โŠ—๐‘… ๐‘ = ๐น/๐บ;

๐‘ฅ โŠ— ๐‘ฆ denotes ๐‘ฅ, ๐‘ฆ + ๐บ. The relations make ๐‘ฅ โŠ— ๐‘ฆ linear: 1. ๐‘ฅ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ

2. ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅ โŠ— ๐‘ฆ โ€ฒ 3. ๐‘Ÿ ๐‘ฅ โŠ— ๐‘ฆ = ๐‘Ÿ๐‘ฅ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘Ÿ๐‘ฆ

Note that in general, an element of ๐‘€ โŠ— ๐‘ is a sum (linear combination) of elements in the

form ๐‘ฅ โŠ— ๐‘ฆ. Basic properties (prove using UMP)

1. ๐‘€ โŠ— ๐‘ โ‰… ๐‘ โŠ— ๐‘€ 2. ๐‘€ โŠ— ๐‘ โŠ— ๐‘ƒ โ‰… ๐‘€ โŠ— (๐‘ โŠ— ๐‘ƒ)

3. ๐‘€ โŠ— ๐‘ โŠ• ๐‘ƒ โ‰… ๐‘€ โŠ— ๐‘ โŠ• (๐‘€ โŠ— ๐‘ƒ)

4. ๐‘… โŠ—๐‘… ๐‘€ โ‰… ๐‘€, ๐‘…๐‘š โŠ— ๐‘€ โ‰… ๐‘€๐‘š where ๐ด๐‘š means the direct sum of m copies of A. 5. ๐‘…๐‘š โŠ— ๐‘…๐‘› = ๐‘…๐‘š๐‘› .

The tensor product ๐‘“1 โŠ— ๐‘“2 of homomorphisms ๐‘“1: ๐‘€1 โ†’ ๐‘1, ๐‘“2: ๐‘€2 โ†’ ๐‘2 is the map ๐‘“: ๐‘€1 โŠ—๐‘€2 โ†’ ๐‘1 โŠ— ๐‘2 such that ๐‘“ ๐‘ฅ1 โŠ— ๐‘ฅ2 = ๐‘“1 ๐‘ฅ1 โŠ— ๐‘“2(๐‘ฅ2). Note that ๐‘”1 โŠ— ๐‘”2 โˆ˜ ๐‘“1 โŠ— ๐‘“2 = ๐‘”1 โˆ˜ ๐‘“1 โŠ— (๐‘”2 โˆ˜ ๐‘“2). When applied to the linear transformations corresponding to the

homomorphisms, the tensor (Kronecker) product of ๐‘ ร— ๐‘ž matrix A and ๐‘Ÿ ร— ๐‘  matrix B is

๐‘€ ร— ๐‘ ๐‘ƒ

๐‘‡ ๐‘•

๐‘“

๐‘”

Page 26: Algebra Math Notes Abstract Algebra

๐ดโจ‚๐ต =

๐‘Ž11๐ต โ‹ฏ ๐‘Ž1๐‘ž๐ต

โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘1๐ต โ‹ฏ ๐‘Ž๐‘๐‘ž ๐ต

. The ordering of the basis is ๐‘ฃ1 โŠ— ๐‘ค1, โ€ฆ , ๐‘ฃ1 โŠ— ๐‘ค๐‘ž , โ€ฆ , ๐‘ฃ๐‘ โŠ— ๐‘ค๐‘ž .

For the tensor product of algebras, multiplication is given by ๐‘Ž โŠ— ๐‘ ๐‘Žโ€ฒ โŠ— ๐‘โ€ฒ = ๐‘Ž๐‘Žโ€ฒ โŠ— ๐‘๐‘โ€ฒ. Noncommutative rings: The tensor product ๐‘€ โŠ—๐‘… ๐‘ of right R-module ๐‘€๐‘… and left R-module ๐‘๐‘…

is an abelian

group T (along with a bilinear map ๐‘•: ๐‘€ ร— ๐‘ โ†’ ๐‘‡) satisfying the Universal Mapping Property: for any biadditive, R-balanced map ๐‘“: ๐‘€ ร— ๐‘ โ†’ ๐‘ƒ

1. ๐‘“ ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ = ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘“ ๐‘ฅโ€ฒ , ๐‘ฆ , ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘“ ๐‘ฅ, ๐‘ฆ โ€ฒ 2. ๐‘“ ๐‘ฅ๐‘Ÿ, ๐‘ฆ = ๐‘“(๐‘ฅ, ๐‘Ÿ๐‘ฆ)

there is a unique abelian group homomorphism ๐‘”: ๐‘‡ โ†’ ๐‘ƒ such that ๐‘“ = ๐‘”๐‘•.

One way to construct it is as follows: Let F be the free module with basis ๐‘€ ร— ๐‘, and let ๐บ be the submodule generated by ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅโ€ฒ , ๐‘ฆ), ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘ฆ โ€ฒ), ๐‘ฅ๐‘Ÿ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘Ÿ๐‘ฆ) for all ๐‘ฅ, ๐‘ฅโ€ฒ โˆˆ ๐‘€; ๐‘ฆ, ๐‘ฆ โ€ฒ โˆˆ ๐‘, ๐‘Ÿ โˆˆ ๐‘…. Then ๐‘€ โŠ—๐‘… ๐‘ = ๐น/๐บ; ๐‘ฅ โŠ— ๐‘ฆ denotes ๐‘ฅ, ๐‘ฆ + ๐บ. The relations make ๐‘ฅ โŠ— ๐‘ฆ biadditive and R-balanced:

1. ๐‘ฅ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ 2. ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅ โŠ— ๐‘ฆ โ€ฒ

3. ๐‘ฅ๐‘Ÿ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘Ÿ๐‘ฆ

If M is a (S,R) bimodule and N is a (R,T) module, then ๐‘€ โŠ— ๐‘ is a S-T bimodule. Definitions generalize to more modules with multiadditive balanced maps.

The above properties all hold except for commutativity; (2) is replaced by ๐‘€ โŠ—๐‘… ๐‘ โŠ—๐‘† ๐‘ƒ โ‰… ๐‘€ โŠ—๐‘… ๐‘ โŠ—๐‘† ๐‘ƒ โ‰… ๐‘€ โŠ—๐‘… (๐‘ โŠ—๐‘† ๐‘ƒ).

๐‘€ ร— ๐‘ ๐‘ƒ

๐‘‡ ๐‘•

๐‘“

๐‘”

Page 27: Algebra Math Notes Abstract Algebra

6 Galois Theory 6-1 Symmetric Polynomials

Symmetric Polynomials A symmetric polynomial is fixed by every permutation of the variables.

The elementary symmetric polynomial in n variables ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› of degree k is

๐‘ ๐‘˜ = ๐‘ฅ๐‘– 1 โ‹ฏ๐‘ฅ๐‘– ๐‘˜

1โ‰ค๐‘–(1)<โ‹ฏ<๐‘–(๐‘˜)โ‰ค๐‘›

.

Vietaโ€™s Theorem: If ๐‘ฅ โˆ’ ๐›ผ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ผ๐‘› = ๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž๐‘›

Then ๐›ผ๐‘– = โˆ’1 ๐‘–๐‘Ž๐‘– .

Newtonโ€™s identities: Let ๐‘ค๐‘˜ = ๐›ผ1๐‘˜ + โ‹ฏ + ๐›ผ๐‘›

๐‘˜ . Then

๐‘ค๐‘˜ โˆ’ ๐‘ 1๐‘ค๐‘˜โˆ’1 + โ‹ฏ + โˆ’1 ๐‘˜๐‘ ๐‘˜๐‘ค1 + โˆ’1 ๐‘˜๐‘˜๐‘ ๐‘˜ = 0 Fundamental Theorem of Symmetric Polynomials: Every symmetric polynomial in ๐‘…[๐‘ฅ] can be written in a unique way as a polynomial in the elementary symmetric polynomials. The polynomial will be in ๐‘…[๐‘ฅ]. Pf. Introduce a lexicographic ordering of the monomials and use induction. Corollaries:

1. If ๐‘“ ๐‘ฅ โˆˆ ๐น[๐‘ฅ] has roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› in ๐พ โŠ‡ ๐น, and ๐‘” ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐น[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ] is a symmetric polynomial, then ๐‘” ๐›ผ1, โ€ฆ , ๐›ผ๐‘› โˆˆ ๐น.

2. If ๐‘1, โ€ฆ , ๐‘๐‘˜ is the orbit of ๐‘1 for the operation of the symmetric group on the variables, and ๐‘•(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘˜) is a symmetric polynomial, then ๐‘•(๐‘1, โ€ฆ , ๐‘๐‘˜) is a symmetric polynomial.

6-2 Discriminant If ๐‘ƒ ๐‘ฅ = ๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž๐‘› has roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› , then the discriminant of P is

๐ท = ๐›ผ๐‘– โˆ’ ๐›ผ๐‘— 2

1โ‰ค๐‘–<๐‘—โ‰ค๐‘›

.

Since D is a symmetric polynomial in the ๐‘ข๐‘– , it can be written in terms of the elementary symmetric polynomials. (It can always be defined in terms of ฮ” whether or not P splits completely.)

๐ท ๐›ผ1, โ€ฆ , ๐›ผ๐‘› = ฮ” ๐‘ 1, โ€ฆ , ๐‘ ๐‘› = ฮ”(โˆ’๐‘Ž1, โ€ฆ , โˆ’1 ๐‘›๐‘Ž๐‘›) Ex.

1. ๐ท ๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ = ๐‘2 โˆ’ 4๐‘.

2. ๐ท ๐‘ฅ3 + ๐‘๐‘ฅ + ๐‘ž = โˆ’4๐‘3 โˆ’ 27๐‘ž2.

6-3 Galois Group Assume fields have characteristic 0. The F-automorphisms of an extension K form the Galois group ๐บ(๐พ/๐น) of K over F. ๐พ/๐น is

a Galois extension3 if |๐บ(๐พ/๐น)| = [๐พ: ๐น]. Ex. ๐บ(โ„‚/โ„) = {๐ผ, conjugation}. Any two splitting fields of ๐‘“ over F are isomorphic.

3 In general (when K is not necessarily a finite extension) a Galois extension is defined as a normal, separable field

extension. A separable polynomial has no repeated roots in a splitting field; n element is separable over F if its minimal

polynomial is separable; a separable field extension has every element separable over F.

Page 28: Algebra Math Notes Abstract Algebra

Pf. (a) An extension field contains at most one splitting field of ๐‘“ over F. (b) Suppose ๐พ1, ๐พ2 are 2 splitting fields. Take a primitive element ๐›พ โˆˆ ๐พ1 with irreducible polynomial ๐‘”. Choose

an extension L of ๐พ2 so that g has a root ๐›พโ€ฒ. Then use (a).

6-4 Fixed Fields

Let H be a group of automorphisms of a field K. The fixed field of H, ๐พ๐ป, is the set of elements of K fixed by every group element.

๐พ๐ป = ๐›ผ โˆˆ ๐พ ๐œŽ ๐›ผ = ๐›ผ โˆ€๐œŽ โˆˆ ๐ป Fixed Field Theorem:

1. ๐พ: ๐พ๐ป = ๐ป : The degree of K over ๐พ๐ป is equal to the order of the group. 2. ๐ป = ๐บ(๐พ/๐พ๐ป): K is a Galois extension of ๐พ๐ป with Galois group H.

Pf.

1. Let ๐›ฝ1 โˆˆ ๐พ with H-orbit ๐›ฝ1, โ€ฆ , ๐›ฝ๐‘Ÿ . For any ๐‘–, there is ๐œŽ โˆˆ ๐ป with ๐œŽ ๐›ฝ1 = ๐›ฝ๐‘– . Thus ๐‘ฅ โˆ’ ๐›ฝ๐‘– |๐‘•. Since ๐‘” ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ฝ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ฝ๐‘Ÿ โˆˆ ๐พ๐ป[๐‘ฅ] by symmetry, ๐‘” is the irreducible

polynomial for ๐›ฝ1 over ๐พ๐ป. r divides the order of H. 2. If ๐พ: ๐น = โˆž, there exist elements in K whose degrees over F are arbitrarily large.

3. By (1), ๐พ/๐พ๐ป is algebraic, so by (2), [๐พ: ๐พ๐ป] is finite. The stabilizer of a primitive

element is trivial, so the orbit has order ๐‘› = |๐ป|. By (1), ๐›พ has degree ๐‘› over ๐พ๐ป.

Then ๐พ: ๐พ๐ป = ๐‘›. 4. Let ๐บ = ๐บ(๐พ/๐พ๐ป). Then ๐ป โŠ† ๐บ โ‡’ ๐พ๐บ โŠ† ๐พ๐ป. By definition, every element of G acts as

the identity on ๐พ๐ป so ๐พ๐ป โŠ† ๐พ๐บ . Lรผrothโ€™s Theorem: Let ๐น โŠƒ โ„‚ be a subfield of the field โ„‚(๐‘ก) of rational functions. Then ๐น is a field โ„‚(๐‘ข) of rational functions.

6-5 Galois Extensions and Splitting Fields Splitting Fields A splitting field of ๐‘“ โˆˆ ๐น[๐‘ฅ] over ๐น is an extension ๐พ/๐น such that

1. ๐‘“ splits completely in K: ๐‘“ ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ผ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ผ๐‘› , ๐›ผ๐‘– โˆˆ ๐พ. 2. ๐พ = ๐น(๐›ผ1, โ€ฆ , ๐‘Ž๐‘›)

A splitting field is a finite extension, and every finite extension is contained in a splitting field. Splitting Theorem: If K is the splitting field of some ๐‘“ ๐‘ฅ โˆˆ ๐น[๐‘ฅ], then any irreducible

polynomial ๐‘” ๐‘ฅ โˆˆ ๐น[๐‘ฅ] with one root in K splits completely in K. (A field satisfying the latter condition is called a normal extension of F.) Conversely, any finite normal extension is a splitting field. Pf. Suppose ๐‘”(๐‘ฅ) has the root ๐›ฝ โˆˆ ๐พ. Then ๐‘1 ๐›ผ1, โ€ฆ , ๐›ผ๐‘› = ๐›ฝ for some ๐‘1 โˆˆ ๐น[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›]. Let

๐‘1, โ€ฆ , ๐‘๐‘˜ be the orbit of ๐‘1 under the symmetric group. Then โˆ ๐‘ฅ โˆ’ ๐‘๐‘– ๐›ผ1, โ€ฆ , ๐›ผ๐‘› ๐‘˜๐‘–=1 โˆˆ ๐น[๐‘ฅ]

by symmetry so it is divisible by ๐‘”(๐‘ฅ), the irreducible polynomial of ๐›ฝ.

If K is an extension of F, then an intermediate field satisfies ๐น โŠ† ๐ฟ โŠ† ๐พ. A proper intermediate field is neither F nor K. Note ๐น โŠ† ๐ฟ โ‡’ ๐บ ๐พ ๐ฟ โŠ† ๐บ(๐พ ๐น ).

The order of ๐บ = ๐บ(๐พ ๐น ) divides [๐พ: ๐น], since ๐บ = [๐พ: ๐พ๐บ] and ๐พ: ๐น = ๐พ: ๐พ๐บ [๐พ๐บ : ๐น]. Characteristic Properties of Galois Extensions: For a finite extension K, the following are equivalent.

1. ๐พ ๐น is a Galois extension. 2. ๐พ๐บ = ๐น where ๐บ = ๐บ(๐พ ๐น ).

Page 29: Algebra Math Notes Abstract Algebra

3. ๐พ is a splitting field over F. Pf. (1)โ‡”(2): By the Fixed Field Theorem, ๐บ = [๐พ: ๐พ๐บ]. (1)โ‡”(3): Let ๐›พ1 be a primitive element for K, with irreducible polynomial ๐‘“. Let ๐›พ1, โ€ฆ , ๐›พ๐‘Ÿ be

the roots of ๐‘“ in K. There is a unique F-automorphism ๐œŽ๐‘– sending ๐›พ1 โ‡ ๐›พ๐‘– for each i, and these make up the group ๐บ(๐พ ๐น ). Thus the order of ๐บ(๐พ ๐น ) is equal to the number of

conjugates of ๐›พ1 in K. So ๐พ ๐น Galoisโ‡” ๐‘Ÿ = ๐บ = ๐พ: ๐พ๐บ โ‡” ๐‘“ (degree r) splits completely in

Kโ‡” K is a splitting field. If ๐พ ๐น is a Galois extension, and ๐‘” โˆˆ ๐น[๐‘ฅ] splits completely in K with roots ๐›ฝ1, โ€ฆ , ๐›ฝ๐‘Ÿ , then

G operates on the set of roots {๐›ฝ๐‘–}. G operates faithfully if K is a splitting field of ๐‘” over ๐น.

G operates transitively if ๐‘” is irreducible over F.

If K is the splitting field of irreducible ๐‘”, then G embeds as a transitive subgroup of ๐‘†๐‘Ÿ .

6-6 Fundamental Theorem Fundamental Theorem of Galois Theory: Let K be a Galois extension of a field F, and let ๐บ = ๐บ(๐พ/๐น). Then there is a bijection between subgroups of G and intermediate fields, defined by

๐ป โ‡ ๐พ๐ป ๐บ(๐พ ๐ฟ ) โ‡œ ๐ฟ

Let ๐ฟ = ๐พ๐ป (the fixed field of a subgroup H of G). ๐ฟ ๐น is a Galois extension iff H is a normal subgroup of G. If so, ๐บ ๐ฟ ๐น โ‰… ๐บ ๐ป .

Pf. Let ๐›พ1 be a primitive element for ๐ฟ ๐น and let ๐‘” be the irreducible polynomial for ๐›พ1 over

F. Let the roots of ๐‘” in ๐พ be ๐›พ1, โ€ฆ , ๐›พ๐‘Ÿ . For ๐œŽ โˆˆ ๐บ, ๐œŽ ๐›พ1 = ๐›พ๐‘– , the stabilizer of ๐›พ๐‘– is ๐œŽ๐ป๐œŽโˆ’1.

Thus ๐œŽ๐ป๐œŽโˆ’1 = ๐ป โ‡” ๐›พ๐‘– โˆˆ ๐ฟ = ๐พ๐ป. H is normalโ‡”All ๐›พ๐‘– โˆˆ ๐ฟ โ‡” ๐ฟ ๐น Galois. Restricting ๐œŽ to L gives a homomorphism ๐œ‘: ๐บ โ†’ ๐บ(๐ฟ ๐น ) with kernel H.

6-7 Roots of Unity

Let ๐œ๐‘› = ๐‘’2๐œ‹๐‘–

๐‘› . ๐น(๐œ๐‘›) is a cyclotomic field. For p prime, the Galois group of ๐น(๐œ๐‘) is

isomorphic to ๐”ฝ๐‘ร—, of order ๐‘ โˆ’ 1.

Ex. For ๐‘ = 2๐‘Ÿ + 1, G is cyclic of order 2๐‘Ÿ . Let ๐œ‰ be a primitive root modulo ๐‘, and ๐œŽ ๐œ = ๐œ๐œ‰ .

The degree of each extension in the following chain is 2: ๐น = ๐พโŒŒ๐œŽโŒ โŠ‚ ๐พโŒŒ๐œŽ2โŒ โŠ‚ โ‹ฏ โŠ‚ ๐พโŒŒ๐œŽ2๐‘Ÿโˆ’1โŒ โŠ‚

๐พโŒŒ๐œŽ2๐‘ŸโŒ = ๐พ. cos

2๐œ‹

๐‘ generates ๐พโŒŒ๐œŽ2๐‘Ÿโˆ’1

โŒ so the regular p-gon can be constructed.

Kronecker-Weber Theorem: Every Galois extension of โ„š whose Galois group is abelian is contained in a cyclotomic field โ„š(๐œ๐‘›). Ex. If p is prime and L is the unique quadratic extension of โ„š in โ„š(๐œ๐‘),

1. If ๐‘ โ‰ก 1 (mod 4) then ๐ฟ = โ„š( ๐‘).

2. If ๐‘ โ‰ก 3 (mod 4) then ๐ฟ = โ„š(๐‘– ๐‘).

Show this by letting ๐œŽ be a generator as before, take the orbit sums of the roots for โŒŒ๐œŽ2โŒ. Kummer Extensions

K

L

F

{ }

} ๐บ = ๐บ(๐พ ๐น ) operates on K fixing F.

๐ป = ๐บ(๐พ ๐ฟ ) operates on K fixing L.

๐ป normal: ๐บ ๐ป โ‰… ๐บ ๐ฟ ๐น operates here.

Page 30: Algebra Math Notes Abstract Algebra

Let ๐น be a subfield of โ„‚ containing ๐œ = ๐‘’2๐œ‹๐‘– ๐‘ , and let ๐พ ๐น be a Galois extension of degree p. Then K is obtained by adjoining a pth root (some ๐›ฝ with ๐›ฝ๐‘ โˆˆ ๐น). Pf.

1. For ๐‘ โˆˆ ๐น, ๐‘” ๐‘ฅ = ๐‘ฅ๐‘ โˆ’ ๐‘ is either irreducible in F, or splits completely in F. (Take

๐ผ โ‰  ๐œŽ โˆˆ ๐บ(๐พ ๐น ); then ๐œŽ๐‘˜ ๐›ฝ = ๐œ๐‘˜๐‘ฃ๐›ฝ for some ๐‘ฃ โ‰  0, so G operates transitively on the roots of ๐‘”.)

2. K is a vector space over F; each ๐œŽ โˆˆ ๐บ is a linear operator. Choose a generator ๐œŽ.

๐œŽ๐‘ = ๐ผ implies that the matrix is diagonalizable and all eigenvalues are powers of ๐œ.

Let ๐›ฝ be an eigenvector with eigenvalue ๐œ† โ‰  1; then ๐œŽ ๐›ฝ๐‘ = ๐›ฝ๐‘ โ‡’ ๐›ฝ๐‘ โˆˆ ๐พ๐บ = ๐น, but

๐›ฝ โˆ‰ ๐น, so ๐น ๐›ฝ = ๐พ.

6-8 Cubic Equations Let K be the splitting field of an irreducible cubic polynomial ๐‘“ over F with roots ๐›ผ1, ๐›ผ2 , ๐›ผ3, let

D be the discriminant of ๐‘“, and let ๐บ = ๐บ ๐พ ๐น . Ifโ€ฆ ๐พ: ๐น ๐บ โ‰… Chain Proper intermediate fields

๐ท is not a square in F

3 ๐ด3 โ‰… ๐ถ3 ๐น โŠ‚ ๐น ๐›ผ1 = ๐พ None

๐ท is a square in F 6 ๐บ โ‰… ๐‘†3 ๐น โŠ‚ ๐น ๐›ผ1 โŠ‚ ๐น ๐›ผ1, ๐‘Ž2 = ๐พ

๐น ๐›ผ1 , ๐น ๐›ผ2 , ๐น ๐›ผ3 , ๐น(๐›ฟ)

Pf. Let ๐›ฟ = ๐›ผ1 โˆ’ ๐›ผ2 ๐›ผ1 โˆ’ ๐›ผ3 ๐›ผ2 โˆ’ ๐›ผ3 = ยฑ ๐ท. ๐›ฟ โˆˆ ๐น โ‡” ๐›ฟ fixed by every element of G โ‡” only even permutations in G.

In general, for an irreducible polynomial of any degree, ๐›ฟ = ๐ท โˆˆ ๐น โ‡” G contains only even permutations.

Cubic Formula

To solve ๐‘ฅ3 + ๐‘Ž2๐‘ฅ2 + ๐‘Ž1๐‘ฅ + ๐‘Ž0 = 0 first substitute ๐‘ฅ = ๐‘ฆ โˆ’ ๐‘Ž2/3 (Tschirnhausen

transformation) to put it in the form ๐‘ฅ3 + ๐‘๐‘ฅ + ๐‘ž = 0.

For roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› , ๐‘ง = ๐›ผ1 + ๐œ”๐›ผ2 + ๐œ”2๐›ผ3, ๐‘งโ€ฒ = ๐›ผ1 + ๐œ”2๐›ผ2 + ๐œ”๐‘Ž3 are eigenvectors for

๐œŽ = (123). Let ๐ด = ๐›ผ13

cyc , ๐ต = ๐›ผ12

cyc ๐›ผ2, ๐ถ = ๐›ผ1๐›ผ22

cyc . Then ๐ต โˆ’ ๐ถ = ๐ท. Express

๐ด, ๐ต + ๐ถ in terms of elementary symmetric polynomials, apply Vietaโ€™s formula, and solve for ๐ด, ๐ต, ๐ถ. Find ๐‘ง3, then take the cube root:

๐‘ฅ = โˆ’๐‘ž

2+

๐‘3

27+

๐‘ž2

4

3

โˆ’ ๐‘ž

2+

๐‘3

27+

๐‘ž2

4

3

6-9 Quartic Equations Let ๐‘“ โˆˆ ๐น[๐‘ฅ] be an irreducible quartic polynomial.

Let ๐›ฝ1 = ๐›ผ1๐›ผ2 + ๐›ผ3๐›ผ4, ๐›ฝ2 = ๐›ผ1๐›ผ3 + ๐›ผ2๐›ผ4, ๐›ฝ3 = ๐›ผ1๐›ผ4 + ๐›ผ2๐›ผ3. ๐‘” ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ฝ1 ๐‘ฅ โˆ’ ๐›ฝ2 (๐‘ฅ โˆ’ ๐›ฝ3) is the resolvent cubic of ๐‘“.

What is ๐บ = ๐บ(๐พ/๐น)?

D square D not square

๐‘” reducible ๐ท2 (๐‘” splits completely) ๐ท4 or ๐ถ4 (๐‘” has 1 root in F)

๐‘” irreducible ๐ด4 ๐‘†4

๐ท2 = {๐ผ, 12 34 , 13 24 , 14 23 } For the ambiguous case, let ๐›พ = ๐›ผ1๐›ผ2 โˆ’ ๐›ผ3๐›ผ4, ๐œ– = ๐›ผ1 + ๐›ผ2 โˆ’ ๐›ผ3 โˆ’ ๐›ผ4. ๐›ฟ๐›พ or ๐›ฟ๐œ– is a square in F iff ๐บ = ๐ถ4.

Page 31: Algebra Math Notes Abstract Algebra

Pf. The ๐›ฝ๐‘– are distinct since ๐›ฝ1 โˆ’ ๐›ฝ2 = ๐›ผ1 โˆ’ ๐›ผ4 (๐›ผ2 โˆ’ ๐›ผ3). ๐‘†4 operates on ๐ต = {๐›ฝ๐‘–}, giving ๐œ‘: ๐‘†4 โ†’ ๐‘†3. If ๐‘” irreducible, G operates transitively on B, so 3| ๐บ .

Special case: ๐‘“ ๐‘ฅ = ๐‘ฅ4 + ๐‘๐‘ฅ2 + ๐‘ = 0. Then the roots are ๐›ผ1, ๐›ผ2 = โˆ’๐‘ยฑ ๐‘2โˆ’4๐‘

2,

๐›ผ3 = โˆ’๐›ผ1, and ๐›ผ4 = โˆ’๐›ผ2, so ๐บ โŠ† ๐ท4. Look at expressions such as ๐›ผ1๐›ผ2. Quartics are solvable in the following way:

1. Adjoin ๐›ฟ = ๐ท. 2. Use Cardanoโ€™s formula to solve for a root of the resolvent cubic ๐‘”(๐‘ฅ) and adjoin it.

3. The Galois group over the field extension K is a subgroup of ๐ท2. At most 2 more square root extensions suffice.

6-10 Quintic Equations and the Impossibility Theorem Quintic Equations Impossibility Theorem: The general quintic equation is not solvable by radicals. Pf.

1. The following are equivalent: (We say that ๐›ผ is solvable [by radicals] over F.) a. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ

๐น๐‘Ÿ , ๐น๐‘—+1 = ๐น๐‘— (๐›ฝ๐‘— +1) where a power of ๐›ฝ๐‘— +1 is in ๐น๐‘— .

b. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ ๐น๐‘Ÿ , and ๐น๐‘—+1 is a Galois extension of ๐น๐‘— of prime degree. (Equivalent to (a) by

Kummerโ€™s Theorem.)

c. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ ๐น๐‘Ÿ , and ๐น๐‘—+1 is an abelian Galois extension of ๐น๐‘— .

2. Let ๐‘“, ๐‘” โˆˆ ๐น[๐‘ฅ], and let ๐นโ€ฒ be a splitting field of ๐‘“๐‘”. ๐พโ€ฒ contains a splitting field ๐พ of ๐‘“, and a splitting field ๐นโ€ฒ of ๐‘”. Let ๐บ = ๐บ ๐พ ๐น , ๐ป = ๐บ ๐นโ€ฒ ๐น , ๐’ข = ๐บ(๐พโ€ฒ /๐น). Then ๐บ, ๐ป

are quotients of ๐’ข (Fundamental Theorem) and ๐’ข is isomorphic to a subgroup of

๐บ ร— ๐ป.

a. Let the canonical maps ๐’ข โ†’ ๐บ, ๐’ข โ†’ ๐ป send ๐œŽ โ‡ ๐œŽ๐‘“ , ๐œŽ โ‡ ๐œŽ๐‘” . Then ๐’ข โ†’ ๐บ ร— ๐ป

defined by ๐œŽ โ‡ (๐œŽ๐‘“ , ๐œŽ๐‘”) is injective.

3. Let ๐‘“ โˆˆ ๐น[๐‘ฅ] be a polynomial whose Galois group G is simple and nonabelian. Let ๐นโ€ฒ be a Galois extension of F with Galois group of prime order, and let ๐พโ€ฒ be a splitting field of ๐‘“ over ๐นโ€ฒ. Then ๐บ ๐พโ€ฒ ๐นโ€ฒ โ‰… ๐บ. In other words, we cannot make progress solving for the roots by replacing F by a prime extension.

a. From (3), |๐บ| divides |๐’ข| and |๐’ข| divides ๐บ ร— ๐ป = ๐‘|๐บ|. 2 cases:

i. ๐’ข = ๐บ : Then ๐พโ€ฒ = |๐พ|, ๐ป is a quotient of |๐’ข|, contradicting simplicity. ii. ๐’ข = ๐บ ร— ๐ป : Then ๐บ = ๐บ(๐พโ€ฒ ๐นโ€ฒ ).

4. If ๐‘“ is an irreducible quintic polynomial with Galois group ๐ด5 or ๐‘†5 then the roots of ๐‘“ are not solvable over F.

a. Adjoin ๐›ฟ = ๐ท to reduce to ๐ด5 case. b. ๐ด5 is simple. c. By (3), in the โ€œsolvable series,โ€ each field extension has Galois group ๐ด5. ๐‘“

remains irreducible after each extension.

5. There exists a polynomial with Galois group ๐‘†5.

๐พโ€ฒ

๐นโ€ฒ ๐พ

๐น ๐บ ๐ป

๐’ข

Page 32: Algebra Math Notes Abstract Algebra

a. A subgroup of ๐‘†5 containing a 5-cycle and transposition is the whole group. b. If ๐‘“ is a quintic irreducible polynomial with exactly 3 real roots, then the Galois

group is ๐‘†5 by (a).

c. Example: ๐‘ฅ5 + 16๐‘ฅ + 2. In general, a polynomial equation over a field of characteristic 0 is solvable by radicals iff its Galois group is a solvable group. In (4) above, the Galois group after adjoining an element is a subgroup of the previous one, with factor group prime cyclic.

6-11 Transcendence Theory

Lindemannโ€“Weierstrass Theorem: If ๐›ผ1, . . . , ๐›ผ๐‘› are algebraic numbers linearly independent

over the rational numbers โ„š, then ๐‘’๐›ผ1 , . . . , ๐‘’๐›ผ๐‘› are algebraically independent over โ„š; in other words the extension field โ„š ๐‘’๐›ผ1 , . . . , ๐‘’๐›ผ๐‘› has transcendence degree n over โ„š. [Incomplete]

Page 33: Algebra Math Notes Abstract Algebra

7 Algebras An algebra ๐’œ over a ring R is a module ๐’œ over R with multiplication defined so that for all

๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐’œ, ๐‘ โˆˆ ๐‘…,

1. Associative ๐‘ฅ ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ฆ ๐‘ง

2. Distributive ๐‘ฅ ๐‘ฆ + ๐‘ง = ๐‘ฅ๐‘ฆ + ๐‘ฅ๐‘ง, ๐‘ฅ + ๐‘ฆ ๐‘ง = ๐‘ฅ๐‘ง + ๐‘ฆ๐‘ง 3. ๐‘ ๐‘ฅ๐‘ฆ = ๐‘๐‘ฅ ๐‘ฆ = ๐‘ฅ(๐‘๐‘ฆ)

If there is an element 1 โˆˆ ๐’œ so that 1๐‘ฅ = ๐‘ฅ1 = ๐‘ฅ, then 1 is the identity element. ๐’œ is commutative if ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ. ๐’œ is a division algebra if each element has an inverse (๐‘ฅ๐‘ฅโˆ’1 = 1).

7-1 Division Algebras Frobenius Theorem: The only finite-dimensional division algebras D over the real numbers

are โ„ (the real numbers), โ„‚ (the complex numbers) and ๐ป (the quaternions). Pf. Associate with each ๐‘‘ โˆˆ ๐ท the linear transformation ๐‘‡๐‘‘ ๐‘ฅ = ๐‘‘๐‘ฅ.

1. Lemma: The set V of all ๐‘Ž โˆˆ ๐ท such that ๐‘Ž2 โˆˆ โ„, ๐‘Ž2 โ‰ค 0 forms a subspace of codimension 1 (i.e. dimโ„(๐‘‰/๐ท) = 1).

Proof: Let ๐‘ be the characteristic polynomial of ๐‘‡๐‘Ž . By Cayley-Hamilton, ๐‘ ๐‘‡๐‘Ž = 0.

Since there are no zero factors in D, one irreducible real factor of ๐‘ must be 0 at ๐‘Ž. If the factor is linear (๐‘ฅ โˆ’ ๐‘Ÿ), then ๐‘Ž โˆˆ โ„, ๐‘Ž = 0. If the factor is irreducible quadratic (๐‘ฅ2 โˆ’ 2โ„œ ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ 2), then this is the minimal polynomial. Since the minimal

polynomial has the same factors as the characteristic polynomial, ๐‘ ๐‘ฅ = ๐‘ฅ2 โˆ’2โ„œ ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ 2 ๐‘˜ . Since our minimal polynomial has no repeated complex root, ๐‘‡๐‘Ž is

diagonalizable over โ„‚ (see Linear Algebra notes, 8-2). a. If trace ๐‘‡๐‘Ž = 0, then the eigenvalues are pure imaginary ยฑ๐‘Ÿ๐‘–, and ๐‘‡๐‘Ž

2 is

diagonalizable with eigenvalues โ€“ ๐‘Ÿ2. Thus ๐‘‡๐‘Ž2 = โˆ’๐‘Ÿ2๐ผ๐‘‰ โ‡’ ๐‘Ž2 = โˆ’๐‘Ÿ2 โ‰ค 0.

b. Conversely, if ๐‘Ž2 โ‰ค 0, then ๐‘‡๐‘Ž2 = โˆ’๐‘Ÿ2๐ผ๐‘‰ for some ๐‘Ÿ, and the eigenvalues of ๐‘‡๐‘Ž

can only be ยฑ๐‘Ÿ๐‘–. Then trace ๐‘‡๐‘Ž = 0. c. Hence ๐‘‰ = {๐‘Ž| trace ๐‘‡๐‘Ž โ‰ค 0}. ๐‘‡: ๐‘Ž โ†’ trace(๐‘‡๐‘Ž) is a linear operator with range

โ„ (dimension 1). Since V is the kernel, V has codimension 1. 2. From (1), ๐ท = ๐‘‰ โŠ• โ„. Since ๐‘‰2 = {๐‘ฃ2|๐‘ฃ โˆˆ ๐‘‰} gives the reals in (โˆ’โˆž, 0], ๐‘‰4 gives the

reals in [0, โˆž) and V generates D as an algebra.

3. Let ๐ต ๐‘Ž, ๐‘ =โˆ’๐‘Ž๐‘โˆ’๐‘๐‘Ž

2=

๐‘Ž2+๐‘2โˆ’ ๐‘Ž+๐‘ 2

2. From the definition of V, B is an inner product

(positive definite, symmetric). Choose a minimal subspace W of V generating D as

an algebra, and let ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› be an orthonormal basis with respect to B. Then

i โ€“ ๐‘’๐‘–2 = 1, ii ๐‘’๐‘–๐‘’๐‘— = โˆ’๐‘’๐‘—๐‘’๐‘–(๐‘– โ‰  ๐‘—).

a. If ๐‘› = 0, ๐‘‰ โ‰… โ„.

b. If ๐‘› = 1, ๐‘‰ โ‰… โ„‚. (๐‘’12 = โˆ’1)

c. If ๐‘› = 2, ๐‘‰ โ‰… ๐ป. (Check the relations.)

d. If ๐‘› > 2, then using then from (ii) ๐‘’1๐‘’2๐‘’๐‘› 2 = 1 โ‡’ ๐‘’1๐‘’2๐‘’๐‘› = ยฑ1 โ‡’ ๐‘’๐‘› = ยฑ๐‘’1๐‘’2. So span ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 โŠ‚ ๐‘Š with basis ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 also generates D as an algebra, contradicting minimality.

Simple and Semisimple Algebras

[See group theory notes.] [Add some stuff here.]

Page 34: Algebra Math Notes Abstract Algebra

References [A] Algebra by Michael Artin [EoAA] Elements of Abstract Algebra by Richard Dean [PftB] Proofs from the Book by Titu Andreescu and Gabriel Dospinescu [TBGY] Abstract Algebra: The Basic Graduate Year, by Robert Ash Wikipedia